
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WATERMARKS FOR LANGUAGE MODEL VIA
PROBABILISTIC AUTOMATA

Anonymous authors
Paper under double-blind review

ABSTRACT

A recent watermarking scheme for language models achieves distortion-free em-
bedding and robustness to edit-distance attacks. However, it suffers from limited
generation diversity and high detection overhead. In parallel, recent research has
focused on undetectability—a property ensuring that watermarks remain difficult
for adversaries to detect and spoof. In this work, we introduce a new class of
watermarking schemes constructed through probabilistic automata. We present
two instantiations: (i) a practical scheme with exponential generation diversity
and computational efficiency, and (ii) a theoretical construction with formal un-
detectability guarantees under cryptographic assumptions. Extensive experiments
on LLaMA-3B and Mistral-7B validate the superior performance of our scheme
in terms of robustness and efficiency.

1 INTRODUCTION

The rapid development of large-scale language models (LMs) has markedly improved AI’s ability
to generate textual content (Brown et al., 2020). Despite these advancements, apprehensions have
arisen over authenticity, ownership, and potential misuse of such technologies (Zellers et al., 2019;
Solaiman et al., 2019). Traditional AI detection methods, such as classifier-based detection, often
fall short in terms of robustness. In contrast, text watermarking offers a potential solution to these
problems. It works by embedding a private key within the text that can be detected by the key holder,
thereby identifying and minimizing the abuse of AI-generated content.

A widely adopted watermarking method conditions the decoder on the preceding k generated tokens
(Kirchenbauer et al., 2023; Aaronson, 2022). While effective, this approach can degrade LM’s out-
put quality by introducing noticeable distortions, such as biases toward certain k-grams. To address
these distortions, distortion-free watermarking was introduced to preserve the LM’s output distri-
bution (Kuditipudi et al., 2024); however, it does not guarantee LM’s generation diversity. More
recently, undetectable watermarking has been explored (Christ et al., 2024), which prevents detec-
tion by adversaries and naturally maintains generation diversity. Despite these advancements, the
relationship between distortion-freeness and undetectability has thus far never been clearly defined.
To this end, we establish the connection between distortion-freeness and undetectability, and show
that many existing watermarks are detectable. One interpretation of this fact is that the watermark-
ing output distribution can be recognized by probabilistic deterministic finite automata (PDFA) and
can therefore be learned under the Probably Approximately Correct (PAC) framework.

Our work is closely related to the state-of-the-art watermarking approach introduced by Kuditipudi
et al. (2024), which uses a cyclic key sequence as noise for unbiased decoding and leverages the edit
distance (specifically, Levenshtein distance) metric to improve robustness against any edit-based at-
tacks. However, this method suffers from two notable drawbacks: (1) it reduces generative diversity,
often leading to deterministic outputs, and (2) it requires partitioning text into blocks with the time
complexity scales quadratically with the block size, which creates a major computational bottleneck.

We introduce a new class of watermarking schemes represented by probabilistic automata (PA),
with the following key contributions:

• Our framework generalizes the cyclic key sequence watermarking of Kuditipudi et al. (2024) as a
special case, which can be modeled as a probabilistic deterministic finite automaton (PDFA) with
a simple cyclic topology (see Figure 1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ξi ξi+1 ξi+2
1

Watermark key

Language model

crossed the roadThe fox
(prompt)

Φ0 Φ1 Φ2

Φ3 Φ4

ξ0 ξ1 ξ2

Watermark key

Language model

entered the forestThe fox
(prompt)

Figure 1: Comparison of generation of two watermarking schemes where the key follows a cyclic
structure (Kuditipudi et al., 2024) on the left and a probabilistic automaton on the right. Each Φ
specifies a probability distribution over ξ, with precise definitions provided in later sections.

• We extend this formulation to probabilistic non-deterministic finite automata (PNFA), a strictly
more expressive class than PDFAs. Leveraging the fact that the class of languages recognized
by PNFAs is not PAC-learnable under the sparse Learning Parity with Noise (LPN) assumption
(Kearns et al., 1994), we construct an undetectable watermarking scheme.

• We instantiate a practical scheme that significantly improves both generation diversity and de-
tection efficiency over Kuditipudi et al. (2024): (i) Increasing generation diversity from Θ(λ)
to Ω(λdn), where d ≥ 1, λ is the key length, and n is the sequence length, and (ii) Reducing
detection time complexity from Θ(λnk2) to Θ(λn), where k is the block size.

2 RELATED WORK

Watermarking of language models. Text watermarking aims at blending a private “key” in text
generation so that it can be detected by key holders. Early approaches relied on subtle text modifica-
tions using heuristics Atallah et al. (2001; 2002); Topkara et al. (2005). Following the autoregressive
nature of language models (LMs), recent watermarking methods start to condition the token gener-
ation by the key and k prior tokens (Kirchenbauer et al., 2023; Aaronson, 2022; Zhao et al., 2024).
However, these methods can significantly alter the underlying LM’s distribution, for instance, by
introducing biases for certain k-grams.

Watermarking without changing the next token distribution of the LM on a single text sample is
defined as distortion-free watermarking (Kuditipudi et al., 2024; Hu et al., 2024). For example,
Kuditipudi et al. (2024) uses a cyclic key sequence of noise for unbiased decoding and was the first
to employ the edit distance metric as the alignment between text and the key sequence for detection.
While this method enhances the robustness of watermarking against edit-based attacks, it suffers
from two drawbacks of lacking generation diversity, and it relies on partitioning the text into blocks
and repeatedly shifting the key sequence to compute edit distances multiple times, posing significant
efficiency challenges.

Recent works have constructed undetectable watermarks theoretically that require watermarked texts
to be indistinguishable across multiple queries, yet none of them remains practical. For instance,
Christ et al. (2024)’s construction is based on hash functions and not robust to edit-based attacks.
Christ & Gunn (2024) assume a binary symmetric channel model for LMs, which is clearly unreal-
istic. Golowich & Moitra (2024) make an assumption that the vocabulary size scales polynomially
with the security parameter (i.e., the size of the “key”), which does not typically hold in practice.
Notably, all of these undetectable watermarking schemes rely on the construction of pseudorandom
functions, yet they are based on disparate assumptions and lack a unified framework.

Probabilistic automata. Probabilistic automata (PA) are widely studied in computational linguis-
tics that describe distributions with latent variables over finite sequences of symbols. The class of PA
consists of probabilistic nondeterministic finite automata (PNFA) and their proper subclass, proba-

1All subscripts are taken modulo λ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

bilistic deterministic finite automata (PDFA). The learnability of these automata has gained profound
theoretical interest and practical relevance, particularly in modeling distributions over strings.

Kearns et al. (1994) explored the complexity of learning PDFAs within the Probably Approximately
Correct (PAC) framework. Specifically, they established that PAC-learning PDFAs with a two-letter
vocabulary is at least as hard as PAC-learning noisy parities, which is believed to be computation-
ally hard. Consequently, the entire class of PDFAs cannot be PAC-learned within polynomial time
constraints. On the other hand, Ron et al. (1995); Clark & Thollard (2004) showed that under
the constraints of a certain distinguishability on the states, acyclic PDFA and cyclic PDFAs with
bounded expected string length from any states are PAC-learnable.

Although there have been works on learning PDFAs and intermediate forms of PNFAs, few studies
address the problem of learning general PNFAs due to their hardness. Terwijn (2002) demonstrated
that PNFAs are not PAC-learnable if Blum integer factorization is hard. Angluin & Kharitonov
(1991) showed that learning remains hard even if adversaries have oracle access to membership
queries (in the context of watermarking the queries of the detection function).

Edit distance and error correction. Edit distance quantifies the similarity between two strings by
counting the minimum number of operations required to transform one into the other. This concept
extends to formal languages, where the edit distance is defined as the minimum distance between
any pair of sequences within the languages. This metric is particularly valuable in error correction,
where it helps identify the closest valid string to a given input string. Wagner (1974) introduced an
error-correcting algorithm that constructs a finite state automaton to recognize a set of strings. Their
approach uses dynamic programming to compute the edit distance between a string and a regular
language.

