
Automated Knowledge Base Construction (2021) Conference paper

A Case Study in Bootstrapping Ontology Graphs from
Textbooks

Vinay K. Chaudhri vinayc@stanford.edu
Matthew Boggess mattbogg@stanford.edu
Han L. Aung hanlaung@cs.stanford.edu
Department of Computer Science, Stanford University, Stanford, CA, 94305, USA

Debshila B. Mallick debshila@rice.edu

Andrew C. Waters andrew.e.waters@gmail.com

Richard E. Baraniuk richb@rice.edu

OpenStax, Rice University, Houston, TX, 77005

Abstract

Ontology graphs are graphs in which the nodes are generic classes and edges have labels
that specify the relationships between the classes. In this paper, we address the question:
to what extent can automated extraction and crowd sourcing techniques be combined to
bootstrap the creation of comprehensive and accurate ontology graphs? By adapting the
state-of-the-art language model BERT to this task, and by leveraging a novel crowd sourced
relationship selection task, we show that we can use this approach to bootstrap the ontology
graph creation for further refinement and improvement through human effort.

1. Introduction

Ontology learning from text is the problem of extracting classes, relationships, and their
complete logical definitions [12]. An ontology graph is a subset of an ontology in that
it focuses primarily on representing classes and class to class relationships. For example,
given the sentence: “Cytoplasm consists of jelly-like cytosol within a cell”, its ontology
graph contains nodes for cytoplasm, cytosol and cell, with an edge between cytoplasm and
cytosol labeled as material, and an edge between cell and cytoplasm labelled as is inside.
In addition, it contains a node jelly-like connected to cytosol using the label viscosity. The
relationships such as material, is inside and viscosity are not directly mentioned in the text,
and there could be many different ways to express these relationships in text.

Ontology graphs are different from fact graphs [7, 36] even though the boundary between
the two is not sharp. For example, a fact graph may have nodes representing specific
real world entities such as Joe Biden, United States, and the edges such as president of.
Automatically extracting ontology graphs from text [5, 24] is considerably more complex
than extracting fact graphs from text for, at least, three different reasons. First, it is unclear
how to configure a self-supervised ontology learning pipeline to give high performance on this
task. Second, there is limited naturally occurring training data available about relationships
between classes that makes it difficult to even build a supervised learning system. Finally,
as we see in the above example, quite often the classes and relationships that are desirable
for extraction are not directly mentioned in natural language.

Comprehensive and precise ontology graphs are important for applications in educa-
tion [8], law [25], and finance [4]. As a concrete example, ontology graphs when used in
conjunction with an intelligent textbook lead to significant educational improvements [8].
(In the Appendix A, we include an illustration of an existing intelligent textbook.) The
requirements of this application are different from the requirements of related tasks such
as answering multiple choice exam questions [13]. For example, an intelligent textbook
glossary page for a class shows its super classes and sub classes. In a multiple choice exam,
there are likely to be only a few questions about this relationship, and most certainly, cor-
rectly knowing all such relationships is not required. In contrast, when a student reads
the intelligent textbook glossary, the subclass and super class relationships need to be all
present and correct, and hence the need for an accurate and comprehensive ontology graph.

In this paper, we consider a three part process for bootstrapping the creation of accurate
and comprehensive ontology graphs from textbook content. First, to identify the terms that
will form the nodes of the ontology graph, we train BERT in a self-supervised manner for
the task of automated term extraction, and obtain an F1 score of 0.51 as compared to an F1
score of 0.32 obtained using AWS Comprehend key phrase extraction. Second, to organize
the terms into a class hierarchy, we train BERT using a weak supervision approach on the
task of taxonomy learning, and obtain an F1 score of 0.55 which is substantially better
than the highest F1 score of 0.3947 reported by previous methods [6]. Third, to identify
the connections between the nodes in the graph, we train BERT using weak supervision
for the relation extraction for the has part relation, and obtain an F1 score of 0.22. Even
though this score is lower than the performance of previously reported methods [5, 24], the
previous methods had no way to scale. In contrast, the labeling approach that we used has
an accuracy of 0.96 and can be deployed at no cost on a textbook reading platform with
millions of students making it possible to train and scale it to large libraries of textbooks.
In summary, language models trained on textbooks provide a viable output to bootstrap
term extraction, and taxonomy construction, but require more training to be viable for
extracting relations such as has part.

We begin by describing our approach to constructing ontology graphs, then describe its
experimental evaluation, and conclude by highlighting how this approach improves upon
the prior work and directions for future work.

2. Overview of the Approach

Creating an ontology graph involves identifying classes and the relationships between them.
Towards this goal, we leverage entity and relation extraction interspersed with human val-
idation as shown in Figure 2. The components shown in the solid box on the left side of
Figure 2 are part of the current system being reported in this paper, whereas the compo-
nents shown in the right hand side in the dotted box, and the dotted feedback arrows are
future work. We next explain the background and rationale for our approach.

A concrete target for the required ontology graph is a knowledge base, called KB Bio
101 [9], which was manually curated by domain experts and was found extremely useful
in an intelligent textbook [8]. Class definitions in KB 101 used a rule language [10]. We
focused our initial work on identifying direct class level relationships leaving the task of
extracting their complete logical definitions for future work.

Bootstrapping Ontology Graphs

Figure 1: Ontology Graph Construction Pipeline

Automated Term Extraction (ATE) is a heavily researched task [21] which is a nat-
ural candidate for identifying the classes that should be captured in an ontology graph.
Our initial experiments showed that commercial tools (for example, AWS Comprehend key
phrase extraction service [1]) had a low precision, and hence, an approach that can learn
the peculiarities of different domains was required. As textbooks come with a hand-curated
glossary, the terms in the glossary can provide the training data necessary for automatic
extractors. ATE is different from the closely related Named entity recognition (NER) task
[21] that extracts concrete entities and labels them with a small number of classes such as
person, location, company etc.

