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ABSTRACT

Large Language Models (LLMs) have shown impressive capabilities in natural
language generation, yet they remain limited in complex and multi-step reason-
ing. We propose COMMAND: COMpetitive Multi-AgeNt Delegation, a frame-
work where a principal LLM assigns tasks to multiple agent LLMs. Agents com-
pete in an environment where utilities depend on both their internal confidence
and the principal’s evaluation, incentivizing answers that are higher-quality and
better aligned with the principal. We establish theoretical guarantees demon-
strating that, under fair comparison, multi-agent systems such as COMMAND
provably outperform their single-agent counterparts. Moreover, each agent, via
online learning, achieves sublinear regret and its average policy will converge to
a Nash equilibrium. Empirical evaluations on multiple benchmarks demonstrate
that COMMAND yields significant improvements in factual accuracy.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range
of natural language tasks (Zheng et al., 2023; Achiam et al., 2023; Koike et al., 2024). However,
they still face challenges in complex reasoning scenarios that require multi-step reasoning, where
problems cannot be solved in a single leap but must be decomposed into subproblems and integrated
through intermediate results (Mirzadeh et al., 2024; Stechly et al., 2024). For example, solving
mathematical problems often involves a chain of deductions in which each step depends on the
previous one (Imani et al., 2023). A prominent line of work focuses on inference-time prompting
strategies. These methods guide the model to generate diverse reasoning paths, such as chain-of-
thought prompting (Wei et al., 2022) or sampling multiple rationales (Guan et al., 2025), and then
selects the most reliable outcome using a reward model or verifier (Lightman et al., 2024). However,
these methods treat each reasoning path in isolation, without principled mechanisms for interaction
or refinement, and their effectiveness is limited by the inherent capacity of each model (Sprague
et al., 2024; Xu et al., 2024; Stechly et al., 2024; Wang et al., 2022).

Inspired by human reasoning, recent methods encourage models to refine their outputs through self-
reflection, critique, and iterative improvement (Madaan et al., 2023; Cheng et al., 2024). In parallel,
ensemble methods involve multiple LLMs engaging in debate, feedback exchange, or negotiation
to enhance answer quality (Huang et al., 2024b; Chen et al., 2025; Wang et al., 2024a). Despite
the progress of these approaches, they lack formal guarantees that iterative refinement or ensemble
methods will improve reasoning quality. Moreover, ensemble methods depend on each model having
substantial capacity, which limits their effectiveness when individual models are weak.

We propose COMpetitive Multi-AgeNt Delegation (COMMAND), a training-free, game-theoretic
framework designed to improve LLM reasoning abilities without access to additional fine-tuning,
parameter updates, or task-specific retraining. In this framework, multiple agent LLMs indepen-
dently generate candidate answers to a given task and select one for submission. The principal LLM
then evaluates each submission. The utility of each agent is determined by its internal utility over the
answer and its relative ranking given by the principal, so each agent must balance its internal prefer-
ences with the likelihood of receiving a favorable ranking from the principal. This mutual evaluation
structure ensures that agents are incentivized to improve their answers in ways that align with the
principal’s evaluation criteria. To implement this framework, we apply the online mirror descent
algorithm to iteratively update each agent’s policy, enabling the system to converge to equilibrium.
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The design of COMMAND is also inspired by concepts from biology, where competition among di-
verse entities drives adaptation and the emergence of more effective answers (Endler, 1986; Albadr
et al., 2020). From an economic perspective, market competition illustrates how multiple actors
striving to maximize their own utility can collectively enhance overall efficiency (Podolny, 1993;
Gupta et al., 2016). This collective dynamic offers a scalable and label-free approach to building
more trustworthy LLM systems without golden answers or manually annotated data.

To summarize, the main contribution of our work is as follows:

• We introduce COMMAND, a competitive multi-agent framework for enhancing LLM rea-
soning. In this framework, a principal LLM engages multiple agent LLMs in a game-
theoretic setting, where agents compete to propose high-quality answers that align with the
principal’s evaluation.

• We provide theoretical guarantees showing that multi-agent framework of COMMAND
improve over single-agent counterpart. Moreover, when agents update their policies using
online mirror descent, the system achieves sublinear regret and the average policy con-
verges to a Nash equilibrium.

• We conduct comprehensive empirical evaluations on multiple reasoning benchmarks,
demonstrating significant gains in factual accuracy.

2 METHODOLOGY

2.1 MOTIVATION

LLMs are observed to fall short on complex tasks such as mathematical reasoning, multi-step plan-
ning, and commonsense reasoning (Mirzadeh et al., 2024; Stechly et al., 2024; Kwon et al., 2024).
One promising direction to address these limitations is to encourage a single LLM to think like
humans by generating multiple reasoning paths and selecting the most plausible answer, analogous
to how humans tackle complex problems through diverse strategies (Yao et al., 2023). These are
often coupled with a verifier model or selection criterion to identify and retain the most consistent
or accurate response (Guan et al., 2025; Cobbe et al., 2021b). Specifically, for a given task t ∈ T ,
an LLM may generate multiple candidate answers {ω1, . . . , ωK} either through repeated sampling
or by encoding diverse reasoning paths in prompts (Guan et al., 2025; Cobbe et al., 2021b). The
final answer is selected by maximizing utility U : A → R, where A denotes the set of admissible
answers, i.e., the LLM output space. The utility U can be instantiated as an external reward model
or derived from internal evaluations such as consistency or factuality checks (Zhang et al., 2024;
Guan et al., 2025). That is, the selected answer is given by ω∗ = argmaxω∈{ω1,...,ωK} U(ω).

However, this single-LLM approach faces two main challenges. First, answer selection can be
biased and unreliable, since reward models or self-evaluations may not capture true task quality
(Zheng et al., 2024; Wang et al., 2024b). Second, candidate answers are usually treated in isolation,
ignoring potential complementarities or cross-validation among them. To address these issues, we
propose to leverage multi-agent LLMs, where multiple models act as competing agents and provide
diverse perspectives that mitigate bias and improve robustness in the selection process.

2.2 COMPETITIVE MULTI-AGENT DELEGATION GAME

We reinterpret the reasoning-and-selection process, where an LLM generates candidate responses
that are later filtered into a final output, as a delegation game. In this game-theoretic view, a princi-
pal delegates tasks to self-interested agents with potentially misaligned preferences and then selects
from their responses to achieve desirable outputs (Fershtman et al., 1991; Frankel, 2014; Guo, 2016).
Building on this perspective, we model a delegation game where agents, each following a distinct
reasoning strategy, submit candidate responses, and a principal acts as centralized evaluator to rank
them. We term this setup the COMpetitive Multi-AgeNt Delegation (COMMAND) game, highlight-
ing how principal feedback induces competition among heterogeneous multi-agents.