3 PRELIMINARIES

We denote the alphabet of an automaton by Σ and the vocabulary of a language model by V to
explicitly distinguish them. A language is defined as a mapping Σ∗ → [0, 1] (or V∗ → [0, 1],
respectively). Given an automaton M, we denote by L(M) ⊆ Σ∗ the language recognized by
M, i.e., the set of strings accepted by M. We denote the size of the watermark key by λ. In
undetectable watermarking settings, it also serves as the security parameter, which measures the
strength of distortion-freeness and undetectability of a watermarking scheme. Further discussion
on λ will follow in Section 5. The length of the generated sequence is given by m = O(poly(λ)),
where poly(·) denotes a polynomial function. For a sequence x = (x1, . . . , xn), we write xi: =
(xi, . . . , xn) for a suffix, and xi:j = (xi, . . . , xj) for a contiguous subsequence.

Definition 1 (Language Model). An (autoregressive) language model is defined by a function
Model : V∗ → ∆(V) that maps a sequence of tokens to a probability distribution over V , where
∆(·) denotes a probability distribution over a set. Given an initial sequence of tokens (a prompt)
x ∈ V∗, the probability of a sequence y = (y1, y2, . . . , ym) is defined as

p(y) =

m∏
i=1

p(yi | x,y1:i−1), (1)

where yl:h = (yl, yl+1, . . . , yh) represents a subsequence of y. Each conditional probability is
modeled by

p(· | x,y1:i−1) = Model(x,y1:i−1). (2)

We use the notation y
AR←−− Model(x) to indicate that y is autoregressively generated by Model

given x, following Equation 1.

Definition 2 (Decoder-based Watermarking Scheme). A decoder-based watermarking scheme is a
tripletW := (Gen,Modelwat,Detect) such that:

1. The key generation algorithm Gen is randomized and takes as input 1λ to generate a secret key
sk ∈ K: 2

sk← Gen(1λ). (3)

2The input is given in unary notation to ensure polynomial runtime in λ. The structure of the key can be
arbitrary, with specifics described in later sections.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. The watermarking algorithm Modelwatsk := (Model,Φ,Γ) is an autoregressive process that con-
sists of an unwatermarked model Model, a noise generator Φ : K × Ξ∗ × V∗ → ∆(Ξ), and a
decoder Γ : Ξ × ∆(V) → V , where Ξ is the noise space. At the i-th decoding step, ξi ∈ Ξ is
sampled by

ξi ∼ Φsk(ξ1:i−1,x,y1:i−1), (4)

then the next token yi is produced by the decoder deterministically given the noise ξi:

yi ← Γ(ξi,Model(x,y1:i−1)). (5)

3. The detection algorithm Detectsk takes as input sk and y, and outputs true or false.

While the above definition presented seems abstract, it covers a wide range of existing watermarking
frameworks. Specific examples are provided in Appendix E.

Ideally, Detectsk(y) should output true if y is generated by Modelwatsk (x) for some x, and output
false if y is independent of sk. The former property is referred to as completeness and the latter
soundness.

As a special case, when Φ does not depend on the prefix of tokens x and y1:i−1, Equation 4
simplifies to

ξi ∼ Φsk(ξ1:i−1). (6)

We refer to this case as model-agnostic as the distribution of the noise can be decomposed autore-
gressively with the chain rule and does not depend on the specific model used and therefore can be
precomputed before decoding.

All decoder-based watermarking schemes require sufficiently high text entropy; otherwise, the out-
put tends to be deterministic and no watermarks can be embedded. For a detailed discussion of
entropy effects, refer to Christ et al. (2024); Kuditipudi et al. (2024); we do not repeat these efforts
here. In the sequel a watermarking scheme always denotes a decoder-based watermarking scheme.

The robustness of a watermarking scheme quantifies its ability to withstand edit-based corruptions
to the watermarked data without losing the embedded watermark.

Definition 3 (Edit Distance). The edit distance d(s1, s2) between two sequences s1, s2 ∈ V∗ is
the minimum cost of transforming s1 into s2 through a sequence of single-position edit operations,
including insertion, deletion, and substitution.

Definition 4 (Robustness). A watermarking scheme is considered robust if, for any watermarked
sequence y from Modelwatsk (x) and any sequence y′ with the edit distance bounded by d(y,y′) ≤
γmax(|y|, |y′|) for some γ > 0, the detection function reliably identifies the watermark:

Detectsk(y
′) = true. (7)

Note that a sequence detected as watermarked is not necessarily generated by the watermarked
model. Robustness ensures that a watermarked sequence and its close neighbors remain detectable,
but this does not compromise the property of soundness.

4 CONSTRUCTING WATERMARKS THROUGH PROBABILISTIC AUTOMATA

We begin by introducing the relevant definitions that underlie our watermarking constructions.

Definition 5 (Probabilistic Non-Deterministic Finite Automaton). A probabilistic non-deterministic
finite automaton (PNFA) defined as a tuple (Q,Σ, δ, π0, πf), where (1) Q is a finite set of states; (2)
Σ is a finite alphabet of input symbols; (3) δ : Q × Σ × Q → [0, 1] is the transition probability
function; (4) π0 : Q→ [0, 1] defines the initial probability of each state; (5) πf : Q→ [0, 1] defines
the final probability of each state.

Definition 6 (Probabilistic Deterministic Finite Automaton). A probabilistic non-deterministic finite
automaton (PNFA) (Q,Σ, δ, π0, πf) is a probabilistic deterministic finite automaton (PDFA) if: (1)
∃q0 ∈ Q such that π0(q0) = 1 and ∀q ∈ Q \ {q0}, π0(q) = 0, and (2) ∀q ∈ Q,∀a ∈ Σ, there exists
at most one state q′ ∈ Q such that δ(q, a, q′) > 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 WATERMARKING SCHEMES REPRESENTED BY PROBABILISTIC AUTOMATA

In model-agnostic watermarking schemes, given a secret key sk, Φsk defines a distribution of the
random variable ξ ∈ Ξ∗ by applying Equation 6 autoregressively. One case of this distribution is the
stochastic language recognized by a PA. We model this distribution using a hierarchical automaton.
Specifically, for a PAM = (Q,Σ, δ, π0, πf) with Σ ⊂ ∆(Ξ), the process starts from an initial state
q0. Each transition produces Φi ∈ Σ, a probability distribution over Ξ, from which noise ξi ∼ Φi

is sampled. The noise ξi, represented by a binary sequence, is used for decoding the next token yi
as described in Equation 5. Each probability distribution Φi is modeled by a subordinate PA with a
binary alphabet. The hierarchical structure allows the PA to model the noise distribution represented
by binary alphabet.

4.2 CONSTRUCTING WATERMARKS FOR LANGUAGE MODELS

We now elaborate a specific construction of the watermarking scheme. We consider a decoder that
uses exponential minimum sampling following Aaronson (2022); Kuditipudi et al. (2024). The
decoder generates the next token based on a noise ξ and the model’s output probabilities, which can
be formally expressed as

Γ(ξi,Model(y1:i−1)) = argmin
j∈V

(πj/ log(µj)), (8)

where πj is the probability assigned by Model(y1:i−1) to token j ∈ V , and ξi = (µ1, . . . , µ|V|) with

µj
i.i.d.∼ Uniform[0, 1]. This decoder preserves the model’s categorical distribution at each step.

Transitioning from continuous to binary representation, any real number z ∈ [0, 1) can be approxi-
mated using its binary expansion:

z =
1

2c

c−1∑
i=0

2iσi, σi ∈ {0, 1}, (9)

where c denotes the precision level, and σi represents the i-th bit of the binary expansion of z.

We introduce a PA to generate a sequence of noise. The PA consists of λ virtual states, each corre-
sponding to a subordinate PA that models a specific noise distribution. These states are labeled as
q0, q1, . . . , qλ−1 with each state qi transitioning to qi+1 mod λ, . . . , qi+d mod λ with equal probabil-
ity, thereby forming a d-regular graph. The arrangement of these states is strategically designed for
robustness and efficiency.

The subordinate probabilistic automaton is defined over a vocabulary of size |V|, with bitwidth b
and c ≥ b. At each decoding step, it generates a binary noise vector ξ = (µ1, . . . , µ|V|), where each
µi ∈ {0, 1}c.

The automaton begins at an initial state q0 and terminates at a final state qf , progressing through |V|
layers that each encode a binary vector µi. The first layer starts with: q0 → σ1,1, and each layer
proceeds through intermediate bitwise states: σi,j → σi,j+1, for 1 ≤ i ≤ |V|, 1 ≤ j < b, where σi,j
encodes the j-th bit of µi. At σi,b, the automaton branches into two parallel Boolean paths: σi,b →
ιi,b+1, σi,b → ι̂i,b+1, which continue as: ιi,j → ιi,j+1, ιi,j → ι̂i,j+1, ι̂i,j → ιi,j+1, ι̂i,j → ι̂i,j+1,
where ιi,j = 0 and ι̂i,j = 1 represent bit encodings of µi. Between layers, transitions connect the
terminal states of layer i to the initial states of layer i+1: ιi,c → σi+1,1, ι̂i,c → σi+1,1, for b ≤ j <
c, and the automaton concludes after the final layer with ι|V|,c, ι̂|V|,c → qf .

