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ABSTRACT

General adversarial patch generation (APG) methods rely on training datasets of
target models and are not applicable to data-free scenarios. This article presents
a two-stage APG framework that exploits a determined proxy dataset in place of
an unknown training dataset. The proxy dataset selection stage calculates the pro-
posed average patch saliency (APS) of each available dataset to select a high-APS
proxy dataset that can guarantee patches’ fooling abilities. Then, the patch gener-
ation stage applies the proposed data-free Expectation over Transformation (DF-
EoT) as the APG method in case only low-APS datasets are available. Evaluation
results show that the determined high-APS proxy datasets enable EoT (benchmark
APG method) to generate patches of comparable fooling abilities to patches util-
ising training datasets, and DF-EoT can further improve the fooling abilities for
both low-APS and high-APS proxy datasets. Specifically, DF-EoT enhances av-
erage targeted fooling rates (ATFR) of patches utilising a low-APS dataset from
42.71% of EoT to 78.34% on target model VGG-19 and increases ATFR from
62.57% to 84.33% with a high-APS dataset on Inception-v1.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have been widely used for various computer vision tasks,
such as object recognition (Simonyan & Zisserman, 2014), object detection (Ren et al., 2017) and
semantic segmentation (He et al., 2017). However, recent studies show that CNNs are vulnerable to
elaborated adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016;
Carlini & Wagner, 2017; Madry et al., 2017; Serban et al., 2020). Given an input image and an image
classifier as a target model, adversarial attacks generate an imperceptible adversarial perturbation,
leading to misclassification of the perturbed image called an adversarial example. Such perturbation
is also called an image-specific perturbation since its effectiveness on other input images can not be
guaranteed.

Image-agnostic perturbations target scenarios where input images are agnostic, and the perturba-
tions’ fooling abilities are measured by fooling rates. Image-agnostic attacks generate a single per-
turbation to fool multiple input images due to attackers’ limited knowledge of a target model’s
processing image at a specific moment (Moosavi-Dezfooli et al., 2017). In practice, the input im-
ages and the training dataset of a target model are usually seen as samples from the same training
distribution. Thus, image-agnostic perturbations’ fooling abilities are often measured by targeted
fooling rates (TFR) or untargeted fooling rates (UFR) on the training dataset samples. Specifically,
When attacking classifiers, TFR is the ratio of the number of training samples fooled a the target
class to the number of all samples, and UFR is the ratio of the number of misclassified samples to
the total number of samples. Generally, for attackers, achieving targeted classification results are
more challenging than untargeted classification results (Serban et al., 2020).

Image-agnostic attacks update perturbations’ pixels values over training dataset samples to guarantee
the perturbations’ fooling abilities (Moosavi-Dezfooli et al., 2017; Brown et al., 2017; Sharif et al.,
2016; Eykholt et al., 2018; Thys et al., 2019; Hoory et al., 2020; Kaziakhmedov et al., 2019; Salman
et al., 2020; Duan et al., 2020). During an image-agnostic attack, a perturbation is first added to
an image sampled from the target classifier’s training dataset. Then, the perturbation’s pixel value
is updated according to a designed objective function to make the model misclassify the current
perturbed image. Finally, the above two steps repeat for the same perturbation over multiple training
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dataset samples to make the perturbation fool most input images. However, the vital role of training
datasets makes such data-dependent attacks unsuitable when training data is unknown, especially
regarding concerns about proprietary data and privacy issues.

This work selects adversarial patch (Brown et al., 2017) as image-agnostic perturbations’ form and
refers to the previous research (Chaubey et al., 2020) to call situations where training data is un-
known as data-free scenarios. To make existed data-dependent APG methods applicable to data-free
scenarios, a natural practice is to replace the training dataset of the methods with a proxy dataset
to generate patches (See Appendix A for more related works). However, such a practice still faces
the following challenges. 1) PDS Metric Determination: APG methods’ performance varies with
proxy datasets. Thus a metric for PDS is needed. 2) Fooling Ability Metric Establishment: Gradient-
based APG methods are sensitive to initial conditions, suggesting patches’ fooling abilities vary with
choices of patches’ initial values (Madry et al., 2017). Nonetheless, when training data is accessible,
attackers can select the patch with the largest fooling rate as the final output from patches with dif-
ferent initial values (i.e., restart selection). Thus, a fooling ability metric in data-free scenarios must
be established to alleviate such sensitivity. 3) Fooling Ability Improvement for Available Datasets:
Even if a PDS metric is provided, attackers can not guarantee that the available datasets at hand
happen to contain a dataset that can be used to achieve satisfactory fooling ability of patches. There-
fore, attackers need a new APG method to guarantee the patches’ fooling abilities on a wide range
of proxy datasets.