The choice of relationships to be represented in our ontology graph is based on the
empirical evidence from KB Bio 101 and recent work on linguistic analysis [16]. We retained
20 of over 100 relationships used in KB Bio 101 that were used most often, and dropped
the ones that were found confusing (e.g., object, base, etc.) or infrequently used. The
relationships we currently support include taxonomic relationships for classes and instances;
structural relationships such as has part, has region and material, spatial relationships
such as is inside and is above, functional relationships such as has function and facilitates,
participant relationships such as raw material and result, event structure relationships, such
as subevent and next event and causal relationships such as enables and prevents. We also
allow the possibility that no direct relationship may exist between two terms.

Automatic relation extraction (ARE) has been used for extracting relationships from
text [7, 36, 5, 24]. We used the data from KB Bio 101 and weak labeling methods for training
BERT for the relation extraction task. In the experiments that we report here, the resulting
model did not have a high accuracy at this task. The primary bottleneck in improving ARE
is lack of training data. Traditional approaches to training data development have relied
on custom labeling tasks [5, 24]. We wanted to develop a relationship labeling task that
provided a cost-effective way of gathering relationship labels, but also had the potential

to be pedagogically useful to justify no cost deployment on a textbook reading platform.
Therefore, we designed a relationship selection task (RST) in which a student studying
from a textbook engages in an educationally useful concept mapping activity [17, 35] and
chooses the correct relationship between two classes appearing in the textbook. We plan
to deploy the RST on the OpenStax open-source textbook reading platform that attracts
several million students every year.

The relation extraction step, shown in Figure 2, encapsulates both RST and ARE. In
the early stages, we envision the RST to play a bigger role in creating the ontology graph,
but as additional data accumulate, ARE would become more predominant. The human
review step for both term and relation extraction refers to a review by an expert to ensure
a highly accurate ontology graph. The backward arrows indicate that as human experts
perform validation, the resulting information can be fed as training data to further improve
the automated extraction. Future versions of the system will include an active learning
component [33] which would seek human input only for those cases where the confidence in
the automated extraction is low. Knowledge validation refers to the step of verifying the
ontology graph that connects different class level relationships into a global whole.

For the rest of the paper, we will focus on describing the ATE, ARE and RST modules.
In the current system, the relationship extraction is performed primarily through RST. Our
ARE results establish a baseline performance which we hope to improve in our future work
by leveraging the data collected through RST.

3. Tool Development

In this section, we will describe the design and implementation of the ATE, ARE, and the
RST components of the ontology graph construction pipeline.

3.1 Automated Term Extraction

We formulate the term extraction problem as a supervised learning task where input is a
textbook sentence, and the output is a label for each word based on the BIOES labeling
scheme [28] indicating which of the word sequences constitute a term.

� Input: [’All’, ’cells’, ’have’, ’a’, ’cell’, ’membrane’, ’.’]

� Output: [’O’, ’S’, ’O’, ’O’, ’B’, ’E’, ’O’]

In the above sentence ‘All’ is labeled by ’O’ which denotes other, ’cells’ is labeled by ’S’
which denotes a single word term, ’cell’ is labeled by ’B’ indicating the beginning of a term,
and ’membrane’ is labeled by ’E’, indicating the ending of a term. (’I’ is used to label a
word that is in a term, but neither its beginning or the ending word.)

We fine tuned the cased base BERT model [14] for term extraction. Our fine-tuning
involved first training BERT on the textbook corpus, and then adding a fully connected
softmax output layer that produces a probability distribution across the five BIOES tags
for each token. The tag for a token is then the prediction with the highest probability. We
undertook our implementation using Pytorch [27], huggingface transformers bert base cased
implementation of BERT [41], used commodity hardware, and optimized using mini-batch
gradient descent with the Adam optimizer (See Appendix B for more details).

Bootstrapping Ontology Graphs

3.2 Automated Relation Extraction

We focused on three of the most important relationships which also had the most training
data available: taxonomic, structural and synonyms. A taxonomic relationship captures the
subclass or superclass relationship between two terms. A structural relationship captures
the has part or has region relationship between two terms. The has part relation is used for
relating to physical entities, and has region relation is used to relate two spatial entities.

We formulate the relation extraction problem as a supervised learning task where the
input is a sentence with two terms identified in the sentence by adding special tokens to
denote the term boundaries with tags such as TERM1-START, TERM1-END, etc., and
the output is one of the six relations (subclass, super class, has part/has region, has part
of/has region of, synonym, OTHER). If the sentence contains more than two terms, we
consider each possible pair of those terms as a prediction task. Here is an example of such
an input-output pair.

� Input: [’All’, ’[TERM1-START]’, ’cells’, ’[TERM1-END]’, ’have’, ’a’,

’[TERM2-START]’, ’cell’ ’membrane’, ’[TERM2-END]’, ’.’]

� Output: has part / has region

We use a new variant of BERT known as BERT-EM [34], which modifies a pre-trained
BERT model for supervised relation classification. In BERT-EM four new additional tokens
are added to denote the start and end of both terms from the term pair in the sentence.
These new tokens are shared across every sentence and thus allow a generalized represen-
tation of the locations of the two terms in a term pair to be learned across sentences. This
modified input sequence is then run through a pre-trained BERT base encoder. The fi-
nal encoder layer representations for the TERM1-START and TERM2-START tokens are
then concatenated and fed into a linear layer that is run through a softmax to produce a
probability distribution over relations. We implemented all models and training code using
Pytorch and Python. We used the huggingface transformers bert base cased implementa-
tion of BERT [41]. We used commodity hardware and optimized using mini-batch gradient
descent with the Adam optimizer (See Appendix C for more details).

