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Abstract

We present Aryabhata 1.0, a 7B parameter math reasoning model optimized for the
Indian Joint Entrance Examination (JEE). While recent LLMs have advanced math-
ematical reasoning, many remain unsuitable for high-stakes educational use. Our
model is created by merging strong open-weight reasoning backbones, followed
by supervised fine-tuning with curriculum learning on verified chain-of-thought
(CoT) traces obtained through best-of-n rejection sampling. We further enhance
performance via reinforcement learning with verifiable rewards (RLVR) using
an A2C objective with group-relative advantage estimation, along with novel ex-
ploration strategies including Adaptive Group Resizing and Temperature Scaling.
Evaluated on in-distribution (JEE Main 2025) and out-of-distribution (MATH,
GSM8K) benchmarks, the model surpasses comparable baselines in accuracy and
efficiency, while producing pedagogically useful step-by-step reasoning. This work
demonstrates that compact, exam-focused language models can deliver both strong
performance and practical usability for educational contexts.

1 Introduction and Related Work

Large language models (LLMs) have advanced mathematical reasoning, yet many remain ill-suited
for high-stakes exams such as the Indian Joint Entrance Examination (JEE), which require both
accurate solutions and pedagogically clear reasoning.

Non-reasoning models (e.g., GPT-4o) perform poorly on rigorous math tasks, often guessing or
relying on shallow pattern matching.

Early reasoning models such as OpenAI o1 (OpenAI, 2024) and DeepSeek R1 (DeepSeek-AI u.a.,
2025) improved accuracy via chain-of-thought (CoT) reasoning but suffered from hidden or verbose
traces, slow generation, and nonlinear reasoning that hindered learning.

Modern reasoning models including o4-mini (OpenAI, 2025), Gemini 2.5 (Comanici u.a., 2025),
and updated DeepSeek R1 (DeepSeek-AI u.a., 2025) offer higher accuracy and faster inference but
still lack concise, linear reasoning traces optimal for educational use. (Samples are provided in
Appendix G.)

In open-weight math-specialized systems, DeepSeekMath (Shao u.a., 2024) advanced capabilities
via math-focused pretraining and Group Relative Policy Optimization (GRPO). Qwen-2.5-Math-7B
(Yang u.a., 2024) supports CoT and tool-integrated reasoning in multiple languages. NVIDIA’s
AceMath-7B-Instruct (Liu u.a., 2025) and AceReason-Nemotron-7B (Liu u.a., 2025) enhance
performance through multi-stage SFT and RL, while AceReason-Nemotron-1.1-7B (Liu u.a., 2025)
combines stage-wise RL on math and code prompts. Pure RL-based reasoning models such as
DeepSeek-R1 and its distilled variants (DeepSeek-AI u.a., 2025) leverage verifiable-reward optimiza-
tion to strengthen reasoning ability.
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Building on these developments, we introduce Aryabhata 1.0, a compact 7B parameter model that
merges complementary reasoning backbones, applies curriculum-guided supervised fine-tuning with
best-of-n rejection sampling, and employs reinforcement learning with verifiable rewards augmented
by adaptive exploration strategies. The goal is to achieve high accuracy, efficiency, and pedagogical
clarity in an exam-focused educational context.

2 Methodology

The overall process can be categorized in the following four stages:

2.1 Model Merging

To combine the advantages of System 1 (fluent, low-latency answers) and System 2 (deliberate,
self-correcting reasoning) (Wu u.a., 2025), we perform model merging, following the works by Kimi
k1.5 (Team u.a., 2025) and Wu u.a. (2025). We select three distinct LLMs sharing the same base
architecture (Qwen 2.5 Math): (1) Qwen2.5-Math-7B-Instruct (Yang u.a., 2024) (2) AceMath-7B-
Instruct (Liu u.a., 2025) (3) DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI u.a., 2025)

We used linear merging (Wortsman u.a., 2022) via the MergeKit framework (Goddard u.a., 2024) to
combine the models. Let θ1, θ2, θ3 be the parameters for Qwen, Ace, and DeepSeek, respectively.
The merged parameters are calculated as:

θmerged = αθ1 + βθ2 + γθ3, where α+ β + γ = 1

The weights (α = 0.15, β = 0.5, γ = 0.35) were selected empirically based on held-out math
reasoning tasks to balance quick problem-solving with methodical, multi-step analysis.