For each state, all outgoing transitions have equal probability. As a special case where d = 1 and
sufficiently large b and c, the PA produces noise equivalent to the cyclic key sequence watermark-
ing (Kuditipudi et al., 2024). The PA sampling process is integrated into the token generation, as
described in Algorithm 1. An illustration of a subordinate PA is provided in Appendix H.1.

We now proceed to describe the detection algorithm. We begin by defining a cost following Aaron-
son (2022) and Kuditipudi et al. (2024) as

d0(y, ξ) = log(1− µy), (10)

where ξ = (µ1, µ2, . . . , µ|V|) and µi ∈ [0, 1] is represented by its binary expansion using the
subordinate PA. For Φ ∈ ∆(Ξ), the cost is defined as

d0(y,Φ) = max
ξ∈supp(Φ)

{d0(y, ξ)}. (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Before we define the Levenshtein distance for PAs, we introduce the necessary definition.
Definition 7 (Support Automaton). The support automaton of a PAM = (Q,Σ, δ, π0, πf) is a non-
deterministic finite automaton (NFA)M = (Q,Σ, δ, Q0, Qf), where Q0 (respectively Qf) denotes
the set of initial (respectively final) states, and δ ⊆ Q× Σ×Q is the transition function defined as
(q, a, q′) ∈ δ ⇔ ϕ(q, a, q′) > 0.

Algorithm 1 Watermarking Schemes Represented by PAs

Input: Model, PAM, decoder Γ
Output Watermarked sequence y

1: Sample an initial state q fromM.
2: for each decoding step i do
3: Transition q to the next state and obtain Φi ∈ ∆(Ξ).
4: Sample ξi ∼ Φi.
5: Select the next token yi using ξi via Equation 8.
6: return y

Definition 8 (Generalized Levenshtein Distance). For a sequence y ∈ V∗,Φ ∈ ∆∗(Ξ), γi, γd, the
Levenshtein distance between y and Φ is defined recursively as

dL(y,Φ) = min


γd|y|+ γi|Φ|, if |y| = 0 or |Φ| = 0,

dL(y2:,Φ) + γd,

dL(y,Φ2:) + γi,

dL(y2:,Φ2:) + d0(y1,Φ1).

(12)

For a PAM defining a support language L(M) ⊆ ∆∗(Ξ), the Levenshtein distance between y and
M is defined as

dL(y,M) = min
Φ∈L(M)

{dL(y,Φ)} . (13)

In Equation 12, the behavior of y and Φ is not symmetric, as the length of Φ can be infinite.
Therefore, we assign different costs to insertion (γi) and deletion (γd). Meanwhile, the generalized
Levenshtein distance is different from the design in Kuditipudi et al. (2024). In their algorithm, the
lengths of the key sequence and the text are constrained to be equal, and it may disrupt their align-
ment when insertions or deletions are involved. In contrast, our definition allows flexible alignment
despite difference in lengths.

The naive dynamic programming computes Equation 13 in O(dmλ log λ)) time (Wagner, 1974),
whereas our PNFA construction reduces it to O(mλ). The dynamic programming algorithm is
detailed in Appendix D.1.

Empirical p-value. We quantify the alignment between an observed sequence y and the water-
marked modelMsk by the statistic ψ = dL

(
y,Msk

)
, and treat as null hypothesis H0 that y is in-

dependent of sk. We sampleN independent keys {ski}Ni=1 and compute ψi = dL
(
y,Mski

)
(i =

1, . . . , N). The empirical p-value is then

p̂ =
1 +

∑N
i=1 1

[
ψi ≤ ψ

]
N + 1

. (14)

A small p-value indicates that y aligns unusually well with the true key (suggesting a watermark),
whereas a larger p-value is consistent with unwatermarked noise.

An upper bound of p-value via Vysochanskij–Petunin Inequality. Let µ and σ2 denote the sam-
ple mean and variance of {ψi}Ni=1, given by µ = 1

N

∑N
i=1 ψi and σ2 = 1

N−1
∑N

i=1(ψi − ψ)2, and
define the standardized statistic

z = (ψ − µ)/σ. (15)
Under the mild assumption that the null distribution of dL is unimodal, the one-sided Vysochan-
skij–Petunin inequality (Mercadier & Strobel, 2021) gives the following upper bound:

Pr[Z ≤ z] ≤
{
4/9(z2 + 1) if |z| ≥

√
5/3,

4/3(z2 + 1)− 1/3 otherwise.
(16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We refer to this scheme as WEPA, for Watermarking schemE through Probabilistic Automata. The
design of WEPA makes it robust and highly efficient for dynamic programming. As observed, dis-
regarding bitwidth constraints, the generation diversity of WEPA is Θ(λdm), which is a substantial
improvement over the construction of Kuditipudi et al. (2024).

5 EXPRESSIVENESS OF PA-BASED WATERMARKING SCHEMES

In this section, we draw connections between distortion-freeness, undetectability, and security levels
in watermarking schemes. The security level is measured by the security parameter λ that deter-
mines the key size and reflects the computational hardness of breaking cryptographic schemes. It
is assumed to be known to adversaries, and their running time is expressed as functions of λ rather
than concrete values. An adversary is considered efficient if it can be modeled as a probabilistic
algorithm with running time bounded by a polynomial function of λ. A function is called negligible
if it becomes asymptotically smaller than the inverse of any polynomial as λ grows, which repre-
sents a probability that is practically negligible for large λ. Negligible functions can be expressed as
negl(λ) = O(1

poly(λ)) (i.e., functions that vanish faster than any inverse polynomial).

Distortion-freeness. We begin the definition by considering an adversary who has oracle access to
the unwatermarked model (i.e., can make unlimited queries) and observes a single instance of water-
marked data, and its goal is to determine whether the observed data is watermarked or not. While we
make assumptions about the adversary’s computational capabilities, we make no assumptions about
its strategy, which means the definition provides protection against any computationally bounded
adversary. The idea is that the adversary should be unable to extract any partial information that
distinguishes watermarked data from unwatermarked data.

In addition, we do not make assumptions about the adversary’s prompting strategy. The adversary
can manipulate the model’s behavior by prompting so that the model outputs arbitrary distribution.
This ensures that the security definition remains robust against adversarial control over the model’s
output distribution. Since the adversary can shape the output distribution arbitrarily, the specific
input to the model becomes irrelevant—choosing a prompt equates to choosing a model. Therefore,
we can safely omit the model’s input in our analysis.

The definition is formalized using the indistinguishability against one-time attacks (IND-OT) game,
defined for a watermarking schemeW , an adversary A, and the security parameter λ: (1) A secret
key is generated via sk← Gen(1λ); (2)A is given an input 1λ and chooses Model(·); 3 (3) a uniform
bit b ∈ {0, 1} is selected. A sequence y

AR←−− f(·) is computed and given to A, where f = Model if
b = 0 otherwise f = Modelwatsk ; (4) finally, A outputs a bit b′. The advantage of A in this game is
defined as

AdvIND-OT
W (A) :=

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ . (17)

Definition 9 (Distortion-freeness). A watermarking scheme W is distortion-free if it is indistin-
guishable against one-time attacks. Formally, for any polynomial-time A,

AdvIND-OT
W (A) ≤ negl(λ). (18)

Moreover, a watermarking scheme is considered perfectly distortion-free if AdvIND-OT
W (A) = 0.

The following theorem provides an equivalent definition of perfect distortion-freeness.
Theorem 1. A watermarking scheme is perfectly distortion-free iff for every language model that
defines language distribution L, every y ∈ L, it follows that

Pr[Y = y] = Esk←Gen(1λ)
[
Pr[Y = y | K = sk]

]
, (19)

where K is the random variable of the secret key.

We defer this proof to Appendix F.1. Theorem 1 indicates that the randomness in generating an
output from the unwatermarked model can be equivalently represented by first sampling a key from
the key space and then generating the sequence conditioned on that key. Consequently, the original
distribution of the model’s outputs is preserved. However, this condition is often too strict, and even

3We omit the input x to Model as choosing a prompt equates to choosing a model as explained.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Kuditipudi et al. (2024)’s construction is not perfectly distortion-free if the text length is greater than
λ. Instead, our definition emphasizes computational indistinguishability, which is more attainable
and aligns with the limitations of real-world systems.

