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ABSTRACT

Reinforcement Learning (RL) methods often suffer from sample inefficiency, one
of the underlying reasons is that blind exploration strategies may neglect causal re-
lationships among states, actions, and rewards. Although recent causal approaches
aim to address this problem, they lack grounded modeling of reward-guided causal
understanding of states and actions for goal orientation, thus impairing learning effi-
ciency. To tackle this issue, we propose a novel method named Causal Information
Prioritization (CIP) that improves sample efficiency by leveraging factored MDPs
to infer causal relationships between different dimensions of states and actions with
respect to rewards, enabling the prioritization of causal information. Specifically,
CIP identifies and leverages causal relationships between states and rewards to
execute counterfactual data augmentation to prioritize high-impact state features
under the causal understanding of the environments. Moreover, CIP integrates a
causality-aware empowerment learning objective, which significantly enhances
the agent’s execution of reward-guided actions for more efficient exploration in
complex environments. To fully assess the effectiveness of CIP, we conduct ex-
tensive experiments across 39 tasks in 5 diverse continuous control environments,
encompassing both locomotion and manipulation skills learning with pixel-based
and sparse reward settings. Experimental results demonstrate that CIP consistently
outperforms existing RL methods across a wide range of scenarios. The project
page is https://sites.google.com/view/rl-cip/.

1 INTRODUCTION
Reinforcement Learning (RL) has emerged as a powerful paradigm for training intelligent decision-
making agents to learn optimal behaviors by interacting with their environments, receiving reward
feedback, and iteratively optimizing their decision-making policies (Haarnoja et al., 2018; Sutton,
2018; Silver et al., 2017; Cao et al., 2023; Hao et al., 2023; Cao et al., 2022). Despite its notable
successes, most RL approaches are faced with the sample-inefficiency problem, which means they
typically necessitate an enormous number of interactions with the environment to learn policies,
which can be impractical or costly in real-world scenarios (Savva et al., 2019; Kroemer et al., 2021).
Inefficient policy learning often results from blind exploration strategies that neglect causal relation-
ships, leading to spurious correlations and suboptimal solutions with high exploration costs (Zeng
et al., 2023; Liu et al., 2024).

Causal reasoning captures essential information by analyzing causal relationships between differ-
ent factors, filtering out irrelevant information, and avoiding interference from spurious correla-
tions (Wang et al., 2022; Pitis et al., 2022; Zhang et al., 2024; Huang et al., 2022b). These approaches
build internal causal structural models, enabling agents to strategically focus their exploration on the
most pertinent aspects of the environment. They significantly reduce the number of samples required
and demonstrate remarkable performance in single-task learning, generalization, and counterfactual
reasoning (Richens & Everitt, 2024; Urpı́ et al., 2024; Deng et al., 2023; Huang et al., 2022a; Feng &
Magliacane, 2023). However, most of these works overlook the reward-relevant causal relationships
among different factors, or only partially consider the causal connections between states, actions, and
rewards (Liu et al., 2024; Ji et al., 2024a), thus hindering efficient exploration.
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1

https://sites.google.com/view/rl-cip/


Published as a conference paper at ICLR 2025

Unable to reach the ball and moving chaotically

Can reach the ball but cannot goal under control

Can reach the ball and goal under control 

(a) (b)

time

Figure 1: (a). An example of a robot manipulation soccer task with three trajectories, where the
objective is to move the ball into the goal. (b). Underlying causal structure of this example in a
factored MDP. Different nodes represent different dimensional states and actions.
In this work, we aim to identify and exploit task-specific causal relationships between states, actions,
and rewards, enabling agents to discern relevant states and select actions that maximize rewards,
ultimately facilitating precise and goal-oriented behaviors. Here we provide a motivating example
in Figure 1, showing three trajectories for executing a manipulation soccer task, along with the
underlying causal structure in a factored Markov Decision Process (MDP) (Kearns & Koller, 1999).
In the first trajectory (row 1), when the agent fails to distinguish states with more intricate causal
relationships of the task, the robotic arm exhibits chaotic moving and receives no rewards. The second
trajectory (row 2) shows that even without chaotic movements, uncontrollable actions unrelated to
the reward lead to an inability to guide the ball towards the goal. Only by filtering out irrelevant state
features and executing more controllable actions can we guarantee that the ball is kicked into the
goal like row 3. Quantifying the contribution of different factors to the reward can effectively help
analyzing important causal relationships.

To address the limitation of sample-inefficiency and leverage the potential of causal reasoning, we
propose a novel approach named Causal Information Prioritization (CIP) for efficient RL, improving
learning efficiency from the perspective of rewards. Building upon the factored MDPs, CIP infers
causal relationships between states, actions, and rewards across different dimensions, respectively.
CIP employs counterfactual data augmentation based on the causality between states and rewards to
generate transitions, prioritizing critical state transitions. Furthermore, CIP leverages the causality
between actions and rewards to reweight actions, while utilizing empowerment to maximize mutual
information between causally informed actions and future states, thereby enabling better control.

Specifically, CIP leverages collected data to construct a reward-guided structural model that explicitly
reasons about state-reward causal influences, enabling the swapping of causally independent state
features across observed trajectories to generate synthetic transitions without additional environment
interactions. By swapping independent state features across different transitions (i.e., irrelevant
state dimensions of chaotic movements in the soccer task), CIP accentuates causally dependent
state information (i.e., relevant states to reach the ball), facilitating focused learning of critical state
transitions. Subsequently, CIP constructs another structural model that incorporates actions and
rewards to reweight actions of dimensions. To enhance the exploration efficiency, CIP integrates a
causality-aware empowerment term, quantifying the agent’s capacity to exert controlled influence
over its environment through the mutual information. This empowerment term, combined with
causally weighted actions, is integrated into the learning objective, prioritizing actions with high
causal influence. The synthesis of causal reasoning and action empowerment enables agents to focus
on behaviors that are causally relevant to the task, leading to more efficient and effective policy
learning. The main contributions of this work can be summarized as follows.

• To address limitations of blind exploration and sample-inefficiency, we introduce CIP, a novel
efficient RL framework that prioritizes causal information through the lens of reward. CIP bridges
the gap between causal reasoning and empowerment to facilitate efficient exploration.
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• CIP constructs reward-guided structural models to uncover causal relationships between states,
actions, and rewards across dimensions. By leveraging state-reward causality, it performs coun-
terfactual data augmentation, eliminating the need for additional environment interactions, and
enabling learning on critical state transitions. Exploiting action-reward causality, it reweights ac-
tions to enhance exploration efficiency through empowerment. By prioritizing causal information,
CIP enables agents to focus on behaviors that have causally significant effects on their tasks.

• To validate the effectiveness of CIP, we conduct extensive experiments in 39 tasks across 5 diverse
continuous control environments, including manipulation and locomotion. These comprehen-
sive evaluations demonstrate the effectiveness of CIP in pixel-based and sparse reward settings,
underscoring its versatility and reliability.

2 RELATED WORK

2.1 CAUSAL RL

The application of causal reasoning in RL has shown significant potential to improve sample effi-
ciency and generalization by effectively excluding irrelevant environmental factors through causal
analysis (Huang et al., 2022a; Feng & Magliacane, 2023; Mutti et al., 2023; Sun et al., 2024; Sun &
Wang). Wang (Wang et al., 2021) introduces a novel regularization-based method for causal dynamics
learning, which explicitly identifies causal dependencies by regulating the number of variables used
to predict each state variable. CDL (Wang et al., 2022) takes an innovative approach by using condi-
tional mutual information to compute causal relationships between different dimensions of states and
actions. IFactor (Liu et al., 2024) is a general framework to model four distinct categories of latent
state variables, capturing various aspects of information. ACE (Ji et al., 2024a), an off-policy actor-
critic method, integrates causality-aware entropy regularization. Table 2 provides a categorization of
various causal RL methods, highlighting their focus on different reward-guided causal relationships.
Existing approaches do not fully account for the causal relationships between both states and actions
with rewards. Our goal is to explore these causal relationships from a reward-guided perspective to
enhance sample efficiency across a broader range of tasks.