2.2 Data Curation

We used a proprietary corpus curated by our subject matter experts to align with JEE standards. This
dataset, represents our core intellectual property hence is not publicly released.

Starting with approximately 250,000 raw questions, we applied several filtering steps to ensure
quality. First, we removed all questions requiring multimodal reasoning, such as those dependent
on diagrams. Next, we eliminated non-English or poorly formatted questions. To better frame the
task as open-ended generation, we stripped answer options, following an approach also explored by
Chandak u.a. (2025). Finally, we removed questions that were inherently dependent on the provided
options in order to be answered.

To this end, we utilised OpenAI o4-mini with a structured prompt provided in Appendix B. This
process yielded a clean dataset of about 130,000 questions suitable for CoT generation. The topic-wise
distribution is detailed in Table 1 in Appendix A.

2.3 Supervised Fine-Tuning with Rejection Sampling

To create high-quality CoT supervision, we used best-of-4 rejection sampling with the merged model.
For each curated question x, we sampled four CoT responses ({y1, y2, y3, y4}). We selected only
those whose final answer matched the known correct ground truth answer, GT(x), using Algorithm 1
in Appendix C.

The questions were then grouped based on how many of the four generations were correct (e.g., 4/4,
3/4). We used a curriculum-style supervised fine-tuning approach (Bengio u.a., 2009), starting with
easier samples (4/4 correct) and gradually introducing harder ones (3/4, 2/4, 1/4 correct) to stabilize
early learning and improve generalization.

This process resulted in approximately 350,000 verified CoTs from around 100,000 questions, which
served as the core SFT training corpus, as shown in Table 2 in Appendix A. The 0/4 cases were
reserved for future reinforcement learning with verifiable rewards (RLVR) to enhance coverage on
challenging problems.
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Parameter Efficient Finetuning (PEFT), specifically Low-Rank Adaptation (LoRA) (Hu u.a., 2021)
was used during SFT with the peft (Mangrulkar u.a., 2022) library, with training parameters detailed
in Appendix D. The final supervised finetuning experiment took 4 hours on 2xH100.

2.4 Reinforcement Learning with Verifiable Rewards

We extend Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert u.a., 2025) by incor-
porating group-based advantage estimation (Shao u.a., 2024) into an Advantage Actor-Critic (A2C)
framework (Mnih u.a., 2016).

2.4.1 Group-Relative Policy Optimization

Our method optimizes the A2C objective with group-relative advantage estimation:

JA2C(θ) = E(αi)∼πθ

[
1

G

G∑
i=1

1

|αi|
log πθ(αi) · Ãi

]
where G denotes the number of sampled responses αi. Length-normalized gradients are weighted by
sequence-level advantages Ãi via group-relative normalization. Rewards are binary: 1 if the final
answer is correct, else 0.

2.4.2 Exploration Strategies

Adaptive Group Sizing: Unlike fixed GRPO implementations (von Werra u.a. (2020); Sheng u.a.
(2024); Daniel Han u.a. (2023)), group size is dynamically adjusted by difficulty:

Gd = 8× 2k, k ∈ {0, 1, 2, 3}
with k determined by group average reward R̄group. Sizes scale 8 → 16 → 32 → 64, improving
sampling diversity and stability while conserving resources.

Progressive Temperature Scaling: Sampling temperature increases from 0.6 → 1.0 during training
(cf. An u.a. (2025)). Low initial temperature (0.6) stabilizes training, Gradual increase encourages
diverse exploration.

Curriculum-Based Sampling: Training focuses on problems within an optimal difficulty band:

Dfiltered
t = {x ∈ Dt : αmin ≤ fdifficulty(x) ≤ αmax}

where fdifficulty(x) reflects success rates. Trivial problems are excluded for weak signals, and overly
hard ones for excessive noise.

2.4.3 Hardware-Optimized Alternating Pipeline

To overcome GPU constraints, we adopt an alternating inference–training cycle using vLLM (Kwon
u.a., 2023).