Undetectability. Distortion-freeness ensures that the quality of the language model is not changed
by preserving the distribution in one query. It is nonetheless detectable with multiple queries, and a
higher level of security is desired. Consider the following indistinguishability against chosen prompt
attack (IND-CPA) game, defined for a watermarking scheme W , an adversary A, and the security
parameter λ: (1) A secret key is generated via sk ← Gen(1λ); (2) A is given an input 1λ and the
oracle access to Model′

wat
sk (·) for any Model′, and chooses Model(·); (3) a uniform bit b ∈ {0, 1} is

selected. A sequence y
AR←−− f(·) is computed and given to A, where f = Model if b = 0 otherwise

f = Modelwatsk ; (4) finally, A outputs a bit b′. The advantage of A in this game is defined as

AdvIND-CPA
W (A) :=

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ . (20)

Definition 10 (Undetectability). A watermarking schemeW is undetectable if, for all polynomial-
time adversaries, there exists a negligible function negl such that

AdvIND-CPA
W (A) ≤ negl(λ). (21)

By definition it is clear that all undetectable watermarking schemes are distortion-free due to the
stronger capabilities of adversaries. This implies that undetectable watermarking maintains the out-
put distribution of the watermarked model unchanged. Conversely, any watermarking scheme that
introduces distortion is also detectable. This further implies that the watermarks in Kirchenbauer
et al. (2023); Zhao et al. (2024); Aaronson (2022); Kuditipudi et al. (2024) are all detectable.

The following theorem highlights the expressiveness (i.e., the extent to which the automaton repre-
sents various sequences) of PAs for constructing watermarking schemes.
Theorem 2. (Abridged) Under certain conditions, there exists an undetectable watermarking
scheme that can be represented by a PA if sparse LPN is hard.

See Appendix G for the full statement and proof. With this framework, the cyclic key sequence
watermarking scheme (Kuditipudi et al., 2024) can be represented by a PDFA with λ states and
cyclic transitions, though its expressiveness is limited by its simple structure. To achieve higher
expressiveness, we consider using PNFAs, which are strictly more expressive than PDFAs.

6 EMPIRICAL EVALUATION

We conducted an empirical evaluation of WEPA’s statistical properties and robustness on LLaMA-
3.2-3B (Dubey et al., 2024) and Mistral-7B (v0.3) (Jiang et al., 2023) language models. In line
with prior works (Kirchenbauer et al., 2023; Kuditipudi et al., 2024), we generated watermarked
text continuations from the news-like subset of the C4 dataset (Raffel et al., 2020). We compared
WEPA with three baselines: cyclic key sequence watermarking (Seq) with exponential minimum
sampling (Kuditipudi et al., 2024), unigram green-red set watermarking (G/R) (Kirchenbauer et al.,
2023), and unbiased watermarking (Unbiased) (Hu et al., 2024). Notably, the G/R baseline is not
directly comparable, as it may introduce noticeable distortion. For WEPA and Seq, we computed
p-values via Equation 14 with a sample size of 10,000 for consistency. For Unbiased, we report the
upper bound of p-values as described in Hu et al. (2024). All methods were evaluated using their
strongest hyperparameter settings as recommended by the original authors; details are provided in
Appendix C.2. For each experiment, we report the 1/3, 1/2 (median), and 2/3 quantiles of p-values
for watermarked text across 100 samples. Further empirical results are included in Appendix B due
to page limits.

6.1 VARYING TEXT LENGTHS

We varied the generation length of watermarked text from 4 to 20 tokens, as shown in Figure 2. The
results highlight differences between the two language models due to variations in their generation
entropy. Among the methods, WEPA (d = 1) and Seq consistently achieve the strongest detection
performance. WEPA (d = 2) performs slightly worse, followed by G/R. The Unbiased method lags
behind, especially on shorter sequences. Full numerical results are provided in Appendix B.7, and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10 15 20

Text length

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

5 10 15 20

Text length

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

Figure 2: Median p-values varying text lengths on LLaMA-3B
(left) and Mistral-7B (right).

Scheme Time (s)

WEPA (d = 1) 7.81
WEPA (d = 2) 8.22
WEPA (d = 1, b = 6) 10.60

Seq (our impl.) 2039.56
Seq 49024.57

Table 1: Detection efficiency
comparison. Unless otherwise
specified, float32 is used
for b in WEPA.

0.0 0.2 0.4 0.6

Fraction of substitutions

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

0.0 0.2 0.4 0.6

Fraction of deletions

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

0.00 0.25 0.50 0.75 1.00

Fraction of insertions

0.00

0.02

0.04

0.06

0.08

0.10

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

Figure 3: Median p-values under substitution (left), deletion (middle), and insertion (right) attacks.

we further report ROC-AUC and TPR@1%FPR in Appendix B.1. Notably, watermarking short text
is inherently more challenging than long text. For completeness, we also include experiments on
longer sequences (up to 200 tokens) in Appendix B.2.

6.2 ROBUSTNESS TO EDIT-BASED ATTACKS

We evaluated the robustness against three types of edit-based attacks: (1) substitution, (2) deletion,
and (3) insertion, each applied by randomly corrupting a fraction of tokens. For substitution and
insertion, replacement tokens were sampled uniformly from the vocabulary. No padding was intro-
duced, nor was truncation applied following deletions or insertions. All experiments were conducted
on sequences of length 50 tokens.

Figure 3 reports results on LLaMA-3B, while we defer the results on Mistral-7B in Appendix B.6.
WEPA (d = 1) performs slightly better than the other methods across all attack types, likely due
to its flexible alignment mechanism. In contrast, Seq performs slightly worse, as it requires exact
alignment between the generated text and a fixed-length key sequence. G/R shows reduced robust-
ness, likely due to its unigram-based design. The Unbiased method is not robust under these attacks,
as it was not designed to handle edit-based perturbations.

We note that our watermark is specifically designed to resist edit-based perturbations, and does not
aim to defend against semantic or paraphrasing attacks. As such, we do not include experiments on
paraphrasing, which fall outside the scope of our work.

6.3 EFFICIENCY

We compared the runtime of the detection algorithms for WEPA (d = 1), WEPA (d = 2) and
Seq. For WEPA (d = 2, b = 6), we choose b = 6 as the bitwidth does not affect efficiency. The
results are presented in Table 1. For Seq, we implemented an optimization with token discretization.
Each algorithm was evaluated on a sample from C4 dataset with text length of 256 using LLaMA’s
tokenizer. WEPA is significantly faster than Seq as predicted by the different time complexities.

7 CONCLUSION

We introduced a class of watermarking schemes constructed through probabilistic automata. Within
this framework, we instantiated WEPA, a practical watermarking method that achieves both im-
proved generation diversity and more efficient detection. Empirical results further demonstrate its
effectiveness and efficiency. Furthermore, by extending to probabilistic non-deterministic finite au-
tomata, we established an undetectable watermarking scheme.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Scott Aaronson. My ai safety lecture for ut effective altruism, November 2022. URL https:
//scottaaronson.blog/?p=6823. Accessed May 2023.

Dana Angluin and Michael Kharitonov. When won’t membership queries help? In Proceedings of
the twenty-third annual ACM symposium on Theory of computing, pp. 444–454, 1991.

Mikhail J Atallah, Victor Raskin, Michael Crogan, Christian Hempelmann, Florian Kerschbaum,
Dina Mohamed, and Sanket Naik. Natural language watermarking: Design, analysis, and a
proof-of-concept implementation. In Information Hiding: 4th International Workshop, IH 2001
Pittsburgh, PA, USA, April 25–27, 2001 Proceedings 4, pp. 185–200. Springer, 2001.

Mikhail J Atallah, Victor Raskin, Christian F Hempelmann, Mercan Karahan, Radu Sion, Umut
Topkara, and Katrina E Triezenberg. Natural language watermarking and tamperproofing. In
International workshop on information hiding, pp. 196–212. Springer, 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Annual International
Cryptology Conference, pp. 325–347. Springer, 2024.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Alexander Clark and Franck Thollard. Pac-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research, 5(May):473–497, 2004.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Noah Golowich and Ankur Moitra. Edit distance robust watermarks via indexing pseudorandom
codes. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=FZ45kf5pIA.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=uWVC5FVidc.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E Schapire, and Linda Sellie.
On the learnability of discrete distributions. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pp. 273–282, 1994.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=FpaCL1MO2C.

