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Abstract Recent advances in deep learning from probability distributions successfully achieve classi-
fication or regression from distribution samples, thus invariant under permutation of the
samples. The first contribution of the paper is the Dipa distributional architecture, extending
the state of the art to achieve invariance under permutation of the features, too. The Dipa
properties of universal approximation, and robustness with respect to bounded transforma-
tions of the input distribution, are established. The second contribution is to empirically
demonstrate the merits of the Dipa architecture on two tasks defined at the dataset level.
The first task consists of predicting whether any two dataset patches are extracted from
the same initial dataset. The second task consists of predicting whether a hyper-parameter
configuration dominates another configuration, in terms of the learning performance of a
fixed learning algorithm on a dataset extracted from the OpenML benchmarking suite. On
both tasks, Dipa outperforms the state of the art as well as models based on hand-crafted
meta-features. The penultimate layer neurons can thus be viewed as learned meta-features,
defining an accurate and computationally affordable description of datasets.

1 Introduction

Deep networks architectures, initially devised for structured data such as images and speech,
have been extended to enforce some invariance or equivariance properties (Shawe-Taylor, 1993) for
more complex data representations.! The merit of invariant or equivariant neural architectures is
twofold. On the one hand, they inherit the universal approximation properties of neural nets (Cy-
benko, 1989; Leshno et al., 1993). On the other hand, the fact that these architectures comply
with the invariances attached to the considered data representation yields more robust and more
general models (through constraining the neural weights and/or reducing the number of weights,
as examplified by convolutional networks). For instance, when considering point clouds (Qi et al.,
2017) or probability distributions (Bie et al., 2019), the network output is required to be invariant
with respect to permutations of the input points.

Related works. Invariance or equivariance properties are relevant to a wide range of applications.
In the sequence-to-sequence framework, one might want to relax the sequence order (Vinyals et al.,
2016). When modelling dynamic cell processes, one might want to follow the cell evolution at
a macroscopic level, in terms of distributions as opposed to, a set of individual cell trajectories
(Hashimoto et al., 2016). In computer vision, one might want to handle a set of pixels, as opposed
to a voxellized representation, for the sake of a better scalability in terms of data dimensionality
and computational resources (Bie et al., 2019).

On the theoretical side, neural architectures enforcing invariance or equivariance properties
have been pioneered by (Hartford et al., 2018). Characterizations of invariance or equivariance
under group actions have been proposed in the finite (Ravanbakhsh et al., 2017) or infinite case

IFunction f : X + Y is said to be invariant under operator ¢ defined on domain X iff f(o(x)) = f(x) for all x in X.
Function f : X + X is said to be equivariant iff f(o(x)) = o(f(x)) for all x in X.
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(Kondor and Trivedi, 2018). (Maron et al., 2018; Keriven and Peyré, 2019) have proposed a general
characterization of linear layers enforcing invariance or equivariance properties with respect to
the whole permutation group on the feature set. The universal approximation properties of such
architectures have been established in the case of sets (Zaheer et al., 2017), point clouds (Qi et al.,
2017), discrete measures (Bie et al., 2019), invariant (Maron et al., 2019) and equivariant (Keriven and
Peyré, 2019) graph neural networks. (Maron et al., 2020) presents a neural architecture invariant
w.r.t. the ordering of points and their features, handling point clouds.

Motivations. This paper aims to build representations of datasets through learned meta-features.
Meta-features, meant to represent a dataset as a vector of characteristics, have been mentioned
in the ML literature for over 40 years, in relation with several key ML challenges: a) learning a
performance model, predicting a priori the performance of an algorithm (and the hyper-parameters
thereof) on a dataset (Rice, 1976; Hutter et al., 2019); b) learning a generic model able of quick
adaptation to new tasks, e.g. one-shot or few-shot learning, through the so-called meta-learning
approach (Finn et al.,, 2017; Baz et al., 2021); c) hyper-parameter transfer learning (Perrone et al.,
2018).