Phase 1: Rollout Generation involves running vLLM inference to produce batch rollouts, which
are then serialized and stored in system memory. Once rollouts are generated, the vLLM process is
terminated to release all GPU memory allocations.

Phase 2: Policy Optimization begins by loading the training model with full GPU memory avail-
ability. Policy gradients are then computed from the stored rollouts, followed by parameter updates,
checkpointing, and finally offloading the model to prepare for the next rollout generation cycle.

Advantages: (1) Full memory per phase enables larger models and batches, (2) deterministic
separation improves stability by avoiding race conditions and fragmentation.

The training configurations and hyperparameters are specified in Appendix E. The final reinforcement
learning experiment took 350 hours on 2xH100.

3 Evaluation

We evaluated Aryabhata 1.0 across both in-distribution and out-of-distribution math benchmarks
to assess its accuracy and efficiency in solving problems at scale, using the pass@1 accuracy. The
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solutions are generated using greedy decoding (temperature = 0). To determine whether a predicted
answer matches the ground-truth answer for a question, we follow the pipeline described in the
Algorithm 1.

Depending on whether the question is Multiple Choice Question or a Numerical Answer Type, we
use different prompts to query the judge model (GPT-4o-mini). The prompts are provided in Table 3.

3.1 In-Distribution Evaluation: JEE Main 2025

Figure 1: Scatter plots showing Accuracy vs. Tokens for JEE Jan and JEE Apr.

To measure performance in familiar distribution settings, we evaluate Aryabhata on the JEE Main
2025 exam. The January session contains 250 questions (10 papers with 25 questions each), while
the April session comprises 225 questions (9 papers with 25 questions each), all sourced from official
exam papers.

Figure 1 shows that Aryabhata 1.0 achieves an accuracy of 86.0% on the January session and 90.2%
on the April session, while maintaining token efficiency with an average of approximately ~2K tokens
per response. Compared to both open-weight and proprietary models, Aryabhata outperforms all
baselines in accuracy while remaining competitive in inference cost.

3.2 Out-of-Distribution Evaluation

To evaluate generalization beyond the fine-tuning distribution, we benchmark Aryabhata 1.0 on (1)
GSM8K (Cobbe u.a., 2021) (2) MATH 500 (Hendrycks u.a., 2021)

Table 6 in Appendix F shows that Aryabhata demonstrates competitive generalization to unseen
tasks of comparable difficulty, outperforming its base models on both MATH and GSM8K.

Conclusion and Future Work

We presented Aryabhata 1.0, a compact 7B-parameter open-source model for mathematical reasoning
tailored to the Indian competitive exam ecosystem. By merging diverse mathematical LLMs and
fine-tuning on curated, verified domain-specific data, Aryabhata achieves state-of-the-art performance
on in-distribution benchmarks such as JEE Main, while also demonstrating competitive generalization
to out-of-distribution tasks including MATH and GSM8K.

Future work will expand reasoning coverage to Physics and Chemistry, extend to the full syllabus
across Foundation, JEE (Main & Advanced), and NEET, and develop a family of exam-centric,
open-source small language models (SLMs) that remain compact, efficient, and aligned with Indian
education standards.

This trajectory aims to empower millions of students with accessible, curriculum-aligned AI tools
that enhance classroom learning and support personalized exam preparation.
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A Training Data Distribution

Table 1: Topic-wise Question Distribution
Topic %age
Application of Derivatives 4.50%
Application of Integrals 2.27%
Binomial Theorem 2.37%
Circles 2.85%
Complex Numbers &

Quadratic Equations 6.00%
Conic Section 7.55%
Continuity and Differentiability 2.71%
Definite Integration 2.45%
Determinants 3.04%
Differential Equations 3.77%
Indefinite Integration 3.26%
Inverse Trigonometric Functions 5.31%
Limits and Derivatives 3.88%
Matrices 2.46%
Permutations and Combinations 4.23%
Probability 5.69%
Quadratic Equations 4.45%
Relations and Functions 2.24%
Sequence and Series 2.75%
Sets 1.04%
Statistics 1.89%
Straight Lines 2.31%
Three Dimensional Geometry 3.92%
Trigonometric Functions 4.51%
Vector Algebra 2.89%
Miscellaneous 11.65%

Table 2: Chain-of-Thought generation outcomes from best-of-4 sampling.