Mathieu Mercadier and Frank Strobel. A one-sided vysochanskii-petunin inequality with financial
applications. European Journal of Operational Research, 295(1):374–377, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

10

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
https://openreview.net/forum?id=FZ45kf5pIA
https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=FpaCL1MO2C

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of acyclic probabilis-
tic finite automata. In Proceedings of the eighth annual conference on Computational learning
theory, pp. 31–40, 1995.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Sebastiaan A Terwijn. On the learnability of hidden markov models. In International Colloquium
on Grammatical Inference, pp. 261–268. Springer, 2002.

Mercan Topkara, Cuneyt M Taskiran, and Edward J Delp III. Natural language watermarking. In
Security, Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pp. 441–
452. SPIE, 2005.

Robert A Wagner. Order-n correction for regular languages. Communications of the ACM, 17(5):
265–268, 1974.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust water-
marking for AI-generated text. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=SsmT8aO45L.

11

https://openreview.net/forum?id=SsmT8aO45L

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LIMITATIONS

Our work has several limitations that suggest directions for future research. First, the lack of tight
analytical bounds on the p-value remains a challenge, as the edit distance metric is inherently diffi-
cult to analyze. Second, the detection algorithm requires knowledge of the private key, which limits
detection to only the key holder. Developing an asymmetric decoding and detection system could
improve security.

B ADDITIONAL EMPIRICAL RESULTS

B.1 VARYING TEXT LENGTHS WITH SUPPLEMENTAL EVALUATION METRICS

Tables 2 and 3 present ROC-AUC results across varying text lengths, while Tables 4 and 5 report the
corresponding TPR@1%FPR results. Overall, WEPA (d = 1) achieves performance comparable to
Seq on both metrics, with WEPA (d = 2) performing even better. Although the Unbiased method
attains the highest scores on these metrics, it is not robust to edit-based attacks.

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
5 0.829 0.751 0.790 0.765 0.764
10 0.910 0.880 0.939 0.862 0.906
15 0.952 0.938 0.979 0.922 0.950
20 0.971 0.964 0.992 0.951 0.974
25 0.982 0.969 0.995 0.964 0.988
30 0.986 0.982 0.998 0.980 0.990
35 0.988 0.989 0.998 0.985 0.992
40 0.991 0.991 0.999 0.991 0.993
45 0.992 0.993 0.999 0.992 0.996
50 0.993 0.995 0.999 0.996 0.998

Table 2: ROC-AUC results varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
5 0.812 0.678 0.784 0.681 0.705
10 0.898 0.817 0.925 0.779 0.848
15 0.938 0.894 0.971 0.859 0.913
20 0.958 0.924 0.991 0.901 0.940
25 0.967 0.934 0.998 0.921 0.971
30 0.975 0.952 0.998 0.952 0.982
35 0.981 0.967 1.000 0.960 0.982
40 0.984 0.979 1.000 0.968 0.989
45 0.987 0.975 1.000 0.976 0.993
50 0.988 0.988 1.000 0.981 0.993

Table 3: ROC-AUC results varying text lengths on Mistral-7B.

B.2 VARYING TEXT LENGTHS ON LONG TEXTS

We evaluated WEPA and Seq on longer text sequences, as presented in Figure 4. For cases where
the empirical p-values became exponentially small, direct computation was infeasible; instead, we
report upper bounds estimated via Equation 15. Due to the looseness of this bound, these values
are not directly comparable to G/R. Nonetheless, the results reveal consistent trends with those in
Figure 2. Notably, WEPA (d = 1) achieves the strongest performance, while WEPA (d = 2) exhibits
slightly lower accuracy compared to Seq.

B.3 PERPLEXITY EVALUATION

We evaluated the perplexity of each watermarking scheme at a text length of 512, and report median
perplexity with a 90% confidence interval. The results are shown in Figure 5. Among the methods,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
5 0.121 0.032 0.085 0.037 0.040
10 0.258 0.071 0.269 0.094 0.114
15 0.347 0.190 0.314 0.157 0.158
20 0.487 0.344 0.319 0.293 0.341
25 0.621 0.318 0.965 0.259 0.647
30 0.709 0.525 0.998 0.499 0.592
35 0.709 0.608 1.000 0.517 0.761
40 0.649 0.596 1.000 0.790 0.750
45 0.693 0.740 1.000 0.671 0.990
50 0.701 0.837 1.000 0.892 0.996

Table 4: TPR@1%FPR results varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
5 0.052 0.019 0.085 0.032 0.035
10 0.269 0.032 0.277 0.036 0.061
15 0.304 0.150 0.319 0.063 0.144
20 0.320 0.163 0.320 0.135 0.124
25 0.494 0.149 0.989 0.140 0.327
30 0.549 0.243 0.995 0.336 0.534
35 0.666 0.308 1.000 0.258 0.521
40 0.717 0.483 1.000 0.431 0.714
45 0.757 0.355 1.000 0.454 0.837
50 0.761 0.671 1.000 0.510 0.728

Table 5: TPR@1%FPR results varying text lengths on Mistral-7B.

50 100 150 200 250

Text length

10−4

10−3

10−2

up
pe

rb
ou

nd
of
p-

va
lu

e WEPA (d = 1)
WEPA (d = 2)
Seq

50 100 150 200 250

Text length

10−3

10−2

10−1

up
pe

rb
ou

nd
of
p-

va
lu

e WEPA (d = 1)
WEPA (d = 2)
Seq

Figure 4: Median p-values varying text lengths on LLaMA-3B (left) and Mistral-7B (right).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Text length

0

10

20

30

Pe
rp

le
xi

ty

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

0 1 2 3 4

Text length

0

5

10

15

Pe
rp

le
xi

ty

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

Figure 5: Perplexity of each watermarking scheme on LLaMA-3B (left) and Mistral-7B (right).

WEPA (d = 2) distorts the text the least. WEPA (d = 1) and Seq yield the same perplexity since
they have the same generation process, but Seq heavily distorts the text.

B.4 VARYING KEY LENGTH

We varied the key length (λ) from 24 to 212 while keeping the text length fixed at 8, as shown
in Figure 6. Consistent with the findings of Kuditipudi et al. (2024), we observe that the p-value
increases with λ.

25 27 29 211

λ

0.0

0.1

0.2

0.3

0.4

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq

25 27 29 211

λ

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq

Figure 6: Median p-values varying security parameters on LLaMA-3B (left) and Mistral-7B (right).

B.5 VARYING BITWIDTH

We varied the bitwidth (b) of WEPA from 2 to 12 while keeping the text length fixed at 8, as shown
in Figure 7. The results indicate that a higher bitwidth improves performance with sacrifice of text
diversity. The performance stabilizes when b ≥ 6.

2 4 6 8 10 12

b

0.0

0.2

0.4

0.6

0.8

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)

2 4 6 8 10 12

b

0.0

0.2

0.4

0.6

0.8

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)

Figure 7: Median p-values varying number of bits on LLaMA-3B (left) and Mistral-7B (right).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.6 ROBUSTNESS TO EDIT-BASED ATTACK ON MISTRAL-7B

We evaluated robustness against edit-based attacks on Mistral-7B, following the setup in Section 6.2,
with results shown in Figure 8. Under a lower-entropy model, G/R demonstrates greater stability.
Overall, these schemes exhibit performance similar to the LLaMA-3B model.

0.0 0.2 0.4 0.6

Fraction of substitutions

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

0.0 0.2 0.4 0.6

Fraction of deletions

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

0.00 0.25 0.50 0.75 1.00

Fraction of insertions

0.00

0.05

0.10

0.15

0.20

p-
va

lu
e

WEPA (d = 1)
WEPA (d = 2)
Seq
G/R
Unbiased

Figure 8: Median p-values under random substitution (left), deletion (middle), and insertion (right)
attacks.

B.7 NUMERICAL RESULTS OF SECTION 6.1

Tables 6 and 7 list the numerical median p-values corresponding to Figure 2.

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
4 0.438 0.233 9.553 0.286 0.212
8 0.169 0.062 0.412 0.153 0.018
12 0.020 0.003 0.013 0.011 0.001
16 0.010 0.001 0.000 0.003 0.000
20 0.005 0.000 0.000 0.000 0.000

Table 6: Median p-values varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d = 1) WEPA (d = 2)
4 0.438 0.235 8.145 0.285 0.295
8 0.169 0.100 0.692 0.136 0.106
12 0.078 0.011 0.034 0.061 0.007
16 0.010 0.015 0.002 0.029 0.002
20 0.005 0.001 0.000 0.003 0.000

Table 7: Median p-values varying text lengths on Mistral-7B.