A large number of meta-features have been manually designed along the years (Muiioz et al.,
2018; Rivolli et al., 2022), ranging from sufficient statistics to the so-called landmarks (Pfahringer
et al., 2000), computing the performance of (fast) ML algorithms on the considered dataset. The
challenge is the following: on the one hand meta-features should capture the joint distribution
underlying the dataset in order to help tackling tasks a), b) and c); on the other hand, the meta-
features should be sufficiently fast to compute to make sense using them (compared to tackling the
above tasks using brute force). How to learn meta-features has been first investigated by (Jomaa
et al., 2021) to our best knowledge. The authors build the DATASET2VEC representation by tackling
a supervised learning problem at the dataset level: specifically, given two dataset patches, that is,
two subsets of examples, described by two (different) subsets of features, DATASET2VEC is trained
to predict whether those patches are extracted from the same initial dataset. In the same line of
approach, Meskhi et al. (2021) have proposed to predict algorithm performances, then consider as
meta-features the representations extracted at the last hidden layer.

Contributions. In order to learn meta-features, this paper proposes a new distribution-based
invariant deep architecture (DIDA), which is independent of the dimension d of the distribution
support. The merits of the Dipa architecture are experimentally demonstrated on two tasks defined
at the dataset level, significantly outperforming state of art architectures (Maron et al., 2020; Jomaa
et al., 2021; Mufioz et al., 2018) on these tasks (Section 3).

The novelty of the approach is to handle continuous and discrete probability distributions on
R9, extending state of art approaches dealing with point clouds (Maron et al., 2020; Jomaa et al.,
2021). This extension yields more general approximation results (Appendix ??).

Notations.. [[1; m] denotes the set of integers {1, ... m}. Distributions, including discrete distri-
butions (datasets) are noted in bold font. Vectors are noted in italic, with x[k] denoting the k-th
coordinate of vector x.

Distribution-Based Invariant Networks for Meta-Feature Learning

This section describes the core of the proposed Dipa architecture, specifically the mechanism of
mapping a point distribution onto another one subject to sample and feature permutation invariance,
referred to as invariant layer. The Lipchitzness and universal approximation properties of Dipa ,
which guarantee both its robustness and expressiveness, are discussed in Appendix ??.
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Distribution-Based Invariant Layers

The building block of the proposed architecture, the invariant layer meant to satisfy the feature
and label invariance requirements, is defined as follows, taking inspiration from Bie et al. (2019).

Definition 1. (Distribution-based invariant layers) Let an interaction functional ¢ : R x R — R"
be G-invariant:
Vo,z1,23 € G X R x RY, ©0(z1,22) = p(0(21), 0(z2)).

The distribution-based invariant layer f,, is defined as f, : z = (2i)ie[1:n] € Z(R?) — fo(2) € Z(R")
with

H@ (2 0z Y o) o
j=1 J=1

By construction, f, is G-invariant if ¢ is G-invariant. The construction of f, is extended to
the general case of possibly continuous probability distributions by replacing sums with integrals
(Appendix ??).

It is important that f;, invariant layers (in particular the first layer of the neural architecture)
can handle datasets of arbitrary number of features dx and number of multi-labels dy. An original
approach is to define ¢ as follows. Let z = (x,y) and z’ = (x’,y’) be two samples in R% x R%.
Considering two functions (to be learned) u : R* - R’ and v : R’ — R, then ¢ is obtained by
applying v on the sum of u(x[k], x"[k], y[€],y’[£]) for k ranging in [[1; dx] and ¢ in [[1; dy]:

dx dy
p(z2) =0 (> > ux[k],x'[k],y[e]y'[£]) (2)
k=1 £=1

By construction ¢ is invariant to both feature and label permutations; this invariance property
is instrumental to a good empirical performance (Section 3). Note that (after learning u and o,
implementation details in Appendix ??) f,, can map a n-size dataset z onto an n-size f,(z) dataset
for any arbitrary n. The overall complexity of f, is thus O(n®.dx.dy).

As said, f,, is based on interaction functionals ¢(z;, z;). This original architecture is rooted
in theoretical and algorithmic motivations. On the one hand, interaction functionals are crucial
components to reach universal approximation results (see Appendix ??, Theorem ??). On the other
hand, the use of local interactions allows to create more expressive architectures; the benefit of
these architectures is illustrated in the experiments (Section 3).

Learning from distributions

Dipa distributional neural architecture, defined on point distributions, maps a multi-labelled
dataset z € Z(R%) onto a real-valued vector noted Fy(z), with

Fo(2) = fom © -0 fpous © fpo 0+ 0 fu(2) € R 3)
where { are the trainable parameters of the architecture (below). This architecture inherits from
Lipschitzness of the interaction functional ¢, which guarantees its robustness to input perturbation,
as well as universal approximation abilities denoting its expressiveness. Both results are detailed in
the general multi-labelled case, in Appendix ??. For simplicity, only the single label case (dy = 1) is
considered in the following.