2.2 EMPOWERMENT IN RL
Empowerment, an information theory-based concept of intrinsic motivation, has emerged as a power-
ful paradigm for enhancing an agent’s environmental controllability (Mohamed & Jimenez Rezende,
2015; Klyubin et al., 2005; Cao et al., 2024). This framework conceptualizes actions and future states
as information transmission channels, offering a novel perspective on agent-environment interactions.
In RL, empowerment has been applied to uncover more controllable associations between states
and actions, as well as to develop robust skill (Salge et al., 2014; Bharadhwaj et al., 2022; Choi
et al., 2021; Eysenbach et al., 2018; Leibfried et al., 2019; Seitzer et al., 2021). Empowerment,
expressed as maximizing mutual information maxπ I , serves as a learning objective in various RL
frameworks, providing intrinsic motivation for exploration and potentially yielding more efficient
and generalizable policies. Our approach extends empowerment in RL by examining the influence of
state, actions, and rewards through a causal lens, integrating causal understanding with empowerment
to enhance exploration strategy and learning efficiency.
2.3 OBJECT-CENTRIC RL AND OBJECT-ORIENTED RL
Recent advances in object-centric representation learning focus on acquiring and leveraging structured,
object-wise representations from high-dimensional observations. Foundational works include Slot
Attention (Locatello et al., 2020) and AIR (Eslami et al., 2016; Kosiorek et al., 2018), establishing
basis for this field. Subsequent follow-ups have worked on these concepts by employing state-of-the-
art architectures, including DINO-based approaches Zadaianchuk et al. (2023), transformer-based
models (Wu et al., 2022), diffusion models (Jiang et al., 2023), and state-space models (Jiang et al.,
2024). Notably, learning object-centric representations can enable compositional generalization
across various domains, such as video and scene generation (Wu et al., 2023; 2024). Moreover,
several theoretical studies have explored the mechanisms underlying compositional generalization
and the causal identifiability (Kori et al., 2024; Brady et al., 2023; Lachapelle et al., 2024).

Object-centric representations have been effectively employed in world models to capture multi-
object dynamics, as demonstrated by works (Jiang et al., 2019; Lin et al., 2020; Kossen et al., 2019).
Building on these object-centric world models, various studies use them in RL by better modeling
complex object-centric structures in partially observable MDPs (Kossen et al., 2019; Mambelli et al.,
2022; Feng & Magliacane, 2023; Choi et al., 2024), identifying critical objects (Zadaianchuk et al.,
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2022; Park et al., 2021), and learning object-centric policies (Zadaianchuk et al., 2021; Yuan et al.,
2022) and applications in robotic manipulation tasks (Li et al., 2020; Mitash et al., 2024; Haramati
et al., 2023; Li et al., 2024), as well as in learning intrinsic or curiosity-driven policies based on
objects and their interactions (Watters et al., 2019; Wang et al., 2024c;b).

Another research direction explores object-oriented MDPs, with the homomorphic object-oriented
world model being a notable example that leverages MDP homomorphism to model object dynamics
and enable efficient planning through symmetric equivalence in MDPs (Diuk et al., 2008; Scholz
et al., 2014; Wandzel et al., 2019; Van der Pol et al., 2020; Rezaei-Shoshtari et al., 2022; Zhao et al.,
2022), provides a powerful foundation for learning object-oriented MDPs and facilitates efficient
planning (Wolfe & Barto, 2006). Our work, which focuses on uncovering general causal relationships
among components in MDPs and empowerment optimization, is orthogonal to object-centric RL.
However, object-centric RL could provide useful abstract object-based variables that could be useful
for causal structure learning in complex environments 1.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS

In RL, the agent-environment interaction is formalized as an MDP. The standard MDP is defined
by the tuple M = ⟨S,A,P, µ0, r, γ⟩, where S denotes the state space, A represents the action
space, P(s′|s, a) is the transition dynamics, r(s, a) is the reward function, and µ0 is the distribution
of the initial state s0. The discount factor γ ∈ [0, 1) is also included. The objective of RL is to
learn a policy π : S × A → [0, 1] that maximizes the expected discounted cumulative reward
ηM(π) := Es0∼µ0,st∼P,at∼π [

∑∞
t=0 γ

tr(st, at)].

3.2 STRUCTURAL CAUSAL MODEL

A Structural Causal Model (SCM) (Pearl, 2009) is defined by a distribution over random variables,
defined as V = {s1t , · · · , sdt , a1t , · · · , ant , rt, s1t+1, · · · , sdt+1} and a Directed Acyclic Graph (DAG)
G = (V, E) with a conditional distribution P(vi|PA(vi)) for node vi ∈ V . Then the distribution can
be specified as:

p(v1, . . . , v|V|) =

|V|∏
i=1

p(vi|PA(vi)), (1)

where PA(vi) is the set of parents of the node vi in the graph G.

Causal Structures in MDP We use a factored MDP (Kearns & Koller, 1999; Guestrin et al., 2003;
2001) to model the MDP and the underlying causal structures between states, actions, and rewards.
In the factored MDP, nodes represent system variables (rewards and different dimensions of the states
and actions), while the edges denote their relationships within the MDP. We employ causal discovery
methods to learn the structures of G.

We can identify the graph structure in G, which can be represented as the adjacency matrix M . To
integrate such relationships in MDP, we explicitly encode the causal mask over variables into the
reward function. Hence, the reward function in MDP with the causal structure is defined as follows:

rt = R(Ms→r ⊙ st,M
a→r ⊙ at, ϵr,t) (2)

where ⊙ denotes the element-wise product. Ms→r ∈ R|s|×1 and Ma→r ∈ R|a|×1 are the adjacency
matrices indicating the influence of current states and actions on the reward, respectively, and ϵr,t
represents i.i.d. Gaussian noise. Under the Markov condition and faithfulness assumption (Pearl,
2009; Spirtes et al., 2001), the structural vectors are identifiable. The detailed assumptions and
propositions can be found in Appendix B. In this work, our objective is to discover and leverage these
two causal matrices to prioritize causal information for efficient RL.

3.3 EMPOWERMENT IN RL
Empowerment quantifies an agent’s capacity to influence its environment and perceive the conse-
quences of its actions (Klyubin et al., 2005; Bharadhwaj et al., 2022; Jung et al., 2011). In our

1We provide a detailed discussion in Appendix C.1.

4



Published as a conference paper at ICLR 2025

(a) (b)

𝒔𝒕

𝒂𝒕 𝒓𝒕

Causal matrix 𝒒𝝁
𝒔

…

𝒓𝒕

Weight matrix 𝒒𝝎
𝒂

…

Empowerment 

𝒔𝒕

𝒂𝒕

𝐦𝐚𝐱
𝒂~𝝅𝒄

𝔼[𝓔𝝅𝒄 𝒔 𝑴 ]

𝝅𝒄

𝑴𝒔→𝒓 𝑴𝒂→𝒓

𝒔𝒕
𝐚𝐮𝐠

𝒓𝒕

…𝒔𝒕 𝒔𝒕
𝐚𝐮𝐠

𝒂𝒕
𝐫𝐞𝐰

(𝒔𝒕
𝟏, 𝒔𝒕

𝟐, 𝒔𝒕
𝟑

෤𝒔𝒕
𝟏

, 𝒓𝒕 , … ), 𝒂𝒕

Augment

, 𝒓𝒕 , … )(𝝎𝟏𝒂𝒕
𝟏 , 𝝎𝟐𝒂𝒕

𝟐

Reweight

Figure 2: (a) Underlying causal structure of CIP. (b) The whole learning process of CIP includes
counterfactual data augmentation, causal action reweight and causal action empowerment.

framework, the empowerment is defined as the mutual information between the agent state st+1 and
action at, conditioned on the present state st and causal mask M , as shown follows:

E := max
π
I(at; st+1 | st,M), (3)

where E denotes the channel capacity from actions to states. Unlike (Cao et al., 2024), which focuses
on action-to-state empowerment effects, we leverage causal understanding and more accurate entropy
calculation to analyze state-to-action influences, facilitating the development of more controllable
behavioral policies.