3.3 Relationship Selection Tool

We developed a relationship selection tool to guide the user in choosing the correct rela-
tionship between a pair of terms in the context of a sentence [40]. The RST supports all
twenty of the relationships that were mentioned in Section 2. The intended user of the RST
is a college student. The user is first asked to read a section from the textbook and then
to undergo a short training on the types of relationships. We designed the training using
simple common-sense examples that new users would find easy to understand. For example,
we explain the is inside relationship using a visual in which a cat is shown hiding inside a
box. (A detailed walk through of the training is available in Appendix D.) As a concrete
example, consider an example where the user is asked to relate the terms “cytoplasm” and
“nucleus”. The user first chooses the appropriate relationship family for the terms, includ-
ing taxonomic, spatial, and component-based relationships. In this example, the correct
relationship family is spatial and choosing this option takes them to a second set of options

to specify which spatial relationship is correct. They have an option to flip the order of the
terms to ensure that the chosen relationship applies in the correct direction.

4. Experimental Setup

In this section, we consider the data that we used to test different modules. The code
and data have been archived at: https://openstax.github.io/research-kg-learning/
akbc-2021/

4.1 Data for Automated Term Extraction

We used 10 open source textbooks (as listed in Table 7 in the Appendix E) across multiple
science subjects such as Physics, Chemistry, Biology, Astronomy and Anatomy. In addition,
we used a textbook published by Macmillan Learning entitled LIFE biology [32]. Each of
these textbooks contains a glossary. We used the entries in the glossaries as training data
for the terms that need to be extracted.

We then used the glossary terms from each textbook to automatically insert the BIOES
tags into the sentences of that book. We handled lexical modifications such as pluralization,
capitalization, etc., by using spaCy [20] to pre-process the sentences and terms so that we
could match the terms on their lemmatized forms. We also handled a few special cases such
as acronyms and hyphenation by implementing custom utilities.

We used the data from eight textbooks except the OpenStax Biology 2e (Bio2e) and
LIFE in the training set. To evaluate our models, domain experts hand labeled a develop-
ment set consisting of two sections from Bio2e (Sections 4.2., 10.2) and a test set consisting
of Chapter 39 from LIFE. Finally, we removed all sentences from the training set that con-
tained any of the terms from the development and the test sets. The sentence and term
counts for the resulting splits are shown in Table 7.

4.2 Data for Automated Relation Extraction

To train a model for the relation extraction task, we need training data that has sentences
with term pairs tagged, and the correct relationship identified between those terms. We
created a data set where sentences were extracted from two Biology textbooks: Bio2e and
LIFE. We used a term list obtained by combining the glossary of Bio2e and all of the biology
terms from KB Bio 101 [9]. We used spaCy to tag each sentence using these terms. Tagging
was done using lemmatized forms to account for lexical variations.

To associate a relationship between the pair of terms appearing in each sentence, we
employed weak supervision using Snorkel [29]. This process involves three steps. First, we
defined a set of labeling functions where each labeling function takes as input a sentence-
term pair, and outputs a relation label or a special ABSTAIN response indicating that the
labelling function cannot make a judgement. Second, we apply these functions to each term
pair appearing in the input sentences producing a set of labels. Finally, we aggregated the
predictions to obtain a single label. The functionality needed for second step is provided in
Snorkel. We describe the first and the third steps in greater detail.

We used three categories of labeling functions: pattern-based, term-based and distant
supervision-based. The pattern-based functions are similar to the Hearst patterns [19] with

https://openstax.github.io/research-kg-learning/akbc-2021/
https://openstax.github.io/research-kg-learning/akbc-2021/

Bootstrapping Ontology Graphs

one difference — instead of operating on the input sentence, they operate on the dependency
parse of the sentence produced by spaCy. For example, a has pattern label function labels
two terms in a sentence with the has part/ has region relationship if the path between them
in the dependency parse consists of a single step which is labeled as “has” or “have”. The
term-based functions operate purely on the syntactic form of the two terms and ignore the
sentence they appear in. For example, if two terms end with the same base word but one
has an additional modifier in front of it, this suggests a taxonomic relation (e.g., “eukaryotic
cell”subclass“cell”). The distant supervision function uses the existing hand curated KB
Bio 101 by looking up the relationship between the two terms in the KB. An exhaustive list
of all the labeling functions we tried is available in Table 8. Snorkel reports the coverage of
each labeling function that provides insight into the contribution of each labeling function
to covering the training data. Total coverage of these labeling functions is approximately
66% which reinforces the value of the training data that is available, and suggesting that
additional labeling functions would be required for more completely coverage.

Snorkel provides two different ways of aggregating the labels produced by the individual
functions: hard labels and soft labels. We can produce a single hard label for each data
instance by taking a majority vote across labelling functions. This means that the relation
that was labelled by the most labelling functions becomes the label for that instance. If
there is a tie or no label functions applied, then the label is ABSTAIN. For producing a
soft label, we can produce a probability distribution across relations by using the label
model included with Snorkel [30]. The label model learns a latent underlying confidence for
each label function using the co-occurrences amongst each of the label functions produced
in step 2. Label functions that are estimated to be more reliable are given more weight
and those that are less reliable are given less weight. Thus when multiple label functions
label the same instance, their label votes are combined based on their reliability estimates.
For example, a term pair that receives a certain label from three label functions will have
a higher confidence in that label than the one that receives a single label or conflicting
labels. We experimented with both soft labels and hard labels and found that the soft
labels outperformed the hard labels.