Specifically, for each task t ∈ T and each agent i ∈ [N ], the agent generates a set of candidatesAi =
{ωi1, . . . , ωiK} ⊆ A, then selects a submission ai ∈ Ai according to its internal utility Uyi : A →
R. This utility is operationalized via self-consistency (Wang et al., 2022): Uyi(a) := Pi (a|t) ≈
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1
K

∑K
k=1 I[ωik = a], where the probability is estimated by the empirical frequency of a among

the sampled responses. Intuitively, higher utility is assigned to answers the agent would generate
more consistently. Then, the principal aggregates the submissions {a1, . . . , aN} and evaluates them
via a global utility U : A → R aligned with user preferences. It is shaped by implicit or explicit
user instructions via the prompts, with the principal acting as a proxy for the user, selecting the
response that best aligns with the user’s intended objective. After evaluation, each agent i receives
a feedback ri ∈ R determined by the relative ranking of ai (e.g., ri = +1 for top rank, ri = −1 for
bottom rank, and intermediate values otherwise). This design encourages agents to explore diverse
reasoning paths, but it also increases the risk of misalignment between their local objectives and the
principal’s utility. To reconcile the two, each agent i’s reward is defined as,

Ui(ai) = ri · Uyi(ai),

which combines its internal preference with the ranking feedback from the principal. The ranking-
based mechanism creates structural tension: agents must balance their internal reasoning with the
principal’s evaluation, leading them to refine strategies that improve both their individual quality
and their relative standing. The overall process of COMMAND is illustrated in Figure 1.

Think via probability 

Think via enumeration

Think via combinatorics

Candidate Answers
Submit answer A1

Candidate Answers
Submit answer A3

Candidate Answers
Submit answer A2

Ranks the submissions
         A1 > A2 > A3

Reward

Neutral

Penalty

A jar contains 5 red balls and 3 
blue balls. Two balls are drawn at 
random without replacement. 
What is the probability that the 
two balls are of the same color?

Figure 1: Overview of COMMAND: multiple agents propose answers along distinct reasoning paths
and receive utility from the principal’s ranking feedback. This setup incentivizes high-confidence
outputs while promoting alignment with the principal.

2.3 IMPLEMENTATION OF COMMAND

In the implementation, COMMAND consists of the following steps. (i) Given a task t ∈ T , each
agent generates a set of candidate answers. (ii) Each agent selects one answer to submit, according
to a policy that defines a probability distribution over its candidates, estimated via self-consistency
from repeated sampling. (iii) The principal evaluates and ranks the submitted answers according to
its own utility. (iv) This ranking serves as feedback, where each agent receives a scalar utility based
on the relative position of its answer. (v) Each agent updates its policy based on this feedback, with
the goal of improving future performance while competing against others.

For agent i, we define a policy πi as a probability distribution over its candidate setAi, where πi(a)
denotes the probability of selecting an answer a ∈ Ai. The agent’s objective is to adaptively update
this policy to increase its expected cumulative utility, given the outcomes of prior interactions. We
adopt a mirror descent update rule, which adjusts the policy by shifting probability mass toward an-
swers with higher observed utility, while maintaining exploration through regularization (Duvocelle
et al., 2023; Jacob et al., 2022). Specifically, mirror descent provides a principled framework for up-
dating distributions over actions, and in our setting corresponds to an exponential weighting scheme
based on utility feedback (Shalev-Shwartz, 2012). When using negative entropy as the mirror map,
the resulting update recovers the classical Hedge algorithm from online learning (Littlestone & War-
muth, 1994). The full procedure is described in Algorithm 1.

3 THEORETICAL GUARANTEES

3.1 PROVABLE IMPROVEMENTS VIA MULTI-AGENT DELEGATION

We establish that multi-agent delegation can yield better performance than the single-agent setting.
To enable a fair comparison, we ensure both settings have equal total access to candidate answers.
In the single-agent case, the agent draws k answers from a distribution D to form its candidate set.
In the multi-agent case, we consider N ≥ 2 agents, where each agent i independently draws ki
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Algorithm 1 Implementation of COMMAND with Mirror Descent

1: Initialize: For each agent i ∈ [N ], set candidate set Ai, initialize utility estimates U0
i (a) ← 0

and policy π0
i (a) for all a ∈ Ai, choose learning rate η > 0.

2: for each round t = 1, 2, . . . do
3: for each agent i ∈ [N ] (in parallel) do
4: Sample answer ati ∼ πt

i and submit ati to principal
5: end for
6: Principal ranks the submitted answers and provides feedback rti
7: for each agent i ∈ [N ] do
8: for each candidate answer a ∈ Ai do
9: Update utility:

U t
i (a)← U t−1

i (a) + rtiUyi
(a, at−i)

10: end for
11: Compute policy: πt

i(a) ∝ exp
{
ηU t−1

i (a)
}
, ∀a ∈ Ai

12: end for
13: end for

samples from D, with the same total number of samples:
∑N

i=1 ki = k. We assume all agents
share the same internal utility function, Uyi

= Uy , and that the principal applies the same evaluation
function U across both settings. Under these conditions, any performance improvement arises solely
from delegation rather than unequal information.
Assumption 1. (i) Pareto-optimal play. If an agent has two candidate answers ω and ω′ such that
the principal’s utility U(ω) ≥ U(ω′) and the agent’s utility Uyi(ω) ≥ Uyi(ω

′), with at least one
inequality being strict, then the agent does not submit ω′ to the principal.

(ii) Symmetric agents. All agents generate the same number of candidate answers, and the utility of
each answer follows the same distribution D.

(iii) Non-negative alignment. The principal’s utility U(·) are not negatively correlated with any
agent’s utility Uyi(·), i.e., Corr

(
U(ω), Uyi(ω)

)
≥ 0, for ω ∼ D.

Part (i) of Assumption 1 enforces Pareto-optimal play: if one answer is at least as good for both
the agent and the principal, and strictly better for at least one, then the agent will not choose the
inferior one. Part (ii) ensures that all agents operate under comparable conditions. Each agent
generates the same number of candidate answers and submits one to the principal, so no agent
gains an advantage from producing more options. By using LLMs of similar capacity with identical
sampling procedures, the distribution of generated candidates is symmetric across agents. Part (iii)
rules out adversarial behavior by ensuring that when the principal values an answer, agents do not
systematically devalue it. A detailed discussion of the necessity of Assumption 1 is provided in
Appendix A.4. Additionally, we empirically verify parts (i) and (iii) in Section 4.3.

To evaluate the efficiency of mechanisms in strategic settings, we compare their outcomes with the
expected value of the optimal result, denoted as E[Umax], where Umax represents the principal’s
utility from the best candidate answer among those generated by the agent. A mechanism M , under
agent strategies σ, is said to be (ρ, γ)-approximate if its expected outcome satisfies ρE[UM,σ] +
γ ≥ E[Umax], where E[UM,σ] denotes the principal’s expected utility from the answer selected
by M under strategies σ, and ρ and γ are the multiplicative and additive approximation factors,
respectively. In our setting, we focus on prior-independent mechanism, where the mechanism has
no prior knowledge of the distributions from which the agents’ answers are drawn. Additionally,
we adopt an incomplete information framework among agents: while agents can be aware of the
principal’s utility function, they do not observe each other’s submitted answers but only observe the
ranking feedback returned by the principal.
Theorem 1. Consider a single-agent problem P and its multi-agent correspondence P ′ with N
agents. Then under Assumption 1, we have,

(a) For any mechanism M under P , there exists a multi-agent single-proposal mechanism M ′

under P ′ such that, at the Nash equilibrium of each mechanism, U(M ′) ≥ U(M), where
U(·) denotes the principal’s utility function.

4
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(b) When each agent i generates candidate answers independently and the principal utility of
these candidates follow U [−1, 1], and the agent is willing to tolerate a utility loss of at
most 2ε relative to its optimal candidate. That is, instead of always selecting the answer
that maximizes its own utility Umax

i , the agent may strategically submit any answer whose
utility is at least Ui,max−2ε. As a result, a 2ε-approximate Bayes-Nash equilibrium can be
achieved and the expected utility attained by the principal satisfies E[UM ′,σ′ ] = E[Umax],

where ε ≤ 1− e
− N2

2(N−1)2 .