To address the associated challenges, the proposed two-stage framework first uses a PDS metric to
determine a proxy dataset and then applies a APG method to generate patches. Specifically, the
proxy dataset selection (PDS) stage calculates the proposed average patch saliency (APS) of each
attackers’ available dataset in order to selects a high-APS dataset as the proxy dataset. Then, the
patch generation (PG) stage applies the designed data-free Expectation over Transformation (DF-
EoT) to generate patches based on the determined dataset. Note that the proposed framework is
tested in the digital setting in order to focus on the problem of obtaining patches’ fooling abilities in
the absence of training data and eliminate the influence of environmental factors.

Our main contribution is summarized as follows. 1)A two-stage data-free APG framework is pro-
posed. 2) The proposed APS enables attackers to select a proxy dataset on which data-dependent
EoT (benchmark APG method) can achieve considerable performance. 3) The proposed patch
saliency (PS) can alleviate the sensitivity of patch generation to initial conditions. 4) DF-EoT en-
hance patches’ fooling abilities than EoT for both high-APS and low-APS datasets. For readability,
a list of abbreviations is provided in Appendix B.

2 METHODOLOGY

Section 2.1 first formalises the APG problem. Then, Section 2.2 introduces how EoT solves the APG
problem and explains why EoT is taken as the benchmark in this work. Last, Section 2.3 presents
the proposed two-stage data-free APG framework, where Section 2.3.1 introduces the APS and PS
calculation process, and Section 2.3.2 presents the proposed APG method, DF-EoT.

2.1 APG PROBLEM FORMALISATION

This work selects image classifier as the target model. Given an input image X ∈ Rd 1 and its
ground-truth class label y ∈ {1, ...,m} sampled from a training dataset Dtrain, a trained m-class
image classifier F : Rd → Rm estimates the class of the input image by

ŷ = arg max
j∈{1,2,..,m}

[F(X)]j , (1)

where [·]j denotes the j-th component of an inner vector and the final layer of F is a softmax layer.

An adversarial patch attacks by replacing an input image’s local pixels with itself. Specifically, given
any image X sampled from Dtrain, a targeted adversarial patch P ∗ ∈ Rn is expected to mislead
the classification result of the perturbed image XP ∗ into a target class y′. The generation of P ∗ is

1The input image is defined X ∈ Rd instead of X ∈ RC×W×H for the following mathematical expression
simplicity.
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formalised as solving the following optimisation problem in (Brown et al., 2017):

P ∗ = argmin
P

EX∼Dtrain,L∼L,T∼T O(F(XP ), y′), (2)

where L is a collection of potential locations of P ∗ in X , T denotes a collection of potentially
existed natural transformations on P ∗. The objective function O : Rm × {1, ...,m} → R is

O(F(XP ), y′) = − log([F(XP )]y′) (3)

which is the negative log of the probability that F predicts the input XP being the class y′. The
perturbed image XP is defined as

XP = A(P , T, L,X), (4)

where the functionA denotes an attachment operation that first transforms the patch P with sampled
transformation T and then attaches the transformed patch P ′ onto image X at location L (see Figure
1).
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Figure 1: Attachment operation. The adopted ranges for sampled transformations in (Athalye et al.,
2018) are α ∈ (−22.5◦, 22.5◦) and γ ∈ (0.9, 1.4), and α, γ are sampled uniformly at random from
their ranges. Note the difference between background image X and image background Xback. This
work refers Xback to the remaining pixels in X except for the pixels of patch P .

2.2 THE BENCHMARK APG METHOD: EOT

(Brown et al., 2017) apply the EoT (Athalye et al., 2018) to solve Equation (2). As shown in Figure 2,
EoT iteratively updates the pixel values of P from randomly initialised values (with uniform random
noise). Specifically, in each iteration, EoT first performs the attachment operation A with the patch
P , the sampled transformation T , location L and background image X to get a perturbed image
XP . After that, the patch’s pixel values in XP take a one-time update with Projected Gradient
Descent (PGD) (Madry et al., 2017) to minimise Equation (3). Finally, EoT stops after reaching
certain iteration times.

EoT is taken as the benchmark APG method in this work. First, EoT is representative and reliable
given the fact that it can even be used to synthesize 3-D adversarial objects. Second, EoT mainly
differs from the other APG methods (Sharif et al., 2016; Kaziakhmedov et al., 2019; Hoory et al.,
2020; Duan et al., 2020) in the practices coping with the natural transformations. Nonetheless, the
approaches of iteratively updating the patch while placing it on training dataset samples to achieve
fooling ability are the same for these APG methods. Therefore, this work disregards natural transfor-
mations of EoT to eliminate the gaps between different methods and focuses on achieving patches’
fooling abilities in data-free scenarios.