C EXPERIMENT SETUP

C.1 COMPUTATION RESOURCES

Experiments were run on an internal cluster with dual AMD EPYC 7453 28-core CPUs (56 cores
total), 1 TiB RAM, and 8 NVIDIA GeForce GPUs (24 GiB each, CUDA 11.6). Peak GPU memory
usage reached approximately 15 GiB per device. The system provided ample memory and storage,
with over 800 GiB RAM available during runs. However, our experiments primarily rely on GPU
resources for language model inference, and do not require high-performance CPUs.

C.2 HYPERPARAMETER SETTINGS

We detail the hyperparameter configurations used for all methods evaluated in our experiments.
For WEPA, we set the key length λ to 256. For the cyclic key sequence watermarking baseline
(Seq), we used a key sequence length of 256 and applied exponential minimum sampling with a soft
Levenshtein cost parameter γ = 0. For the green-red set watermarking baseline (G/R) Kirchenbauer

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

et al. (2023), we the green set fraction is set at 0.25 and the logit bias δ = 2. For the unbiased
watermarking method of Hu et al. (2024), we used δ-reweighting.

For WEPA, unless specified, we used the key length of λ 256 and float32 type to mimic the
behavior when b is sufficiently large. For Levenshtein distance, we set the deletion cost γd = 0 and
insertion cost γi = 2. Notably, γi cannot be too small as a lower insertion cost allows tokens to
align with arbitrary states with minimal penalty. For each experiment, we computed the z-scores for
watermarked text across 100 samples.

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION OF LEVENSHTEIN DISTANCE CALCULATION

Algorithm 2 presents the dynamic programming for computing the Levenshtein distance used in
WEPA. The cost(·, ·) array stores the precomputed costs between substates and tokens defined
by Equation 11.

Algorithm 2 Levenshtein Distance Calculation with Dynamic Programming

1: procedure LEVENSHTEINDISTANCE(y, λ, d, cost(·, ·), γd, γi)
2: m← |y|
3: f, g ← array of size λ initialized to 0 ▷ Assume f and g are cyclic.
4: for i← 1..m do
5: for u← 0..λ− 1 do
6: d0 ← cost(u, yi−1)
7: fu ← gu + γd ▷ Deletion
8: for v ← u− d..u− 1 do
9: fu ← min(fu, gv + d0) ▷ Substitution

10: u∗ ← argmin(f:)
11: for u← u∗ + 1..λ− 1 do
12: for v ← u− d..u− 1 do
13: fu ← min(fu, fv + γi) ▷ Insertion
14: for u← 0..u∗ − 1 do
15: for v ← u− d..u− 1 do
16: fu ← min(fu, fv + γi) ▷ Insertion
17: f, g ← g, f

18: return min(f:)

While the innermost loop can be optimized using a monotonic queue for a complexity of O(mλ),
we do not carry out this optimization in our implementation in practice since the degree d is usually
small.

E ADDITIONAL ANALYSIS OF EXISTING WATERMARKING SCHEMES

In this section, we provide the alternative analysis of existing watermarking schemes through the
lens of probabilistic automata (PA).

E.1 WATERMARKING SCHEMES UNDER UNIFORM MODELS

We assume a model that follows a uniform distribution over V so that Model(·) =
Cat(1/|V|, . . . , 1/|V|), where Cat denotes the categorical distribution. Then we proceed to analyze
the output distribution of existing watermarking schemes under uniform models.

k-gram-based watermarking. k-gram-based watermarking has been introduced in many works
(Kirchenbauer et al., 2023; Zhao et al., 2024; Aaronson, 2022). Generally speaking, the core concept
is to condition the next token on a window of k prior tokens. A hash function h : K × Vk → Z
generates the noise based on the context of the k prior tokens. Then Φ computes the hash and alters
the distribution and generates a variable:

ξi ∼ Φ(yi−k:i−1) = Φ′(hsk(yi−k:i−1)), (22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Φ′ : Z → ∆(Ξ). The noise, ξi may be modeled as a uniform variable from [0, 1] used for
inverse transform sampling with a partition over the vocabulary (Kirchenbauer et al., 2023; Zhao
et al., 2024), or a Gumbel variable (Aaronson, 2022).

Under uniform models, the output of a watermarking scheme can be represented by a PA M =
(Q,Σ, δ, π0, πf), with the state space Q = Vk and Ξ = V , the transition function δ : Q×Σ×Q→
[0, 1] is defined as

δ(yi−k:i−1, yi,yi−k+1:i) = P(Y = yi | yi−k:i−1),

Y ∼ Φ(yi−k:i−1).
(23)

As each yi−k:i−1 and yi uniquely determines yi−k+1:i,M is a PDFA.

Cyclic key sequence watermarking. Kuditipudi et al. (2024) introduced a watermarking scheme
that uses a cyclic sequence of noise . . . ξλ−1ξ0ξ1 . . . ξλ−1ξ0 . . . starting from random position in
watermarks within generated text, where each ξi ∈ [0, 1] for inverse transform sampling or ξi ∈
[0, 1]|V| for exponential minimum sampling. The noise sequence is referred to as the key sequence.

Since the key sequence is cyclic, the output under uniform models also follows a repeated structure
and can be recognized by a PDFA with at most 4λ states, which can be constructed with simliar
ideas as suffix automata. We defer the construction in Appendix H.2.

E.2 DETECTABILITY OF WATERMARKING SCHEMES

Definition 11 (KL-PAC Learnability). Given a class of stochastic languages or distributions C over
Σ∗, an algorithmA KL-Probably Approximately Correctly (KL-PAC)-learns C if there exists a poly-
nomial q such that for all c ∈ C, all ϵ > 0 and δ > 0, A is given a sample Sm and produces a
hypothesis H satisfying

P
[
DKL(c||H) > ϵ

]
< δ (24)

whenever m > q(1/ϵ, 1/δ, |c|), where |c| is some measure of the complexity of the target. The
algorithm runs in time polynomial in m plus the total length of the strings in Sm.
Theorem 3. For any µ > 0, any watermarking scheme the output of which under a uniform model
represented by a µ-distinguishable PDFA with polynomial many states is detectable.

Theorem 3 provides an alternative perspective to show that the watermarks proposed by Kirchen-
bauer et al. (2023); Zhao et al. (2024); Aaronson (2022); Kuditipudi et al. (2024) are all detectable
and even spoofable.

F PROOF OF TECHNICAL RESULTS

F.1 PROOF OF THEOREM 1

Proof. We begin we noticing that

AdvIND-OT
W (A) =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ = 0 ⇔ Pr [b = b′] =
1

2
. (25)

Necessity. Fix an arbitrary output y ∈ L for a given key sk ∈ K. Suppose an adversaryA attempts
to distinguish between the original and watermarked models. The adversary may partition the output
space L into two disjoint sets:

L0, L1, (26)
where L0 ∩ L1 = ∅ and L0 ∪ L1 = L. The adversary’s strategy is to output b′ = 0 if y ∈ L0 and
b′ = 1 otherwise. The probability of correctly guessing b is then given by:

Pr[b = b′] = Pr[b′ = 0 | b = 0]Pr[b = 0] + Pr[b′ = 1 | b = 1]Pr[b = 1]

=
1

2
(Pr[y ∈ L0 | K = sk, b = 0] + Pr[y ∈ L1 | K = sk, b = 1]) .

(27)

Since the watermarking schemeW is assumed to be perfectly distortion-free, we have:

Pr[Y = y] = Esk←Gen(1λ)

[
Pr[Y = y | K = sk]

]
. (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Taking expectations over the key sk, it follows that:

Pr[y ∈ L0] = Esk←Gen(1λ) [Pr[y ∈ L0 | K = sk]] , (29)
with a similar expression for L1. By the law of total probability, we obtain:

Pr[y ∈ L0] + Pr[y ∈ L1] = 1. (30)

Substituting into the expression for Pr[b = b′] and noting that b is independent of sk, we conclude:

Pr[b = b′] =
1

2
(Pr[y ∈ L0] + Pr[y ∈ L1]) =

1

2
. (31)

Since the adversary cannot achieve a probability of success greater than 1
2 , we conclude:

AdvIND-OT
W (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ = 0. (32)

Thus, the adversary gains no distinguishing advantage, proving that the watermarking schemeW is
perfectly indistinguishable.