We split all available sentences into training, development, and test sets. The devel-
opment set consists of all sentences from the cell structure and cell cycle chapters of both
textbooks (Ch. 4 and 10 of Bio2e, Ch. 5 and 11 of LIFE). The test set consists of all
sentences from Ch. 39 of LIFE. All term pairs in both the development and test sets were
removed from the remainder of the data set which then formed the training set.

4.3 Data for Relationship Selection Task

As the ARE task covered only a small number of relationships, we tested the RST in
conjunction with ATE. We used ATE to identify terms for Sections 4.2 and 10.2 from Bio2e,
and Section 14.1 from the OpenStax Psychology 2e textbooks. As the precision and recall
of the ATE is not perfect, two domain experts from each of the respective domain validated
the terms. We then parsed the chosen section into individual sentences and automatically
identified all the term pairs that existed in each sentence. A sentence that contained N
terms would have

(N
2

)
possible pairings, with each pairing considered to be a single task.

Using the RST, the tasks were presented to users on a crowd sourcing platform.

Table 1: Comparison of ATE with AWS Comprehend

AWS Comprehend ATE
Term Count Precision Recall F1 Precision Recall F1

Bio2e Section 4.2 24 0.14 0.83 0.23 0.34 0.83 0.48
Bio2e Section 10.2 47 0.20 0.87 0.32 0.35 0.85 0.49
LIFE Chapter 39 596 0.30 0.65 0.41 0.59 0.51 0.55

Overall 0.21 0.78 0.32 0.43 0.73 0.51

Workers have varying degrees of competency and tasks have varying degrees of diffi-
culty. Simply ignoring these individual differences and using a majority voting scheme can,
therefore, lead to significant estimation errors. To overcome these issues, we designed a
denoising algorithm. Our model directly assigns a latent competence parameter for each
worker as well as a latent difficulty parameter for each task. If a worker has an ability
greater than the difficulty of the relationship, the model assumes that the worker is likely
to know the correct relationship. By contrast, if the worker’s ability is lesser than the dif-
ficulty of the relationship, they will likely not know the correct relationship. If a worker
does not know the correct answer they will still guess at the correct relationship, and with
some task-dependent probability will guess the correct relationship. The exact structure of
our model is very similar to an item response theory model [38]. Our model examines all of
the worker response data and estimates the competence level of each worker, the difficulty
of each relationship, and the probability of guessing the correct relationship for each task.
We fit our model to the collected response data using Markov Chain Monte Carlo (MCMC)
methodology [3, 15, 37].

5. Results and Analysis

We now describe the results and analysis for each of the ATE, ARE and RST modules.

5.1 Automated Term Extraction

We compared the performance of ATE with AWS Comprehend key phrase extraction service
which is a commercial product [1]. We processed the text under consideration through both
AWS Comprehend and the ATE. For the terms returned by each, we performed identical
processing to factor out lexical variations, and to accept those mutli-word predicted terms
where at least one word appeared in the gold terms. We show our results in Table 1.
ATE consistently outperforms AWS Comprehend on the F metric. In some cases, AWS
comprehend has better recall, but its precision is much worse suggesting that training the
language models on the textbooks considerably improved the predictions.

The most interesting outcome of the experiment is the failure analysis presented below.
Such an analysis can be used to to better support the textbook authors in vocabulary rigor.

Lexical Knowledge: Lexical knowledge such as pluralizations, acronyms, different
verb tenses, nominalizations, etc., are essential for good performance on ATE. Even though
we were able to leverage some lexical knowledge in spaCy, our analysis of the failing cases

Bootstrapping Ontology Graphs

Table 2: Relation Extraction Model Comparison.

Source Precision Recall F1

BERT-EM Hard Labels 0.43 0.66 0.52
BERT-EM Soft Labels 0.30 0.76 0.43

revealed that there are numerous pieces of domain-specific lexical knowledge: chromatin vs
chromatid, centromere vs centromeric. A textbook-specific linguistic resource, similar to
Wordnet [26], is essential for better performance on ATE.

General Terms: General terms are not defined in the textbook glossary, and hence, will
not be present in the training data. Consider the term “microscope”. For a first-year college
level textbook, we can expect the student to know the meaning of a microscope, and we
need not define it in the glossary. But in our ontology graph, we may have an experimental
process in which microscope is the primary instrument, and hence microscope needs to be
represented. Such general terms need to be curated for every textbook. Alternatively, we
can envision a scenario in which every textbook is accompanied by a glossary of prerequisite
terms that it assumes a student to know which can be input as training data.

Terms not directly mentioned in text: There are several categories of terms that
are not directly expressed in the natural language, and we consider two examples. The text
often describes concepts without actually assigning them a name, for example, mechanisms
that ventilate the environmental side of those surfaces with air or water, which can be
simply referred to as a ventilation mechanism. Identifying such key terms poses a dual
challenge. On the one hand, the term mentioned in the text is a long phrase which the
automated extractor fails to pick up, and on the other hand, even if the extractor picks out
the phrase, there is a challenge of associating a succinct name with the key term. There
are many examples where the textbook describes different aspects of the same term which
warrant a separate representation in the ontology graph, but it refers to them using the
same term. For example, the psychology textbook first defines stress as a stimulus response
mechanism, and then it defines stress as a physiological response. In both cases, it uses
the word stress to define these two separate models which require distinct names in the
ontology graph. Explicating and naming such indirectly stated concepts will continue to
require some human intervention.

5.2 Automated Relation Extraction

We calculate precision, recall and F1 scores at the level of term pairs, that is, as long as
the model predicted one of the six desired relationships between a term pair, we included
the prediction in our calculations. The best baseline for our model is the KB Bi0 101 that
was entirely created through human effort. The results are shown in Table 2. The results
for individual relation specific classes are shown in Table 3.