2.3 TWO-STAGE DATA-FREE APG FRAMEWORK

Since EoT requires access to training data, a data-free APG method is desired in scenarios where data
privacy matters. Specifically, given attackers’ available datasets {D1,D2, ...}, the proposed two-
stage data-free APG frameworks formalises the patch generation problem as the following equation:

P ∗ = argmin
P

EX∼Dproxy,L∼L,T∼T O(F(XP ), y′), (5)
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Figure 2: EoT v.s. the two-stage data-free APG framework. All the patches are initialised with
uniform random noise and are of the same target class y′. DF-EoT differs from EoT in the following
step: i) background update, ii) multiple-time patch update and iii) restart selection. It first takes
a set of initialised patches {P1,P2, ...} as input one by one, then generates adversarial patches
{P ∗1 ,P ∗2 , ...} of the same target class, and last selects the final output patch through the restart
selection step. Note that, EoT can be used as the APG method in the PG stage, while this work
applies the proposed DF-EoT.

where
Dproxy = arg max

D∈{D1,D2,...}
SPDS(D,F) (6)

and SPDS is a PDS metric2 reflecting APG methods’ performance on D. As shown in Figure 2,
the two-stage framework first selects Dproxy using the proposed APS to solve Equation (6), then
generates adversarial patches with the designed DF-EoT to solve Equation (5).

2.3.1 STAGE I: PROXY DATASET SELECTION

APS is the proposed PDS metric and its calculation process is shown in Figure 3. Specifically,
given an available dataset D, APS first randomly selects k different target classes {y′1, y′2, ..., y′k}
and initialises k patches {P1,P2, ...,Pk} with uniform random noise. Second, APS takes D as the
proxy dataset and uses EoT to generate patches of the selected target classes, i.e., {P ∗1 ,P ∗2 , ...,P ∗k }.
Finally, the APS of the dataset D, SAPS(D) ∈ R, is computed as the following equation:

SAPS(D) =

k∑
c=1

1

k
SPS(P ∗c ), (7)

where SPS is the proposed patch fooling ability metric in data-free scenarios, patch saliency (PS).
APS measures the overall fooling abilities of a group of patches generated based on the dataset D.
By making the target classes {y′1, y′2, ..., y′k} in Equation (7) cover all learned classes of F (i.e.,
k = m), APS can thus serve as a PDS metric.

2The symbol F is omitted in the following part for simplicity.
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Figure 3: APS calculation process. The EoT takes initialised patches {P1,P2, ...,Pk} as input
one by one, and generates adversarial patches {P ∗1 ,P ∗2 , ...,P ∗k } of k different target classes. The
notation P ∗1 (y

′
1) denotes the patch P ∗1 of target class y′1.
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Figure 4: PS calculation process. Omitting T and L in the attachment operation A refers to that the
patch P ∗ is put on the centre of the background image, and none of transformations is applied on
P ∗.

PS is the proposed fooling ability metric in data-free scenarios and its calculation process is shown
in Figure 4. Specifically, given an adversarial patch P ∗ of target class y′, PS first attaches P ∗ onto
the centre of a background image XS ∈ Rd to get a perturbed image XP ∗,S . Then, the Integrated
Gradient function GF : Rd → Rd (see Appendix C) takes XP ∗,S as input and output the saliency
map GF (XP ∗,S), where GF (XP ∗,S) measures the importance of each component in the input
XP ∗,S for a predicted class label y′ of the target model F . The PS of the patch P ∗, SPS(P ∗) ∈ R,
is defined as:

SPS(P ∗) =
d∑
b=1

[SP ∗,Xs ]b, (8)

where

SP ∗,Xs
= M � GF (A(P ∗,XS)), (9)

[·]b denotes the b-th component of an inner vector, M ∈ Rd is the mask of the P ∗ on XS and �
refers to element-wise product. PS actually measures the fooling ability of P ∗ when the patch is
placed on the background image XS . By placing each same-class patches on the same background
image XS , PS can measure the fooling abilities of patches generated with different proxy datasets
on the same contextual condition. This work selects a black image as the background image through
an empirical study presented in Appendix D.

2.3.2 STAGE II: PATCH GENERATION

Even a selected high-APS proxy dataset enables EoT to achieve considerable performance, in prac-
tice, attackers can not guarantee the available datasets at hand happen to include a high-APS dataset
due to their limited data resource. The proposed DF-EoT pursues the performance improvement
of EoT on a wide range of proxy datasets in data-free scenarios. As shown in Figure 2, compared
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with EoT, DF-EoT considers the update of image backgrounds and patch initial value sensitivity.
Specifically, DF-EoT differs from EoT mainly in the following three steps.

i) Background Update. One of the most significant differences between DF-EOT and EoT is in-
troducing the background update step. Specifically, after the background image X sampled from
Dproxy, the image background Xback is first updated with PGD to solve the following equation:

Xback = arg min
Xback

−O(F(XP ), y′), (10)

whereO is defined in Equation (3), the number of iteration of PGD is βback and the update step size
is ηback. Equation (10) actually indicates updating the pixel values of Xback to suppress XP from
being classified as the target class y′.

ii) Multiple-Time Patch Update. After the background update step, the multiple-time patch update
step updates the patch P with PGD to minimise the same objective function of Equation (3) as EoT.
DF-EoT updates the patch βpatch times for each sampled image X with the step size ηpatch, while
EoT takes one-time update (i.e., βpatch = 1).

iii) Restart Selection. DF-EoT iterates the above two steps βtotal times to get an adversarial patch
P ∗. Since gradient-based attacks are sensitive to the initial values of the patch P (Madry et al.,
2017), the restarts selection step is further introduced to alleviate the PGD’s sensitivity to initial
conditions. Specifically, DF-EoT first generates adversarial patches {P ∗1 ,P ∗2 , ...} of the same target
class y′ from different randomly initialised patches {P1,P2, ...}. Then the PS of each patch is
computed. Finally, the patch with the greatest PS is taken as the final output patch.

3 EXPERIMENTATION AND DISCUSSION

This section evaluates the proposed APG framework. Section 3.1 presents the experimental setting.
Section 3.2 introduces average targeted fooling rate (ATFR) and targeted fooling rate (TFR) as the
evaluation metrics. Section 3.3 evaluates APS and PS by building their consistency with ATFR and
TFR. Section 3.4 assesses the proposed DF-EoT by using ATFR to compare the generated patches’
fooling abilities of DF-EoT and EoT.

3.1 EXPERIMENTAL SETTING

For the sake of generality, the proposed framework is evaluated on different model architectures
widely deployed in industry, including VGG-16, VGG-19 (Simonyan & Zisserman, 2014), ResNet-
18, ResNet-34 (He et al., 2016), and Inception-v1 (Szegedy et al., 2015) trained on ImageNet train-
ing dataset (Krizhevsky et al., 2017). Note that this work randomly selects 100 (out of 1000) learned
classes as all the learned classes of the target classifiers in order to reduce computation cost (i.e.,
m=100).

To evaluate APS and PS, this work takes five datasets as attackers’ available datasets. The three
large-scale datasets are 1) IMAGENET: 40k images of ImageNet’s validation set, 2) MSCOCO:
training set of MSCOCO dataset (Lin et al., 2014), 3) KITTI: training set of KITTI dataset (Geiger
et al., 2013). Considering some attackers’ limited data resources, two datasets that can be manu-
ally synthesised are also involved, i.e., 4) UNIFORM: 3000 uniform-random-noise images and 5)
WHITE: 3000 white images. Taking the five datasets as the proxy datasets of EoT finally results
in different degrees of patches’ fooling abilities, through which this paper hopes to simulate a wide
range of attackers’ possibly available datasets. To evaluate the determined black background image
XS in Equation (8), two datasets mainly composed of black images are synthesised, where the two
datasets are 1) BLACK: 3000 black images and 2) ENSEMBLE: 3000 images that evenly comes
from UNIFORM, WHITE and BLACK datasets (see Appendix D). In order to evaluate DF-EoT on
a wide range of proxy datasets, all the mentioned seven datasets are used as the proxy dataset of
DF-EoT and EoT, respectively, to compare the fooling abilities of the generated patches.

The patches generated in this work are circles with a radius of 25, which accounts for 3.91% of the
input image pixel space of shape 224 × 224. For the patch generation process, only the location
sampling and background images sampling are considered in EoT and DF-EoT. For the patch test
process, 10k images of ImageNet’s validation set are used to compute TFR and ATFR. For EoT,
the total iteration times are 2000 and the patch update step size is 1/255. For DF-EoT, we select
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βtotal = 400, βback = 2, ηback = 1/255, βpatch = 10, ηpatch = 1/255 and the number of randomly
initialised patches to be 10. Note that the average time of generating a patch using DF-EoT on
GPU RTX 2080 is approximately 90 seconds. In the same condition, EoT takes about 38 seconds.
Nonetheless, the computational cost is acceptable since adversarial patches are image-agnostic.

3.2 EVALUATION METRICS: ATFR AND TFR

TFR is a patch fooling ability metric when training data is available. Given a patch P ∗ of target
class y′ and images {Xh}eh=1 of classes {yh}eh=1 sampled from Dtrain, TFR measures the fooling
ability of P ∗, and is defined as the ratio of samples fooled into target class y′ to all samples, i.e.,

STFR(P ∗) =
1

e

e∑
h=1

1ŷh,P∗=y′ , (11)

where ŷh,P ∗ denotes the target model’s estimated class of the perturbed image XP ∗,h (Xh attached
with P ∗) and {Xh}eh=1, {yh}eh=1 and y′ are omitted in STFR(P ∗) for simplicity. Similarly, untar-
geted fooling rate (UFR) is defined as the ratio of samples fooled into the class different from the
class yh to all samples.

