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Abstract—Electronic Health Record (EHR) systems provide
critical, rich and valuable information at high frequency. One of
the most exciting applications of EHR data is in developing a real-
time mortality warning system with tools from survival analysis.
However, most of the survival analysis methods used recently are
based on (semi)parametric models using static covariates. These
models do not take advantage of the information conveyed by the
time-varying EHR data. In this work we present an application of
a highly scalable survival analysis method, BoXHED 2.0 [1], to
develop a real-time in-ICU mortality warning indicator based
on the MIMIC IV data set [2]. Importantly, BoXHED can
incorporate time-dependent covariates in a fully nonparametric
manner and is backed by theory [3]. Our in-ICU mortality model
achieves an AUC-PRC of 0.41 and AUC-ROC of 0.83 out of
sample, demonstrating the benefit of real-time monitoring.

Index Terms—Electronic Health Record, Survival analysis,
Hazard estimation, Nonparametric, Time-dependent covariates,
MIMIC 1V Dataset

I. INTRODUCTION

Electronic Health Records (EHRs) and other health infor-
mation technology (e.g. personal data from wearable sensing)
provide a potential trove of data for clinical risk modeling.
Its real-time nature represent a major advantage over admin-
istrative or registry-based data [4]. However, the development
of clinical models tends to remain within large registries that
abstract the data into static snapshots of patient health [5].
Even machine learning models fail to substantively improve
the prediction on these time-static datasets [6], highlighting
the need for methods that leverage richness of the EHR data
to improve performance [7].

With the availability of ICU data in the form of the MIMIC-
IIT and MIMIC-IV datasets [8], models that take advantage of
EHR data have gained prominence. While these models show
promise in predicting important clinical outcomes such as
mortality [9], [10], they tend to only generate one classification
prediction at one point in time during the entire episode of
care. For example, [11] uses the first 24 hours of data to predict
outcomes after cardiovascular procedures. Prediction systems
for in-ICU mortality that are more dynamic in nature update
forecasts periodically using the latest information available
[12], [13].

Ideally, adverse event warning systems should operate in
real-time as a patient’s episode of care evolves. An example of
this can be seen in the prediction of sepsis in admitted patients
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[14]. However, existing real-time prediction methodologies are
based on classical statistical models that do not take advantage
of recent advances in machine learning. The purpose of this
paper is to explore the performance improvement that can
be gained from embedding state-of-the-art survival analysis
techniques into real-time mortality warning systems.

We focus on a recent survival methodology called BoX-
HED [1], [15], which is a gradient boosted procedure that
is well suited to estimating clinical risk in the presence of
time-varying features from EHRs. We train BoOXHED to the
MIMIC-IV dataset, and use it to create an in-ICU mortality
warning system that continually assesses risk as the features
evolve. This is particularly relevant to patients with short stays
(under 5 days) as they have the most variable conditions. Out-
of-sample performances are compared to two benchmarks:
The classic time-varying Cox model, and a method that is
representative of recent deep learning approaches for survival
data (Dynamic DeepHit).

II. SURVIVAL MODELS FOR TIME-VARYING FEATURES

Techniques used to forecast the time 7" to an event (e.g.
mortality) fall under the survival analysis discipline. When
time-dependent features X (¢) are involved, it is shown in
[15] that the fundamental quantity of interest is the hazard
function A(¢,x), which is the conditional probability of the
event occurring in the next instant given that it has not yet
occurred:

At z)dt =~ P(T € [t,t+dt)|T >t, X () =x). (1)

Thus A(t, X (t)) is the most natural measure of real-time
mortality risk. Note that X (¢) can either be the current values
of the features, or it can be feature-engineered to be its history
up to ¢.

A. Cox proportional hazards model

The venerated Cox model [16] is the workhorse model
used in applications, but it imposes a key assumption on the
functional form of A(¢,z) that rules out potential interaction
effects between time and the covariates:

Apu(t,x) = ho(t)e"™). )

The baseline hazard function hg(t) is difficult to estimate from
data without further assumptions, but R(z) can be estimated
independently of hg(t). Thus R(z) provides a relative risk
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score that can be used to compare subjects, but an absolute
risk score is not readily available.

Traditionally, R(x) = [’z is modeled linearly and this
specification permits the inclusion of time-varying features
[17]. Following the sepsis prediction application [14], we use
R(X(t)) as a real-time measure of (relative) mortality risk for
the Cox model benchmark.

We note that recent works in machine learning relax the
linear specification by using deep neural networks to model
R(x) [18], [19]. However, these methods only accommodate
time-static covariates and are therefore unable to take advan-
tage of the information conveyed by the time-varying clinical
data.

B. Deep learning survival models

In a step towards accommodating time-dependent covariates
in a nonparametric way, deep survival models forgo real-
time prediction by specializing to discrete time 7 [20], [21].
Survival prediction then becomes solving binary classification
problems at each point on a predefined time grid. For example,
Dynamic DeepHit [21] further imposes a predefined time Tyyax
by which the event has to happen with probability one, so that
a recurrent neural network with a soft-max output layer can
be used to estimate

or :=P(T = 7|X) 3)

for 7 < Thax and ZT <rn Or = 1. Here, X is the covariate
history up to the time of prediction. Extension to competing
risks is also studied in [21].

