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ABSTRACT

A recent watermarking scheme for language models achieves distortion-free em-
bedding and robustness to edit-distance attacks. However, it suffers from limited
generation diversity and high detection overhead. In parallel, recent research has
focused on undetectability—a property ensuring that watermarks remain difficult
for adversaries to detect and spoof. In this work, we introduce a new class of
watermarking schemes constructed through probabilistic automata. We present
two instantiations: (i) a practical scheme with exponential generation diversity
and computational efficiency, and (ii) a theoretical construction with formal un-
detectability guarantees under cryptographic assumptions. Extensive experiments
on LLaMA-3B and Mistral-7B validate the superior performance of our scheme
in terms of robustness and efficiency.

1 INTRODUCTION

The rapid development of large-scale language models (LMs) has markedly improved AI’s ability
to generate textual content (Brown et al.| |2020). Despite these advancements, apprehensions have
arisen over authenticity, ownership, and potential misuse of such technologies (Zellers et al.,|2019;
Solaiman et al. 2019). Traditional Al detection methods, such as classifier-based detection, often
fall short in terms of robustness. In contrast, text watermarking offers a potential solution to these
problems. It works by embedding a private key within the text that can be detected by the key holder,
thereby identifying and minimizing the abuse of Al-generated content.

A widely adopted watermarking method conditions the decoder on the preceding k generated tokens
(Kirchenbauer et al.l 2023} |Aaronson, 2022). While effective, this approach can degrade LM’s out-
put quality by introducing noticeable distortions, such as biases toward certain k-grams. To address
these distortions, distortion-free watermarking was introduced to preserve the LM’s output distri-
bution (Kuditipudi et al., 2024); however, it does not guarantee LM’s generation diversity. More
recently, undetectable watermarking has been explored (Christ et al.l [2024), which prevents detec-
tion by adversaries and naturally maintains generation diversity. Despite these advancements, the
relationship between distortion-freeness and undetectability has thus far never been clearly defined.
To this end, we establish the connection between distortion-freeness and undetectability, and show
that many existing watermarks are detectable. One interpretation of this fact is that the watermark-
ing output distribution can be recognized by probabilistic deterministic finite automata (PDFA) and
can therefore be learned under the Probably Approximately Correct (PAC) framework.

Our work is closely related to the state-of-the-art watermarking approach introduced by [Kuditipudi
et al.[(2024), which uses a cyclic key sequence as noise for unbiased decoding and leverages the edit
distance (specifically, Levenshtein distance) metric to improve robustness against any edit-based at-
tacks. However, this method suffers from two notable drawbacks: (1) it reduces generative diversity,
often leading to deterministic outputs, and (2) it requires partitioning text into blocks with the time
complexity scales quadratically with the block size, which creates a major computational bottleneck.

We introduce a new class of watermarking schemes represented by probabilistic automata (PA),
with the following key contributions:

* Our framework generalizes the cyclic key sequence watermarking of |[Kuditipudi et al.| (2024)) as a
special case, which can be modeled as a probabilistic deterministic finite automaton (PDFA) with
a simple cyclic topology (see Figure [I)).
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Figure 1: Comparison of generation of two watermarking schemes where the key follows a cyclic
structure (Kuditipudi et al.l 2024) on the left and a probabilistic automaton on the right. Each ®
specifies a probability distribution over &, with precise definitions provided in later sections.

* We extend this formulation to probabilistic non-deterministic finite automata (PNFA), a strictly
more expressive class than PDFAs. Leveraging the fact that the class of languages recognized
by PNFAs is not PAC-learnable under the sparse Learning Parity with Noise (LPN) assumption
(Kearns et al.,|1994), we construct an undetectable watermarking scheme.

* We instantiate a practical scheme that significantly improves both generation diversity and de-
tection efficiency over Kuditipudi et al,| (2024): (i) Increasing generation diversity from ©O(\)
to Q(Ad™), where d > 1, A is the key length, and n is the sequence length, and (ii) Reducing
detection time complexity from ©(Ank?) to ©(\n), where k is the block size.

2 RELATED WORK

Watermarking of language models. Text watermarking aims at blending a private “key” in text
generation so that it can be detected by key holders. Early approaches relied on subtle text modifica-
tions using heuristics |Atallah et al.| (2001} 2002); [Topkara et al.|(2005). Following the autoregressive
nature of language models (LMs), recent watermarking methods start to condition the token gener-
ation by the key and k prior tokens (Kirchenbauer et al., [2023; |Aaronson) 2022} |Zhao et al., [2024).
However, these methods can significantly alter the underlying LM’s distribution, for instance, by
introducing biases for certain k-grams.

Watermarking without changing the next token distribution of the LM on a single text sample is
defined as distortion-free watermarking (Kuditipudi et al., 2024} [Hu et al., 2024). For example,
Kuditipudi et al.| (2024) uses a cyclic key sequence of noise for unbiased decoding and was the first
to employ the edit distance metric as the alignment between text and the key sequence for detection.
While this method enhances the robustness of watermarking against edit-based attacks, it suffers
from two drawbacks of lacking generation diversity, and it relies on partitioning the text into blocks
and repeatedly shifting the key sequence to compute edit distances multiple times, posing significant
efficiency challenges.

Recent works have constructed undetectable watermarks theoretically that require watermarked texts
to be indistinguishable across multiple queries, yet none of them remains practical. For instance,
Christ et al.| (2024)’s construction is based on hash functions and not robust to edit-based attacks.
Christ & Gunn|(2024) assume a binary symmetric channel model for LMs, which is clearly unreal-
istic. |Golowich & Moitral (2024) make an assumption that the vocabulary size scales polynomially
with the security parameter (i.e., the size of the “key”), which does not typically hold in practice.
Notably, all of these undetectable watermarking schemes rely on the construction of pseudorandom
functions, yet they are based on disparate assumptions and lack a unified framework.

Probabilistic automata. Probabilistic automata (PA) are widely studied in computational linguis-
tics that describe distributions with latent variables over finite sequences of symbols. The class of PA
consists of probabilistic nondeterministic finite automata (PNFA) and their proper subclass, proba-

' All subscripts are taken modulo .
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bilistic deterministic finite automata (PDFA). The learnability of these automata has gained profound
theoretical interest and practical relevance, particularly in modeling distributions over strings.

Kearns et al.|(1994) explored the complexity of learning PDFAs within the Probably Approximately
Correct (PAC) framework. Specifically, they established that PAC-learning PDFAs with a two-letter
vocabulary is at least as hard as PAC-learning noisy parities, which is believed to be computation-
ally hard. Consequently, the entire class of PDFAs cannot be PAC-learned within polynomial time
constraints. On the other hand, Ron et al.| (1995)); |(Clark & Thollard (2004) showed that under
the constraints of a certain distinguishability on the states, acyclic PDFA and cyclic PDFAs with
bounded expected string length from any states are PAC-learnable.

Although there have been works on learning PDFAs and intermediate forms of PNFAs, few studies
address the problem of learning general PNFAs due to their hardness. [Terwijn| (2002) demonstrated
that PNFAs are not PAC-learnable if Blum integer factorization is hard. |Angluin & Kharitonov
(1991) showed that learning remains hard even if adversaries have oracle access to membership
queries (in the context of watermarking the queries of the detection function).

Edit distance and error correction. Edit distance quantifies the similarity between two strings by
counting the minimum number of operations required to transform one into the other. This concept
extends to formal languages, where the edit distance is defined as the minimum distance between
any pair of sequences within the languages. This metric is particularly valuable in error correction,
where it helps identify the closest valid string to a given input string. [Wagner| (1974) introduced an
error-correcting algorithm that constructs a finite state automaton to recognize a set of strings. Their
approach uses dynamic programming to compute the edit distance between a string and a regular
language.