ATFR can be seen as PDS metric when training data can be accessed. Given adversarial patches
{P ∗c }

k
c=1 of different target classes {y′c}

k
c=1 and the corresponding proxy dataset D, the ATFR is

the average TFR of {P ∗c }
k
c=1 and is defined as:

SATFR(D) =
1

k

k∑
c=1

STFR(P ∗c ). (12)

By making {y′c}
k
c=1 covers all the learned classes of the target model, ATFR measures the overall

fooling abilities of patches generated with benchmark EoT and based on D, thus can be treated as
the PDS metric.

3.3 EVALUATION OF THE PROXY DATASET SELECTION STAGE

3.3.1 CONSISTENCY BETWEEN APS AND ATFR

Model Metric Available Dataset
IMAGENET MSCOCO KITTI UNIFORM WHITE

VGG16 ATFR 95.65% 95.26% 93.24% 57.42% 79.59%
APS 27.91 26.51 26.07 12.15 19.66

VGG19 ATFR 91.26% 93.55% 92.58% 42.71% 74.90%
APS 28.12 26.89 26.87 9.21 18.04

ResNet18 ATFR 77.30% 76.33% 73.76% 27.67% 44.17%
APS 15.21 14.44 14.97 6.83 11.03

ResNet34 ATFR 71.51% 78.20% 73.31% 20.67% 32.15%
APS 15.60 15.19 15.87 5.06 8.72

Inception-v1 ATFR 60.71% 62.57% 60.39% 9.43% 24.35%
APS 10.06 9.68 10.32 2.25 5.25

Table 1: APSs and ATFRs of available datasets.

Since ATFR is a PDS metric computed using training data, building the consistency between ATFR
and APS is desired, i.e., the dataset of greater ATFR is expected to have greater APS. As shown
in Table 1, the high-APS datasets such as IMAGENET, MSCOCO and KITTI have much greater
ATFRs than the low-APS datasets such as UNIFORM and WHITE. Especially, APS assigns the
training dataset IMAGENET with the greatest value for all the considered target models except for
Inception-v1. Nonetheless, the selected proxy dataset for Inception-v1 achieves comparable ATFR
with IMAGENET. Overall, Table 1 enlightens us to apply APS as a PDS metric. Besides that,
the achieved ATFR on high-APS proxy datasets suggests EoT can be directly applied to data-free
scenarios.
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Actually, APS guarantees the generated patches’ fooling abilities by access to the target model in its
calculation process. In other words, APS ranks the available datasets by comparing the saliency of
the model’s extracted information. On the one hand, since the target model is trained on the training
dataset, it can memorise the features of its seen training data. The adversarial patch generation
process can be seen as extracting such memorised information and mimicking these features, which
explains why EoT using uniform random noise can achieve a certain degree of patch fooling ability
in Table 1. On the other hand, the saliency of the extracted features varies with the selected proxy
dataset. The closer the features in proxy datasets are to the memorized features, the greater the PS
of extracted features, which explains why the original training dataset is assigned the highest APS
value and uniform random noise is assigned the lowest value in Table 1. Therefore, by comparing
the average PS of generated patches on each dataset, APS can serve as a proxy dataset selection
metric.

3.3.2 CONSISTENCY BETWEEN PS AND TFR

...

...

A Patch Pair

...

Figure 5: Patch pairs for consistency rate test.
The patches are generated with EoT.
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Figure 6: Consistency rates for any two proxy
datasets.

This work further proposes consistency rate test to build the consistency between PS and TFR,
which can be seen as establishing a case-level consistency between APS and ATFR as Equation
(7) and Equation (12) suggest. The experimental steps of the consistency rate test are as follows.
As shown in Figure 5, EoT first generates two sets of patches based on proxy datasets D1 and D2

respectively. Then, two patches of the same target class are formed a patch pair, where the patch
pair is consistent if the patch with a larger TFR has a greater PS than the other patch. Finally, the
consistency rate is computed as the ratio of the number of consistent pairs to all the formed pairs.
Ideally, the consistency rate for any two datasets is expected to be 1, which indicates PS can totally
replace TFR to serve as a general fooling ability metric.

Figure 6 presents the consistency rates for any two available datasets, where the mean consistency
rate reaches 0.91. Specifically, the average consistency rate is 0.82 for two high-APS datasets and
0.87 for two low-APS datasets, while 0.98 for a high-APS and a low-APS dataset. The mean of
diagonal values of Figure 6 reaches 0.80, where a diagonal values is the consistency rate of two sets
of patches generated based on the same proxy dataset.