4 CAUSAL INFORMATION PRIORITIZATION

In this section, we introduce the proposed framework CIP, which implements causal informa-
tion prioritization based on the causal relationships between states, actions, and rewards (as
shown in Figure 2). First, we train a structural model based on the causal discovery method,
DirectLiNGAM (Shimizu et al., 2011) using collected trajectories to obtain a causal matrix Ms→r.
Utilizing this matrix, CIP executes the swapping of causally independent state features, generating
synthetic transitions (Section 4.1). This process of swapping independent state information accen-
tuates causally dependent state information, enabling focused learning on critical state transitions.
Subsequently, CIP constructs another structural model to get a weight matrix Ma→r that incorporates
actions and rewards to reweight actions (Section 4.2). Furthermore, CIP integrates a causality-aware
empowerment term Eπc

(s) combined with causally weighted actions into the learning objective to
promote efficient exploration. This integration encourages the agent’s policy πc to prioritize actions
with high causal influence, thereby enhancing its goal-achievement capabilities.

4.1 COUNTERFACTUAL DATA AUGMENTATION

To discover the causal relationships between states and rewards, we initially collect trajectories to
train a structural model by the DirectLiNGAM method, denoted as qsµ, to obtain the causal matrix
Ms→r. Subsequently, we infer the local factorization, which is utilized to generate counterfactual
transitions. For each state s in the trajectories, we compute the uncontrollable set, defined as the set
of variables in s for which the agent has no causal influence on rewards:

Us = {si |Ms→r · (sit, rt) < θ; i ∈ [1, N ]}, (4)

where θ is a fixed threshold and N is the dimension of the state space. The set Us encompasses all
dimensional state variables for which the causal relationship sit → rt does not exist in the causal
matrix of states and rewards. Utilizing the learned causal matrix Ms→r, we partition all state variables
in the factored MDP into controllable and uncontrollable sets. These uncontrollable sets are then
leveraged for counterfactual data augmentation, thereby prioritizing the causally-informed state
information to improve learning efficiency.

To generate counterfactual samples, we perform a swap of variables that fall under the uncontrollable
category (i.e., in set Us) sampled from the collect trajectories. Specifically, given two transitions
(st, at, st+1, rt) and (ŝj , âj , ŝj+1, r̂j) sampled from trajectories, which share at least one uncontrol-
lable sub-graph structure (i.e., Us ∩Uŝ ̸= ∅), we construct a counterfactual transition (s̃t, ãt, s̃t+1, r̃t)
by swapping the irrelevant state variables (sit, s

i
t+1) with (ŝij , ŝ

i
j+1) for each i ∈ Us ∩ Uŝ. The
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augmented transitions will be added to the training data for causal reasoning during subsequent action
empowerment, thus eliminating the need for additional environment interactions to prioritize causal
information. Furthermore, we also consider directly using controllable state sets combined with
causal action empowerment to replace counterfactual data augmentation for policy learning. The
comparative experimental results validating this approach are presented in Appendix D.3.1.

4.2 CAUSAL ACTION PRIORITIZATION THROUGH EMPOWERMENT

Causal action reweight Having analyzed the causal relationships between states and rewards to
achieve efficient data augmentation, in this section, we further discover the causal relationships be-
tween actions and rewards to prioritize causally-informed decision-making behaviors. CIP constructs
a reward-guided structural model, incorporating states (including augmented states), actions, and
rewards. This model forms the foundation for action prioritization in policy learning, enabling action
reweighting based on causality. Leveraging this structural model to delineate relationships between
policy decisions and rewards, we evaluate the causal impact of different actions on reward outcomes.
In this way, the agent focuses on pivotal actions with demonstrable causal links to desired reward
outcomes, potentially accelerating learning and optimizing performance in complex environments.

Specifically, in CIP, we employ DirectLiNGAM method to train a causal structural model qaω,
which yields a weight matrix Ma→r, delineating the relationships between actions and rewards,
conditioned on the states. For a given set of actions (a1t , a

2
t , a

3
t , . . . ), we utilize the weight matrix

Ma→r to reweight them as (ω1a
1
t , ω2a

2
t , ω3a

3
t , . . . ), where ω represents the causal weights derived

from the matrix Ma→r. By leveraging this causal structure, we can prioritize the most pivotal actions,
potentially leading to more efficient policy exploration and targeted policy improvements.

Causal action empowerment Based on the learned causal structure, we propose the causal action
empowerment to incorporate the reweighted actions into the learning objective for efficient exploration
in a controllable manner. To this end, we design a causality-aware empowerment term Eπc

(s) for
policy optimization. We maximize the empowerment gain of the policy πc, where πc incorporates
the learned causal structure. This approach allows us to quantify and maximize the empowerment
that can be achieved by explicitly considering causal relationships, thereby bridging the gap between
causal reasoning and empowerment.

We denote the empowerment of the causal policy as Eπc
(s) = maxa I (at; st+1 | st;M). We then

formulate the following objective empowerment function:

Eπc
(s) = max

a
I (at; st+1 | st;M)

= max
at∼πc(·|s)

H(πc(at|st))−H(πc(at|st; st+1)),
(5)

where πc is the policy under the causal weighted matrix Ma→r. The first entropy termH(πc(at|st))
promotes action diversity within the constraints of the causal structure. It encourages the agent
to explore a wide range of actions that are causally informed, while the second entropy term
−H(πc(at|st; st+1)) enhances the action predictability in state transitions. It encourages the selec-
tion of actions that lead to predictable outcomes, given the current and subsequent states, thereby
promoting controlled and goal-oriented behaviors. We train an inverse dynamics model to represent
the policy πc(·|st; st+1). The detailed derivation proceeds as follows:

H(πc(·|st)) = −Eat∈A

[
dA∑
i=1

Mai→r ⊙ πc(a
i
t|st) log π(ait|st)

]
, (6)

and

H(πc(·|st; st+1)) = −Eat∈A

[
dA∑
i=1

Mai→r ⊙ πc(a
i
t|st; st+1) log π(a

i
t|st; st+1)

]
, (7)

where dA is the dimension of the action space. Hence, the learning objective of the causal action
empowerment can be defined as follows:

Eπc(s) = max
at∼πc(·|s)

H(πc(at|st))−H(πc(at|st; st+1))

= max
at∼πc(·|s)

Eπc(at|st)pπc (at|st,st+1) [logPϕc(at | st, st+1;M)− logPπc(at|st;M)] ,
(8)
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Figure 3: The 36 experimental tasks in 5 continuous control environments
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Figure 4: Experimental results with normalized score across all 36 tasks in 5 environments.

where Pπc
(at|st;M) is the action distribution given current state of policy πc with the causal

structure, which can be denoted as πc(at|st). Pϕc
(at|st+1, st;M) represents an inverse dynamics

model trained on the collected transitions of state variables. Hence, we update the target policy πc by
maximizing the empowerment objective function derived in Eq. 8.

Adhering to the maximum entropy paradigm (Haarnoja et al., 2018), we calculate Eπc
(s) for maxi-

mization instead of standard entropy, thus prioritizing exploration of pivotal actions that are more
likely to have significant causal effects on the reward. This targeted exploration strategy has the
potential to accelerate learning by focusing on the most influential actions in current controllable
states. Based on the causality-aware empowerment, the Q-value for policy πc could be computed
iteratively by applying a modified Bellman operator T π

c with Eπc(s) term as stated below:

T π
c Q(st, at) = r(st, at) + γEst+1∼P

[
Eat∼πc

[
Q(st+1, at+1) + αEϕc (s)

]]
= r(st, at) + γEst+1∼P [Eat∼πc [Q(st+1, at+1) + α(H(πc(at|st))−H(πc(at|st; st+1)))]] .

(9)

Hence, we integrate the causality-aware empowerment term into the policy optimization objective
function, η̂M(πc) = Es0∼µ0,st∼P,at∼πc [

∑∞
t=0 γ

t(r(st, at) + αEπc(s))].