Part (a) of this theorem shows that the principal can obtain a higher-utility answer by recruiting more
comparable agents. Intuitively, when multiple agents each submit one answer, the principal has more
chances to receive a better answer, as independent judgments may increase the likelihood of a better
outcome. Part (b) further shows that, if each agent is not purely self-interested and is willing to
consider answers with utility at least Ui,max− 2ε, then the principal can obtain the best answer with
utility E[Umax]. Unlike prior work that assumes independent utilities (Shin et al., 2023), our setting
involves a shared problem between the principal and agents, making independence unrealistic. We
therefore extend the analysis to positively correlated utilities (Assumption 1), which more accurately
capture the structural alignment between LLM agent and principal objectives.

3.2 REGRET ANALYSIS

We analyze the learning dynamics of our algorithm in the multi-agent setting and establish regret
guarantees for each agent. Regret is evaluated with respect to each agent’s own utility and measures
the gap between the utility the agent actually obtains and the utility it could have obtained by fol-
lowing the best fixed policy in hindsight. Specifically, we show that each agent achieves sublinear
regret over time when running Algorithm 1, so its cumulative utility asymptotically matches that of
its best fixed policy.

For agent i and any candidate answers a ∈ Ai, we define the regret after T rounds as the average
difference between the cumulative utility the agent would have received by consistently selecting an
answer a, and the utility actually obtained by following the sequence of mixed strategies {πt

i}Tt=1
(Cai & Zheng, 2023). Formally, the regret is defined as

RT
i (a) = max

π

{
T∑

t=1

[Ui(π, a
t
−i)− Ui(π

t
i , a

t
−i)]

}
,

where at−i denotes the answers chosen by all agents other than i at round t, and ui(π
t
i , a

t
−i) =∑

a′∈Ai
πt
i(a

′)Ui(a
′, at−i) is the expected utility of agent i under their mixed strategy πt

i . The regret
quantifies, for each fixed answer a, how much worse the agent performed on average compared to
always selecting that answer. The agent is said to have no regret if maxa∈Ai

RT
i (a)/T → 0 as

T → ∞ (Bubeck et al., 2012). More generally, one can express the cumulative regret with respect
to any fixed mixed strategy π, in which case the following upper bound holds:
Theorem 2. Let agent i follow Algorithm 1 with learning rate η = 1/

√
T . Then for any policy π,

the cumulative regret over T rounds satisfies
T∑

t=1

[
Ui(π, a

t
−i)− Ui(π

t
i , a

t
−i)
]
≤
(
1

4
+DKL(π ∥π0

i )

)√
T .

Theorem 2 shows that when each agent follows Algorithm 1 with learning rate η = 1/
√
T , the

cumulative regret after T rounds is upper bounded by O(
√
T ). The factor in the bound de-

pends on two components: a fixed coefficient 1/4 from the optimization dynamics, and the KL
divergence between the comparator policy and the initial policy. As a result, the average regret∑T

t=1

[
Ui(π, a

t
−i)− Ui(π

t
i , a

t
−i)
]
/T vanishes as T → ∞, which ensures that each agent learns

to perform competitively over time. This guarantee is consistent with standard results in online
learning and mirror descent algorithms (Cai & Zheng, 2023; Jacob et al., 2022).

3.3 CONVERGENCE GUARANTEES

We now analyze the convergence behavior of agents to a Nash equilibrium. In our setting, a Nash
equilibrium corresponds to a stable outcome in which each agent adopts the best policy over candi-
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date answers that maximizes its expected utility, given the fixed policies of all other agents (Kreps,
1989; Holt & Roth, 2004). Formally, let π = (π1, . . . , πN ) denote the joint policy profile, where
each πi is a probability distribution over the candidate set Ai of agent i. Then π∗ = (π∗

1 , . . . , π
∗
N )

is a Nash equilibrium if for all i ∈ N and any alternative policy π̂i,

Ui(π
∗
i , π

∗
−i) ≥ Ui(π̂i, π

∗
−i).

At equilibrium, no agent can improve its expected utility by changing its policy alone.
Theorem 3. For any T ∈ N, η > 0, and δ ∈ (0, 1), define the quantity

ξT (δ) :=

∑N
i=1 R

T
i

T
+N

√
8

T
log

(
N maxi |Ai|

δ

)
.

For N -agents delegation games, upon running Algorithm 1 for any T iterations with learning rate
η > 0, the average policies π̄T

i = 1
T

∑T
t=1 π

t
i of each agent form a ξT (δ)-approximate Nash

equilibrium with probability at least 1− δ, for any δ ∈ (0, 1).

Theorem 3 establishes that the empirical average of the policies produced by Algorithm 1 converges
toward equilibrium behavior. Specifically, the average strategy profile (π̄T

1 , . . . , π̄
T
N ) is guaranteed to

be a ξT (δ)-approximate Nash equilibrium with high probability. The error term ξT (δ) decomposes
into two parts: (i) the cumulative regret

∑
i R

T
i /T , which vanishes sublinearly under Algorithm 1,

and (ii) a concentration term of order O(
√
log(N maxi |Ai|/δ)/T ) arising from standard martin-

gale inequalities. Together, these imply that the approximation error decays at the rate O(1/
√
T ),

ensuring that no player can improve her long-run utility by more than O(1/
√
T ) through unilateral

deviation.

The equilibrium reflects the outcome of repeated learning dynamics where agents iteratively adapt
their policies to better align with the principal’s feedback while preserving their own reasoning-
based preferences. In this sense, each agent’s policy converges to a distribution over answers that
balances two forces: being favored by the agent’s internal utility and being ranked highly by the
principal. The result generalizes the convergence guarantees of Jacob et al. (2022) from two-player
zero-sum games to general multi-agent delegation settings.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models. We adopt four open-sourced instruction-following LLMs to serve as agents in our delega-
tion framework: Mistral-8B-Instruct (Mistral (2024)), Zephyr-7B-Beta (Tunstall et al. (2023) ), Phi-
3-Mini-4K-Instruct (Abdin et al. (2024)) and Falcon-7B-Instruct (Almazrouei et al. (2023)). These
models have comparable parameters and are matched in capacity, satisfying Assumption 1, while
contributing architectural and training diversity to the agent pool. We use LLaMA-2-7B-Instruct
(Touvron et al. (2023b)) as the principal because of its good alignment and consistent performance
on all of our reasoning benchmarks. Unless otherwise specified, we set the learning rate η = 0.1
and 20 maximum iteration number for all experiments.

Implementation Details. In the candidate answer generation stage, we augment each agent with
Monte Carlo Tree Search (MCTS) , performing 16 roll-outs with 5 maximum depth. In the delega-
tion stage, a Llama2-7b model (Touvron et al., 2023a) served as the principal, providing feedback via
best-path masking and consistency checks to the agents. The prompts used throughout the system
adhered to the format described in the work by Guan et al. (2025).

Baselines. We compare our delegation-based reasoning framework against three strong and repre-
sentative baselines:

• Few-shot Chain-of-Thought (Wei et al., 2022) is a method that prompts a LLM with a
few in-context exemplars illustrating intermediate reasoning steps before the final answer.
This baseline reflects the model’s standalone reasoning ability without delegation.