The first invariant layer is defined from ¢;, mapping pairs of vectors in R? (d; = d) onto
R%; it is possibly followed by other invariant layers (the impact of using 1 vs 2 invariant layers is
experimentally studied in Section 3). The last o-th invariant layer is followed by a first non-invariant
one, defined from some ¢, only depending on its second argument; it is possibly followed by
other standard layers. The functions defined from the neural nodes on the penultimate layer are
referred to as meta-features.
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Figure 1: (Left) The Dipa architecture (FC for fully connected layer). (Middle) Task 1: Learning meta-
features for patch identification using a Siamese architecture (Appendix ??). (Right) Task 2:
learning meta-features for ranking hyper-parameter configurations 6; and 6, (Appendix ??).
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Experimental Validation

All  source codes (DipA and  baselines) are publicly available at
https://github.com/herilalaina/dida-metafeatures for the sake of reproducibility.

Experimental setting

Two evaluation tasks are considered:

— Task 1 is a patch identification problem inspired from (Jomaa et al., 2021) aiming to identify if
two dataset patches are extracted from a same dataset.

— Task 2 aims to rank hyper-parameter configurations for a fixed supervised learning algorithm,
according to their performance on the considered dataset.

Dipa is compared to three baselines (detailed in Appendix ??): three DSS (Maron et al., 2020)
variants (linear invariant layers, non-linear invariant layers, and equivariant + invariant layers);
DATASET2VEC (Jomaa et al., 2021); and a function of 43 hand-crafted meta-features.

Three benchmarks are used: TOY and UCI, taken from (Jomaa et al., 2021), and OpenML CC-18
(Bischl et al., 2019). The selection and selection of patches are detailed in Appendix ??.

Training setups. The same Dipa architectures are used for both tasks, involving 1 or 2 invariant
layers followed by 3 fully connected (FC) layers (Figure 1, left). All experiments run on 1 NVIDIA-
Tesla-V100-SXM2 GPU with 32GB memory, using Adam optimizer with base learning rate 107>
and batch size 32. For all considered architectures, meta-features F;(z) consist of the output of the
penultimate layer, with { denoting the trained parameters.

Results

Task 1. Table 1 reports the empirical results on TOY and UCI datasets. On TOY, D1pa with 2 invariant
layers, referred to as 2L-Dipa behaves on a par with DATASET2VEC and DSS. On UCI, the task
appears to be more difficult, which is explained from the higher and more diverse number of features
in the datasets. The fact that 2L-Dipa significantly outperforms all other approaches is explained
from the interaction functional structure (Eqs. 1, 2), expected to better grasp contrasts among
examples. DipA with 1 invariant layer (1L-Dipa) is much behind 2L-Dipa; with a significantly
lesser number of parameters than 2L-Dipa, the 1L-Dipa architecture might lack representational
power. A fourth baseline, No-FINv-DSS (Zaheer et al., 2017) only differs from DSS as it is not
feature permutation invariant; this additional baseline is used to assess the impact of this invariance
property. The fact that No-FINv-DSS lags behind all DSS variants, all with similar number of
parameters, confirms the importance of this invariance property. Note also that No-FINv-DSS is
outperformed by 1L-Dipa, while the latter involves significantly less parameters.

Task 2. The comparative performances are displayed in Table 2, reporting their ranking accuracy.
2L-D1pa (respectively 1L-Dipa) significantly outperforms all baseline approaches except in the Alg
= LR case (resp., in the Alg = k-NN case). A higher performance gap is observed for the k-NN case,
which is explained as this algorithm mostly exploits the local geometry of the examples.
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Method ‘ # params TOY UCI
Hand-crafted 53,312 | 77.05 %+ 1.63 58.36 %+ 2.64
No-FINv-DSS (no inv. in features) 1,297,692 | 90.49 %+ 1.73 64.69 %=+ 4.89
DATASET2VEC (reported from Jomaa et al. (2021)) - | 96.19 %+ 0.28 | 88.20 %+ 1.67
DATASET2VEC (our implementation) 257,088 | 97.90 %+ 1.87 | 77.05 %=+ 3.49
DSS layers (Linear aggregation) 1,338,684 | 89.32 %+ 1.85 | 76.23 %+ 1.84
DSS layers (Non-linear aggregation) 1,338,684 | 96.24 %+ 2.04 | 83.97 %=+ 2.89
DSS layers (Equivariant+invariant) 1,338,692 | 96.26 %=+ 1.40 82.94 %+ 3.36
Dipa (1 invariant layer) 323,028 | 91.37 %+ 1.39 | 81.03 %+ 3.23
DipA (2 invariant layers) 1,389,089 | 97.20 % + 0.10 | 89.70 % + 1.89