The best results are for the subclass and super class relationships. F1 values of 0.47
and 0.62 with an average of 0.55 are much higher than an F1 value of 0.3947 that was
previously reported for taxonomy extraction [6]. Even though the results for the has part
are lower than the previously reported results for extracting such relations, but combining

Table 3: Relation Extraction Soft Label Results.

Relation Precision Recall F1

subclass 0.32 0.88 0.47
super class 0.53 0.76 0.62
synonym 0.25 1.00 0.42
has part/has region 0.15 0.50 0.22
has part of/has region of 0.17 0.80 0.28

rapidly improving language models with RST is a more viable approach. We outline below
two natural refinements to ARE.

Expanding labeling sources: The primary bottleneck in improving the performance
of relation extraction is the limitation of training data. There are four possible avenues
for cost effectively expanding the training data. First, we can add more weak labeling
functions using more patterns or distance supervision sources. Second, we could leverage
Wordnet which has many concepts found in textbooks and can increase coverage of the
training data. Third, Wikipedia and Wikidata [39] have a lot of information on academic
subjects that could be leveraged to expand the training data. Finally, we could leverage
crowd sourcing to inexpensively obtain relation labels. The input provided by humans is
clearly complementary to weak labeling functions. Crowd sourcing can be used in a targeted
manner to fill in the gaps where programmatic labels are lacking.

Graph post processing and inference: The model produces a list of triples, but it is
unclear exactly how consistent this set is until they are all connected into a global graph. In
doing so, graph processing techniques could potentially be employed to prune false positive
relations and to infer false negative relations [11]. In this way, the relation extractor from
text could act as a seed graph that could then be modified to greater accuracy.

5.3 Relationship Selection Task

There were a total of 192 tasks for Bio2e Section 4.2, 229 tasks for Bio2e Section 10.2, and
64 tasks for Section 14.1 of Psych 2e textbooks labeled by the crowd workers. From the
labeled tasks, we randomly selected 50 tasks with their labels from the denoised output for
each section and presented these to two subject matter experts to verify if the labels that
we obtained through our experiment were, in fact, correct. We show the results in Table 4.
The precision for the case when at least one of the SMEs agreed with the crowd workers
was exceedingly high, i.e., 0.96 or higher. The precision if we require both SMEs to agree
with the crowd workers was much lower, i.e., 0.67 or higher. We believe that with future
work on better training and guidance for the expert SMEs, and refinements to the RST
tool, a precision of 0.9 or higher is achievable.

6. Conclusions and Future Work

We presented a pipeline to create ontology graphs from textbooks by combining pre-trained
language models and crowd sourcing strategies with validation by subject matter experts
(SMEs). Our work is a substantial improvement over the previous baseline [18] that involved

Bootstrapping Ontology Graphs

Table 4: Validation of Relationship Selection

Textbook section Precision when either SME agreed Precision when both SMEs agreed

Bio 4.2 0.98 0.70
Bio 10.2 0.96 0.81
Psych 14.1 0.98 0.67

SMEs investing 5 person years to engineer a knowledge base for the first 10 chapters of
a biology textbook. Scaling that effort to all 56 chapters [31] would have required an
estimated $1.5M budget. Additionally, the constructed KB and software were proprietary
and unavailable to other researchers. Our method significantly cuts down the time and
resource costs for this task and our innovations will be released in the open domain.

Our work advances the most closely related prior work on creating ontology graphs
from textbooks [24, 5] in three important ways. First, our labeling task is designed in a
way that it can be incorporated into the textbook reading by students making it much
more practical across large libraries of textbooks. Second, we handle a much larger set
of relationships that include taxonomic, structural, functional and causal relationships.
Finally, we are leveraging rapidly improving pre-trained language models so that similar
underlying infrastructure could be used for both entity and relation extraction.

Both automated and crowd sourcing methods have inherent limitation unless they are
sufficiently moderated by human expert validation. Therefore, we view the methods pre-
sented here as bootstrapping that can give us a head start as we start to develop a new
ontology graph. As we gather more validated data with the help of crowd workers, we
anticipate that ARE will improve to a point where it can become self-supervised. In the
interim, we anticipate that we will be able to use active learning so that we rely on crowd
input only when the prediction confidence is low.

Our approach here only gives us class level relationships between nodes in an ontology.
An ontology contains much deeper relationships between instances. For example, a chromo-
some is inside a cell only when it is a part of that cell. Chromosomes can be removed from
a cell, and in that case, the is inside relationship does not hold. An ontology is able to cap-
ture such nuances through a proper use of quantification in rule definitions. Automatically
capturing rules is an avenue for future work.

Finally, there are many applications in law and finance that are similar to textbooks
that require comprehensive and precise ontology graphs. We therefore, argue, that the
innovative combinations of automation and human methods in which the precision and
coverage are held to a high bar is wide open area for exploration for automated knowledge
base construction.

Acknowledgment

This work was funded by the Convergence Accelerator program of the National Science
Foundation and AWS Cloud Credits for Research program. We would like to acknowledge
the subject matter experts in Biology (Sandra Adams, Yan Gong and Shizuka Yamada)
and Psychology (Karen Watson and Kathleen Hughes) for their participation in the human
validation of the terms and crowd sourced relationship data.

References

[1] Features of AWS Comprehend. https://aws.amazon.com/comprehend/features/.
Accessed: 2021-07-27.

[2] Huggingface pytorch implementation of BERT. https://github.com/huggingface/

pytorch-pretrained-BERT.

[3] James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous
response data. Journal of the American statistical Association, 88(422):669–679, 1993.

[4] Mike Bennett. The Financial Industry Business Ontology: Best practice for big data.
Journal of Banking Regulation, 14(3):255–268, 2013.

[5] Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany
Harding, Brad Huang, Peter Clark, and Christopher D Manning. Modeling biolog-
ical processes for reading comprehension. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1499–1510, 2014.