In summary, CIP harnesses empowerment to integrate the causal understanding into decision-making.
By maximizing the empowerment gain of the causally-informed policy, we guide the agent to
prioritize actions that align with the environment’s underlying causal relationships. This approach
enhances the agent’s exploration efficiency, focusing on actions with meaningful causal impacts and
correlated with desired outcomes. Algorithm 1 illustrates the complete CIP pipeline.
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Figure 5: Experimental results of 8 manipulation skill learning tasks in Meta-World and adroit hand
environments including sparse reward settings. For all tasks results, please refer to Appendix D.2.
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Figure 6: Experimental results of 4 pixel-based tasks in DMControl and Cartpole environments.

5 EXPERIMENTS

Our experiments aim to address the following questions: (i) How does the performance of CIP
compare to other RL approaches in diverse continuous control tasks, including manipulation and
locomotion with sparse rewards, high-dimensional action spaces, and pixel-based challenges? (ii)
Can CIP, through data augmentation and empowerment, improve sample efficiency and learn reliable
policies? (iii) What are the effects of the components and hyperparameters in CIP?

5.1 EXPERIMENTAL SETUP

Environments. We evaluate CIP on 5 continuous control environments, including MuJoCo (Todorov
et al., 2012), DMControl (Tassa et al., 2018), Meta-World (Yu et al., 2020), Adroit Hand (Rajeswaran
et al., 2018), and sparse reward setting environments in Meta-World. This comprehensive evaluation
encompasses 36 tasks, spanning both locomotion and manipulation skill learning, as illustrated
in Figure 3. We also conduct experiments in 4 pixel-based tasks of the DMControl and Cartpole
environment as shown in Figure 17. Our experimental tasks incorporate a wide range of challenges,
including high-dimensional state and action spaces, sparse reward settings, pixel-based scenarios,
and locomotion. For extensive experimental settings, please refer to Appendix D.1.

Baselines. We compare CIP with three popular RL baselines across all 36 tasks and against
IFactor (Liu et al., 2024) in 3 pixel-based tasks: (1) SAC (Haarnoja et al., 2018), an off-policy
actor-critic algorithm featuring maximum entropy regularization. (2) ACE (Ji et al., 2024a), a method
employing causality-aware entropy regularization. (3) BAC (Ji et al., 2024b). a method that balances
sufficient exploitation of past successes with exploration optimism. (4) IFactor (Liu et al., 2024). a
causal framework modeling four distinct categories of latent state variables for pixel-based tasks. To
ensure robustness and statistical significance, we conduct each experiment using 4 random seeds.

5.2 MAIN RESULTS

Figure 4 presents the normalized scores of CIP compare to other methods across 36 tasks in
5 environments. In 17 Meta-World robot-arm tasks, CIP achieves a near-perfect score of 100,
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Table 1: The experimental results of average return in 8 locomotion tasks. We bold the best scores,
and underline second-best results, ± is the standard deviation, w/o represents without. • indicates
CIP is statistically superior to compared method (pairwise t-test at 95% confidence interval).

Method Ant HalfCheetah Hopper Walker2d Cheetah
Run

Hopper
Stand

Quadruped
Walk

Reacher
Hard

CIP 6418±81 12594±210 2846±882 5624±91 893±12 936±17 948±54 991±11
w/o Aug 6231±81 12225±102 2308±785 5294±41 885±13 931±22 945±35 989±13

w/o Emp 6295±210 10986±572 2270±904 5547±91 876±21 785±114 924±23 971±13

SAC 6062±105• 10888±240• 2266±981 5251±106 767±16• 936±8 930±19 • 980±8•
BAC 6511±30 10276±34• 2263±1063• 3316±702 • 665±6• 932±4• 962±24 974±16

ACE 5922±106 • 9390±25• 2312±673• 4922±96• 863±23• 912±16 933±57 973±17

showcasing its exceptional performance in manipulation tasks. For locomotion tasks in DMControl
and MuJoCo, CIP consistently attains scores exceeding 80, indicating robust performance across
diverse locomotion challenges. Notably, CIP exhibits significant performance improvements in
challenging scenarios, such as adroit hand manipulation and 3 tasks with the sparse reward setting.
These results underscore the effectiveness in tackling complex, high-dimensional control problems.
In next sections, we present a comprehensive analysis of CIP’s performance across diverse tasks.

Robot-arm manipulation. Figure 5 presents the success rates across 7 Meta-World robot-arm
manipulation tasks including sparse reward settings. CIP consistently outperforms all other methods
across these tasks, demonstrating both faster policy learning and enhanced stability. In challenging
tasks, such as disassemble, CIP achieves an impressive 100% success rate. The effectiveness of
CIP can be attributed to focus on causally relevant information within the state and action spaces.
In sparse reward settings, the efficient extraction of causal state information and the prioritization
of controllable actions enable effective task completion. By systematically eliminating noise from
non-causal factors, CIP allows the agent to construct a more controllable and efficient policy.

High-dimensional Adroit hand manipulation. To rigorously evaluate our method’s efficacy in
high-dimensional tasks, we conduct comparative experiments in the Adroit Hand environment of
door open task. This challenging setup involves controlling a robotic hand with up to 28 actuated
degrees of freedom (A ∈ R28). Figure 5 illustrates the success rates achieved across all methods.
Notably, while the three other comparative methods fail to demonstrate significant progress on this
challenging task, CIP achieves a near 100% success rate after 700k environment steps.

Locomotion. We further evaluate CIP in another important category: locomotion. The part experi-
mental results of average return in MuJoCo and DMControl environments are presented in Table 1.
Learning curves are illustrated in Figure 7. We observe that CIP achieves the best performance in
six tasks and sub-optimal in other tasks, and shows statistically significant improvements in 5 out of
8 tasks. Moreover, compared to the traditional method SAC, CIP demonstrates significant perfor-
mance improvements in more challenging tasks such as CheetahRun and Hopper. Compared to the
causality-based method ACE, CIP demonstrates improvements in all tasks. Overall, in locomotion
tasks, CIP achieves superior performance and attains high sample efficiency. Detailed performance
and statistical analyses are provided in Appendix D.2 and D.3.5.

Pixel-based task learning To further validate the performance in pixel-based tasks, we use 3 complex
pixel-based DMControl tasks for evaluation, where video backgrounds serve as distractors. We
apply the proposed counterfactual data augmentation and causal action empowerment to IFactor
for comparison. As shown in Figure 6, CIP surpasses IFactor in terms of average return. These
results underscore CIP’s efficacy in pixel-based tasks and its capacity to better overcome spurious
correlations arising from video backgrounds, focusing on locomotion. Moreover, the result of
Cartpole task in Figure 6 demonstrate the effectiveness in discrete action space environment. For
visualization trajectories in pixel-based results, please refer to Appendix D.2.4.
5.3 ANALYSIS

Ablation study. We conduct ablation experiments involving CIP, CIPwithout (w/o) counterfactual
data augmentation (Aug), and CIP w/o Empowerment (Emp). The results in 8 locomotion tasks
are shown in Table 1. And the learning curves of all tasks are depicted in Appendix D.3. The
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Figure 7: Experimental results with average return across 8 tasks in locomotion tasks.
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Figure 8: Experimental results of reliability evaluation by the metric Optimality Gap (lower values
are better) on 4 diverse environments across 35 tasks.

experimental results reveal that the variant without the empowerment learning objective performs
poorly, underscoring the critical role of empowerment maximization in enhancing control capabilities.
Additionally, CIP without counterfactual data augmentation is less sample efficient than CIP,
highlighting the importance of augmentation.

Reliability evaluation. We evaluate CIP’s reliability across 35 tasks in 4 environments, excluding
the Adroit Hand door task due to CIP’s exceptional performance there. Figure 8 illustrates the
experimental results using the Optimality Gap metric (Agarwal et al., 2021). CIP consistently
achieves the lowest values across all tasks in four environments, with lower values indicating superior
performance. This consistent excellence across diverse scenarios underscores the robustness and
reliability of our proposed method.