Correct CoTs # Questions Total CoTs Usage
0 31,470 0 Used in RLVR only
1 9,647 9,647 SFT
2 9,066 18,132 SFT
3 12,643 37,929 SFT
4 67,247 268,988 10% sampled for SFT
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B Prompt for Question Cleaning

Listing 1: Prompt used for Question Cleaning

Clean and standardize math questions by removing multiple-choice options,
normalizing

the answer format, identifying dependencies, and determining the language.
For any

answers expressed in MathML, convert them to LaTeX. Conversion of MathML in
the

**question** is *not required* (but preserve LaTeX if already present).
Additionally, provide a clear **step-by-step reasoning** explaining how

each part of
the output was derived.

### Instructions:

1. Identify and extract the core question text:
* Remove all multiple-choice options (e.g., A-D or 1-4), ensuring the

main question
remains grammatically and semantically intact.
* Preserve existing LaTeX in the question.
* Do **not** convert MathML in the question. It may be retained as-is.

2. Normalize the answer:
* If the answer is given as an option label (e.g., "Answer: B"), replace

it with the
corresponding value from the provided options.
* If the answer is already a value, retain it.
* If the answer is in MathML, convert it to LaTeX.

3. Determine dependency flags:
* **Option-dependent:** Is the question understandable and solvable

without access
to the answer options? Mark ‘True‘ if the question lacks key information

without
them; otherwise, ‘False‘.
* **Diagram-dependent:** Does the question reference or rely on a

diagram, figure, or
visual element? Mark ‘True‘ or ‘False‘.

4. Identify the language:
* Detect and report the language of the question text (e.g., ‘English‘,

‘Hindi‘,
‘Tamil‘, etc.).

5. Provide reasoning:
* For each output field (question, answer, flags, language), include a

clear
explanation of how the output was determined.
* The reasoning should follow a logical step-by-step format, but does **

not** need to
be wrapped in any special ‘<reason>‘ block.

# Output Format

<question> cleaned question </question>
<answer> cleaned answer </answer>
<option_dependent> True/False </option_dependent>
<diagram_dependent> True/False </diagram_dependent>
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<language> detected language </language>
* All math in the **answer** must be in LaTeX.
* There should be **no references** to original option labels (e.g., "A",

"1", or
"Option B").
* Ensure the cleaned question is coherent, self-contained, and

grammatically correct.
* The reasoning can be in free-text form and must explain how each part of

the output was
derived.

### Example 1
Input:
What is the derivative of \(x^2 + 3x + 5\)?
A) \(2x + 3\)
B) \(x + 3\)
C) \(x^2 + 3\)
D) \(2x + 5\)
Answer: A

Output:
<question> What is the derivative of \(x^2 + 3x + 5\)? </question>
<answer> \(2x + 3\) </answer>
<option_dependent> False </option_dependent>
<diagram_dependent> False </diagram_dependent>
<language> English </language>
\end{verbatim}

\begin{verbatim}
### Example 2
Input:
<p>Simplify the following expression:</p>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mfrac>
<msqrt>
<msup><mi>a</mi><mn>2</mn></msup>

</msqrt>
<mi>a</mi>

</mfrac>
</math>

<p>Options:</p>
1) <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>a</mi></

msqrt></math>
2) <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>
3) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>a

</mi>
</mfrac></math>
4) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>

Answer: 1
Output:
<question> Simplify the following expression:
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mfrac>
<msqrt>
<msup><mi>a</mi><mn>2</mn></msup>

</msqrt>
<mi>a</mi>
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</mfrac>
</math>
</question>
<answer> \sqrt{a} </answer>
<option_dependent> False </option_dependent>
<diagram_dependent> False </diagram_dependent>
<language> English </language>