[6] Georgeta Bordea, Els Lefever, and Paul Buitelaar. Semeval-2016 task 13: Taxonomy
extraction evaluation (texeval-2). In Proceedings of the 10th international workshop on
semantic evaluation (semeval-2016), pages 1081–1091, 2016.

[7] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka,
and Tom M Mitchell. Toward an architecture for never-ending language learning. In
Twenty-Fourth AAAI conference on artificial intelligence, 2010.

[8] Vinay K Chaudhri, Britte Cheng, Adam Overtholtzer, Jeremy Roschelle, Aaron
Spaulding, Peter Clark, Mark Greaves, and Dave Gunning. Inquire biology: A textbook
that answers questions. AI Magazine, 34(3):55–72, 2013.

[9] Vinay K Chaudhri, Daniel Elenius, Sue Hinojoza, and Michael Wessel. KB Bio 101:
Content and challenges. In Formal Ontology in Information Systems, pages 415–420.
IOS Press, 2014.

[10] Vinay K Chaudhri, Stijn Heymans, Michael Wessel, and Son Cao Tran. Object-oriented
knowledge bases in logic programming. In Technical communication of international
conference in logic programming, 2013.

[11] Catherine Chen, Kevin Lin, and Dan Klein. Constructing taxonomies from pretrained
language models. arXiv preprint arXiv:2010.12813, 2020.

[12] Philipp Cimiano, Alexander Mädche, Steffen Staab, and Johanna Völker. Ontology
learning. In Handbook on ontologies, pages 245–267. Springer, 2009.

[13] Peter Clark and Oren Etzioni. My computer is an honor student—but how intelligent
is it? standardized tests as a measure of ai. AI Magazine, 37(1):5–12, 2016.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

https://aws.amazon.com/comprehend/features/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT

Bootstrapping Ontology Graphs

[15] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. Bayesian data analysis. CRC press, 2013.

[16] Nikolas Gisborne and James Donaldson. Thematic roles and events. In The Oxford
Handbook of Event Structure. Oxford University Press, 2019.

[17] Phillip J Grimaldi, Laurel Poston, and Jeffrey D Karpicke. How does creating a concept
map affect item-specific encoding? Journal of Experimental Psychology: Learning,
Memory, and Cognition, 41(4):1049, 2015.

[18] David Gunning, Vinay K Chaudhri, Peter E Clark, Ken Barker, Shaw-Yi Chaw, Mark
Greaves, Benjamin Grosof, Alice Leung, David D McDonald, Sunil Mishra, et al.
Project halo update—progress toward digital aristotle. AI Magazine, 31(3):33–58,
2010.

[19] Marti A Hearst. Automatic acquisition of hyponyms from large text corpora. In Coling
1992 volume 2: The 15th international conference on computational linguistics, 1992.

[20] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. Software
package, 2017.

[21] Daniel Jurafsky and James H Martin. Speech and language processing: An introduction
to speech recognition, computational linguistics and natural language processing. Upper
Saddle River, NJ: Prentice Hall, 2008.

[22] Marta M Koć-Januchta, Konrad J Schönborn, Lena AE Tibell, Vinay K Chaudhri,
and H Craig Heller. Engaging with biology by asking questions: Investigating students
interaction and learning with an Artificial Intelligence-enriched textbook. Journal of
Educational Computing Research, 58(6):1190–1224, 2020.

[23] Marta M Koć-Januchta, Konrad J Schönborn, Lena AE Tibell, Vinay K Chaudhri,
and H Craig Heller. Connecting concepts helps put main ideas together: Cognitive
load and usability in learning biology with an AI-enriched textbook. Submitted for
Publication, 2021.

[24] Xiao Ling, Peter Clark, and Daniel S Weld. Extracting meronyms for a biology knowl-
edge base using distant supervision. In Proceedings of the 2013 workshop on Automated
knowledge base construction, pages 7–12, 2013.

[25] Nathaniel Love and Michael Genesereth. Computational law. In Proceedings of the
10th international conference on Artificial intelligence and law, pages 205–209, 2005.

[26] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS-W, 2017.

[28] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity
recognition. In Proceedings of the thirteenth conference on computational natural lan-
guage learning, pages 147–155. Association for Computational Linguistics, 2009.

[29] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid training data creation with weak supervision. The
VLDB Journal, 29(2):709–730, 2020.

[30] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey,
and Christopher Ré. Training complex models with multi-task weak supervision. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4763–
4771, 2019.

[31] Jane B Reece, Lisa A Urry, Michael Lee Cain, Steven Alexander Wasserman, Peter V
Minorsky, Robert B Jackson, et al. Campbell biology. Number s 1309. Pearson Boston,
2014.

[32] David E Sadava, David M Hillis, H Craig Heller, and May Berenbaum. Life: the science
of biology. Macmillan, 2009.

[33] Burr Settles. Active learning. Synthesis lectures on artificial intelligence and machine
learning, 6(1):1–114, 2012.

[34] Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski.
Matching the blanks: Distributional similarity for relation learning. arXiv preprint
arXiv:1906.03158, 2019.

[35] Hariharan Subramonyam, Colleen Seifert, Priti Shah, and Eytan Adar. texsketch:
Active diagramming through pen-and-ink annotations. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pages 1–13, 2020.

[36] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontology
from wikipedia and wordnet. Journal of Web Semantics, 6(3):203–217, 2008.

[37] Hariharan Swaminathan and Janice A. Gifford. Bayesian estimation in the rasch model.
Journal of Educational Statistics, 7(3):175–191, 1982.

[38] Wim J van der Linden and Ronald K Hambleton. Handbook of modern item response
theory. Springer Science & Business Media, 2013.