• rStar (Guan et al., 2025) is a self-play approach that improves reasoning through a gen-
eration and discrimination process. It first generates multiple reasoning paths and then

6
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uses a discriminator LLM to filter answers. In our implementation, the principal LLM fills
in missing steps given earlier steps and scores candidate answers. We adopt a simplified
variant that only verifies and scores the agents’ submitted answers.

• To compare against a setting where the principal acts alone (without delegation), we also
report the results selected by the principal in the final iteration; we refer to this setting as
Principal.

Datasets. We conduct our evaluations using reasoning datasets: GSM8K, MATH, and GSM-Hard
(Cobbe et al., 2021a; Lightman et al., 2024; Gao et al., 2022). Each dataset presents unique chal-
lenges, allowing us to evaluate the proposed delegation framework across different types of reason-
ing skills and linguistic variation. To manage compute, we evaluate 300 sampled problems from the
official test splits of MATH and GSM8K, and for GSM-Hard, we evaluate on 320 test questions.
Details are summarized below.

• MATH (Lightman et al. (2024)) is a dataset of challenging competition-level mathematics
problems ranging from high school to early college level. It covers diverse topics such
as algebra, geometry, probability, and calculus, requiring models to demonstrate advanced
mathematical reasoning and symbolic manipulation skills.

• GSM8K (Cobbe et al. (2021b)) is a benchmark for grade-school math problems. It com-
posed of 8.5K high-quality word problems that require multi-step arithmetic reasoning.
The test set is about 1.3k. The dataset evaluates how well models can perform numerical
computations and logical deductions in everyday language scenarios.

• GSM-Hard (Gao et al. (2022)) is a hard version of GSM8K math reasoning dataset. It
replace the numbers in the questions of GSM8K with larger numbers that are less common.

4.2 EXPERIMENT RESULTS

COMMAND Improves Accuracy. Results in Table 1 and Figure 2 show that COMMAND consis-
tently outperforms all baselines across the evaluated datasets. This performance gain is due to two
key factors. First, recruiting multiple agents expands the solution set and increases answer diversity,
giving the principal a richer pool to choose from and a higher chance of including a high-quality rea-
soning path than few-shot CoT or the principal acting alone. Second, COMMAND connects agent
utility to the principal’s ranking feedback, as agents are rewarded for producing answers that score
well under the principal’s evaluation, which steers search toward faithful, well-justified solutions
and induces productive competition rather than redundant exploration.

COMMAND Enables Competition Among Heterogeneous Agents. Despite substantial differ-
ences in dataset difficulty and baseline accuracy, Table 2 shows that most agents benefit from COM-
MAND. As expected, COMMAND induces competition among agents for receiving higher utilities.
The ranking-based utility induces competition and a winner-takes-more effect: an initially stronger
agent gains the most, while weaker agents might be mislead. For example, stronger agents with
higher accuracy such as Mistral on Math and Phi on GSM8K show some gains after competition.
By contrast, the weakest agents that initially have the lowest accuracy exhibit small declines such as
Falcon on Math and Zephyr on GSM-Hard.

Table 1: Accuracy (%) across benchmark datasets for each method. Bold indicates the best perfor-
mance for each dataset.

Dataset Few-shot CoT Principal rStar COMMAND
Math 8.0 4.8 26.8 29.1

GSM8K 15.7 35.8 50.0 60.3
GSM-Hard 20.6 11.7 28.1 29.4

4.3 VALIDATION FOR ASSUMPTION 1

We empirically verify Assumption 1 in the experiments. Given the candidate answers generated by
all the agents, we estimate the principal’s utility by submitting all agent’s answers to the principal,

7
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Figure 2: Accuracy comparison across benchmark datasets for each method.

Table 2: Accuracy (%) of each model before and after applying COMMAND across three bench-
mark datasets. Bold highlights the best result for each dataset.

Agent Math Agent GSM8K GSM-Hard
Before After Before After Before After

Mistral 31.4 33.1 Mistral 39.0 39.3 27.2 27.5
Zephyr 28.4 28.8 Zephyr 60.7 61.0 22.2 21.9
Falcon 18.7 16.1 Phi 58.7 61.7 30.3 31.2

collecting the feedback, and normalizing the scores. For part (i), we denote a problem valid if no
alternative answer yields strictly higher utility for both the principal and the agent than the submitted
answers across all iterations. We then report the percentage of valid problems for each dataset and
agent. As shown in Table 3, this percentage is consistently around 90% across agents and datasets,
meaning that most of the problems satisfy the Pareto-optimal play in Assumption 1. For part (iii), we
compute the Pearson correlation between the principal’s utilities and those of each agent for each
dataset. Table 4 reports the percentage of positively correlated problems and average correlation
coefficients, which are positive for all datasets and agents. This result justifies the non-negative
alignment hypothesis in Assumption 1. Although the principal’s and agent’s objectives are not
perfectly aligned, solving the same task induces partial alignment, so utilities move together on
average rather than in opposite directions.

Table 3: Percentage of valid problems across all agents and datasets.

Agent Math Agent GSM8K GSM-Hard
Mistral 90.7 Mistral 91.0 97.6
Zephyr 90.7 Zephyr 90.6 95.5
Falcon 87.6 Phi 91.4 96.0

Table 4: Verification of non-negative alignment between principal and agents. Positive (%) is the
percentage of problems with positive correlation. Average is the mean correlation across problems.

Agent Math Agent GSM8K GSM-Hard
Positive Average Positive Average Positive Average

Mistral 91.3 0.4934 Mistral 72.9 0.2611 82.7 0.4063
Zephyr 93.6 0.5026 Zephyr 72.6 0.2672 82.9 0.3820
Falcon 92.0 0.4761 Phi 66.2 0.1561 72.4 0.2204
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5 RELATED WORKS

LLM Diverse Reasoning. A growing body of work improves LLM performance at inference time,
often referred to as test-time compute. Popular approaches include (i) prompt-based techniques, such
as chain-of-thought prompting to elicit structured reasoning (Wei et al., 2022), and (ii) sampling and
search, including Top-k, Top-p, beam search (Feng et al., 2023), or tree-based exploration such as
MCTS (Sutton et al., 1998). To further refine candidate outputs, methods such as majority voting
(Wang et al., 2022) and verifier models (Lightman et al., 2024) have been employed to select high-
quality responses. A key insight is that sampling diverse reasoning paths (either entire trajectories
or step-by-step expansions) significantly outperforms simply picking the most probable answers
without exploration, in terms of accuracy and task completion rates (Snell et al., 2024; Brown et al.,
2024). Our method builds on this paradigm by framing inference as a game-theoretic process:
multiple agents strategically generate diverse answers guided by designed prompts. Through reward
design and competition in a repeated setting, the system incentivizes exploration of higher-quality
reasoning paths while maintaining diversity.

LLM Self-improvement. A growing line of work explores how LLMs improve reasoning through
structured self-improvement without external supervision. Inspired by AlphaZero where learning
emerges from play and feedback (Silver et al., 2017), LLMs can iteratively provide feedback, re-
finements, or critiques to improve its answers after generations (Madaan et al., 2023; Cheng et al.,
2024; Chen et al., 2024). However, the effectiveness of this process often depends on the model’s
inherent capabilities and may yield misleading gains in weaker models. Our approach aims to enable
LLMs to self-improve by learning from feedback provided by a principal without relying on RL or
fine-tuning.