3 PRELIMINARIES

We denote the alphabet of an automaton by ¥ and the vocabulary of a language model by V to
explicitly distinguish them. A language is defined as a mapping ¥* — [0,1] (or V* — [0,1],
respectively). Given an automaton M, we denote by £L(M) C X* the language recognized by
M, i.e., the set of strings accepted by M. We denote the size of the watermark key by A. In
undetectable watermarking settings, it also serves as the security parameter, which measures the
strength of distortion-freeness and undetectability of a watermarking scheme. Further discussion
on A will follow in Section[5] The length of the generated sequence is given by m = O(poly())),
where poly(-) denotes a polynomial function. For a sequence x = (z1,...,z,), we write x;, =
(xi, ..., xy) for asuffix, and @;.; = (x;, ..., ;) for a contiguous subsequence.

Definition 1 (Language Model). An (autoregressive) language model is defined by a function
Model : V* — A(V) that maps a sequence of tokens to a probability distribution over V, where
A(-) denotes a probability distribution over a set. Given an initial sequence of tokens (a prompt)
@ € V*, the probability of a sequence y = (y1,¥2, - - -, Ym) is defined as

m

p(y) = Hp(yz | &, Y1:-1), (1)
i=1
where y;., = (Y1, Yi+1,---,Yn) represents a subsequence of y. Each conditional probability is
modeled by
p(- | @, y1,-1) = Model(z, yy,;_1). 2

We use the notation y 2R Model(z) to indicate that y is autoregressively generated by Model
given x, following Equation T}

Definition 2 (Decoder-based Watermarking Scheme). A decoder-based watermarking scheme is a
triplet W := (Gen, Model"®", Detect) such that:
1. The key generation algorithm Gen is randomized and takes as input 1 to generate a secret key
sk € K:
sk < Gen(1?). 3)

The input is given in unary notation to ensure polynomial runtime in X. The structure of the key can be
arbitrary, with specifics described in later sections.
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2. The watermarking algorithm Model* := (Model, ®,T") is an autoregressive process that con-

sists of an unwatermarked model Model, a noise generator ® : K x Z* x V* — A(E), and a
decoder I' : = x A(V) — V, where = is the noise space. At the i-th decoding step, §; € = is
sampled by

i~ Pok(€1:i-1, % Yrim1)s “)
then the next token y; is produced by the decoder deterministically given the noise &;:
y; < D(&, Model(x,y1.,_1)). (5)

3. The detection algorithm Detectyy takes as input sk and y, and outputs true or false.

While the above definition presented seems abstract, it covers a wide range of existing watermarking
frameworks. Specific examples are provided in Appendix [E]

wat

Ideally, Detecte(y) should output true if y is generated by Model}™ (x) for some , and output
false if y is independent of sk. The former property is referred to as completeness and the latter
soundness.

As a special case, when ® does not depend on the prefix of tokens x and y,.,_;, Equation E]
simplifies to

fi ~ cI’sk(fl:i—l)~ 6)

We refer to this case as model-agnostic as the distribution of the noise can be decomposed autore-
gressively with the chain rule and does not depend on the specific model used and therefore can be
precomputed before decoding.

All decoder-based watermarking schemes require sufficiently high text entropy; otherwise, the out-
put tends to be deterministic and no watermarks can be embedded. For a detailed discussion of
entropy effects, refer to |Christ et al.| (2024); |Kuditipudi et al.| (2024); we do not repeat these efforts
here. In the sequel a watermarking scheme always denotes a decoder-based watermarking scheme.

The robustness of a watermarking scheme quantifies its ability to withstand edit-based corruptions
to the watermarked data without losing the embedded watermark.

Definition 3 (Edit Distance). The edit distance d(s1, s2) between two sequences s1,s2 € V* is
the minimum cost of transforming s; into s, through a sequence of single-position edit operations,
including insertion, deletion, and substitution.

Definition 4 (Robustness). A watermarking scheme is considered robust if, for any watermarked
sequence y from Model}* (x) and any sequence y’ with the edit distance bounded by d(y,y’) <
~vmax(|y|, |y’|) for some v > 0, the detection function reliably identifies the watermark:

Detectg(y') = true. 7

Note that a sequence detected as watermarked is not necessarily generated by the watermarked
model. Robustness ensures that a watermarked sequence and its close neighbors remain detectable,
but this does not compromise the property of soundness.

4 CONSTRUCTING WATERMARKS THROUGH PROBABILISTIC AUTOMATA
We begin by introducing the relevant definitions that underlie our watermarking constructions.

Definition 5 (Probabilistic Non-Deterministic Finite Automaton). A probabilistic non-deterministic
finite automaton (PNFA) defined as a tuple (Q, 2, 6, mo, 7¢), where (1) @ is a finite set of states; (2)
Y is a finite alphabet of input symbols; (3) § : Q@ x ¥ x @ — [0, 1] is the transition probability
function; (4) mo : @@ — [0, 1] defines the initial probability of each state; (5) wy : @@ — [0, 1] defines
the final probability of each state.

Definition 6 (Probabilistic Deterministic Finite Automaton). A probabilistic non-deterministic finite
automaton (PNFA) (Q, X, 6, mp, ¢ ) is a probabilistic deterministic finite automaton (PDFA) if: (1)
Jqo € Q such that mo(go) = 1 and Vg € Q \ {qo}, mo(q) = 0, and (2) Vg € @, Va € X, there exists
at most one state ¢’ € @ such that (¢, a,q’) > 0.
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4.1 WATERMARKING SCHEMES REPRESENTED BY PROBABILISTIC AUTOMATA

In model-agnostic watermarking schemes, given a secret key sk, @, defines a distribution of the
random variable & € Z* by applying Equation[6]autoregressively. One case of this distribution is the
stochastic language recognized by a PA. We model this distribution using a hierarchical automaton.
Specifically, fora PA M = (Q, %, 6, mp, my) with ¥ C A(E), the process starts from an initial state
qo- Each transition produces ®; € 3, a probability distribution over =, from which noise & ~ ®;
is sampled. The noise &;, represented by a binary sequence, is used for decoding the next token y;
as described in Equation[5} Each probability distribution ®; is modeled by a subordinate PA with a
binary alphabet. The hierarchical structure allows the PA to model the noise distribution represented
by binary alphabet.

4.2 CONSTRUCTING WATERMARKS FOR LANGUAGE MODELS

We now elaborate a specific construction of the watermarking scheme. We consider a decoder that
uses exponential minimum sampling following |Aaronson| (2022); [Kuditipudi et al.| (2024). The
decoder generates the next token based on a noise £ and the model’s output probabilities, which can
be formally expressed as

I'(&, Model(yy,;_1)) = argergin(ﬂj/ log(115)), )
J

where ; is the probability assigned by Model(y,.;_;) to token j € V, and &; = (pi1, ..., py)y|) With
b S Uniform|0, 1]. This decoder preserves the model’s categorical distribution at each step.

Transitioning from continuous to binary representation, any real number z € [0, 1) can be approxi-
mated using its binary expansion:

c—1
1 i
z:§22% o € {0,1}, 9)
=0

where c denotes the precision level, and o; represents the i-th bit of the binary expansion of z.

We introduce a PA to generate a sequence of noise. The PA consists of \ virtual states, each corre-
sponding to a subordinate PA that models a specific noise distribution. These states are labeled as
40,91, - - - ,@xn—1 With each state ¢; transitioning to ;41 mod X, - - - » ¢i+d mod x With equal probabil-
ity, thereby forming a d-regular graph. The arrangement of these states is strategically designed for
robustness and efficiency.