Table 1: Comparative performances (average and std of accuracy over 10 runs) on Task 1 of Dipa,

No-FINv-DSS, DATASET2VEC, DSS and functions of hand-crafted meta-features.

Method

| SGD

SVM

LR

k-NN

Hand-crafted

| 71.18 %+ 0.41

75.39 %+ 0.29

86.41 %=+ 0.419

65.44 %+ 0.73 |

DATASET2VEC (our implementation) | 74.43 %z 0.90

81.75 %=+ 1.85

89.18 %=+ 0.45

72.90 %+ 1.13 |

DSS (Equivariant+Invariant)

DSS (Linear aggregation)
DSS (Non-linear aggregation)

73.46 %+ 1.44
73.54 %+ 0.26
74.13 %+ 1.01

82.91 %=+ 0.22
81.29 %=+ 1.65
83.38 %=+ 0.37

87.93 %=+ 0.58
87.65 %=+ 0.03
87.92 %=+ 0.27

70.07 %=+ 2.82
68.55 %+ 2.84
73.07 %+ 0.77

DIDA (1 invariant layer)
DIDA (2 invariant layers)

77.31 %+ 0.16
78.41 %+ 0.41

84.05 %+ 0.71
84.14 %=+ 0.02

90.16 %+ 0.17
89.77 %=+ 0.50

74.41 %=+ 0.93
78.91 %+ 0.54

Table 2: Comparative ranking performances (average and std over 3 runs) of Dipa, DATASET2VEC, DSS
and functions of hand-crafted meta-features.

4 Conclusion

The contribution of the paper is the Dipa architecture, able to learn from discrete and continuous
distributions on R?, invariant w.r.t. feature ordering, agnostic w.r.t. the size and dimension d
of the considered distribution sample (with d less than some upper bound D). The merits of
Dipa are empirically and comparatively demonstrated on two tasks defined at the dataset level.
Task 2 in particular constitutes a first step toward performance modelling Rice (1976), as the
learned (algorithm-dependent) meta-features support an efficient ranking of the configurations for
the current dataset. On the considered tasks, they improve on the considered baselines namely,
DATASET2VEC, DSS and meta-features manually defined in the last two decades (Mufioz et al., 2018).
Besides, this D1pa architecture also enjoys universal approximation and robustness properties.

For further work, an initial perspective is to investigate the relationships between two datasets,
and estimate a priori the chances of a successful domain adaptation (Alvarez-Melis and Fusi, 2021).

Limitations and Broader Impact Statement. A major limitation of D1pA is on handling real datasets
which may include missing values, categorical variables and outliers. An another challenge is that
learning meta-features for AutoML tasks (e.g. recommending hyper-parameters or initializing
optimization algorithms) requires sufficiently many datasets: quite a few of our early attempts
failed due to current ML benchmarks being not sufficiently representative.

D1pA requires an extensive compute resources (e.g. circa 4 hours on Task 1.TOY) to be effective.
Nevertheless, the approach opens key perspective for AutoML in overcoming the need for domain
experts, especially, when it comes to describing and comparing datasets.
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2. If you are including theoretical results. ..
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(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
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instructive README with installation, and execution commands (either in the supplemental
material or as a URL)? [Yes] They are available at https://anonymous.4open.science/r/dida-
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in your paper based on the raw results of the code, data, and instructions given? [N/A]
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fixed hyperparameter settings, and how they were chosen)? [Yes] They are described in
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[Yes]
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multiple times)? [Yes]
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(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a NAs approach; and
also hyperparameters of your own method)? Dipa and DSS are manually tuned.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. ..
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using/curating? [N/A]
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