LLMs as Strategic Agents. With the advancement of LLMs, a growing body of research inves-
tigates their behavior in game-theoretic multi-agent settings. Empirical studies and benchmarks
analyze LLM decision-making across diverse games, either collaborative or adversarial, with two
or multiple agents, and under short- or long-term utility objectives (Lan et al., 2023; Huang et al.,
2024a; Piatti et al., 2024). Beyond evaluation, multiple LLMs have been organized into multi-agent
systems that engage in debate, feedback exchange, or negotiation to improve answer quality (Huang
et al., 2024b; Chen et al., 2025; Wang et al., 2024a). Current work designs game-theoretic frame-
works that directly enhance LLM reasoning and consistency. For example, adversarial games assign
LLMs to attacker and defender roles (Cheng et al., 2024; Kirchner et al., 2024), though these typi-
cally require reinforcement learning to train the policies and are often limited to two-agent settings.
The consensus game framework in Jacob et al. (2023) offers a training-free approach that aligns gen-
eration and discrimination to promote consistency, but it also remains constrained to two agents and
may converge to suboptimal equilibria. Our method extends this line of work by modeling multi-
agent interactions with structured feedback to promote diverse reasoning and strategic improvement
without fine-tuning or reinforcement learning.

6 CONCLUSIONS

In this work, we presented COMMAND, a competitive multi-agent framework for improving the
reasoning capabilities of LLMs. By framing the interaction between a principal and multiple
agents as a delegation process, COMMAND leverages competition and alignment incentives to elicit
higher-quality answers without additional training. We established theoretical guarantees showing
that multi-agent systems provably outperform single-agent setups under fair comparisons. Further-
more, using online mirror descent, each agent achieves sublinear regret, ensuring that its average
performance approaches that of the best fixed policy. The agents’ average policies converge to
a Nash equilibrium, aligning with the principal’s feedback while preserving their own reasoning-
based preferences. Empirical evaluations across diverse mathematical reasoning benchmarks further
demonstrated consistent improvements in factual accuracy.

While effective, current experiments focus on math reasoning, so future work includes extend-
ing experiments to other reasoning-centric tasks such as long-form question answering, multi-step
planning, and theorem-style proofs. Furthermore, incorporating additional tools from game theory
and mechanism design further enhance alignment and robustness among LLM agents, especially in
open-ended or adversarial settings.
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REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility. The experimental setup and datasets are
described in Section 4.1. Details of computational resources are reported in Appendix B. All
proofs and explanations of assumptions are provided in Appendix A. An anonymized code reposi-
tory to reproduce our results can be assessed via https://anonymous.4open.science/r/
ICLR2026_COMMAND_algorithm-DCAC.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed LLMs, specifically ChatGPT-4o and ChatGPT-5, as writ-
ing assistants. Their use was limited to polishing grammar, improving fluency, correcting LATEX code
(e.g., tables and formatting), and assisting with code suggestions and debugging. All substantive
ideas, analyses, and conclusions remain the original contributions of the authors.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics in all aspects of this work. Our experiments use licensed
public datasets and open-source models; we document preprocessing and release code, prompts,
and evaluation details to support reproducibility. The methods are not intended for high-risk uses;
any deployment should include domain-specific safeguards and oversight.
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A PROOFS

A.1 PROOF OF THEOREM 1

Lemma 1 (Kleinberg & Kleinberg (2018)). If M is any mechanism and σ is a best–response strategy
(profile) to M . Let fM,σ denote the interim allocation function, i.e., the function that specifies an
outcome of M when agents follow σ. Then there exists a single proposal mechanism M ′ and a best
response σ′ to M ′, such that the interim allocation functions fM,σ and fM ′,σ′ are identical.

Proof of Theorem 1 (part a). By Lemma 1, it suffices to consider the case when M is a single pro-
posal mechanism. Let the actual answers in the single proposal mechanism P be

ω̄ = {ω1, ω2, . . . , ωk}.

Consider a partition of ω̄ as follows

ω̄1 = {ω1, . . . , ωk1},

ω̄2 = {ωk1+1, . . . , ωk1+k2
},

...

ω̄N = {ωk1+...+kN−1+1, . . . , ωk1+...+kN=k}.

Suppose that agent i’s answers in P ′ is ω̄i so that the outcomes of P and P ′ are coupled.
This coupling is indeed possible because the probability that agent i’s answers are within ω̄i =
{ωi1 , . . . , ωiki

} is exactly equal to the marginal probability that ω̄’s i-th partition is ω̄i =

{ωi1 , . . . , ωiki
}. Consider a single proposal mechanism P and corresponding equilibrium strate-

gies σ, principal’s utility function U and agents’s utility function Uy . Given the answers above,
single proposal mechanism will select the answer which maximizes Uy(ωj) for j ∈ [k], i.e.,

ω∗
1 = argmax

j∈[N ]

Uy(ωj).

Let this answer be ω∗
1 . Now consider a multi-agent single proposal mechanism P ′, and suppose that

the agents play equilibrium strategies σ′. Let ω∗
2 be the corresponding winner in this case.

We want to show that U(ω∗
2) ≥ U(ω∗

1) for any answers ω̄. Suppose not. If ω∗
1 and ω∗

2 belong to
the same partition ω̄i, it means that agent i has both the answers ω∗

1 and ω∗
2 . By our definition on

ω∗
1 , submitting ω∗

1 gives the better or the same utility for agent i. If Uy(ω
∗
1) > Uy(ω

∗
2), then simply

submitting ω∗
1 gives a strictly better utility for agent i, and it contradicts that σ′ is an equilibrium

strategy. If Uy(ω
∗
1) = Uy(ω

∗
2), then U(ω∗

1) ≤ U(ω∗
2) by Assumption 1. Hence, U(ω∗

1) ≤ U(ω∗
2) in

both cases.

Now suppose that ω∗
1 and ω∗

2 belong to the different partitions ω̄i and ω̄j . Suppose that agent i’s
equilibrium strategy satisfies σ′

i ̸= ω∗
1 . If remaining ω̄i is strictly better for agent i, it contradicts that

σ′
i is an equilibrium strategy. Hence Uy(ω

∗
1) = Uy(σ

′
i). Again by Assumption 1, since agent i plays

σ′
i, we have U(σ′

i) ≥ U(ω∗
1). Note that the principal should observe both σ′

i and ω∗
2 , and commits

to ω∗
2 . This implies that U(ω∗

2) ≥ U(σ′
i) ≥ U(ω∗

1), and we finish the proof.

For part b, We begin by defining a key event in which the answer chosen by an agent to maximize
their own expected utility is also the one most preferred by the principal. Under the condition of
Theorem 1, the agent’s expected utility for proposing ω is approximately

[
U(ω) + 1

2
]k(N−1)Uy(ω),

where k(N − 1) is the total number of competing candidate answers from the other agents. This
motivates the agent to select

argmax
ω∈ω̄i

{[U(ω) + 1]/2}k(N−1)Uy(ω).
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However, the system designer would ideally prefer the agent to select argmaxω∈ω̄i
U(ω), which

aligns with the principal’s interest. We therefore define the event Ei under which the agent’s optimal
choice (based on their own objective) coincides with the principal’s preferred one:

Ei({U(ω), Uy(ω)}ω∈ω̄i) =

{
ω̄i : argmax

ω∈ω̄i

{[U(ω) + 1]/2}k(N−1)Uy(ω) = argmax
ω∈ω̄i

U(ω)

}
.

In other words, this event captures the favorable case when the agent’s self-interested decision also
maximizes the principal’s utility. For notational simplicity, we refer to Ei({U(ω), Uy(ω)}ω∈ω̄i

)
simply as Ei or Ei(ω̄i). At the joint level, define the event:

E(ω̄) := E(U(ω̄), Uy(ω̄)) =
⋂

i∈[N ]

Ei(ω̄i),

which holds if all agents simultaneously select answers that align with the principal’s preference.