6 CONCLUSION

This study introduces an efficient RL framework, designed to enhance sample efficiency. This
approach begins by counterfactual data augmentation using the causality between states and rewards,
effectively mitigating interference from irrelevant states without additional environmental interactions.
We then develop a reward-guided structural model that leverages causal awareness to prioritize causal
actions through empowerment. We conduct extensive experiments across 39 tasks spanning 5 diverse
continuous control environments which demonstrate the exceptional performance of our proposed
method, showcasing its robustness and adaptability across challenging scenarios.

Limitation and Future Work The current limitations of our work are twofold. First, CIP has not
yet been extended to complex scenarios, such as real-world 3D robotics tasks. Potential approaches
to address this limitation include leveraging object-centric models (Wu et al., 2023), 3D perception
models (Wang et al., 2024a), and robotic foundation models (Team et al., 2024; Firoozi et al., 2023)
to construct essential variables for causal world modeling. Second, CIP does not adequately consider
non-stationarity and heterogeneity, which are critical challenges in causal discovery. Future work
could integrate method designed to handle such complexities, such as CD-NOD (Huang et al., 2020).
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REPRODUCIBILITY STATEMENT

We provide the core code of CIP in the supplementary material. The implementation details are
shown in Appendix D.1.
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Wieland Brendel. Provably learning object-centric representations. In International Conference on
Machine Learning, pp. 3038–3062. PMLR, 2023.

Hongye Cao, Shangdong Yang, Jing Huo, Xingguo Chen, and Yang Gao. Enhancing ood generaliza-
tion in offline reinforcement learning with energy-based policy optimization. In ECAI 2023, pp.
335–342. IOS Press, 2023.

Hongye Cao, Fan Feng, Meng Fang, Shaokang Dong, Jing Huo, and Yang Gao. Towards em-
powerment gain through causal structure learning in model-based rl. In ICML 2024 Workshop:
Foundations of Reinforcement Learning and Control–Connections and Perspectives, 2024.

Yushi Cao, Zhiming Li, Tianpei Yang, Hao Zhang, Yan Zheng, Yi Li, Jianye Hao, and Yang Liu.
Galois: boosting deep reinforcement learning via generalizable logic synthesis. Advances in Neural
Information Processing Systems, 35:19930–19943, 2022.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu. Variational
empowerment as representation learning for goal-based reinforcement learning. arXiv preprint
arXiv:2106.01404, 2021.

Jongwook Choi, Sungtae Lee, Xinyu Wang, Sungryull Sohn, and Honglak Lee. Unsupervised object
interaction learning with counterfactual dynamics models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 11570–11578, 2024.

ZH Deng, J Jiang, G Long, and C Zhang. Causal reinforcement learning: A survey. Transactions on
Machine Learning Research, 2023.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,
pp. 240–247, 2008.

SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances in neural
information processing systems, 29, 2016.

11



Published as a conference paper at ICLR 2025

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2018.

Fan Feng and Sara Magliacane. Learning dynamic attribute-factored world models for efficient
multi-object reinforcement learning. Advances in Neural Information Processing Systems, 36,
2023.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu,
Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics:
Applications, challenges, and the future. The International Journal of Robotics Research, pp.
02783649241281508, 2023.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored mdps. Advances
in neural information processing systems, 14, 2001.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms
for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
IEEE Transactions on Neural Networks and Learning Systems, 2023.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
ulation from pixels. In NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning,
2023.

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark Glymour,
and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. Journal of
Machine Learning Research, 21(89):1–53, 2020.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. Adarl: What, where,
and how to adapt in transfer reinforcement learning. In International Conference on Learning
Representations, 2022a.
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A BROADER IMPACT

To avoid blind exploration and improve sample efficiency, we propose CIP for efficient reinforcement
learning. CIP leverages the causal relationships among states, actions, and rewards to prioritize causal
information for efficient policy learning. CIP first learns a causal matrix between states and rewards
to execute counterfactual data augmentation, prioritizing important state features without additional
environmental interactions. Subsequently, it learns a causal reweight matrix between actions and
rewards to prioritize causally-informed behaviors. We then introduce a causal action empowerment
term into the learning objective to enhance the controllability. By prioritizing the causal information,
CIP enables agents to focus on behaviors that have causally significant effects on their tasks. CIP
offers substantial broader impact by prioritizing causal information through individual assessment
of how different factors contribute to rewards. Our novel empowerment learning objective achieves
efficient policy optimization by leveraging entropy via the policy and learned inverse dynamics model.
This approach shows promise for extension into research frameworks centered on maximum entropy
algorithms.

Despite its strengths, CIP has limitations beyond its reliance on the method DirectLiNGAM. There’s
potential to explore alternative causal discovery techniques for more robust relationship mapping.
Moreover, analyzing inter-entity causal connections could lead to better disentanglement of diverse
behaviors. Our future work will investigate a range of causal discovery methods to refine our approach.
We aim to extend CIP to model-based RL frameworks, focusing on building causal world models to
enhance generalization.

B ASSUMPTIONS AND PROPOSITIONS

Assumption 1 (d-separation (Pearl, 2009)) d-separation is a graphical criterion used to determine,
from a given causal graph, if a set of variables X is conditionally independent of another set Y, given
a third set of variables Z. In a directed acyclic graph (DAG) G, a path between nodes n1 and nm is
said to be blocked by a set S if there exists a node nk, for k = 2, · · · ,m− 1, that satisfies one of the
following two conditions:

(i) nk ∈ S, and the path between nk−1 and nk+1 forms (nk−1 → nk → nk+1), (nk−1 ← nk ←
nk+1), or (nk−1 ← nk → nk+1).

(ii) Neither nk nor any of its descendants is in S, and the path between nk−1 and nk+1 forms
(nk−1 → nk ← nk+1).

In a DAG, we say that two nodes na and nb are d-separated by a third node nc if every path between
nodes na and nb is blocked by nc, denoted as na⊥⊥ nb|nc.

Assumption 2 (Global Markov Condition (Spirtes et al., 2001; Pearl, 2009)) The state is fully
observable and the dynamics is Markovian. The distribution p over a set of variables V =
(s1t , · · · , sdt , a1t , · · · , adt , rt)T satisfies the global Markov condition on the graph if for any parti-
tion (S,A,R) in V such that if A d-separates S fromR, then p(S,R|A) = p(S|A) · p(R|A)

Assumption 3 (Faithfulness Assumption (Spirtes et al., 2001; Pearl, 2009)) For a set of variables
V = (s1t , · · · , sdt , a1t , · · · , adt , rt)T , there are no independencies between variables that are not
implied by the Markovian Condition.

Assumption 4 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, the edge sit → sit+1 exists for all state variables si.

Assumption 5 No simultaneous or backward edges in time.

Proposition 1 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, there exists an edge from ait → rt if and only if ait ⊥̸⊥ rt|at \ ait, st.
Proof: We proceed by proving both directions of the if and only if statement.

(⇒) Suppose there exists an edge from ait to rt. We prove that ait ⊥̸⊥ rt|at \ ait, st by contradiction.
Assume ait⊥⊥ rt|at \ ait, st. By the faithfulness assumption, this independence must be reflected in
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the graph structure. However, this implies the absence of a directed path from ait to rt, contradicting
the existence of the edge. Thus, ait ⊥̸⊥ rt|at \ ait, st.
(⇐) Now, suppose ait ⊥̸⊥ rt|at \ ait, st. We prove the existence of an edge from ait to rt by contra-
diction. Assume no such edge exists. By the Markov assumption, the absence of this edge implies
ait⊥⊥ rt|at \ ait, st, contradicting our initial supposition. Therefore, an edge from ait to rt must exist.
Thus, we have shown that an edge from ait to rt exists if and only if ait ⊥̸⊥ rt|at \ ait, st, completing
the proof.