The high consistency rates further prove that APS can serve as a reliable PDS metric for data-free
scenarios, especially for datasets with vastly different ATFRs. The diagonal values suggest PS can
be a metric for comparing patches’ fooling abilities generated based on the same proxy dataset,
which enlightens us to introduce PS as a restart selection metric of DF-EoT.
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Model Metric Method Proxy Dataset
IMAGENET MSCOCO KITTI UNIFORM WHITE BLACK ENSEMBLE

VGG-16 ATFR EoT 95.65% 95.26% 93.24% 57.42% 79.59% 78.74% 88.97%
DF-EoT 96.47% 96.72% 97.08% 83.99% 86.99% 87.74% 95.35%

AUFR EoT 99.23% 99.10% 98.73% 93.73% 95.58% 95.81% 97.46%
DF-EoT 99.68% 99.68% 99.61% 97.55% 97.42% 97.42% 98.93%

VGG-19
ATFR EoT 91.26% 93.55% 92.58% 42.71% 74.90% 72.21% 86.44%

DF-EoT 92.26% 93.30% 95.99% 78.34% 85.00% 83.45% 94.09%

AUFR EoT 98.74% 98.97% 98.83% 91.73% 95.30% 94.56% 96.75%
DF-EoT 99.52% 99.53% 99.50% 97.28% 97.12% 97.05% 98.66%

ResNet-18
ATFR EoT 77.30% 78.20% 73.76% 27.67% 44.17% 46.93% 58.15%

DF-EoT 76.87% 79.09% 79.56% 49.06% 52.21% 53.15% 69.90%

AUFR EoT 94.41% 93.13% 92.83% 82.41% 85.12% 85.56% 88.08%
DF-EoT 96.20% 96.30% 95.25% 88.02% 87.08% 87.15% 91.18%

ResNet-34
ATFR EoT 71.51% 78.20% 73.31% 20.67% 32.15% 38.67% 52.01%

DF-EoT 72.64% 74.33% 78.02% 40.90% 39.61% 45.58% 67.06%

AUFR EoT 92.17% 93.13% 90.59% 76.35% 76.89% 78.73% 82.54%
DF-EoT 95.37% 95.34% 94.05% 82.14% 79.59% 81.17% 87.17%

Inception-v1
ATFR EoT 60.71% 62.57% 60.39% 9.43% 24.35% 24.90% 38.40%

DF-EoT 84.83% 84.33% 80.71% 26.28% 32.44% 34.61% 58.00%

AUFR EoT 84.83% 84.33% 80.71% 59.54% 64.49% 64.95% 69.70%
DF-EoT 89.92% 89.16% 86.41% 68.02% 68.62% 69.62% 78.02%

Table 2: ATFRs and AUFRs of EoT and DF-EoT.

3.4 EVALUATION OF PATCH GENERATION STAGE

3.4.1 IMPROVED PATCH FOOLING ABILITY VIA DF-EOT

This work evaluates DF-EoT and EoT with ATFR and AUFR metrics. Note that the metrics reflect
the APG methods’ performance when the proxy dataset is controlled. As shown in Table 2, DF-
EoT increases patches’ fooling abilities on a wide range of proxy datasets than EoT. For instance,
DF-EoT improves ATFR to 78.34% by 35.63% for a low-APS dataset UNIFORM on the target
model VGG-19 and increases ATFR to 84.33% by 21.76% for a high-APS dataset MSCOCO on the
target model Inception-v1. Evaluation results of the generated patches’ transferability are present
in Appendix E, and ablation studies of DF-EoT’s three main steps are provided in Appendix F . A
performance comparison between EoT using the training dataset and the two-stage data-free APG
framework is provided in Appendix G.

4 CONCLUSION

This work proposes a two-stage data-free APG framework. The PDS stage applies the proposed APS
metric to select high-APS datasets from available datasets. Then the PG stage employs the proposed
APG methods, DF-EoT, to generate patches on the determined proxy dataset. The key findings via
comprehensive experiments on widely selected datasets are as follows. 1) APS is consistent with
the ATFR to a certain extent and thus can serve as a PDS metric in a data-free scenario. 2) PS is
consistent with the TFR to a certain extent and thus can serve as a restart selection metric to alleviate
APG methods’ sensitivity to initial conditions in data-free scenarios. 3) DF-EoT increases the ATFR
and AUFR of the generated patches compared to EoT on a wide range of proxy datasets and thus
can be adopted as an APG method in data-free scenarios.

This work mainly focuses on fooling ability achievement in data-free scenarios and eliminates envi-
ronmental factors’ influence. Regarding the future work, intensive study of environmental factors’
influence on the patches’ fooling abilities in data-free scenarios will be further considered.
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Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance cameras: adver-
sarial patches to attack person detection. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019.