The subordinate probabilistic automaton is defined over a vocabulary of size |V|, with bitwidth b
and ¢ > b. At each decoding step, it generates a binary noise vector & = (p1, ..., pjy|), Where each

i € {07 1}6'

The automaton begins at an initial state go and terminates at a final state ¢, progressing through |V
layers that each encode a binary vector p;. The first layer starts with: go — o074, 1, and each layer
proceeds through intermediate bitwise states: 0; j — 05 j41,for1 <14 < V|, 1 <j < b, where Oij
encodes the j-th bit of u;. At 0; 3, the automaton branches into two parallel Boolean paths: o; ; —
Lib+1;0ib — Zi,b+1s which continue as: Li,j = Lij+1, Lij — LAZ‘,j_;'_l, Zi,j — Lij+1; ljj,,j — LAi7j+1,
where ¢; ; = 0 and #; ; = 1 represent bit encodings of 11;. Between layers, transitions connect the
terminal states of layer ¢ to the initial states of layer ¢+1: ¢; . — 0441,1,%i,c — Oit1,1,forb < j <
¢, and the automaton concludes after the final layer with ¢y, ¢, £jy),c = q-

For each state, all outgoing transitions have equal probability. As a special case where d = 1 and
sufficiently large b and c, the PA produces noise equivalent to the cyclic key sequence watermark-
ing (Kuditipudi et al., 2024). The PA sampling process is integrated into the token generation, as
described in Algorithm|I] An illustration of a subordinate PA is provided in Appendix [H.T]

We now proceed to describe the detection algorithm. We begin by defining a cost following |Aaron-
son| (2022) and [Kuditipudi et al.|(2024) as

where § = (p1, pi2, ..., py)) and p; € [0,1] is represented by its binary expansion using the
subordinate PA. For ® € A(Z), the cost is defined as
do(y,®) = max {do(y,&)}- (1D)
§€supp(P)
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Before we define the Levenshtein distance for PAs, we introduce the necessary definition.
Definition 7 (Support Automaton). The support automaton of a PA M = (Q, X, §, mo, 7) is a non-
deterministic finite automaton (NFA) M = (Q, X, J, Qo, Q), where () (respectively @) s) denotes
the set of initial (respectively final) states, and 6 C @) x X x () is the transition function defined as
(¢,a,q') € 6 = ¢(q,a,q") > 0.

Algorithm 1 Watermarking Schemes Represented by PAs

Input: Model, PA M, decoder I'

QOutput Watermarked sequence y

: Sample an initial state ¢ from M.

: for each decoding step i do

Transition ¢ to the next state and obtain ®; € A(E).
Sample &; ~ ;.

Select the next token y; using &; via Equation

EAN AR

return y

Definition 8 (Generalized Levenshtein Distance). For a sequence y € V*, ® € A*(E),~;, V4, the
Levenshtein distance between y and @ is defined recursively as

Yalyl + 7| @, if [y[ = 0 or [®] =0,
dL(y2:’ (P) + Yd,

dr, (ya (I>2:) + Vi,

dr(ya., P2:) + do(ys, 1)

For a PA M defining a support language £(M) C A*(E), the Levenshtein distance between y and
M is defined as

dr(y,®) = min (12)

In Equation [I2] the behavior of y and ® is not symmetric, as the length of ® can be infinite.
Therefore, we assign different costs to insertion (v;) and deletion (v;). Meanwhile, the generalized
Levenshtein distance is different from the design in |[Kuditipudi et al.|(2024])). In their algorithm, the
lengths of the key sequence and the text are constrained to be equal, and it may disrupt their align-
ment when insertions or deletions are involved. In contrast, our definition allows flexible alignment
despite difference in lengths.

The naive dynamic programming computes Equation [13|in O(dmAlog\)) time (Wagner, |1974),
whereas our PNFA construction reduces it to O(mA). The dynamic programming algorithm is
detailed in Appendix

Empirical p-value. We quantify the alignment between an observed sequence y and the water-
marked model Mgy by the statistic ¢y = d (y, Msk) , and treat as null hypothesis Hy that y is in-
dependent of sk. We sample N independent keys {sk; } ; and compute v; = df, (y, Mski) (i =
1,..., N). The empirical p-value is then
. 1+ 8 1y < ¢ (14)
b= N+1 '
A small p-value indicates that y aligns unusually well with the true key (suggesting a watermark),
whereas a larger p-value is consistent with unwatermarked noise.

An upper bound of p-value via Vysochanskij-Petunin Inequality. Let ;2 and 02 denote the sam-
ple mean and variance of {1;}L,, given by pu = + SN 4 and 0% = S SN (s — )2, and
define the standardized statistic

z=(¢Y—p)/o. (15)
Under the mild assumption that the null distribution of d;, is unimodal, the one-sided Vysochan-
skij—Petunin inequality (Mercadier & Strobel, [2021) gives the following upper bound:

4/9(z" +1) if |2] > \/5/3,

(16)
4/3(2* +1) —1/3 otherwise.

Pr[Z <z] < {
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We refer to this scheme as WEPA, for Watermarking schemE through Probabilistic Automata. The
design of WEPA makes it robust and highly efficient for dynamic programming. As observed, dis-
regarding bitwidth constraints, the generation diversity of WEPA is ©(Ad™), which is a substantial
improvement over the construction of Kuditipudi et al.[ (2024)).

5 EXPRESSIVENESS OF PA-BASED WATERMARKING SCHEMES

In this section, we draw connections between distortion-freeness, undetectability, and security levels
in watermarking schemes. The security level is measured by the security parameter A that deter-
mines the key size and reflects the computational hardness of breaking cryptographic schemes. It
is assumed to be known to adversaries, and their running time is expressed as functions of A rather
than concrete values. An adversary is considered efficient if it can be modeled as a probabilistic
algorithm with running time bounded by a polynomial function of A. A function is called negligible
if it becomes asymptotically smaller than the inverse of any polynomial as A grows, which repre-
sents a probability that is practically negligible for large . Negligible functions can be expressed as
negl(\) = O(m) (i.e., functions that vanish faster than any inverse polynomial).

Distortion-freeness. We begin the definition by considering an adversary who has oracle access to
the unwatermarked model (i.e., can make unlimited queries) and observes a single instance of water-
marked data, and its goal is to determine whether the observed data is watermarked or not. While we
make assumptions about the adversary’s computational capabilities, we make no assumptions about
its strategy, which means the definition provides protection against any computationally bounded
adversary. The idea is that the adversary should be unable to extract any partial information that
distinguishes watermarked data from unwatermarked data.

In addition, we do not make assumptions about the adversary’s prompting strategy. The adversary
can manipulate the model’s behavior by prompting so that the model outputs arbitrary distribution.
This ensures that the security definition remains robust against adversarial control over the model’s
output distribution. Since the adversary can shape the output distribution arbitrarily, the specific
input to the model becomes irrelevant—choosing a prompt equates to choosing a model. Therefore,
we can safely omit the model’s input in our analysis.

The definition is formalized using the indistinguishability against one-time attacks (IND-OT) game,
defined for a watermarking scheme W, an adversary .4, and the security parameter A: (1) A secret
key is generated via sk < Gen(1*); (2) A is given an input 1* and chooses Mode|(~);ﬂ(3) a uniform

bit b € {0, 1} is selected. A sequence y el f(-) is computed and given to A, where f = Model if
b = 0 otherwise f = Modell™; (4) finally, .A outputs a bit &’. The advantage of A in this game is

defined as

1

AdVINPOT(A) == |Pr[b=b] — 5| (17)

Definition 9 (Distortion-freeness). A watermarking scheme W is distortion-free if it is indistin-
guishable against one-time attacks. Formally, for any polynomial-time A,

Adv'y'\\',D'OT(A) < negl(\). (18)
Moreover, a watermarking scheme is considered perfectly distortion-free if Adv%D'OT(A) =0.