Now, we will prove that given E(U(ω̄), Uy(ω̄)) and the other’s strategies, proposing a answer that
maximizes U(·) will be approximately best-response.

Let σx
i be a strategy to propose a answer that maximizes U(·) for agent i. Given that all the other

agents j playing σx
j for j ̸= i, we can further obtain the following regarding agent i’s utility:

Ui(σ
x
i , σ−i) = E [Ui(σ

x
i , σ−i) | E]P[E] + E [Ui(σ

x
i , σ−i) | Ec]P[Ec]

≥ E [Ui(σ
x
i , σ−i) | E]P[E]− P[Ec]

≥ E [Ui(σ
′
i, σ−i) | E]P[E]− P[Ec]

= E [Ui(σ
′
i, σ−i)]− E [Ui(σ

′
i, σ−i | Ec)]P[Ec]− P[Ec]

≥ E [Ui(σ
′
i, σ−i)]− 2P[Ec],

where the second inequality follows from the fact that given E, playing σx
i is weakly dominant over

any other strategy σ′
i for agent i.

This implies that if we characterize a good lower bound α such that P[E] ≥ α, we have

Ui(σ
x
i , σ−i) ≥ Ui(σ

′
i, σ−i)− 2(1− α),

which implies that σx
i is 2(1 − α)-approximate BNE. The next step will be to consider the lower

bound of event E.

Lemma 2 (Shin et al. (2023)). Under Assumption 1, assume the utility function of principals and

agents are independent, we have P[E] ≥ α0 = e
− N2

2(N−1)2 .

Lemma 3. Suppose U(ω) and Uy(ω) are positively correlated. Then the probability of the event
Ei(ω̄i) is weakly greater than in the case where U(ω) and Uy(ω) are independent:

PU⊥Uy [Ei(ω̄i)] ≤ PU↑Uy [Ei(ω̄i)].

Proof. We prove the lemma using a coupling argument based on the stochastic dominance induced
by positive correlation.

Let ω̄i be the set of proposals for agent i, with |ω̄i| = k. Let ω∗ = argmaxω∈ω̄i
U(ω) be the

proposal that maximizes U , and let x1 = U(ω∗). For j = 2, . . . , k, let xj be the x-values of the

other proposals, ordered such that x1 ≥ x2 ≥ · · · ≥ xk. Define Bj =
(

xj

x1

)k(N−1)

for j = 2, . . . , k.

The event Ei occurs if and only if for all j = 2, . . . , k,

Uy(ω
∗)

Uy(ωj)
≥ Bj .

Define Cj =
{

Uy(ω
∗)

Uy(ωj)
≥ Bj

}
, so that Ei = ∩kj=2Cj .

Now, condition on the x-values x = (x1, . . . , xk). In the independent case, Uy(ω) is drawn from the
marginal distribution Fy for each ω, independently. In the positively correlated case, Uy(ω) is drawn
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from the conditional distribution Fy|x(ω). By positive correlation, for any x1 > xj , the distribution
Fy|x1

stochastically dominates Fy|xj
, i.e.,

P[y > t | x1] ≥ P[y > t | xj ] ∀t.

In particular, Fy|x1
stochastically dominates the marginal distribution Fy , and Fy stochastically

dominates Fy|xj
for j ≥ 2.

By stochastic dominance, we can construct coupled random variables as follows:

• For Uy(ω
∗), let Y +

1 ∼ Fy|x1
and Y ∗

1 ∼ Fy such that Y +
1 ≥ Y ∗

1 almost surely.

• For each Uy(ωj) with j ≥ 2, let Y −
j ∼ Fy|xj

and Y ∗
j ∼ Fy such that Y −

j ≤ Y ∗
j almost

surely.

Such couplings exist due to the stochastic dominance relations.

Now, for each j ≥ 2, almost surely,
Y +
1

Y −
j

≥ Y ∗
1

Y ∗
j

.

Therefore, {
Y ∗
1

Y ∗
j

≥ Bj

}
⊆

{
Y +
1

Y −
j

≥ Bj

}
.

This implies that for each j,

P

[
Y +
1

Y −
j

≥ Bj

]
≥ P

[
Y ∗
1

Y ∗
j

≥ Bj

]
.

Since the y-values are conditionally independent given x, the events Cj are conditionally indepen-
dent given y(ω∗) in both cases. However, by the above coupling, we have almost surely,

k⋂
j=2

{
Y ∗
1

Y ∗
j

≥ Bj

}
⊆

k⋂
j=2

{
Y +
1

Y −
j

≥ Bj

}
.

Thus, the joint probability satisfies:

P

 k⋂
j=2

{
Y +
1

Y −
j

≥ Bj

}
| x

 ≥ P

 k⋂
j=2

{
Y ∗
1

Y ∗
j

≥ Bj

}
| x

 .

The right-hand side is the conditional probability of Ei in the independent case, and the left-hand
side is the conditional probability in the positively correlated case.

Taking expectation over x, we obtain:

PU↑Uy
[Ei(ω̄i)] ≥ PU⊥Uy

[Ei(ω̄i)],

which completes the proof.

By Lemma 2, when U(ω) and Uy(ω) are independent and identically distributed across candidates,
the probability of the alignment event E admits an explicit lower bound. This implies the existence
of a 2(1− α)-approximate BNE under the independent setting, where α = 1− P[E]. By Lemma 3,
when U(ω) and Uy(ω) are positively correlated, the probability of E is weakly greater than in
the independent case. Therefore, the same approximation bound holds in the positively correlated
setting.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 PROOF OF THEOREM 2

We begin with some auxiliary lemmas that characterize the structure of the entropy-regularized pol-
icy updates. Specifically, we leverage the optimality conditions induced by mirror descent with
negative entropy to relate policy differences to KL divergence terms. These lemmas follow stan-
dard arguments in the online learning literature, but we include them here for completeness and
to establish notation for our subsequent regret analysis (Jacob et al., 2022; Bakhtin et al., 2022;
Shalev-Shwartz, 2012).
Lemma 4. At any round t, if player i’s policy update follows:

πt+1
i = argmax

π

{
t∑

t′=1

U t′

i (π)− 1

η
φ(π)

}
,

where the regularizer is the negative entropy,

φ(π) :=
∑
a∈Ai

π(a) log π(a),

then the resulting policy πt+1
i is equivalent to the one generated by Algorithm 1.

Proof. We begin by rewriting the cumulative utility term as a linear function over actions:
t∑

t′=1

U t′

i (π) =
∑
a∈Ai

(
t∑

t′=1

Ui(a, a
t′

−i)

)
π(a).

Substituting into the objective, the optimization becomes:

max
π

{∑
a∈Ai

(
t∑

t′=1

Ui(a, a
t′

−i)

)
π(a)− 1

η

∑
a∈Ai

π(a) log π(a)

}
.

This is a standard instance of entropy-regularized maximization over a simplex. Its answer is well
known to be a softmax distribution over accumulated utilities:

πt+1
i (a) =

exp
(
η
∑t

t′=1 Ui(a, a
t′

−i)
)

∑
a′∈Ai

exp
(
η
∑t

t′=1 Ui(a′, at
′
−i)
) .

This precisely matches the update rule employed in Algorithm 1, where action values are incremen-
tally aggregated and exponentiated with temperature η. Thus, the two procedures are equivalent.