Chaoning Zhang, Philipp Benz, Tooba Imtiaz, and In So Kweon. Understanding adversarial ex-
amples from the mutual influence of images and perturbations. In Computer Vision and Pattern
Recognition (CVPR), pp. 14521–14530, 2020.

A ADDITIONAL RELATED WORK

A.1 IMAGE-SPECIFIC ATTACKS

Most adversarial attacks focus on image-specific attacks which generate perturbation specific to a
given input image. (Szegedy et al., 2013) formalise adversarial perturbation generation of a spe-
cific input image as solving a box-constraint optimization problem with Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS). (Goodfellow et al., 2014) propose fast gradi-
ent sign method (FGSM) which first calculates the gradients of an input image with respect to the
training loss function and then adds the gradients to the input image to perform an attack. (Kurakin
et al., 2016) further propose basic iterative method (BIM), which is an iterative version of FGSM.
BIM iteratively generates adversarial perturbation of an input image and thus achieves better attack
performance than FGSM. (Madry et al., 2017) introduce the Projected Gradient Descent to solve
perturbation’s objective function, enabling attackers to conveniently deal with norm constraints of
perturbations through projection operation. More recent image-specific attacks can be found in
(Serban et al., 2020).

A.2 IMAGE-AGNOSTIC ATTACKS

A.2.1 DATA-DEPENDENT ATTACKS

Data-dependent attacks need access to the training data to guarantee perturbations’ fooling abilities
in image-agnostic scenarios. (Moosavi-Dezfooli et al., 2017) generate a universal perturbation by
updating the perturbation on target model’s training data and show that the fooling ability depends
on the number of available data samples. (Sharif et al., 2016) attack a face recognition system to
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evade recognition or impersonate another individual by restricting the perturbation into an eyeglass
frame. They optimize the pixel values of the eyeglass frame over a set of collected images of human
faces, which can be seen as a subset of samples from training distribution. (Brown et al., 2017) apply
EoT to generate adversarial patches where EoT traverses the training dataset to make the patches
fool most training data. More recent data-dependent attacks can be found in (Eykholt et al., 2018;
Thys et al., 2019; Hoory et al., 2020; Kaziakhmedov et al., 2019; Salman et al., 2020; Duan et al.,
2020), where all the attacks need access to the training data or the picture of the object to be attacked.

A.2.2 DATA-FREE ATTACKS

Data-free attacks correspond to a threat model that attackers have no knowledge about the target
models’ training data (Chaubey et al., 2020). (Mopuri et al., 2017) first propose to maximise the
mean activation values at multiple convolutional layers to generate untargeted universal perturba-
tions in the absence of training data. (Mopuri et al., 2018) exploit class impressions extracted from
the target classifier to learn a generative model for generating untargeted universal perturbations.
(Zhang et al., 2020) generate targeted universal perturbations using proxy datasets which are se-
lected for no reason.

This work mainly differs from the above attacks in the following aspects: 1) This work focuses on
targeted APG problems in data-free scenarios and 2) introduces APS to select a proxy dataset. To
the best of over knowledge, this is the first work focusing on targeted APG problems in strict data-
free scenarios. Note that, we do not claim a state-of-art performance performance on the general
adversarial patch generation problem.

B ABBREVIATION

Complete Spelling
(Abbreviation) Meaning

Adversarial Patch
Generation (APG)

Generating a universal patch that attacks by replacing local
pixels of input images with itself.

Proxy Dataset
Selection (PDS)

Selecting a proxy dataset for patch generation from attackers’
available dataset.

Expectation over
Transformation (EoT) An APG method.

Data-Free Expectation
over Transformation

(DF-EoT)
A variant of EoT designed for data-free scenarios.

Targeted Fooling
Rate (TFR)

The ratio of training data samples fooled into the patch’s target
classes to all samples, a metric of patch fooling ability.

Untargeted Fooling
Rate (UFR)

The ratio of misclassified training data samples fooled by the patch
to all samples, a weaker metric of patch fooling ability than TFR.

Patch Saliency
(PS)

A substitute patch fooling ability metric for TFR in data free s
cenarios, restart selection metric in DF-EoT.

Average Targeted
Fooling Rate (ATFR)

Average TFR of a group of patches generated based on the same
proxy dataset, a PDS metric when training data is available.

Average Untargeted
Fooling Rate (UTFR)

Average UFR of a group of patches generated based on the same
proxy dataset.

Average Patch
Saliency (APS)

Average PS of a group of patches generated based on the same proxy
dataset, a PDS metric in data free scenarios.

C INTEGRATED GRADIENT

Integrated Gradient (Sundararajan et al., 2017) is a useful technique for visualising pixel importance
(i.e., saliency) in the field of explainable machine learning. Given an image-label pair (X, y) and a
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classier F , the integrated gradient function GF output a saliency map by the following equation:

GF (X, y) =

∫
lXGX

∂[F(X)]y
∂X

ds = (X −XG)×
∫ 1

α=0

∂[F(XG + α(X −XG))]y
∂α

dα, (13)

where XG is a black image. Equation (13) is actually a path integral along the line segment between
points XG and X , and the saliency map is the importance of each component in X to the class y
with respect to F . More detailed information about the integrated gradient function can be found in
(Sundararajan et al., 2017).