The following theorem provides an equivalent definition of perfect distortion-freeness.

Theorem 1. A watermarking scheme is perfectly distortion-free iff for every language model that
defines language distribution L, every y € L, it follows that

PrlY =y = Egegen(1r) [Pr[Y =y | K = sk]], (19)
where K is the random variable of the secret key.

We defer this proof to Appendix Theorem (1] indicates that the randomness in generating an
output from the unwatermarked model can be equivalently represented by first sampling a key from
the key space and then generating the sequence conditioned on that key. Consequently, the original
distribution of the model’s outputs is preserved. However, this condition is often too strict, and even

3We omit the input & to Model as choosing a prompt equates to choosing a model as explained.
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Kuditipudi et al.|(2024)’s construction is not perfectly distortion-free if the text length is greater than
M. Instead, our definition emphasizes computational indistinguishability, which is more attainable
and aligns with the limitations of real-world systems.

Undetectability. Distortion-freeness ensures that the quality of the language model is not changed
by preserving the distribution in one query. It is nonetheless detectable with multiple queries, and a
higher level of security is desired. Consider the following indistinguishability against chosen prompt
attack (IND-CPA) game, defined for a watermarking scheme VV, an adversary A, and the security
parameter \: (1) A secret key is generated via sk <~ Gen(1%); (2) A is given an input 1* and the

oracle access to Model’5"*(-) for any Model’, and chooses Model(-); (3) a uniform bit b € {0,1} is

selected. A sequence y 2R f() is computed and given to A, where f = Model if b = 0 otherwise
f = Model?"; (4) finally, A outputs a bit &’. The advantage of A in this game is defined as

1
AdviP A (A) = ‘Pr b=1b]- 2’ . (20)
Definition 10 (Undetectability). A watermarking scheme W is undetectable if, for all polynomial-
time adversaries, there exists a negligible function negl such that

AdvINP-CPA(A) < negl(N). QD

By definition it is clear that all undetectable watermarking schemes are distortion-free due to the
stronger capabilities of adversaries. This implies that undetectable watermarking maintains the out-
put distribution of the watermarked model unchanged. Conversely, any watermarking scheme that
introduces distortion is also detectable. This further implies that the watermarks in Kirchenbauer
et al.|(2023);|Zhao et al.| (2024)); |/Aaronson| (2022); [Kuditipudi et al.| (2024) are all detectable.

The following theorem highlights the expressiveness (i.e., the extent to which the automaton repre-
sents various sequences) of PAs for constructing watermarking schemes.

Theorem 2. (Abridged) Under certain conditions, there exists an undetectable watermarking
scheme that can be represented by a PA if sparse LPN is hard.

See Appendix |G| for the full statement and proof. With this framework, the cyclic key sequence
watermarking scheme (Kuditipudi et al., |2024) can be represented by a PDFA with A states and
cyclic transitions, though its expressiveness is limited by its simple structure. To achieve higher
expressiveness, we consider using PNFAs, which are strictly more expressive than PDFAs.

6 EMPIRICAL EVALUATION

We conducted an empirical evaluation of WEPA'’s statistical properties and robustness on LLaMA-
3.2-3B (Dubey et al., 2024) and Mistral-7B (v0.3) (Jiang et al.| 2023)) language models. In line
with prior works (Kirchenbauer et al.l 2023} [Kuditipudi et al., |2024), we generated watermarked
text continuations from the news-like subset of the C4 dataset (Raffel et al., [2020). We compared
WEPA with three baselines: cyclic key sequence watermarking (Seq) with exponential minimum
sampling (Kuditipudi et al.;[2024), unigram green-red set watermarking (G/R) (Kirchenbauer et al.,
2023), and unbiased watermarking (Unbiased) (Hu et al., 2024). Notably, the G/R baseline is not
directly comparable, as it may introduce noticeable distortion. For WEPA and Seq, we computed
p-values via Equation [I4] with a sample size of 10,000 for consistency. For Unbiased, we report the
upper bound of p-values as described in Hu et al.| (2024). All methods were evaluated using their
strongest hyperparameter settings as recommended by the original authors; details are provided in
Appendix For each experiment, we report the 1/3, 1/2 (median), and 2/3 quantiles of p-values
for watermarked text across 100 samples. Further empirical results are included in Appendix|B|due
to page limits.

6.1 VARYING TEXT LENGTHS

We varied the generation length of watermarked text from 4 to 20 tokens, as shown in Figure[2] The
results highlight differences between the two language models due to variations in their generation
entropy. Among the methods, WEPA (d = 1) and Seq consistently achieve the strongest detection
performance. WEPA (d = 2) performs slightly worse, followed by G/R. The Unbiased method lags
behind, especially on shorter sequences. Full numerical results are provided in Appendix and
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WEPA (d = 1)
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202 WEPA (d =1,b=6) 10.60
0.1 Seq (our impl.) 2039.56
Seq 49024.57
0.0
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Text length Text length Table 1: Detection efficiency

comparison. Unless otherwise
Figure 2: Median p-values varying text lengths on LLaMA-3B specified, float32 is used

(left) and Mistral-7B (right). for b in WEPA.
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Figure 3: Median p-values under substitution (left), deletion (middle), and insertion (right) attacks.

we further report ROC-AUC and TPR@ 1%FPR in Appendix [B.1] Notably, watermarking short text
is inherently more challenging than long text. For completeness, we also include experiments on
longer sequences (up to 200 tokens) in Appendix[B.2]

6.2 ROBUSTNESS TO EDIT-BASED ATTACKS

We evaluated the robustness against three types of edit-based attacks: (1) substitution, (2) deletion,
and (3) insertion, each applied by randomly corrupting a fraction of tokens. For substitution and
insertion, replacement tokens were sampled uniformly from the vocabulary. No padding was intro-
duced, nor was truncation applied following deletions or insertions. All experiments were conducted
on sequences of length 50 tokens.

Figure [3| reports results on LLaMA-3B, while we defer the results on Mistral-7B in Appendix [B.6]
WEPA (d = 1) performs slightly better than the other methods across all attack types, likely due
to its flexible alignment mechanism. In contrast, Seq performs slightly worse, as it requires exact
alignment between the generated text and a fixed-length key sequence. G/R shows reduced robust-
ness, likely due to its unigram-based design. The Unbiased method is not robust under these attacks,
as it was not designed to handle edit-based perturbations.

We note that our watermark is specifically designed to resist edit-based perturbations, and does not
aim to defend against semantic or paraphrasing attacks. As such, we do not include experiments on
paraphrasing, which fall outside the scope of our work.

6.3 EFFICIENCY

We compared the runtime of the detection algorithms for WEPA (d = 1), WEPA (d = 2) and
Seq. For WEPA (d = 2,b = 6), we choose b = 6 as the bitwidth does not affect efficiency. The
results are presented in Table[I] For Seq, we implemented an optimization with token discretization.
Each algorithm was evaluated on a sample from C4 dataset with text length of 256 using LLaMA’s
tokenizer. WEPA is significantly faster than Seq as predicted by the different time complexities.

7 CONCLUSION

We introduced a class of watermarking schemes constructed through probabilistic automata. Within
this framework, we instantiated WEPA, a practical watermarking method that achieves both im-
proved generation diversity and more efficient detection. Empirical results further demonstrate its
effectiveness and efficiency. Furthermore, by extending to probabilistic non-deterministic finite au-
tomata, we established an undetectable watermarking scheme.
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A LIMITATIONS

Our work has several limitations that suggest directions for future research. First, the lack of tight
analytical bounds on the p-value remains a challenge, as the edit distance metric is inherently diffi-
cult to analyze. Second, the detection algorithm requires knowledge of the private key, which limits
detection to only the key holder. Developing an asymmetric decoding and detection system could
improve security.