Proposition 2 Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, there exists an edge from sit → rt if and only if sit ⊥̸⊥ rt|{at, st \ rt}.
The proof of Proposition 2 follows a similar line of reasoning as that of Proposition 1.

Theorem 1 Based on above 5 assumptions and 2 propositions, suppose st, at, st follow the factored
MDP reward function Eq. 2, the causal matrices Ms→r and Ma→r are identifiable.

C EXTENDED RELATED WORK

We categorize existing causal RL approaches based on problem domains and task types, providing a
systematic analysis of how different methods explore causal relationships between states, actions,
and rewards, as illustrated in Table 2.

In the single-task learning domain, methods such as ACE (Ji et al., 2024a) and IFactor (Liu et al.,
2024) have shown success in learning policies for manipulation and locomotion tasks. However,
both approaches are limited by focusing on a single reward-guided causal relationship. Regarding
generalization, AdaRL (Huang et al., 2022a) effectively leverages both state-reward and action-reward
causal relationships. However, AdaRL focuses primarily on applying causal inference to address
generalization challenges in locomotion tasks. Its application is limited to locomotion tasks, leaving
more complex manipulation tasks unaddressed. Since our work focuses on the single-task problem
domain, we do not provide a direct comparison with AdaRL. Conversely, CBM (Wang et al., 2024d)
considers the causal relationship between states and rewards but overlooks the causal link between
actions and rewards. In the problem domain of counterfactual data augmentation, current causal RL
methods (Urpı́ et al., 2024; Pitis et al., 2020; 2022) have not yet explored the inference and utilization
of both causal relationships.

In summary, current research on reward-guided causal discovery remains incomplete and lacks
validation across a broader spectrum of tasks. This gap underscores the need for more comprehensive
investigation and application in the field of causal reinforcement learning.

C.1 EXTENDED DISCUSSION ON OBJECT-CENTRIC RL AND 3D WORLD MODELS

The main similarity lies between our framework and object-centric RL is both are learning and using
factored MDPs (Kearns & Koller, 1999), but they differ in granularity: our framework operates at the
component level (e.g., raw state variables), whereas object-centric RL factors states based on objects.

Although our work is orthogonal to object-centric RL, we believe certain elements of object-centric
RL could complement our framework in specific applications, particularly in real-world robotic
manipulation tasks. Potential future work include:

• Using object-centric representation as input: Object-centric models can help identify
object-factored variables, such as object attributes, geometry, and physical states, which
are useful for planning (Jiang et al., 2019; Lin et al., 2020; Kossen et al., 2019; Mambelli
et al., 2022; Feng & Magliacane, 2023; Choi et al., 2024; Zadaianchuk et al., 2022; Park
et al., 2021; Zadaianchuk et al., 2021; Yuan et al., 2022; Li et al., 2020; Mitash et al., 2024;
Haramati et al., 2023; Li et al., 2024). In this case, states are factored as objects, and we can
learn causal graphs over these variables. This is useful in robotic environments involving
numerous objects. We will leave this as a future work for adapting our current framework to
the applications of the object-centric robotic task.
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Table 2: Categorization of different causal RL methods with two different causal relationship of
state-to-reward (state-reward) and action-to-reward (action-reward).

Problem domain Task type Method Causal relationship
state-reward action-reward

Single-task manipulation; locomotion ACE (Ji et al., 2024a) ✗ ✓

manipulation; locomotion IFactor (Liu et al., 2024) ✓ ✗

manipulation CAI (Seitzer et al., 2021) ✗ ✗

Generalization manipulation CDL (Wang et al., 2022) ✗ ✗

locomotion AdaRL (Huang et al., 2022a) ✓ ✓

manipulation; locomotion CBM (Wang et al., 2024d) ✓ ✗

Augmentation manipulation CAIAC (Urpı́ et al., 2024) ✗ ✗

manipulation CoDA (Pitis et al., 2020) ✗ ✗

manipulation MoCoDA (Pitis et al., 2022) ✗ ✗

• Learning more compact factored object representations with our framework: Our
structure learning approach could benefit object-centric RL by disentangling the internal
representations of individual objects to the reward-relevant and reward-irrelevant groups
by learning the causal structures. This can enhance the compactness and interpretability of
object-centric representations.

• Using object-aware 3D world models for applications: In 3D environments, object-
aware 3D world models (Li & Pathak, 2024) can provide essential representations of
objects. Our framework could then build causal structures on top of these factored 3D-object
representations.

While these directions are promising and could advance the applicability of our framework in certain
domains, they are outside the primary focus of this work. We plan to explore these ideas as part of
future work.

D DETAILS ON EXPERIMENTAL DESIGN AND RESULTS

D.1 EXPERIMENTAL SETUP

We present the detailed hyperparameter settings of the proposed method CIP across all 5 environments
in Table 3. Additionally, the Q-value and V-value networks are used MLP with 512 hidden size. And
the policy network is the Gaussian MLP with 512 hidden size. Moreover, we set the target update
interval of 2. For fair comparison, the hyperparameters of the baseline methods (SAC (Haarnoja et al.,
2018), BAC (Ji et al., 2024b), ACE (Ji et al., 2024a)) follow the same settings in the experiments.

For pixel-based DMControl environments, we employ IFactor (Liu et al., 2024) to encode latent
states and integrate the CIP framework for policy learning. We utilize the sr̄t state features in
IFactor as uncontrollable states unrelated to rewards to execute counterfactual data augmentation.
Furthermore, for simplicity, we maximize the mutual information between future states and actions
to facilitate empowerment. All parameter settings in these three tasks adhere to those specified in
IFactor. Additionally, We use the same background video for the comparison.

D.2 FULL RESULTS

D.2.1 EFFECTIVENESS IN ROBOT ARM MANIPULATION

Figure 9 presents the learning curves for all 17 manipulation skill tasks within the Meta-World
environment. The CIP framework demonstrates superior learning outcomes and efficiency compared
to the three baseline methods, despite exhibiting minor instabilities in the basketball and dial-turn
tasks. Notably, CIP achieves a 100% success rate in more complex tasks, such as pick-place-wall
and assembly. The visualization results presented in Figures 11 and 12 further demonstrate CIP’s
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Table 3: Hyperparameter settings of CIP in 5 environments

Hyperparameter Environment
Meta-World Sparse MuJoCo DMControl Adroit Hand

batch size 512 512 256 512 256
hidden size 1024 1024 256 1024 256

Q-value network hidden size 512
V-value network hidden size 512
policy network hidden size 512

learning step 1000000
replay size 1000000

causal sample size 10000
gamma 0.99

learning rate 0.0003
update interval 2

ability to effectively and efficiently complete tasks, even in high-dimensional action spaces such as
the Adroit Hand environment.

In the hammer task, CIP allows the robot arm to execute reach and pick actions with precision,
enabling it to accurately identify the nail’s position and successfully perform the hammering action.
In the Adroit Hand door task, CIP effectively controls the complex joints to grasp the doorknob and
applies the appropriate force to twist it, thereby opening the door.

These findings affirm the effectiveness of CIP in robot arm manipulation skill learning, highlighting
its capacity to enhance sample efficiency while mitigating the risks associated with blind exploration.

Visualization. We employ trajectory visualization to comparatively validate the efficacy of our
method. As depicted in Figure 10, the light-shaded regions delineate the policy exploration space,
while the point clustering area indicates the area of frequent interaction. Our analysis reveals that CIP,
leveraging counterfactual data augmentation, achieves substantially broader exploration compared
to ACE and SAC. Concurrently, the causal information prioritization framework facilitates more
focused execution in critical state regions. These visual findings provide robust empirical support for
the effectiveness of our proposed augmentation framework.

D.2.2 EFFECTIVENESS IN SPARE REWARD SETTINGS

Figure 13 presents the learning curves for all three sparse reward setting tasks within the Meta-World
environment, while Figure 14 showcases their corresponding visualization trajectories. These findings
reveal that CIP not only achieves superior learning efficiency but also adeptly executes critical actions
necessary for task completion, such as opening the door and window and maneuvering the node to
the target place.