D BLACK BACKGROUND IMAGE FOR APS CALCULATION
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Figure 7: APSs for different background image selection. The target model is VGG-19, the con-
sidered background images for APS calculation includes a black image, white image and uniform-
random-noise image.

As mentioned in Section 2.3.1, APS (PS) selects the same black background image XS in Equation
(8) in order to measure the fooling abilities of patches (generated on different proxy datasets) on the
same contextual condition. To prove the necessity of such practice, we further craft two datasets
( i.e., BLACK and ENSEMBLE) mainly composed of the black images and calculates the APS of
BLACK, WHITE, UNIFORM and ENSEMBLE with different background image selections such
as the black, white and uniform-random-noise background images.

Figure 7 presents the calculated APSs on the target model VGG-19, where APS of each dataset
varies with different choices of background images. For UNIFORM, BLACK and WHITE datasets,
the APSs of each dataset reaches its highest value when the selected background image XS is the
same as a sample from the dataset. For example, the APS of UNIFORM increases from 9.21 to 29.56
after the uniform-random-noise image replaces the black background image. Such discrepancies of
APSs for the same dataset suggest that attackers should calculate the APS of different datasets on
the same background image XS . We further speculate that PS will overestimate those patches that
have been iteratively updated on the background images.

Additionally, except for BLACK, the APSs of all the datasets reach their lowest values when select-
ing a black background. It is worth noting that even though ENSEMBLE is uniformly composed
of the considered background images, the black background image still results in the lowest APS
of ENSEMBLE. The above observations show that, compared with other considered background
images, black background as a contextual condition has the least impact on the fooling ability mea-
surement, which enlightens us to take a black image as the background XS .

E TRANSFERABILITY IMPROVEMENT OF DF-EOT COMPARED WITH EOT

Table 3 presents the ATFR of patches generated on VGG-19 (proxy model) and tested on VGG-
16, ResNet-34 and Inception-v1 (target models), where the ATFR actually measures the patches’
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Target model Method Proxy Dataset
IMAGENET ENSEMBLE

VGG-16 EoT 23.48% 15.82%
DF-EoT 26.24% 18.66%

ResNet-18 EoT 0.81% 0.33%
DF-EoT 0.86% 0.55%

Inception-v1 EoT 0.40% 0.20%
DF-EoT 0.32% 0.38%

Table 3: ATFRs of patches generated on the proxy model VGG-19 and tested on the target models.

Method Proxy Dataset
IMAGENET ENSEMBLE

EoT 91.26% 86.44%
+ multiple-time 95.27% 90.27%

+ restart 97.26% 93.40%
+ background 78.64% 92.30%

DF-EoT 92.26% 94.09%

Table 4: Ablation study on DF-EoT with VGG-19 as the target model.

cross-model attacking generalisation ability (Transferability). As we can see, the transferability
of the generated patches are rather limited for both EoT and DF-EoT. Nonetheless, DF-EoT can
improve the patches’ transferability to a certain extent in most cases except for the IMAGENET on
Inception-v1.

F ABLATION STUDIES ON DF-EOT

Table 4 selects VGG-19 as the target model and presents ablation studies on DF-EoT. Note that EoT
traverses fewer samples after adding multiple-time patch update step (400 samples v.s. 2000 samples
of EoT). As we can see, multiple-time patch update and restart selection are more general techniques
to improve fooling ability for both high-APS and low-APS datasets. Applying both of them enables
the ATFR increase from 91.26% to 97.26% for IMAGENET, and from 86.44% to 92.03% for EN-
SEMBLE. Meanwhile, after adding the background update step to the multiple-step patch step, the
ATFR drops from 95.27% to 78.64% for the IMAGENET, while increases from 90.27% to 92.30%
for the ENSEMBLE, which suggests background update step is a useful technique for patch fooling
ability improvement on low-APS datasets.

G COMPARISON BETWEEN EOT AND THE DATA-FREE APG FRAMEWORK

Method Model
VGG-16 VGG-19 ResNet-18 ResNet-34 Inception-V1

EoT 95.65% 91.26% 77.30% 71.51% 60.71%
TS-DF Framework 96.47% 92.26% 76.87% 72.64% 80.71%

Table 5: ATFRs of EoT and the proposed two-stage data-free APG framework (TS-DF Framework).

Table 5 compares the final performance between EoT and the proposed data-free APG framework,
where EoT uses the original training dataset while DF-EoT uses the proxy dataset selected with
APS.
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