B ADDITIONAL EMPIRICAL RESULTS

B.1 VARYING TEXT LENGTHS WITH SUPPLEMENTAL EVALUATION METRICS

Tables[2and 3] present ROC-AUC results across varying text lengths, while Tables @] and [5|report the
corresponding TPR@ 1%FPR results. Overall, WEPA (d = 1) achieves performance comparable to
Seq on both metrics, with WEPA (d = 2) performing even better. Although the Unbiased method
attains the highest scores on these metrics, it is not robust to edit-based attacks.

Text length G/R  Seq Unbiased WEPA (d=1) WEPA (d =2)

5 0.829 0.751 0.790 0.765 0.764
10 0.910 0.880 0.939 0.862 0.906
15 0.952 0938 0.979 0.922 0.950
20 0971 0.964 0.992 0.951 0.974
25 0.982 0.969 0.995 0.964 0.988
30 0.986 0.982 0.998 0.980 0.990
35 0.988 0.989 0.998 0.985 0.992
40 0.991 0991 0.999 0.991 0.993
45 0.992 0993 0.999 0.992 0.996
50 0993 0.995 0.999 0.996 0.998

Table 2: ROC-AUC results varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d =1) WEPA (d =2)

5 0.812 0.678 0.784 0.681 0.705
10 0.898 0.817 0.925 0.779 0.848
15 0.938 0.894 0.971 0.859 0.913
20 0.958 0924 0.991 0.901 0.940
25 0.967 0934 0.998 0.921 0.971
30 0975 0.952 0.998 0.952 0.982
35 0.981 0.967 1.000 0.960 0.982
40 0984 0979 1.000 0.968 0.989
45 0.987 0975 1.000 0.976 0.993
50 0.988 0.988 1.000 0.981 0.993

Table 3: ROC-AUC results varying text lengths on Mistral-7B.

B.2 VARYING TEXT LENGTHS ON LONG TEXTS

We evaluated WEPA and Seq on longer text sequences, as presented in Figure [d] For cases where
the empirical p-values became exponentially small, direct computation was infeasible; instead, we
report upper bounds estimated via Equation Due to the looseness of this bound, these values
are not directly comparable to G/R. Nonetheless, the results reveal consistent trends with those in
Figure[2] Notably, WEPA (d = 1) achieves the strongest performance, while WEPA (d = 2) exhibits
slightly lower accuracy compared to Seq.

B.3 PERPLEXITY EVALUATION

We evaluated the perplexity of each watermarking scheme at a text length of 512, and report median
perplexity with a 90% confidence interval. The results are shown in Figure Among the methods,

12
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Text length G/R Seq Unbiased WEPA (d=1) WEPA (d =2)
5 0.121 0.032 0.085 0.037 0.040
10 0.258 0.071 0.269 0.094 0.114
15 0.347 0.190 0.314 0.157 0.158
20 0.487 0.344 0.319 0.293 0.341
25 0.621 0.318 0.965 0.259 0.647
30 0.709 0.525 0.998 0.499 0.592
35 0.709 0.608 1.000 0.517 0.761
40 0.649 0.596 1.000 0.790 0.750
45 0.693 0.740 1.000 0.671 0.990
50 0.701 0.837 1.000 0.892 0.996

Table 4: TPR@ 1%FPR results varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d =1) WEPA (d =2)
5 0.052 0.019 0.085 0.032 0.035
10 0.269 0.032 0.277 0.036 0.061
15 0.304 0.150 0.319 0.063 0.144
20 0.320 0.163 0.320 0.135 0.124
25 0.494 0.149 0.989 0.140 0.327
30 0.549 0.243 0.995 0.336 0.534
35 0.666 0.308 1.000 0.258 0.521
40 0.717 0.483 1.000 0.431 0.714
45 0.757 0.355 1.000 0.454 0.837
50 0.761 0.671 1.000 0.510 0.728

upper bound of p-value

g
9

Figure 4: Median p-values varying text lengths on LLaMA-3B (left) and Mistral-7B (right).

Table 5: TPR@ 1%FPR results varying text lengths on Mistral-7B.
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Figure 5: Perplexity of each watermarking scheme on LLaMA-3B (left) and Mistral-7B (right).

WEPA (d = 2) distorts the text the least. WEPA (d = 1) and Seq yield the same perplexity since
they have the same generation process, but Seq heavily distorts the text.

B.4 VARYING KEY LENGTH

We varied the key length ()\) from 2% to 2'2 while keeping the text length fixed at 8, as shown
in Figure [f] Consistent with the findings of [Kuditipudi et al] (2024), we observe that the p-value
increases with \.

WEPA (d = 1) WEPA (d = 1)
04 WEPA (d = 2) 04 WEPA (d = 2)
Seq Seq

Figure 6: Median p-values varying security parameters on LLaMA-3B (left) and Mistral-7B (right).

B.5 VARYING BITWIDTH

We varied the bitwidth (b) of WEPA from 2 to 12 while keeping the text length fixed at 8, as shown
in Figure|/} The results indicate that a higher bitwidth improves performance with sacrifice of text
diversity. The performance stabilizes when b > 6.

WEPA (d = 1) : WEPA (d = 1)
WEPA (d = 2) WEPA (d = 2)

Figure 7: Median p-values varying number of bits on LLaMA-3B (left) and Mistral-7B (right).
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B.6 ROBUSTNESS TO EDIT-BASED ATTACK ON MISTRAL-7B

We evaluated robustness against edit-based attacks on Mistral-7B, following the setup in Section|[6.2]
with results shown in Figure [§] Under a lower-entropy model, G/R demonstrates greater stability.
Overall, these schemes exhibit performance similar to the LLaMA-3B model.

05 . 0.20 .

WEPA (d = 1) WEPA (d = 1) WEPA (d = 1)
0.4 WEPA (d = 2) 0.4 WEPA (d = 2) 015 WEPA (d = 2)
Lo
Seq Seq Seq
E 03 —— GR é) 0.3 G/R E —— G/R
? 0o Unbiased ; 0 Unbiased ; — Unbiased
E & =
0.1 0.1
0.0- < 0.0 - 00 - .
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.00 0.25 0.50 0.75 1.00
Fraction of substitutions Fraction of deletions Fraction of insertions

Figure 8: Median p-values under random substitution (left), deletion (middle), and insertion (right)
attacks.

B.7 NUMERICAL RESULTS OF SECTION[6.1]
Tables [6] and [7]list the numerical median p-values corresponding to Figure [2]

Textlength G/R  Seq Unbiased WEPA (d=1) WEPA (d =2)

4 0.438 0.233 9.553 0.286 0.212
8 0.169 0.062 0.412 0.153 0.018
12 0.020 0.003 0.013 0.011 0.001
16 0.010 0.001 0.000 0.003 0.000
20 0.005 0.000 0.000 0.000 0.000

Table 6: Median p-values varying text lengths on LLaMA-3B.

Text length G/R Seq Unbiased WEPA (d=1) WEPA (d =2)

4 0.438 0.235 8.145 0.285 0.295
8 0.169 0.100 0.692 0.136 0.106
12 0.078 0.011 0.034 0.061 0.007
16 0.010 0.015 0.002 0.029 0.002
20 0.005 0.001 0.000 0.003 0.000

Table 7: Median p-values varying text lengths on Mistral-7B.