Sufficiency. Conversely, assume that the watermarking schemeW is not perfectly distortion-free.
Then there exists a language model with output distribution L and some y ∈ L such that:

Pr[Y = y] ̸= Esk←Gen(1λ)

[
Pr[Y = y | K = sk]

]
. (33)

Define the disjoint sets:

L0 = {y ∈ L | Pr[Y = y] > Esk←Gen(1λ)

[
Pr[Y = y | K = sk]

]
}, L1 = L \ L0. (34)

Consider an adversaryA that outputs b′ = 0 when y ∈ L0 and b′ = 1 when y ∈ L1. The probability
of a correct guess is given by:

Pr[b = b′] =
1

2
(Pr[y ∈ L0 | b = 0] + Pr[y ∈ L1 | b = 1]) . (35)

Since y ∈ L0 appears more frequently in the original model’s distribution than in the watermarked
model’s, and vice versa for L1, it follows that:

Pr[b = b′] >
1

2
. (36)

Thus, the adversary gains a nonzero advantage, contradicting the assumption that W is perfectly
distortion-free, which completes the proof.

F.2 PROOF OF THEOREM 3

Proof. Since any µ-distinguishable PDFA with a polynomial number of states and a bound on the
expected length of strings generated from any state is KL-PAC-learnable (Clark & Thollard, 2004).
That is, given sufficiently many samples from the distribution induced by a µ-distinguishable PDFA,
an efficient learning algorithm can approximate the distribution arbitrarily well.

Suppose, for the sake of contradiction, that there exists a watermarking scheme W that produces
outputs indistinguishable from those of an unwatermarked uniform model represented by a µ-
distinguishable PDFAM. That is, for any adversary A,

Advind
W (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ = 0. (37)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This implies that no efficient adversary can distinguish between the original model M and the
watermarked modelM′ with non-trivial probability.

However, sinceM is µ-distinguishable, it is KL-PAC-learnable. Thus, there exists a polynomial-
time algorithm L that, given polynomially many samples from the output distribution of eitherM
orM′, can learn a hypothesis h that approximates the true distribution up to any desired accuracy ϵ.

Consider the following adversary A that attempts to distinguish betweenM andM′:
1. Draw m = poly(1/ϵ, 1/δ) samples from the given black-box model.
2. Run the KL-PAC-learning algorithm L to obtain a hypothesis h that approximates the underlying

distribution.
3. Compute the likelihood of the observed samples under both the learned approximation ofM and
M′.

4. Output b′ = 0 if the samples are closer to the expected distribution ofM and b′ = 1 otherwise.

SinceM is µ-distinguishable, every pair of states inM induces suffix distributions that differ by at
least µ in ℓ∞ norm, andM terminates with m = poly(λ) steps. If the watermarking schemeW al-
ters the output distribution, then by definition of µ-distinguishability, it must introduce a statistically
significant difference that is detectable given polynomially many samples.

Therefore, the KL-PAC-learning algorithm L enables the adversary A to distinguish between the
original and watermarked models with probability strictly greater than 1

2 + γ for some γ > 0. This
contradicts our initial assumption that the watermarking scheme is perfectly indistinguishable.

Hence, we conclude that for any µ > 0, any watermarking scheme applied to a uniform model
represented by a µ-distinguishable PDFA with a polynomial number of states is necessarily de-
tectable.

Since all watermarking schemes proposed in Kirchenbauer et al. (2023); Zhao et al. (2024); Aaron-
son (2022); Kuditipudi et al. (2024) can be represented as a PDFA, and each pair of states in these
automata is distinguishable (except in the unlikely case where two randomly chosen partitions are
identical or the corresponding uniform random variables are nearly indistinguishable) it follows that
all such watermarking schemes are necessarily detectable.

G UNDETECTABLE WATERMARK CONSTRUCTION

Before presenting the watermark construction, we introduce the necessary definitions and assump-
tions.
Definition 12 (PAC Learnability). Let C be a concept class consisting of Boolean functions c : X →
{0, 1} over some instance space X . We say that an algorithm A Probably Approximately Correctly
(PAC)-learns C if there exists a polynomial q such that for all target concepts c ∈ C, all distributions
D over X , and all ϵ, δ > 0, the algorithm A, given access to i.i.d. examples drawn from D labeled
by c, outputs a hypothesis h such that

Pr
[

Pr
x∼D

[h(x) ̸= c(x)] > ϵ
]
< δ (38)

whenever the number of examples m > q(1/ϵ, 1/δ, |c|), where |c| denotes a measure of the com-
plexity of the target concept. The algorithm runs in time polynomial in m plus the size of the input
examples.
Assumption 4 (Sparsely Learning Parities with Noise). Let F = (Fn)n∈N be the class of parity
functions Fn = {fs(x) =

⊕
i∈[n] xisi | s ∈ {0, 1}n, ∥s∥1 = log n}, where x ∈ {0, 1}n. Each

fs computes the parity of a logarithmic-sized subset of the input, defined by the support of s. No
polynomial-time algorithm can PAC learn F under classification noise rate q = 1/3.
Definition 13 (Entropy Bound of Language Model). Let (y1, y2, . . . , yn) be a sequence of tokens
generated by a language model over a finite vocabulary V . The model assigns a conditional distri-
bution p(yi | y1:i−1) at each position i. We define the entropy bound of a language model as

H(Model) = inf
{
Ei∼U [n]

[
H
(
yi | y1:i−1

)] }
, (39)

where H(yi | y1:i−1) denotes the conditional entropy and the expectation is taken over a uniformly
random index i ∈ [n].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Definition 14 (Weak Pseudorandom Function Family). A family of functions F = {fs :
{0, 1}n → {0, 1}}s∈{0,1}n is a weak pseudorandom function (PRF) family if for every probabilistic
polynomial-time adversary A, the distinguishing advantage∣∣∣∣ Pr

s∼{0,1}n
[Afs(1n) = 1]− Pr

f∼U
[Af (1n) = 1]

∣∣∣∣ ≤ negl(n), (40)

where U denotes the uniform distribution over all functions f : {0, 1}n → {0, 1}, and the oracle
queries to A are drawn uniformly at random from {0, 1}n.

Proposition 5 (From PAC Unlearnability to Weak Pseudorandomness). Let F = (Fn)n∈N be a
class of functions that is not PAC learnable under classification noise rate q. Then, for n(λ) = λ,
the sequence of functions (Fn(λ))λ constitutes a weak pseudorandom function family with noise
level q.

G.1 FULL STATEMENT AND PROOF OF THEOREM 2

Reduction to a binary vocabulary. For analytical convenience, we reduce the vocabulary of V
to a binary vocabulary {0, 1}. Any categorical distribution over V with |V| can be equivalently
represented by a binary distribution over {0, 1}⌈log2 |V|⌉ via entropy-preserving encoding. That is,
given logits p ∈ ∆|V|−1, we define a mapping to binary sequences where each symbol v ∈ V
is assigned a unique bitstring b(v) ∈ {0, 1}⌈log2 |V|⌉, and generation proceeds bit by bit using the
induced marginal distributions. This reduction preserves perplexity and generation quality up to
negligible statistical error. We therefore assume, without loss of generality, that the model outputs
binary tokens.

We present the full statement of Theorem 2 as follows.

Theorem 6. There exists an undetectable watermarking scheme with generation length n =
Ω(λ3 log λ), entropy bounded by H(Model) > 2 + log2(1 − q) − 3−4q

4(1−q) log2(3 − 4q) that can
be represented by a PA, if sparse LPN is hard with noise level of 0 < q < 1

2 .

Proof. Let fs(x) = s ·x mod 2 be a parity function with noise level of q on the support of a secret
key s ∈ {0, 1}λ, and suppose a language model with binary output alphabet {0, 1}.
At each token position i, we generate a pair of Gumbel noise variables (µ0, µ1) sampled from
U [0, 1]2, whose binary representations are given by Equation 9.

If (λ + 1) ∤ i, the pair (µ0, µ1) is left unmodified. Otherwise, when (λ + 1) | i, we extract a
watermark bit xi via the indicator

xi = 1 [µ0 < µ1] , (41)

compute the parity bit b = fs(x) over the current watermark buffer x, and enforce xi = b by
outputting (µ0, µ1) with probability 1 − q if b = 0 or with probability q and b = 1, otherwise
outputting (µ1, µ0). This is easily accomplished by a PA by counting the number of bits of s. The
decoder of Equation 8 is used for each step to generating yi.