Lemma 5. Suppose that at each round t + 1, player i updates their policy via the following opti-
mization:

πt+1
i = argmax

π

{
t∑

t′=1

Ũi(π, a
t′

−i)−
1

η
φ(π)

}
,

where η > 0 is a fixed parameter, the regularizer φ is the negative Shannon entropy

φ(π) :=
∑
a∈Ai

π(a) log π(a),

and the shifted utility function is defined as

Ũi(a, a
t
−i) := Ui(a, a

t
−i)− min

a∈A1×···×AN

Ui(a).

Then, the resulting policy admits a softmax representation:

πt+1
i (a) =

exp
(
vt+1
i (a)

)∑
a′∈Ai

exp
(
vt+1
i (a′)

) ∀a ∈ Ai,

where

vt+1
i (a) := η

t∑
t′=1

Ũi(a, a
t′

−i).
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Proof. To simplify notation, let γ := mina∈A1×···×AN
Ũi(a). Since the minimum utility is constant

across all actions, subtracting it from the original utilities does not affect the maximizer of the
objective. Thus, the cumulative utility component can be rewritten as:

t∑
t′=1

Ũi(π, a
t′

−i) =
∑
a∈Ai

(
t∑

t′=1

Ũi(a, a
t′

−i)

)
π(a).

Substituting into the objective function yields:

πt+1
i = argmax

π

{
η
∑
a∈Ai

(
t∑

t′=1

Ũi(a, a
t′

−i)

)
π(a)−

∑
a∈Ai

π(a) log π(a)

}
.

This is a classical instance of entropy-regularized linear optimization over the probability simplex.
The optimal answer is known to be a softmax distribution over the accumulated (shifted) utility
scores:

πt+1
i (a) =

exp
(
vt+1
i (a)

)∑
a′∈Ai

exp
(
vt+1
i (a′)

) ∀a ∈ Ai,

where vt+1
i (a) := η

∑t
t′=1 Ũi(a, a

t′

−i), completing the proof.

Lemma 6. Let t ≥ 1 and fix agent i. Suppose πt
i and πt+1

i are the policy updates produced
by Algorithm 1 at iteration t and t + 1 respectively. Then for any pair of distributions π, π′, the
following identity holds: 〈

−ηU t
i +∇φ(πt+1

i )−∇φ(πt
i), π − π′〉 = 0.

Proof. We analyze the policy update dynamics via the optimality conditions associated with the
mirror descent updates under negative entropy regularization. Define the empirical utility vectors at
rounds t− 1 and t as

Ū t−1
i :=

1

t− 1

t−1∑
s=1

us
i , Ū t

i :=
1

t

t∑
s=1

us
i .

From the KKT conditions of the optimization problems defining πt
i and πt+1

i , we know that:〈
−Ū t

i +
1

ηt
∇φ(πt+1

i ), π − π′
〉

= 0,

〈
−Ū t−1

i +
1

η(t− 1)
∇φ(πt

i), π − π′
〉

= 0.

Subtracting the second equation from the first gives:

0 =

〈
Ū t−1
i − Ū t

i +
1

ηt
∇φ(πt+1

i )− 1

η(t− 1)
∇φ(πt

i), π − π′
〉
.

Next, observe that:

Ū t
i =

t− 1

t
Ū t−1
i +

1

t
U t
i ⇒ Ū t

i−Ū t−1
i = −1

t
Ū t−1
i +

1

t
U t
i , or Ū t−1

i −Ū t
i =

1

t
(Ū t−1

i −U t
i ).

Substituting this into the previous expression yields:

0 =

〈
1

t
(Ū t−1

i − ut
i) +

1

ηt
∇φ(πt+1

i )− 1

η(t− 1)
∇φ(πt

i), π − π′
〉
.

Rewriting Ū t−1
i = Ū t

i − 1
t (u

t
i − Ū t

i ) and simplifying, we reach:

0 =

〈
−1
t− 1

U t
i +

1

η(t− 1)
∇φ(πt+1

i )− 1

η(t− 1)
∇φ(πt

i), π − π′
〉
.

Multiplying through by η(t− 1) gives the desired result:〈
−ηU t

i +∇φ(πt+1
i )−∇φ(πt

i), π − π′〉 = 0.
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Lemma 7. Let i be any agent and t ≥ 1. Suppose that the policies πt
i and πt+1

i are the successive
updates obtained from Algorithm 1. Then, for any policy π, the following identity holds:〈

−U t
i , π − πt+1

i

〉
=

1

η

(
DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i)
)
.

Proof. We begin by recalling from Lemma 6 that the following condition is satisfied by the update
rule for any pair π, π′: 〈

−ηU t
i +∇φ(πt+1

i )−∇φ(πt
i), π − π′〉 = 0.

By choosing π′ = πt+1
i , this reduces to:〈

−ηU t
i +∇φ(πt+1

i )−∇φ(πt
i), π − πt+1

i

〉
= 0.

Rearranging terms gives:

η
〈
−U t

i , π − πt+1
i

〉
=
〈
∇φ(πt

i)−∇φ(πt+1
i ), π − πt+1

i

〉
.

We now invoke the identity for the Bregman divergence associated with the negative entropy func-
tion φ, which yields:〈

∇φ(πt
i)−∇φ(πt+1

i ), π − πt+1
i

〉
= DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i).

Putting everything together, we obtain:

η
〈
−U t

i , π − πt+1
i

〉
= DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i).

Dividing both sides by η completes the proof.

Lemma 8. For any agent i and round t, the following upper bound holds for all policies π:

U t
i (π)− U t

i (π
t
i) ≤

η∥U t
i ∥2∞
4

− 1

η
DKL(π∥πt+1

i ) +
1

η
DKL(π∥πt

i).

Proof. We begin by illustrating Lemma 6, which characterizes the optimality condition at each step
via: 〈

−ηU t
i +∇φ(πt+1

i )−∇φ(πt
i), π − πt+1

i

〉
= 0 for all π.

Rearranging gives: 〈
U t
i , π − πt+1

i

〉
=

1

η

〈
∇φ(πt+1

i )−∇φ(πt
i), π − πt+1

i

〉
.

We now apply the three-point identity for Bregman divergence induced by the negative entropy
regularizer:〈

∇φ(πt+1
i )−∇φ(πt

i), π − πt+1
i

〉
= DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i).

Substituting this gives:〈
U t
i , π − πt+1

i

〉
=

1

η

(
DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i)
)
.

To relate this to U t
i (π)− U t

i (π
t
i), we subtract and add U t

i (π
t
i), and observe:

U t
i (π)− U t

i (π
t
i) =

〈
U t
i , π − πt+1

i

〉
+
〈
U t
i , π

t+1
i − πt

i

〉
.

Combining with the expression above, we have:

U t
i (π)− U t

i (π
t
i) =

1

η

(
DKL(π∥πt

i)−DKL(π∥πt+1
i ) +DKL(π

t+1
i ∥πt

i)
)
+
〈
U t
i , π

t+1
i − πt

i

〉
.

Next, apply Young’s inequality to the final term:〈
U t
i , π

t+1
i − πt

i

〉
≤ η

4
∥U t

i ∥2∞ +
1

η
∥πt+1

i − πt
i∥21.
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Finally, use the strong convexity of KL divergence to bound:

∥πt+1
i − πt

i∥21 ≤ 2DKL(π
t+1
i ∥πt

i),

and thus: 〈
U t
i , π

t+1
i − πt

i

〉
≤ η

4
∥U t

i ∥2∞ +
2

η
DKL(π

t+1
i ∥πt

i).