C EXPERIMENT SETUP

C.1 COMPUTATION RESOURCES

Experiments were run on an internal cluster with dual AMD EPYC 7453 28-core CPUs (56 cores
total), 1 TiB RAM, and 8 NVIDIA GeForce GPUs (24 GiB each, CUDA 11.6). Peak GPU memory
usage reached approximately 15 GiB per device. The system provided ample memory and storage,
with over 800 GiB RAM available during runs. However, our experiments primarily rely on GPU
resources for language model inference, and do not require high-performance CPUs.

C.2 HYPERPARAMETER SETTINGS

We detail the hyperparameter configurations used for all methods evaluated in our experiments.
For WEPA, we set the key length )\ to 256. For the cyclic key sequence watermarking baseline
(Seq), we used a key sequence length of 256 and applied exponential minimum sampling with a soft
Levenshtein cost parameter v = 0. For the green-red set watermarking baseline (G/R) |Kirchenbauer,
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et al.| (2023), we the green set fraction is set at 0.25 and the logit bias § = 2. For the unbiased
watermarking method of |[Hu et al.| (2024)), we used J-reweighting.

For WEPA, unless specified, we used the key length of A\ 256 and float32 type to mimic the
behavior when b is sufficiently large. For Levenshtein distance, we set the deletion cost 74 = 0 and
insertion cost ; = 2. Notably, ; cannot be too small as a lower insertion cost allows tokens to
align with arbitrary states with minimal penalty. For each experiment, we computed the z-scores for
watermarked text across 100 samples.

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION OF LEVENSHTEIN DISTANCE CALCULATION

Algorithm 2] presents the dynamic programming for computing the Levenshtein distance used in
WEPA. The cost(-,-) array stores the precomputed costs between substates and tokens defined

by Equation

Algorithm 2 Levenshtein Distance Calculation with Dynamic Programming

1: procedure LEVENSHTEINDISTANCE(y, A, d, cost(-, ), V4, Vi)

2: m + |y|

3 f, g < array of size \ initialized to 0 > Assume f and g are cyclic.
4: fori < 1..m do

5: for u <~ 0.\ —1do

6: doy < cost(u, y;—1)

7 Ju = gu+ 74 > Deletion
8: forv+u—d.u—1do

9: | fu ¢ min(fu, g, + do) > Substitution
10: u* < argmin(f.)
11: foru « uv*+1.2—1do
12: forv+<u—d.u—1do

13: | fu < min(fu, fo + %) > Insertion
14: for u < 0.u* —1do

15: forv+ u—d.u—1do

16: | fu < min(fu, fo +7) > Insertion
17 | | fig«g.f

18: | return min(f.)

While the innermost loop can be optimized using a monotonic queue for a complexity of O(m\),
we do not carry out this optimization in our implementation in practice since the degree d is usually
small.

E ADDITIONAL ANALYSIS OF EXISTING WATERMARKING SCHEMES

In this section, we provide the alternative analysis of existing watermarking schemes through the
lens of probabilistic automata (PA).

E.1 WATERMARKING SCHEMES UNDER UNIFORM MODELS

We assume a model that follows a uniform distribution over V so that Model(:) =
Cat(1/|V|,...,1/|V]|), where Cat denotes the categorical distribution. Then we proceed to analyze
the output distribution of existing watermarking schemes under uniform models.

k-gram-based watermarking. k-gram-based watermarking has been introduced in many works
(Kirchenbauer et al.,|[2023;|Zhao et al., 2024;|Aaronson, [2022)). Generally speaking, the core concept
is to condition the next token on a window of k prior tokens. A hash function h : K x V¥ — 7Z
generates the noise based on the context of the k prior tokens. Then ® computes the hash and alters
the distribution and generates a variable:

§i ~ (Y pi1) = © (hak(Yipio1)), (22)
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where &' : Z — A(E). The noise, £; may be modeled as a uniform variable from [0, 1] used for
inverse transform sampling with a partition over the vocabulary (Kirchenbauer et al., 2023} [Zhao
et al.l [2024), or a Gumbel variable (Aaronson, 2022).

Under uniform models, the output of a watermarking scheme can be represented by a PA M =
(Q, %, 6, m, Ty), with the state space Q = V* and = = V), the transition function § : Q X ¥ x Q —
[0, 1] is defined as
S(Yirei1:Yir Yimhr1a) =PV =i [ Yi_pia),
Y o~ (Y i)
Aseachy; . ; and y; uniquely determines y; j.;, M is a PDFA.

(23)

Cyclic key sequence watermarking. |[Kuditipudi et al.|(2024) introduced a watermarking scheme
that uses a cyclic sequence of noise ...&E\_1&0&1 ... Ex—1&0p - . . starting from random position in
watermarks within generated text, where each &; € [0, 1] for inverse transform sampling or &; €
[0,1] VI for exponential minimum sampling. The noise sequence is referred to as the key sequence.

Since the key sequence is cyclic, the output under uniform models also follows a repeated structure
and can be recognized by a PDFA with at most 4\ states, which can be constructed with simliar
ideas as suffix automata. We defer the construction in Appendix

E.2 DETECTABILITY OF WATERMARKING SCHEMES

Definition 11 (KL-PAC Learnability). Given a class of stochastic languages or distributions C over
3*, an algorithm A KL-Probably Approximately Correctly (KL-PAC)-learns C if there exists a poly-
nomial ¢ such that for all ¢ € C, alle > 0 and § > 0, A is given a sample S,,, and produces a
hypothesis H satisfying

P [DkL(c|[H) > €] <6 (24)

whenever m > ¢(1/€,1/4, |c|), where |c| is some measure of the complexity of the target. The
algorithm runs in time polynomial in m plus the total length of the strings in S,,.

Theorem 3. For any i > 0, any watermarking scheme the output of which under a uniform model
represented by a ji-distinguishable PDFA with polynomial many states is detectable.

Theorem [3] provides an alternative perspective to show that the watermarks proposed by [Kirchen-
bauer et al. (2023); |Zhao et al.|(2024); |/Aaronson| (2022); |Kuditipudi et al.[(2024)) are all detectable
and even spoofable.

F PROOF OF TECHNICAL RESULTS

F.1 PROOF OF THEOREMII]
Proof. We begin we noticing that

AdvIPOT(A) =

Pr[bb’];‘o & Pr[b:b’]:%. (25)

Necessity. Fix an arbitrary output y € L for a given key sk € K. Suppose an adversary A attempts
to distinguish between the original and watermarked models. The adversary may partition the output
space L into two disjoint sets:

L:Oa Elv (26)
where Lo N L1 = @ and Lo U L1 = L. The adversary’s strategy is to output b’ = 0 if y € Ly and
b’ = 1 otherwise. The probability of correctly guessing b is then given by:

Pr[b =] = Pr[t/ = 0| b=0]Pr[b= 0]+ Pr[t/ = 1| b=1]Pr[b = 1]

1 (27
= Q(Pr[yeﬁo | K =sk,b=0]+Prlye £, | K =sk,b=1]).
Since the watermarking scheme WV is assumed to be perfectly distortion-free, we have:
PrlY = y] = Eqegen(1?) [PI"[Y =y|K= Sk]] (28)
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Taking expectations over the key sk, it follows that:

Prly € Lo] = Eqgen(12) [Pry € Lo | K = sk]], (29)
with a similar expression for £;. By the law of total probability, we obtain:

Prly € Lo] + Prly € £4] = 1. (30)

Substituting into the expression for Pr[b = &’] and noting that b is independent of sk, we conclude:

—_

Prlb = 0] = % (Prly € Lo] + Prly € £1]) = ~. 31)

[\]

Since the adversary cannot achieve a probability of success greater than %, we conclude:

AdVINPOT (4) =

Prlb = ] — ;‘ 0. (32)

Thus, the adversary gains no distinguishing advantage, proving that the watermarking scheme WV is
perfectly indistinguishable.