To use Dynamic DeepHit to produce a mortality risk mea-
sure at time ¢ for our deep learning benchmark, we discretize
continuous time into hourly bins 71, - - - , Tiax and denote the
bin containing ¢ as 7(t). The risk measure at ¢ is then taken
to be 0, (;), which is the discrete approximation to the hazard
(1) at t.

We note that the chief purpose of [21] is not to estimate
(3), but to use them to estimate the cumulative probabilities
P(T < 7|X). For our application, the cumulative probability is
not an appropriate risk measure because our prediction target
is whether or not a patient dies in the ICU at any point after
t. Since Dynamic DeepHit assumes that the event must occur
by Tmax hours in the ICU (ZT<TMX o; = 1), the predicted
cumulative probability of in-ICU death will always be 1.

C. Boosted nonparametric hazards

Very recently, [3] developed a theoretically justified gradient
boosting solution for estimating the hazard (1) nonparametri-
cally with (continuous) time-varying features. A scalable tree-
boosted implementation called BoOXHED can handle recurrent
events as well as survival data beyond right-censoring [1].
Support for missing data and multicore CPU/GPU computing
are also included. BoXHED performs regularized minimiza-
tion of the negative nonparametric likelihood, and does so by
iteratively adding shallow regression trees. In contrast to the
Cox model, the BOXHED hazard estimator A(¢, ) provides an
absolute measure of a subject’s real-time mortality risk rather
than a relative one.

Predicted Hazard

Time

Fig. 1. Generating real-time mortality predictions from the values of a
patient’s risk measure (blue). The first orange dot marks the first time the risk
measure exceeds the threshold (dashed horizontal line). The second orange
dot marks the first time the risk measure stayed above the threshold for 8
hours (rectangle window).

III. METHODS

We compare the performance of BoXHED to those of
the baselines (time-varying Cox and Dynamic DeepHit) at
predicting in-ICU mortality on a continuous basis. The data
comes from MIMIC IV [8]. We follow the approach in the
sepsis prediction application [14] to convert survival risk
measures into real-time mortality predictions, which is to use
the classic sliding window to update risks. While the Cox
relative risk R(X (t)) was used in [14], this work evaluates
the improvements brought specifically by BoXHED’s boosted
nonparametric hazards approach.

For BoXHED, real-time mortality predictions are generated
from the values of the risk measure (¢, X (t)) over time in the
following way (the same approach applies to the risk measures
produced by the other two methods): For a given risk threshold
p, we look at whether the patient’s risk measure is above p
for the past 8 hours. A patient is then flagged as predicted
to eventually die in the ICU if this is true (as illustrated by
the second orange dot in Figure 1). Once flagged, no further
predictions are made for the patient in question. A second
criterion is to flag a patient as soon as the risk measure exceeds
p (as illustrated by the first orange dot in Figure 1). Further
details are provided in the following subsections.

A. Data

Due to structural differences between the MIMIC III and
MIMIC IV datasets, we extract the MIMIC IV dataset using
a modified version of the preprocessing pipeline introduced
in [9] for MIMIC III. The modified pipeline merges MIMIC
IV’s various tables in order to derive patient ICU history. This
results in 31,544 ICU stays, of which two are removed as
outliers as they have many more measurements compared to
others. All told, this paper focuses on 31,542 ICU stays.

Furthermore, we focus on only the first 120 hours (5
days) of each ICU stay for two reasons. First, the required
computational effort for Dynamic DeepHit explodes for a large
number of discrete time periods. Second, early intervention
is significantly associated with positive patient outcomes [22],
which makes real-time monitoring particularly valuable during
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the first few days. After the initial period, overall patient status
is better understood.

The 17 predictive features used to fit our models come from
[9]: Capillary refill rate, Diastolic blood pressure, Fraction
inspired oxygen, Glascow coma scale eye opening, Glascow
coma scale motor response, Glascow coma scale total, Glas-
cow coma scale verbal response, Glucose, Heart rate, Height,
Mean blood pressure, Oxygen saturation, Respiratory rate,
Systolic blood pressure, Temperature, Weight and pH. Since
these features can be found in many datasets, this makes it
easy to compare our results to studies based on other datasets.

B. Training

The 31,542 ICU stays are randomly split into training and
testing sets according to a 80/20 split of the unique patient IDs.
This is because one patient may contribute to multiple ICU
stay records, so we need to avoid assigning such a patient’s
second ICU stay to the training set and their first stay to the
testing set. All three methods are fit to the training set.

For training BoXHED 2.0, we use the built-in K -fold cross-
validation function (with K = 5) to select the number of trees
and the depth of the trees to use. Using the one-standard-error
rule (§7.10 of [23]) to select the most parsimonious model
within one standard error of the best performing one, we arrive
at using 75 trees of maximum depth 2 (i.e. 4 leaf nodes max).