These results substantiate the effectiveness of CIP in sparse reward scenarios. The counterfactual data
augmentation process prioritizes salient state information, effectively filtering out irrelevant factors
that could hinder learning. Meanwhile, causal action empowerment enhances policy controllability
by focusing on actions that are causally linked to desired outcomes. This dual approach not only
accelerates the learning process but also fosters a more robust policy capable of navigating the
complexities inherent in sparse reward settings. Overall, these findings underscore CIP’s potential to
significantly improve performance in challenging environments characterized by limited feedback.

D.2.3 EFFECTIVENESS IN LOCOMOTION

We further evaluate CIP in 15 locomotion tasks in DMControl and MuJoCo environments. Figure 15
presents the learning curves, while Figure 16 showcases the corresponding visualization trajectories
in 4 specific tasks. A comprehensive analysis indicates that CIP achieves faster learning efficiency
and greater stability compared to ACE and SAC, while demonstrating comparable policy learning
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Figure 9: Experimental results across 17 manipulation skill learning tasks in Meta-World.

performance to BAC, which is known for its proficiency in control tasks. The visualization results
reveal that CIP effectively executes running and walking actions in complex humanoid scenarios.

These findings collectively underscore the efficacy of CIP in locomotion tasks, highlighting its
potential to advance the state-of-the-art in reinforcement learning for intricate motor control problems.
The method’s success across varied environments suggests a robust framework that could generalize
effectively to other challenging domains within robotics and control systems, paving the way for
future research and applications in these areas.
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Figure 10: Visualization of the trajectories in soccer task.
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Figure 11: Visualization trajectories of 4 manipulation skill learning tasks in Meta-World environment.
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Figure 12: Visualization trajectory of Adroit Hand door open task.
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Figure 13: Experimental results across 3 manipulation skill learning tasks in sparse reward settings
of Meta-World environment.
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Figure 14: Visualization trajectories of 3 manipulation skill learning tasks in sparse reward settings
of Meta-World environment.
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Figure 15: Experimental results across 11 locomotion tasks in DMControl environment.
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Figure 16: Visualization trajectories of 4 locomotion tasks in DMControl environment.
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Figure 17: The DMControl environment of 3 pxiel-based tasks (Walker Walk, Cheetah Run, Reacher
Easy) and 1 task in Cartpole environment (Liu et al., 2024).
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Figure 18: Visualization trajectories in 3 pixel-based locomotion tasks of DMControl environment
with video backgrounds as distractors.

D.2.4 EFFECTIVENESS IN PIXEL-BASED TASKS

To further validate the effectiveness of our proposed framework in pixel-based environments, we
evaluated CIP on three DMControl pixel-based tasks. We leverage IFactor for latent state processing
and differentiation of uncontrollable state features to execute counterfactual data augmentation,
alongside maximizing the mutual information between future states and actions for empowerment.

Figure 6 presents the learning curves, while Figure 18 shows the visualization trajectories. The
proposed framework exhibits enhanced policy learning performance and effectively mitigates in-
terference from background video, facilitating efficient locomotion. These findings reinforce the
effectiveness and extensibility of our causal information prioritization framework, highlighting its
potential to improve learning in complex, pixel-based environments.

D.3 PROPERTY ANALYSIS

D.3.1 ANALYSIS FOR REPLACING COUNTERFACTUAL DATA AUGMENTATION

In CIP, we exploit the causal relationship between states and rewards to perform counterfactual data
augmentation on irrelevant state features, thus prioritizing critical state information. We compare this
approach with an alternative method: masking irrelevant state features to achieve state abstraction
for subsequent causal action empowerment and policy learning. To evaluate the efficacy of both
approaches, we conduct experiments with CIP with counterfactual data augmentation (CIP w/i Cda)
and CIP with causally-informed states (CIP w/i Cs) across three distinct environments.

Figure 19 illustrates comparative results for four manipulation skill learning tasks in the Meta-World
environment. Both CIP variants achieve 100% task success rates with high sample efficiency, vali-
dating their effectiveness. Notably, CIP w/i Cda exhibits superior learning efficiency compared to
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Figure 19: Experimental results in 4 manipulation skill learning tasks of Meta-World environment.
w/i stands for with.
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Figure 20: Experimental results in 3 manipulation skill learning tasks of Meta-World environment
with sparse reward settings.

CIP w/i Cs, underscoring the value of our counterfactual data augmentation approach in enhancing
training data without additional environmental interactions. In three sparse reward setting tasks
(Figure 20), CIP w/i Cda demonstrates superior policy performance. Further experiments across four
locomotion environmetal tasks corroborate these findings, consistently favoring the counterfactual
data augmentation approach. These comprehensive experimental results strongly support the effec-
tiveness and significance of incorporating counterfactual data augmentation in CIP, highlighting its
potential to enhance reinforcement learning across diverse task domains.

D.3.2 EXTENSIVE ABLATION STUDY

Robot arm manipulation The ablation study results in the Meta-World and Adroit Hand envi-
ronments are presented in Figure 22. The findings indicate that CIP without counterfactual data
augmentation exhibits reduced learning efficiency and is unable to successfully complete tasks such as
pick-and-place. This underscores the importance of incorporating counterfactual data augmentation,
which prioritizes causal state information, to enhance learning efficiency by mitigating the influence
of irrelevant state information and preventing policy divergence.

Furthermore, CIP without causal action empowerment demonstrates a significant decline in policy
performance across robot arm manipulation tasks. In complex scenarios, such as Adroit Hand door
opening and assembly, it fails to learn effective strategies for task completion. This outcome further
corroborates the efficacy of the proposed causal action empowerment mechanism, as prioritizing
causally informed actions facilitates more efficient exploration of the environment, ultimately enabling
successful policy learning.

Sparse reward settings Figure 22 presents the results of the ablation study conducted across
three sparse reward setting tasks. These findings underscore the substantial influence of causal
action empowerment on the efficacy of policy learning, demonstrating its critical role in enhancing
performance in challenging environments. Additionally, the incorporation of counterfactual data
augmentation proves effective in mitigating the need for additional environmental interactions, thereby
significantly improving sample efficiency. This approach not only facilitates more rapid learning but
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Figure 21: Experimental results in 4 locomotion tasks of DMControl environment.

also ensures that the agent can effectively navigate sparse reward scenarios by focusing on the most
relevant causal information.

Locomotion We further conducted ablation experiments on locomotion tasks. The experimental
results in the MuJoCo environment are shown in Figure 23, where it is evident that the performance of
CIPwithout causal action empowerment declines significantly. Similarly, CIPwithout counterfactual
data augmentation also exhibits reduced learning efficiency. Notably, in the 11 DMControl tasks, the
decline in performance for CIP without causal action empowerment is particularly pronounced.

These experimental results further validate the effectiveness of our proposed method, which systemat-
ically analyzes the causal relationships between states, actions, and rewards. This analysis enables
the execution of counterfactual data augmentation to avoid interference from irrelevant factors while
prioritizing important state information. Subsequently, by leveraging the causal relationships between
actions and rewards, we reweight actions to prioritize causally informed actions, thereby enhancing
the agent’s controllability and overall learning efficacy.

D.3.3 HYPERPARAMETER ANALYSIS

We conduct a detailed analysis of the hyperparameters associated with the causal update interval
(I) and sample size within the CIP framework. The experimental results for four distinct tasks are
illustrated in Figure 25. Across all tasks, CIP demonstrates optimal performance with a causal update
interval of I = 2 and a sample size of 10,000.

Our findings suggest that while a reduction in the causal update interval can lead to improved
performance, it may also result in heightened computational costs. Additionally, we observe that
higher update frequencies and increased sample sizes introduce greater instability, which significantly
raises computational demands. This analysis underscores the importance of carefully balancing
hyperparameter settings to optimize both performance and efficiency within the CIP.

Furthermore, we analyze the performance under different settings of the temperature factor α
proposed in Eq. 9. The results across 3 tasks are shown in Figure 26. Our analysis reveals that CIP
demonstrates robust performance across different values of α in manipulation tasks, while showing
some instability in locomotion tasks when α is either too small or too large. Moreover, we observe
that setting α to 0.2 yields optimal performance across all tasks, which motivated our choice of
α = 0.2 for all experiments.