C Answer Matching Algorithm

Algorithm 1 Answer Matching Procedure

1: Input: Predicted answer ap, Ground-truth answer ag , Options (if any)
2: Output: Match status (True / False)
3: if ap = ag or sympy_latex_match(ap, ag) then
4: return True
5: end if
6: if option/identifier from ap == option/identifier from ag then
7: return True
8: end if
9: Query LLM judge with ap, ag , and options (if any)

10: if LLM returns YES then
11: return True
12: else
13: return False
14: end if

Table 3: Prompts used for Answer Matching
MCQ Numerical
System Prompt:

You are checking an MCQ. Given the
list of options, determine if answer
1 and answer 2 are the same. Answer
1 is the same as answer 2 only if all
the options match. Reason step-by-step
and put the final answer YES or NO in
\boxed{}.

System Prompt:

You are checking an exam. For a given
question, determine if answer 1 and
answer 2 are the same. Since the
answers are for the same question, you
can assume similar context for both
answers and make appropriate
assumptions when checking if they are
the same. Reason step-by-step and put
the final answerYES or NO in \boxed{}.

User Prompt:

Options:
A: <Option 1>
B: <Option 2>
C: <Option 3>
D: <Option 4>
answer 1: <Correct Answer>
answer 2: <Predicted Answer>

User Prompt:

answer 1: <Correct Answer>
answer 2: <Predicted Answer>
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D Hyper-parameters for Supervised Fine Tuning

The hyper-parameters for LoRA are provided in the Table 4 and the hyper-parameters for SFT are
provided in the Table 5.

Table 4: PEFT configuration using LoRA.

Parameter Value
Rank 128
LoRA Alpha 128
LoRA Dropout 0.1
Bias none
Target Modules {q_proj, k_proj, v_proj, o_proj,

gate_proj, up_proj, down_proj, embeddings}

Table 5: Training configuration used for supervised fine-tuning.

Parameter Value
Precision bfloat16
Max Sequence Length 16,384
Batch Size (per device) 1
Gradient Accumulation Steps 16
Effective Batch Size 16
Number of Epochs 3
Initial Learning Rate 2× 10−5

Final Learning Rate 2× 10−7

Learning Rate Scheduler Linear
Optimizer AdamW (8-bit)
Warmup Steps 5
Packing False
Logging Steps 1
WandB Reporting Enabled

E Training Configuration and Hyperparameters for RLVR

Optimization: Adam optimizer (Kingma u.a., 2017) with learning rate 1 × 10−6 ensures stable
updates.

Memory & Precision: Training uses bfloat16 mixed precision with gradient checkpointing for
reduced memory usage while preserving numerical stability.

Sequence & Batch Setup: Context length is capped at 4,096 tokens, balancing capacity for multi-step
reasoning and computational tractability.
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F Out of Distribution Results

Table 6: Performance comparison on MATH 500 and GSM8K benchmarks

Model MATH 500 GSM8K
Aryabhatta 1.0 83.6 94.8
Qwen/Qwen2.5-Math-7B-Instruct 66.0 94.7
nvidia/AceMath-7B-Instruct 80.6 93.4
GPT-4o 69.2 94.6
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 85.2 69.7
nvidia/AceReason-Nemotron-7B 84.2 76.5
nvidia/AceReason-Nemotron-1.1-7B 85.4 93.1
GPT-4.1 86.6 94.0
o4-mini 94.8 90.1
Gemini 2.5 Flash 93.6 85.1

G Example Model Responses

The sample question along with its correct answer is presented in Figure 2.
The response generated by GPT-4o is shown in Figure 3.
The response produced by DeepSeek R1 Distill Qwen 7B is illustrated across Figures 4, 5, and 6.
The response from Aryabhata 1.0 is depicted in Figure 7.

Figure 2: Sample question with the correct answer
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Figure 3: Response from GPT-4o (Part 1 of 1)
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Figure 4: Response from DeepSeek R1 Distill Qwen 7B (Part 1 of 3)
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Figure 5: Response from DeepSeek R1 Distill Qwen 7B (Part 2 of 3)
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Figure 6: Response from DeepSeek R1 Distill Qwen 7B (Part 3 of 3)
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Figure 7: Response from Aryabhata 1.0 (Part 1 of 1)
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