The detector identifies all positions i such that (λ+1) | i and reconstructs the corresponding Gumbel
pairs (µ0, µ1) used during generation. It computes the bit

xi = 1[µ0 < µ1], (42)

and compares it against the output token yi ∈ {0, 1}. For each such position, let zi = 1[xi = yi]
denote a match indicator. Over t = Ω(n/λ) such comparisons, the detector computes the empirical
match rate:

p̂ =
1

t

t∑
i=1

zi. (43)

The detector accepts (i.e., concludes the presence of a watermark) if p̂ ≥ 1
2 + θ for some threshold

θ = Ω(λ−1), and rejects otherwise.

Undetectability. LetDS denote the distribution over input-output pairs induced by our construction,
where the input x ∈ {0, 1}λ is uniformly random and the output bit is given by fs(x) with noise

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

rate q. This corresponds to the standard noisy parity distribution: with probability 1− q, the output
is fs(x), and with probability q, it is flipped.

Suppose there exists an algorithm A that KL-PAC-learns the class of such distributions, i.e., for any
ϵ > 0 and δ > 0, givenm samples drawn fromDS , the algorithm produces a hypothesis distribution
D̂ such that

Pr
[
DKL(DS ∥ D̂) > ϵ

]
< δ (44)

whenever m > q(1/ϵ, 1/δ, |DS |) for some polynomial q.

Now consider a random input x ∈ {0, 1}λ. Since the output bit is either fs(x) or its complement,
the two candidate outputs are x0 and x1. A hypothesis D̂ that approximates DS in KL-divergence
necessarily assigns higher likelihood to the correct label in expectation. Therefore, by comparing
the probabilities D̂(x0) and D̂(x1), one can predict fs(x) with probability at least 1− ϵ.
This yields an efficient algorithm that predicts noisy parity with non-negligible advantage, contra-
dicting the Noisy Parity Assumption.

Finally, by Proposition 5, the parity function fs can be computed by a probabilistic automaton, and
the corresponding output distributionDS serves as a pseudorandom function. In particular, sinceDS

is not KL-PAC-learnable under the hardness of sparse LPN, it is indistinguishable from a uniform
distribution by any efficient adversary.

Therefore, no efficient detector can distinguish watermarked text from unwatermarked text with
non-negligible advantage.

Completeness. Let p0 ∈ (0, 1/2] denote the smallest possible bias such that the binary entropy of
yi satisfies

H(yi) = −p0 log2 p0 − (1− p0) log2(1− p0). (45)

Consider the probability that the sampled watermark bit xi matches the LM output yi when i |
(λ + 1). Since xi = b with probability 1 − q, and is flipped with probability q (due to the noise in
fs), we have the following bound:

Pr [xi = yi] ≥
[
2p0

(
1

2

)log λ

(1− q) + 1

2

(
1−

(
1

2

)log λ
)]

=
1

2
+ λ−1 ·

(
2p0 − 2qp0 −

1

2

)
=

1

2
+ cλ−1,

(46)

where c := 2p0 − 2qp0 − 1
2 > 0 by the entropy bound.

Then we have the following Chernoff bound:

Pr

[
p̂ <

1

2
+ θ

]
≤ exp

(
−2t(cλ−1 − θ)2

)
= exp

(
− tc

2

2λ2

)
= negl(λ). (47)

Soundness. For unwatermarked text, assuming the Gumbel samples and tokens are independent
(i.e., no watermarking mechanism was used), the match indicators zi are i.i.d. unbiased coin flips:

Pr[xi = yi] =
1

2
. (48)

Then by Hoeffding’s inequality,

Pr
[
p̂ ≥ 1

2 + θ
]
≤ exp(−2tθ2) = exp(−Ω(log λ)) = negl(λ), (49)

which indicates that the detector rejects unwatermarked text with overwhelming probability.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H ILLUSTRATIONS OF CONSTRUCTIONS

H.1 ILLUSTRATION OF A SUBORDINATE PROBABILISTIC AUTOMATON

To complement the formal description in Section 4.2, we provide an illustration of a subordinate
probabilistic automaton (sub-PA) used in our watermarking framework. The sub-PA is responsible
for generating the binary noise vectors µi ∈ {0, 1}c across vocabulary positions, as defined in the
main text.

Figure 9: Illustration of a subordinate probabilistic automaton (sub-PA). Each layer encodes a binary
vector µi, beginning from the initial state q0 and terminating at qf . Transitions within each layer
encode bitwise states, branching into parallel Boolean paths ιi,j and ι̂i,j , which represent 0 and 1
respectively. Inter-layer transitions connect the terminal states of layer i to the initial states of layer
i+1.

As shown in Figure 9, the sub-PA progresses from the initial state q0 through |V| layers, each cor-
responding to a token in the vocabulary. The Boolean branching ensures exponential variability
in possible noise sequences, while the overall number of automaton states remains polynomially
bounded. This property is essential for both efficient sampling and tractable computation of edit
distance during watermark detection.

H.2 AUTOMATON CONSTRUCTION FOR A CYCLIC STRING

We provide the construction of an automaton for a cyclic string in Algorithm 3. Given the input
string s, the automaton has at most 4|s| states. Figure 10 illustrates an example PDFA that recognizes
a substring of the repeated string of “abaa”.

Figure 10: An example of a PDFA with probability that recognizes a substring of repeated string
“abaa”.

IMPACT STATEMENT

This study showcases recent advances in the field of Machine Learning, aimed at preventing the
misuse of AI-generated content. Our technique endeavors to improve the security of text generation
systems, thereby reducing the risk of misleading information and contributing to the establishment
of ownership and copyright of AI-generated content. From an ethical perspective, this technology

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 3 Automaton Construction for a Cyclic String

1: Initialize: Let S be a set of states representing the suffix automaton, where each state Si has:
• Si.length: The length of the longest string ending at Si.
• Si.link: The suffix link, pointing to the longest proper suffix of the corresponding string

that is also in the automaton.
• Si.next: A transition function mapping each character c to the corresponding state.

2: Create the initial state S0 with S0.length = 0 and S0.link = −1.
3: last← 0 ▷ Tracks the last added state
4: function EXTEND(c)
5: p← last
6: Create a new state Scur with Scur.length = Sp.length+ 1
7: while p ̸= −1 and c /∈ Sp.next do
8: Sp.next[c]← cur
9: p← Sp.link

10: if p = −1 then
11: Scur.link← 0
12: else
13: q ← Sp.next[c]
14: if Sp.length+ 1 = Sq.length then
15: Scur.link← q
16: else
17: Create a new state S′ with S′.length = Sp.length+ 1
18: S′.next← Sq.next
19: S′.link← Sq.link
20: while p ̸= −1 and Sp.next[c] = q do
21: Sp.next[c]← S′

22: p← Sp.link

23: Sq.link← S′

24: Scur.link← S′

25: last← cur

26: function BUILDAUTOMATON(s)
27: for each character c in s do
28: EXTEND(c)
29: idx← index of the newest state in the automaton
30: for each character c in s do
31: EXTEND(c)
32: Slast.next[s0]← idx

plays an important role in protecting the integrity of information dissemination on digital platforms
and helps strengthen public trust in AI applications. While we recognize that these technologies may
be used to restrict freedom of information or enforce censorship in some environments, we believe
that their benefits in reducing misinformation outweigh the potential risks.

23

	Introduction
	Related work
	Preliminaries
	Constructing watermarks through probabilistic automata
	Watermarking schemes represented by probabilistic automata
	Constructing watermarks for language models

	Expressiveness of PA-based watermarking schemes
	Empirical evaluation
	Varying text lengths
	Robustness to edit-based attacks
	Efficiency

	Conclusion
	Limitations
	Additional empirical results
	Varying text lengths with supplemental evaluation metrics
	Varying text lengths on long texts
	Perplexity evaluation
	Varying key length
	Varying bitwidth
	Robustness to edit-based attack on Mistral-7B
	Numerical results of Section 6.1

	Experiment Setup
	Computation resources
	Hyperparameter settings

	Implementation details
	Implementation of Levenshtein distance calculation

	Additional analysis of existing watermarking schemes
	Watermarking schemes under uniform models
	Detectability of watermarking schemes

	Proof of technical results
	Proof of Theorem 1
	Proof of Theorem 3

	Undetectable watermark construction
	Full Statement and Proof of Theorem 2

	Illustrations of constructions
	Illustration of a subordinate probabilistic automaton
	Automaton construction for a cyclic string