[39] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

[40] Andrew E. Waters, Vinay K. Chaudhri, Debshila Basu Mallick, and Richard G. Bara-
niuk. A relationship selection task. In Proc. of the 3rd International Workshop on
Intelligent Textbooks, 2021.

[41] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. Huggingface’s transformers: State-of-the-art natural language processing.
ArXiv, abs/1910.03771, 2019.

Bootstrapping Ontology Graphs

Appendix A. Intelligent Textbook use case for an Accurate and
Comprehensive Ontology

Figure 2: An example sentence from the Biology textbook and its corresponding Ontology
Graph. Currently, such KGs are authored manually.

An intelligent textbook (ITB) incorporates an ontology of key concepts and relations
[8] to offer five new capabilities over and above the traditional textbooks (See Figure 2
for an illustration of the ontology). First, a student can access the glossary definition of
each word by simply touching on it (See Figure 3). Second, each concept has a summary
page that organizes key facts about it from across the book. This includes cross linking
to different diagrams and passages across the book, and thus, breaking the linear struc-
ture of the textbook. Third, it presents the visualization of each concept that a student
can interactively explore. Fourth, in response to highlights in passages, it calculates rel-
evant questions that a student can use for self-testing (See Figure 3). Fifth, it provides
a structured query interface through which a student can pose questions to the textbook
and obtain answers (See Figure 4). A video overview of the features is available online at:
https://www.youtube.com/watch?v=I8swXc3WH1M

An ITB requires a comprehensive and accurate ontology graph for the following reasons.
First, the ITB provides definition and visualization for every single concept, and therefore,
the ontology graph must cover all salient concepts, their definitions, and properties. Second,
the textbooks are expected to be nearly 100% accurate, and the students expect a similar
accuracy from the anicillary resources such as test questions, visualizations, hyperlinks, etc.
Finally, as an ITB is envisioned to be eventually a good tutor for the students, it must have
an accurate and comprehensive understanding of the key concepts and relationships in the
textbook comparable to what a human tutor would have.

Figure 3: Textbook interface for the student. Each significant word is linked to its definition
and a summary page about it. In response to student highlights, the textbook
automatically generates questions from the KG that a student can use for self-
testing. (Text and figures from LIFE (11th Edition) by David E. Sadava, David
M. Hillis, H. Craig Heller and Sally D. Hacker. Copyright ©2017 by Macmillan
Learning, Inc. Reprinted (used) by permission of Macmillan Learning, Inc.)

Bootstrapping Ontology Graphs

Figure 4: Through a structured query interface, a student can ask questions and the text-
book returns the answers. In the above example, the student has asked to compare
a protein with a lipid. (Text and figures from LIFE (11th Edition) by David E.
Sadava, David M. Hillis, H. Craig Heller and Sally D. Hacker. Copyright ©2017
by Macmillan Learning, Inc. Reprinted (used) by permission of Macmillan Learn-
ing, Inc.)

An ITB of the sort illustrated in Figures 2-4 has proven its usefulness to support student
learning in multiple experiments. In a study with community college, the students using
the ITB scored a full letter grade higher than the students using either a paper textbook or
a pure textbook. None of the students in the ITB group received a D or an F, suggesting
that it may be especially helpful for low performing students. A second study in a Biology
classroom at Stockholm University, investigated students interaction and learning with ITB
in comparison with a traditional E-book [22]. The study showed that asking questions with
the AI book was associated with higher retention and correlated positively with viewing
visual representations more often. In a third study at Harvard University, the students used
an ITB over a period of 1.5-months in a biology classroom [23]. It was found that students
were engaged in meaningful learning throughout the study, there was a positive correlation
between the use of suggested questions and the improvements in learning, and more than
half the students expressed favorable opinions of the book.

Appendix B. Optimization of the Term Extractor Model

We implemented the term extractor using Pytorch [27]. We used the huggingface trans-
formers bert base cased implementation of BERT [2]. Training was performed on a single
GPU available on a p2x.large on Amazon Web Services instance configured with the Ubuntu
16.04 Deep Learning AMI.

Table 5: Term Extraction Model Hyper Parameters

Parameter Description Value Search Range

Epochs # of passes through the data for
training

1 N/A

Batch Size # of sentences in each batch 16 N/A
Learning Rate # learning rate for Adam optimizer 3e-5 [1e-5, 3e-5, 5e-5]
Dropout Rate # dropout rate for output layer of

BERT
0.3 N/A

Max Sentence Length Max # of tokens in a sentence 256 N/A
Balance Loss Whether to penalize the loss func-

tion higher for missed term labels
True [True, False]

We used cross entropy loss as the loss function and minimized the average negative log
likelihood loss per batch. The cross entropy loss was optionally weighted to account for
class imbalance giving higher penalty to missing a term label in order to bias the model
towards labelling terms. Using a weighted loss function increased recall at the expense of
precision and vice versa. A comparison between the two revealed that weighting the loss
function performed much better overall.

Optimization was performed using mini-batch gradient descent with the Adam opti-
mizer. We used the custom implementation of the Adam optimizer packaged with the
transformers library. We used the default parameters for Adam except that we opted not
to correct the bias as in the original BERT paper. We searched over learning rates in [1e-5,

Bootstrapping Ontology Graphs

Table 6: Relation Extraction Model Hyper Parameters

Parameter Description Value

Epochs # of passes through the data for training 2
Batch Size # of sentences in each batch 16
Learning Rate # learning rate for Adam optimizer 5e-6
Max Sentence Length Max # of tokens in a sentence 256

3e-5, and 5e-5] as recommended in the BERT paper. Early stopping was utilized which
halts optimization if validation loss does not improve on the next epoch.