Finally, we analyze the performance under different settings of the batch size and hidden size. The
results across 3 tasks are shown in Figure 27. Our experimental results demonstrate that CIP exhibits
robust performance across various parameter settings in coffee push and sparse hand insert tasks,
while maintaining strong performance in hopper stand task. Based on these experimental results, we
configure the hyperparameters as follows: for manipulation tasks, we set the batch size to 512 and
hidden size to 1024, while for locomotion tasks, we use a batch size of 256 and hidden size of 256.
All other hyperparameters remain constant across all tasks, as detailed in Table 3.
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Figure 22: Ablation results across 21 manipulation skill learning tasks in Meta-World including
sparse reward settings and adroit hand.

D.3.4 COMPUTATION COST ANALYSIS

We analyze the computational cost of the proposed framework. The computation time for all methods
across 36 tasks is shown in Figure 28. Our experimental results demonstrate that CIP achieves its
performance improvements with minimal additional computational burden - specifically less than
10% increase compared to SAC, less than 5% increase compared to ACE, and actually requiring less
computation time than BAC. All experiments were conducted on the same computing platform with
the same computational resources detailed in Appendix F. These experimental results verify that
our proposed method achieves performance improvements without incurring significant additional
computational costs.
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Figure 23: Ablation results across 4 locomotion tasks in MuJoCo environment.
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Figure 24: Ablation results across 11 locomotion tasks in DMControl environment.

D.3.5 STATISTICAL PERFORMANCE ANALYSIS

To further validate the statistical significance of the performance, we select 3 statistical metrics (Agar-
wal et al., 2021) - IQM, Mean, and Median - for analysis across 8 locomotion tasks. The results are
shown in Figure 29 and 30. Our findings indicate that CIP achieves notably superior performance
across all tasks, with the sole exception of the ant task where it performs slightly below BAC.

D.3.6 GENERALIZATION ANALYSIS

We conduct multi-task experiments in the Meta-World environment (Yu et al., 2020) to validate the
generalizability. We establish MT1 and MT10 tasks for generalization validation:

Multi-Task 1 (MT1): Learning one multi-task policy that generalizes to 5 tasks belonging to the same
environment. MT1 uses single Meta-World environments, with the training “tasks” corresponding to
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Figure 25: Hyperparameter study. Learning curves of CIP with different hyperparameter settings.
The shaded regions are the standard deviation of each policy.
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Figure 26: Hyperparameter analysis of temperature factor α across 3 task.

5 random initial object and goal positions. The goal positions are provided in the observation and are
a fixed set, as to focus on the ability of algorithms in acquiring a distinct skill across multiple goals,
rather than generalization and robustness.

Multi-Task 10 (MT10): This task involves learning a single multi-task policy that generalizes to
50 tasks across 10 training environments, totaling 500 training tasks. A crucial step towards rapid
adaptation to distinctly new tasks is the ability to train a single policy capable of solving multiple
distinct training tasks. The multi-task evaluation in Meta-World tests the ability to learn multiple
tasks simultaneously, without accounting for generalization to new tasks. The MT10 evaluation
encompasses 10 environments: reach, push, pick and place, open door, open drawer, close drawer,
press button top-down, insert peg side, open window, and close window.

We adapt our proposed CIP to multi-task learning by incorporating a one-hot task ID as input,
comparing MT-CIP with MT-SAC. The results in Figure 31 show that MT-CIP outperforms MT-
SAC in both MT1 (soccer) and MT10 tasks, achieving average success rates above 50% and 40%
respectively. Notably, MT-CIP exhibits strong performance in specific MT10 tasks like drawer close
and window open. The superior performance of MT-CIP stems from its effective learning of causal
information, enabling robust task transfer across diverse domains. While these results are promising,
future work will focus on causal state abstraction for enhanced generalization and sample efficiency.
All experiments were conducted under the same hyperparameter settings, and the implementation
will be made publicly available.

D.3.7 CAUSAL DISCOVERY ANALYSIS

In CIP, we use the linear causal discovery method DirectLiNAM for causal structure learning. To
explore alternative approaches, we compare it with two other causal discovery methods: score-based
GES (Chickering, 2002) and constraint-based PC (Spirtes et al., 2001). The experimental results in
Figure 32 across three tasks demonstrate that our chosen DirectLiNAM method exhibits superior
performance compared to both alternatives. During experimentation, we also observe that both
GES and PC methods incur significant computational overhead and frequently encounter memory
constraints. In contrast, our proposed method CIP, which is fundamentally reward-guided, efficiently
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Figure 27: Hyperparameter analysis of batch size and hidden size across 3 task.
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Figure 28: Computation time in 36 tasks.

discovers causal relationships between dimensional factors in states and actions with respect to
rewards. This approach better aligns with the requirements of policy learning while maintaining
minimal computational costs.
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Figure 29: statistical metrics of IQM, Mean, and Median (higher values are better) on 4 DMControl
tasks.
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Figure 30: statistical metrics of IQM, Mean, and Median (higher values are better) on 4 MuJoCo
tasks.
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Figure 31: Generalization results in MT1 and MT10 tasks.
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Figure 32: Compared performance with 2 different causal discovery methods across 3 task.

E DETAILS ON THE PROPOSED FRAMEWORK

Algorithm 1 lists the full pipeline of CIP below.

F EXPERIMENTAL PLATFORMS AND LICENSES

F.1 EXPERIMENTAL PLATFORMS

All experiments of this approach are implemented on 2 Intel(R) Xeon(R) Gold 6430 and 2 NVIDIA
Tesla A800 GPUs.

F.2 LICENSES

In our code, we have utilized the following libraries, each covered by its respective license agreements:

• PyTorch (BSD 3-Clause ”New” or ”Revised” License)
• Numpy (BSD 3-Clause ”New” or ”Revised” License)
• Tensorflow (Apache License 2.0)
• Meta-World (MIT License)
• MuJoCo (Apache License 2.0)
• Deep Mind Control (Apache License 2.0)
• Adroit Hand (Creative Commons License 3.0)

36



Published as a conference paper at ICLR 2025

Algorithm 1 Causal information prioritization for efficient RL
Input: Q network Qπc , policy network πc, inverse dynamics model ϕc with Q network Qϕc , replay buffer D,
local causal buffer Dc, causal update interval I , causal matrix Ma→s and Ma→r .

for each environment step t do
Collect data with πθ from real environment
Add to replay buffer D and local buffer Dc

end for

Step 1: Counterfactual data augmentation

if every I environment step then
Sample transitions Ds from local buffer Dc

Learn causal mask matrix Ma→r with {(s, a, r, s′)}|Ds| for causal state prioritization
Compute uncontrollable set Us followed by Eq. 4
Sample (s, a, r, s′) ∈ Ds

for si ∈ Us do
Sample (ŝ, â, r̂, ŝ′) ∼ Ds

if state ŝi ∈ Uŝ then
Construct a counterfactual transition (s̃, ã, r̃, s̃′) by swapping (si, s′i) with (ŝi, ŝ′i)
Add (s̃, ã, r̃, s̃′) to local buffer Dc

end if
end for

end if

Step 2: Causal weighted matrix learning

if every I environment step then
Sample transitions Da from local buffer Dc

Learn causal weighted matrix Ma→r with {(s, a, r, s′)}|Da| for causal action prioritization
end if

Step 3: Policy optimization with causal action empowerment

for each gradient step do
Sample N transitions (s, a, r, s′) from D
Compute causal action empowerment followed by Eq. 8.
Calculate the target Qϕc value
Update Qϕc by minϕc(T Qϕc −Qϕc)

2

Update ϕc by max(Qϕc(s, a))
Calculate the target Qπc value
Update Qπc by minπc(TcQπc −Qπc)

2

Update πc by maxc(Qπc(s, a) + Eπc(s))
end for
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