Putting all terms together, we arrive at:

U t
i (π)− U t

i (π
t
i) ≤

η

4
∥U t

i ∥2∞ +
1

η
DKL(π∥πt

i)−
1

η
DKL(π∥πt+1

i ),

as desired.

Proof of Theorem 2. Summing Lemma 8 over t = 0 to T , the KL divergence terms telescope. Since
DKL(π∥πT+1

i ) ≥ 0, we have:

T∑
t=1

U t
i (π)− U t

i (π
t
i) ≤

η

4

T∑
t=1

∥U t
i ∥2∞ +

1

η
DKL(π∥π0

i )

≤ ηT

4
+

DKL(π∥π0
i )

η
,

where the last inequality uses ∥U t
i ∥∞ ≤ 1. Setting η = 1√

T
completes the proof.

A.3 PROOF OF THEOREM 3

In this section, we present the proof of Theorem 3.

Proof of Theorem 3. Fix an agent i ∈ [N ], and any policy π∗, and introduce the discrete-time
stochastic process

wt :=
(
Ui(π

∗, πt
−i)− Ui(π

t
i , π

t
−i)
)
−
(
Ui(π

∗, at−i)− Ui(π
t
i , a

t
−i)
)
.

Since each opponent player j ̸= i plays according to Algorithm 1, the answers at−i at each round t is
sampled from the joint policy πt

−i. Therefore, wt is a martingale difference sequence. Furthermore,
by expanding the definition of Ui, the absolute value of wt satisfies

|wt| =
∣∣(Ui(π

∗, πt
−i)− Ui(π

t
i , π

t
−i)
)
−
(
Ui(π

∗, at−i)− Ui(π
t
i , a

t
−i)
)∣∣

≤
∣∣Ui(π

∗, πt
−i)− Ui(π

∗, at−i)
∣∣− ∣∣Ui(π

t
i , π

t
−i)− Ui(π

t
i , a

t
−i)
∣∣

≤ 2.

Hence, using Azuma-Hoeffding’s inequality, for any δ ∈ (0, 1),

1− δ ≤ P

[
T∑

t=1

wt ≤
√

8T log
1

δ

]

= P

[(
T∑

t=1

Ui(π
∗, πt

−i)−
T∑

t=1

Ui(π
t
i , π

t
−i)

)
−

(
T∑

t=1

Ui(π
∗, at−i)−

T∑
t=1

Ui(π
t
i , a

t
−i)

)
≤
√
8T log

1

δ

]

= P

[
T∑

t=1

Ui(π
∗, πt

−i)−
T∑

t=1

Ui(π
t
i , π

t
−i) ≤ RT

i +

√
8T log

1

δ

]
,

Since the above expression holds for any π∗, in particular, using the union bound,

P

[
max
π∗

T∑
t=1

Ui(π
∗, πt

−i)−
T∑

t=1

Ui(π
t
i , π

t
−i) ≤ RT

i +

√
8T log

|Ai|
δ

]
≥ 1− δ.
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Summing for i ∈ {1, . . . , N} and using the union bound, we can further write

P

[
N∑
i=1

max
π∗
i

{
T∑

t=1

Ui(π
∗
i , π

t
−i)

}
−

T∑
t=1

N∑
i=1

Ui(π
t
1, . . . , π

t
N ) ≤

N∑
i=1

RT
i +N

√
8T log

maxi |Ai|
δ

]
≥ 1−Nδ.

Dividing by T and noting that for any player i ∈ {1, . . . , N},

1

T
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i ,

1

T
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)
,

further yields
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]
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We now analyze the term ∆ := − 1
T

(∑T
t=1

∑N
i=1 Ui(π

t
1, . . . , π

t
N )
)
, which can be expressed as

∆ = − 1

T
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Therefore we have

P
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Since maxπ∗
i

{
Ui(π

∗
i , π̄

T
−i)− Ui(π̄

T
i , π̄

T
−i)
}
≥ 0 for all i, the inequality above implies that
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log

maxi |Ai|
δ

]
≥ 1−Nδ.

which is equivalent to the statement after making the variable substitution δ := δ′/N .

A.4 NECESSITY OF ASSUMPTION 1

Recall our definition that a mechanism M , under agent strategies σ, is said to be (ρ, γ)-approximate
if its expected outcome satisfies:

ρE[UM,σ] + γ ≥ E[Umax],

where ρ and γ represent the multiplicative and additive approximation factors respectively. Follow-
ing Shin et al. (2023), we define the price of anarchy (PoA) as a measure of the worst-case efficiency
loss due to strategic behavior. Specifically, the multiplicative price of anarchy PoAm is the smallest
ρ such that the mechanism is (ρ, 0)-approximate under every Nash equilibrium. Similarly, the addi-
tive price of anarchy PoAa is the smallest γ such that the mechanism is (1, γ)-approximate under all
equilibria. In contrast, the price of stability (PoS) captures the best-case performance at equilibrium:
the multiplicative price of stability PoSm is the smallest ρ such that there exists some Nash equilib-
rium under which the mechanism is (ρ, 0)-approximate, and the additive price of stability PoSa is
similarly defined for (1, γ)-approximation.

Lemma 9 (Shin et al. (2023)). Suppose that both the principal’s utility functions are supported on
[0, L] for some L > 0. For any ε > 0, there exists a problem instance such that PoSa ≥ L − ε, i.e.
E[UM,σ] ≤ ε.

Lemma 10 (Shin et al. (2023)). With symmetric agents, there exists no PIM such that PoAa <
E [Umax −maxi Ui,min] , where Umax denotes the principal utility of the optimal answer among all
candidate answers generated by agents, and Ui,min denotes the principal utility of agent i’s worst
answer.
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Lemma 9 illustrates a worst-case scenario in which the principal cannot access a good answer. This
occurs when a super agent, not aligned with the principal, strategically submits low-utility answers
that the principal is forced to accept, resulting in expected utility arbitrarily close to zero—even
when much better answers exist.

Lemma 10 indicates that when the utility of agents is negatively correlated with that of the principal,
agents tend to act selfishly and adversarially, submitting answers that harm the principal’s objective.
Introducing independence addresses this issue by decoupling their incentives, thus reducing strate-
gic misalignment. However, in our framework, the principal and agent are reacted based on same
questions, therefore, assuming independent utility doesn’t make sense. Therefore, these lemmas
establish the necessity of the second and third part of Assumption 1.

B COMPUTATIONAL RESOURCES

Most of the compute is spent in Stage 1 (candidate answers generation). Table 5 shows mean model
calls and generated tokens per question to generate candidate answers after 16 roll-outs. Stage 2
(delegation) is comparatively cheap—about 1.511 s per iteration per question. On a single NVIDIA
L4, completing 16 rollouts for 300 GSM8K questions takes roughly four days when each agent has
access to 250 GB of memory. Runtime scales approximately linearly with the number of questions
(and rollouts) and can be reduced substantially by distributing questions across multiple GPUs.

Table 5: Inference cost of generating candidate answers stage of COMMAND on GSM8K: mean
model calls and generated tokens per question

Mistral-8B-Instruct Zephyr-7B Phi3-Mini-4K-Instruct Falcon-7B-Instruct

Avg. calls 98.45 73.30 102.82 57.60
Avg. generated tokens 144.80K 81.74K 263.76K 51.81K
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