In Table 5, we list the hyper parameter settings for the model that performed best on
the development set. An exhaustive search was not performed, instead we only tried varying
the learning rate and whether the loss was balanced. All of the BERT parameters were not
varied but an additional dropout layer was added to the BERT output layer prior to the
classifier layer.

Appendix C. Optimization of the Relation Extractor Model

All models and training code were implemented using Pytorch and Python. We used the
huggingface transformers bert base cased implementation of BERT [41]. Training was per-
formed on a single GPU available on a p2x.large Amazon Web Services instance configured
with the Ubuntu 16.04 Deep Learning AMI.

We used a cross entropy loss function and minimized the average negative log likelihood
loss per batch. The loss function is the same with both the soft and hard labels, but the
target distribution for the cross entropy loss was different. For the hard labels, it was 0
for all classes except the true label. For the soft labels, the target distribution was the
probability distribution provided by the soft labels.

Optimization was performed using mini-batch gradient descent with the Adam opti-
mizer. Early stopping was utilized which halted the optimization after the validation met-
rics had not improved an epoch. In Table 6, we list the most important hyper parameters
and the settings when best observed performance on the development set was achieved.

Appendix D. Relation Selection Tool Walk-through

A video demonstration of the RST is available at: https://www.youtube.com/watch?v=bs5U1M6tgBg

Figure 5: This is an opening screen in which the user is introduced to the task

Figure 6: We first introduce the user to the distinction between an event and an entity

Bootstrapping Ontology Graphs

Figure 7: We teach the user about taxonomic relationships

Figure 8: This example illustrates component relationships

Figure 9: Example illustrations for spatial relationships

Figure 10: Examples to illustrate functional relationships

Figure 11: Examples to illustrate causal relationships

Bootstrapping Ontology Graphs

Figure 12: Examples to illustrate event structure relationships

Figure 13: Examples to illustrate participant relationships

Figure 14: Introducing the possibility of no direct relationship

Figure 15: Start of the dialog for relation selection

Figure 16: Explanation for the relation selection screen

Bootstrapping Ontology Graphs

Figure 17: Continued explanation for the relation selection screen

Figure 18: The user is instructed to first choose the relationship family

Figure 19: Once the user correctly chooses the relationship family, they are instructed to
choose the relationship

Bootstrapping Ontology Graphs

Figure 20: The user is asked to confirm the choice of relationship

Figure 21: Another example of a relationship selection task

Figure 22: An example where the relationship between the terms may not be direct

Figure 23: Confirmation of the completion of the training

Bootstrapping Ontology Graphs

Figure 24: An example relationship selection task after the user has completed the training

Appendix E. Textbook Dataset

Table 7: Textbook Dataset

Textbook # Sentences # Terms

OpenStax Anatomy & Physiology 21706 3196
OpenStax Astronomy 18844 810
OpenStax Biology 2e 24544 2757
OpenStax Chemistry 2e 13799 954
OpenStax Microbiology 16190 4149
OpenStax Psychology 9967 1086
OpenStax Physics Volume I 15005 462
OpenStax Physics Volume II 11779 466
OpenStax Physics Volume III 9250 580
LIFE Biology 16673 2305

Figure 25: Illustration of the use of data in the Ontology Graph construction pipeline.
Recall that the RST data will be used for training the ARE in the future versions
of the system.

Bootstrapping Ontology Graphs

Appendix F. Performance of Labeling Functions

Table 8: Label Functions.

Label Function Description Relations Coverage

Pattern-Based

Has X have/has Y HAS-PART/REGION 0.4%
In X in the/a/an Y PART/REGION-OF 0.6%
Possessive X’s Y HAS-PART/REGION 0.2%
Contains X contains/containing

Y
HAS-PART/REGION 0.2%

Consist X consists/consisting of
Y

HAS-PART/REGION ≤ 0.1%

Part Of X is/are part(s) of PART/REGION-OF ≤ 0.1%
Is A X is a/an Y SUBCLASS 0.5%
Such As X such as Y SUPERCLASS 0.5%
Including X including Y SUPERCLASS 0.1%
Called X called Y SUPERCLASS 0.2%
Especially X especially Y SUPERCLASS ≤ 0.1%
Appos X, a/an Y SUBCLASS 0.1%
And Other X and/or other Y SUBCLASS 0.1%
Are X are Y SUBCLASS 0.4%
Symbol X[,-]Y[,-] SUPERCLASS 0.2%
Also Known X also known as Y SYNONYM ≤ 0.1%
Also Called X also called Y SYNONYM ≤ 0.1%
Parens X (Y) SYNONYM 0.3%
Plural X (plural/singular = Y) SYNONYM ≤ 0.1%

Term-Based

Term Modifier eukaryotic cell, cell SUBCLASS, SUPER-
CLASS

1%

Term Subset oncogene gene SUBCLASS, SUPER-
CLASS

0.2%

Distant Supervi-
sion KB Bio 101

other no relation in KB SYNONYM 66%
has-part has-part in KB HAS-PART/REGION 1.4%
has-region has-region in the KB HAS-PART/REGION 0.3%
subclass subclass in the KB SUBCLASS 1.3%
synonym synonym in the KB SYNONYM 0.3%

	Introduction
	Overview of the Approach
	Tool Development
	Automated Term Extraction
	Automated Relation Extraction
	Relationship Selection Tool

	Experimental Setup
	Data for Automated Term Extraction
	Data for Automated Relation Extraction
	Data for Relationship Selection Task

	Results and Analysis
	Automated Term Extraction
	Automated Relation Extraction
	Relationship Selection Task

	Conclusions and Future Work
	Intelligent Textbook use case for an Accurate and Comprehensive Ontology
	Optimization of the Term Extractor Model
	Optimization of the Relation Extractor Model
	Relation Selection Tool Walk-through
	Textbook Dataset
	Performance of Labeling Functions