Sufficiency. Conversely, assume that the watermarking scheme W is not perfectly distortion-free.
Then there exists a language model with output distribution £ and some y € £ such that:

PrlY = y] # Egegen(1) [Pr[Y =y | K = sk]]. (33)

Define the disjoint sets:

Lo = {ye L|Pr[Y =y] > Eg gy [Pr[Y =y | K =sK|]}, L1 = L\Lo. (34

Consider an adversary A that outputs b’ = 0 wheny € Lgand b’ = 1 wheny € L;. The probability
of a correct guess is given by:

Pr[b:b’]:%(Pr[yeL‘o|b:O]+Pr[ye£1|b:1]). (35)

Since y € L appears more frequently in the original model’s distribution than in the watermarked
model’s, and vice versa for L1, it follows that:

1
Prib=1b'] > 7 (36)
Thus, the adversary gains a nonzero advantage, contradicting the assumption that W is perfectly
distortion-free, which completes the proof. O

F.2 PROOF OF THEOREM

Proof. Since any pu-distinguishable PDFA with a polynomial number of states and a bound on the
expected length of strings generated from any state is KL-PAC-learnable (Clark & Thollard, [2004).
That is, given sufficiently many samples from the distribution induced by a p-distinguishable PDFA,
an efficient learning algorithm can approximate the distribution arbitrarily well.

Suppose, for the sake of contradiction, that there exists a watermarking scheme )V that produces
outputs indistinguishable from those of an unwatermarked uniform model represented by a u-
distinguishable PDFA M. That is, for any adversary A,

Advi(A) = ‘Pr[b =b] - ;’ = 0. (37)
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This implies that no efficient adversary can distinguish between the original model M and the
watermarked model M’ with non-trivial probability.

However, since M is pu-distinguishable, it is KL-PAC-learnable. Thus, there exists a polynomial-
time algorithm £ that, given polynomially many samples from the output distribution of either M
or M’, can learn a hypothesis h that approximates the true distribution up to any desired accuracy e.

Consider the following adversary .A that attempts to distinguish between M and M’:

1. Draw m = poly(1/¢,1/§) samples from the given black-box model.

2. Run the KL-PAC-learning algorithm £ to obtain a hypothesis i that approximates the underlying
distribution.

3. Compute the likelihood of the observed samples under both the learned approximation of M and
M.
4. Output b’ = 0 if the samples are closer to the expected distribution of M and &’ = 1 otherwise.

Since M is p-distinguishable, every pair of states in M induces suffix distributions that differ by at
least p1 in £, norm, and M terminates with m = poly(\) steps. If the watermarking scheme W al-
ters the output distribution, then by definition of u-distinguishability, it must introduce a statistically
significant difference that is detectable given polynomially many samples.

Therefore, the KL-PAC-learning algorithm £ enables the adversary A to distinguish between the
original and watermarked models with probability strictly greater than % + ~ for some v > 0. This
contradicts our initial assumption that the watermarking scheme is perfectly indistinguishable.

Hence, we conclude that for any p > 0, any watermarking scheme applied to a uniform model
represented by a p-distinguishable PDFA with a polynomial number of states is necessarily de-
tectable. O

Since all watermarking schemes proposed in |Kirchenbauer et al.|(2023)); |[Zhao et al.[(2024); |Aaron-
son| (2022)); Kuditipudi et al.| (2024)) can be represented as a PDFA, and each pair of states in these
automata is distinguishable (except in the unlikely case where two randomly chosen partitions are
identical or the corresponding uniform random variables are nearly indistinguishable) it follows that
all such watermarking schemes are necessarily detectable.

G UNDETECTABLE WATERMARK CONSTRUCTION

Before presenting the watermark construction, we introduce the necessary definitions and assump-
tions.

Definition 12 (PAC Learnability). Let C be a concept class consisting of Boolean functions ¢ : X —
{0, 1} over some instance space X'. We say that an algorithm A Probably Approximately Correcily
(PAC)-learns C if there exists a polynomial ¢ such that for all target concepts ¢ € C, all distributions
D over X, and all ¢, > 0, the algorithm 4, given access to i.i.d. examples drawn from D labeled
by c, outputs a hypothesis A such that

Pr| JPN’rD [h(z) # c(z)] > €] <6 (38)

whenever the number of examples m > ¢(1/¢,1/4,]|c|), where |c| denotes a measure of the com-
plexity of the target concept. The algorithm runs in time polynomial in m plus the size of the input
examples.

Assumption 4 (Sparsely Learning Parities with Noise). Let 7 = (F},),en be the class of parity
functions F,, = {fs(2) = @;cpyisi | s € {0,1}", [|s|1 = logn}, where z € {0,1}". Each
fs computes the parity of a logarithmic-sized subset of the input, defined by the support of s. No
polynomial-time algorithm can PAC learn F under classification noise rate ¢ = 1/3.

Definition 13 (Entropy Bound of Language Model). Let (y1,y2,...,¥yn) be a sequence of tokens
generated by a language model over a finite vocabulary V. The model assigns a conditional distri-
bution p(y; | y;.;,_1) at each position 7. We define the entropy bound of a language model as

H(Model) = inf {E;-ip) [H (vi | y1.5-1)] }, (39)

where H (y; | y;.;,_1) denotes the conditional entropy and the expectation is taken over a uniformly
random index i € [n].

19



Under review as a conference paper at ICLR 2026

Definition 14 (Weak Pseudorandom Function Family). A family of functions F = {f :
{0,1}™ — {0, 1} }seqo0,13» is a weak pseudorandom function (PRF) family if for every probabilistic
polynomial-time adversary A, the distinguishing advantage

Pr [Af(1") =1] — Pr [A7(1") = 1]| < negl(n), 40

_Pr AR () = 1) = Pr A/ (1) = 1) < negl(n) (40)

where U denotes the uniform distribution over all functions f : {0,1}™ — {0,1}, and the oracle
queries to A are drawn uniformly at random from {0, 1}".

Proposition 5 (From PAC Unlearnability to Weak Pseudorandomness). Let F = (Fp)nen be a
class of functions that is not PAC learnable under classification noise rate q. Then, for n(\) = A,
the sequence of functions (JF,x))x constitutes a weak pseudorandom function family with noise
level q.

G.1 FULL STATEMENT AND PROOF OF THEOREM

Reduction to a binary vocabulary. For analytical convenience, we reduce the vocabulary of V
to a binary vocabulary {0,1}. Any categorical distribution over V with || can be equivalently
represented by a binary distribution over {0, 1} Mogz IVI1 via entropy-preserving encoding. That is,
given logits p € AlVI=1 we define a mapping to binary sequences where each symbol v € V
is assigned a unique bitstring b(v) € {0,1}11°82 VI and generation proceeds bit by bit using the
induced marginal distributions. This reduction preserves perplexity and generation quality up to
negligible statistical error. We therefore assume, without loss of generality, that the model outputs
binary tokens.

We present the full statement of Theorem [2]as follows.

Theorem 6. There exists an undetectable watermarking scheme with generation length n =
Q(\3log \), entropy bounded by H(Model) > 2 + logy(1 — q) — % log, (3 — 4q) that can
be represented by a PA, if sparse LPN is hard with noise level of 0 < q < %

Proof. Let fs(x) = s-x mod 2 be a parity function with noise level of ¢ on the support of a secret
key s € {0,1}*, and suppose a language model with binary output alphabet {0, 1}.