For training the time-varying Cox model, we use the
Lifelines package [24] in Python. Unlike BoXHED 2.0 and
Dynamic DeepHit, this package does not automatically handle
missing data. We therefore impute missing values in the same
way as [9]: If a previous measurement exists, its value is
carried forward. Otherwise, the missing feature is imputed
using a pre-defined value.

C. Scoring the predictions

As explained earlier, the thresholding criterion used to flag
in-ICU mortality for stays in the testing set is continuously
assessed as new data stream in. If the flag is raised during the
first 120 hours of the stay, a positive prediction is made for the
stay. Otherwise, a negative prediction is made. This approach
converts the time-varying output from a dynamic survival
model (i.e. the risk measure) into a classification signal. To
compute the area under the receiver operating characteristic
curve (AUC-ROC) and the area under the precision recall
curve (AUC-PRC) for the testing set predictions, the threshold
p is varied to trace out both curves.

IV. RESULTS

Table I presents the out-of-sample performances for mor-
tality predictions triggered by the risk measure exceeding the
threshold at any point in time. As a reminder, the AUC-
ROC baseline of 0.50 corresponds to a random guess, and the
AUC-PRC baseline of 0.09 corresponds to always predicting
positive. While AUC-ROC is commonly used to evaluate
classifiers, AUC-PRC is more informative here (and often in

TABLE I
COMPARISON OF MODEL PERFORMANCES: PREDICTIONS BASED ON RISK
MEASURE EXCEEDING THRESHOLD AT ANY TIME (*SEE § [V FOR
DISCUSSION OF DYNAMIC DEEPHIT RESULTS)

Model AUC-ROC  AUC-PRC
Baseline 0.50 0.09
Time-varying Cox 0.74 0.29
Dynamic DeepHit* 0.50 0.06
BoXHED 0.78 0.35
TABLE II

COMPARISON OF MODEL PERFORMANCES: PREDICTIONS BASED ON RISK
MEASURE EXCEEDING THRESHOLD FOR 8 HOURS (*SEE § IV FOR
DISCUSSION OF DYNAMIC DEEPHIT RESULTS)

Model Window Size  AUC-ROC  AUC-PRC
Baseline - 0.50 0.09
Time-varying Cox 8hrs 0.81 0.36
Dynamic DeepHit* 8hrs 0.47 0.05
BoXHED 8hrs 0.83 0.41

clinical datasets) given the imbalance between the number of
negative and positive outcomes [25].!

We see from Table I that BoOXHED handily outperforms
both Time-varying Cox and Dynamic DeepHit, particularly on
AUC-PRC. However, a caveat is required for the seemingly
dismal performance of Dynamic DeepHit. This could be due to
the fact that the method assumes that mortality must occur by
some time T,y in the ICU, which is inherently incompatible
with the current application since 91% of stays do not end
in death. Another possible explanation is suboptimal hyperpa-
rameter tuning, which is not as systematic for deep learning as
it is for BOXHED. Indeed, tuning neural nets is an art as there
are far more degrees of freedom, all the way up to modifying
the network architecture itself.

Table II presents the out-of-sample performances for pre-
dictions based on having the risk measure remain above the
threshold for 8 hours. Figure 2 illustrates the precision-recall
curve for this case. The direction of the results are qualitatively
the same as those in Table I, except that Time-varying Cox
and BoXHED’s performances are noticeably better. This is
intuitive, since requiring the risk measure to remain elevated
for a longer period reduces the number of false positives.

V. LIMITATIONS AND FUTURE WORK

Rather than focus on the most recent 8 hours of risk measure
values, a moving average might capture more information.
Future work could explore the potential of flagging patients
if the moving average exceeds some threshold. Second, the
current prediction target is whether or not a patient will
eventually die in the ICU, be it in 2 hours or 2 days. To help
physicians prioritize care for patients at higher imminent risk,
future research should consider shorter prediction horizons
such as in-ICU death within 6 hours [12]. Lastly, the outcome

IThe benchmark classical prediction model for the decompensation task in
MIMIC, the closest to our use case, achieves an AUC-PRC of 0.34 [9].
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Fig. 2. Precision-Recall curve for risk exceeding threshold for entirety of
past 8 hours

of interest should be expanded from in-ICU mortality to in-
hospital mortality, and to account for competing risks from
multiple adverse events, potentially over different time scales.

VI. CONCLUSION

EHR data is a rich source of information for adverse
event prediction in clinical settings. The high-frequency, time-
varying data present opportunity to develop real-time warning
systems that update estimates of patient mortality hazards with
the introduction of each new data point. Survival analysis
is the ideal tool for this. However, there is a dearth of
survival methods that can handle time-varying features non-
parametrically and at scale. This work presents the application
of such a tool called BoXHED for developing an in-ICU
mortality warning system using MIMIC-IV data. The system
achieves state-of-the-art results (AUC-ROC 0.83, AUC-PRC
0.41) when compared to the benchmarks. The results highlight
the promise of BoXHED, a gradient-boosted nonparametric
hazard estimator, for real-time clinical predictions.
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