At each token position i, we generate a pair of Gumbel noise variables (pg, 11) sampled from
U[0, 1], whose binary representations are given by Equation@

If (\+ 1) { 4, the pair (uo, p1) is left unmodified. Otherwise, when (A + 1) | i, we extract a
watermark bit x; via the indicator

x; = 1[po < pa], (41)
compute the parity bit b = fg(x) over the current watermark buffer x, and enforce z; = b by
outputting (po, 41) with probability 1 — ¢ if b = 0 or with probability ¢ and b = 1, otherwise
outputting (p1, po). This is easily accomplished by a PA by counting the number of bits of s. The
decoder of Equation [§]is used for each step to generating y;.

The detector identifies all positions ¢ such that (A41) | ¢ and reconstructs the corresponding Gumbel
pairs (po, pt1) used during generation. It computes the bit

x; = Lpo < pa], (42)

and compares it against the output token y; € {0, 1}. For each such position, let z; = 1[x; = y;]
denote a match indicator. Over ¢t = Q(n/\) such comparisons, the detector computes the empirical

match rate:
t
> . (43)
i=1

The detector accepts (i.e., concludes the presence of a watermark) if p > % + 0 for some threshold
6 = Q(\71), and rejects otherwise.

| =

ﬁ:

Undetectability. Let Dg denote the distribution over input-output pairs induced by our construction,
where the input € {0,1}* is uniformly random and the output bit is given by fs(x) with noise
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rate q. This corresponds to the standard noisy parity distribution: with probability 1 — g, the output
is fs(x), and with probability ¢, it is flipped.

Suppose there exists an algorithm .4 that KL-PAC-learns the class of such distributions, i.e., for any

e > 0and d > 0, given m samples drawn from Dyg, the algorithm produces a hypothesis distribution
D such that

Pr [Dxi(Ds || D) > €] <6 (44)
whenever m > q(1/¢,1/0,|Dgl) for some polynomial g.

Now consider a random input & € {0, 1}*. Since the output bit is either fs(x) or its complement,
the two candidate outputs are 0 and 1. A hypothesis D that approximates Dg in KL-divergence
necessarily assigns higher likelihood to the correct label in expectation. Therefore, by comparing
the probabilities D(2:0) and D(1), one can predict fs(x) with probability at least 1 — €.

This yields an efficient algorithm that predicts noisy parity with non-negligible advantage, contra-
dicting the Noisy Parity Assumption.

Finally, by Proposition[5] the parity function fg can be computed by a probabilistic automaton, and
the corresponding output distribution Dg serves as a pseudorandom function. In particular, since Dg
is not KL-PAC-learnable under the hardness of sparse LPN, it is indistinguishable from a uniform
distribution by any efficient adversary.

Therefore, no efficient detector can distinguish watermarked text from unwatermarked text with
non-negligible advantage.

Completeness. Let py € (0, 1/2] denote the smallest possible bias such that the binary entropy of
1; satisfies

H(y;) = —pology po — (1 — po)logy (1 — po). (45)

Consider the probability that the sampled watermark bit x; matches the LM output y; when i |
(A + 1). Since x; = b with probability 1 — ¢, and is flipped with probability ¢ (due to the noise in
fs), we have the following bound:

1 log A 1 1 log A
Prz; = yi] > |2po <2> (1—9)4'5 1—<2)
1 _ 1 (46)
=4+ X1 (20 — 2gp0 — =
3 + <P0 qpo 2)
1
:§+C>\_1,

where ¢ := 2py — 2gpo — & > 0 by the entropy bound.
Then we have the following Chernoff bound:
tc?

1
Pr []3 <3 + 9] <exp (—2t(cA™' —0)?) = exp <2)\2) = negl(\). 47

Soundness. For unwatermarked text, assuming the Gumbel samples and tokens are independent
(i.e., no watermarking mechanism was used), the match indicators z; are i.i.d. unbiased coin flips:

1
PI‘[.’L‘i = yz] = 5 (48)
Then by Hoeffding’s inequality,
Pr[p> 1 + 0] < exp(—2t0?) = exp(—Q(log \)) = negl(N), (49)

which indicates that the detector rejects unwatermarked text with overwhelming probability.
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H ILLUSTRATIONS OF CONSTRUCTIONS

H.1 ILLUSTRATION OF A SUBORDINATE PROBABILISTIC AUTOMATON

To complement the formal description in Section we provide an illustration of a subordinate
probabilistic automaton (sub-PA) used in our watermarking framework. The sub-PA is responsible
for generating the binary noise vectors p; € {0,1}¢ across vocabulary positions, as defined in the

Figure 9: Illustration of a subordinate probabilistic automaton (sub-PA). Each layer encodes a binary
vector u;, beginning from the initial state gg and terminating at gy. Transitions within each layer
encode bitwise states, branching into parallel Boolean paths ¢; ; and i; j, which represent 0 and 1
respectively. Inter-layer transitions connect the terminal states of layer ¢ to the initial states of layer
1+1.

As shown in Figure @ the sub-PA progresses from the initial state gy through |V| layers, each cor-
responding to a token in the vocabulary. The Boolean branching ensures exponential variability
in possible noise sequences, while the overall number of automaton states remains polynomially
bounded. This property is essential for both efficient sampling and tractable computation of edit
distance during watermark detection.

H.2 AUTOMATON CONSTRUCTION FOR A CYCLIC STRING

We provide the construction of an automaton for a cyclic string in Algorithm [3] Given the input
string s, the automaton has at most 4/s| states. Figureillustrates an example PDFA that recognizes
a substring of the repeated string of “abaa”.

Figure 10: An example of a PDFA with probability that recognizes a substring of repeated string
“abaa”.

IMPACT STATEMENT

This study showcases recent advances in the field of Machine Learning, aimed at preventing the
misuse of Al-generated content. Our technique endeavors to improve the security of text generation
systems, thereby reducing the risk of misleading information and contributing to the establishment
of ownership and copyright of Al-generated content. From an ethical perspective, this technology
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Algorithm 3 Automaton Construction for a Cyclic String

1: Initialize: Let S be a set of states representing the suffix automaton, where each state .S; has:
¢ S;.1length: The length of the longest string ending at .S;.

e S;.1ink: The suffix link, pointing to the longest proper suffix of the corresponding string
that is also in the automaton.

¢ S;.next: A transition function mapping each character c to the corresponding state.

2: Create the initial state So with Sg.1ength = 0 and Sp.1ink = —1.
3: last <0 > Tracks the last added state
4: function EXTEND(c)

5: p < last

6: Create a new state Sc,r With Scyr.length = Sp.length 41
7: while p # —1 and ¢ ¢ S).next do
8: Sp.next|c] + cur

9: p <+ Sp.link

10: if p = —1 then

11: | Seur.link <0

12: else

13: q < Sp.next|c|

14: if S,.1ength 4+ 1 = S;.1length then

15: | Scur.link < ¢

16: else

17: Create a new state S’ with S’.1ength = Sp.1length + 1
18: S’ .next < Sy.next

19: S’.link < S,.1ink

20: while p # —1 and S,.next[c] = ¢ do

21: Sp.next[c] «+ 5’

22: p Sp.link

23: Sg-link « S5’

24: Seur.link < S

25: ‘ last < cur

26: function BUILDAUTOMATON(S)

27: for each character c in s do

28: | EXTEND(c)

29: idx < index of the newest state in the automaton

30: for each character c in s do

31: | EXTEND(c)

32: | Siase.next[sg] < idx

plays an important role in protecting the integrity of information dissemination on digital platforms
and helps strengthen public trust in Al applications. While we recognize that these technologies may
be used to restrict freedom of information or enforce censorship in some environments, we believe
that their benefits in reducing misinformation outweigh the potential risks.
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