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Abstract

Prior studies show that spurious features are001
inevitable to avoid in the data collection pro-002
cess. These spurious features cause a short-003
cut for a model making bad prediction in real004
world test data due to ignoring the real fea-005
tures. In this work, we focus on designing006
a learning scheme to hinder the model from007
leveraging spurious features. To achieve this,008
prior studies usually make strong assumptions009
about the spurious features and identify them010
purely by manipulating the training data. In011
contrast, we make weaker assumptions and012
purpose a new framework for combating spuri-013
ous features by observing the distribution shift014
between training and auxiliary data. In partic-015
ular, with the help of unlabeled auxiliary data,016
we design a regularization technique based on017
the embedding distribution difference between018
training and auxiliary data to mitigate the ef-019
fect of spurious features. Experimental re-020
sults on NLI and coreference resolution tasks021
demonstrate that we improve the models on022
out-of-domain test data and reduce the con-023
tribution of spurious features in model predic-024
tions.025

1 Introduction026

Recently, neural networks have demonstrated re-027

markable performance in several NLP bench-028

marks. However, due to dataset collection bias1,029

several studies (Clark et al., 2019; Belinkov et al.,030

2019b; Sanh et al., 2021; Clark et al., 2020) show031

that these models may make predictions by lever-032

aging spurious correlation between some features033

(a.k.a. spurious features) and class labels instead034

of learning to actually solve the tasks. For exam-035

ple, in natural language inference (NLI) datasets,036

SNLI (Bowman et al., 2015) and MNLI (Williams037

et al., 2018), a pair of sentences is more likely to038

be labelled as “entailment” if there are overlaps039

1For example, the examples provided during the annotat-
ing process (Gururangan et al., 2018).

between the premise and the hypothesis, and it is 040

more likely to be “contradiction” if the hypothesis 041

contains negation tokens (Naik et al., 2018; Mc- 042

Coy et al., 2019). 043

Under i.i.d. assumption, when the test samples 044

are drawn from the same distribution as the train- 045

ing corpus, spurious features indeed help a model 046

in leveraging shortcut. Therefore, the model 047

seems perform well on the benchmarks. How- 048

ever, when we deploy the system, the real-world 049

might have a different distribution from the train- 050

ing data as they are collected from a different pro- 051

cess. As a result, models that rely on spurious 052

features perform terribly in the out-of-distribution 053

samples (Mahabadi et al., 2020) as spurious fea- 054

tures block the models from learning the correct 055

and general features. For example, He et al. 056

(2019); Utama et al. (2020) show that a control- 057

lable synthetic spurious feature causes the model 058

performance drop on unbiased data even when the 059

feature is not strong. Our goal is is to design a 060

learning scheme to hinder the model from leverag- 061

ing spurious features during the training process. 062

Prior studies on spurious features detection and 063

mitigation often assume that the spurious features 064

are shallow. They design models with limited ca- 065

pacity (e.g., linear models) to capture those fea- 066

tures by ensemble method Clark et al. (2019); Ma- 067

habadi et al. (2020), filtering method (Sakaguchi 068

et al., 2020; Bras et al., 2020) or adversarial train- 069

ing method (Belinkov et al., 2019b). However, we 070

argue that the definition of spurious feature is not 071

precise. In fact, not all the shallow features are 072

spurious features. For example, in named entity 073

recognition (NER), capitalization is a shallow fea- 074

ture but it is a legitimate feature that is helpful 075

in recognizing name, locations and organizations 076

(e.g., distinguish Apple Inc. from the fruit apple). 077

We argue that the key difference between spu- 078

rious features and real task features is that real 079

task features are always correlated with the task 080
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labels in a similar way, while spurious features al-081

ter when the data collecting process or distribution082

changes. Inspired by this, we consider spurious083

features as features with the following two prop-084

erties: 1) spurious features are highly correlated085

with prediction labels. Therefore, they are often086

used by a model as dominant features for making087

predictions. 2) spurious features may not hold the088

same correlation with task label or may not appear089

in the test data if the test set is collected from a090

different process from the training set.091

Estimating the correlation between features and092

task label in the training set is relatively simple as093

we have the task label annotations, but we do not094

have the distribution or task labels for the test data.095

Therefore, in this paper, we consider an unsuper-096

vised transfer learning setting, where we assume097

that a brunch of unlabelled data from an auxiliary098

distribution are revealed during the training. The099

auxiliary distribution differs from training in spu-100

rious features and it may or may not be the test dis-101

tribution. We purpose an regularization by distri-102

bution difference method to control the embedding103

difference between training and auxiliary distribu-104

tion. Discussion about the difference from unsu-105

pervised transfer learning is included in Sec. 2.106

We follow the prior work to consider the NLI107

task with a synthetic spurious feature and the nega-108

tion feature. In contrast to earilier work only con-109

sider simple text classificaiton tasks, we also con-110

sider coreference resolution, which is a more com-111

plex langauge task involved structured label which112

is more challenging. Results on test set where the113

spurious features have different distribution from114

training get improved, which is an evidence that115

the spurious features’ effects are mitigated. We116

also do further analysis to interpret the models’117

behaviour in terms of those spurious features and118

demonstrate we indeed reduce their contribution119

to the final predictions.120

2 Related Work121

Spurious Features Prior studies show that spu-122

rious features widely exist in datasets nowa-123

days. Among them, natural language inference124

(NLI) datasets are well learned, like SNLI (Bow-125

man et al., 2015), MNLI (Williams et al., 2018)126

or SWAG (Zellers et al., 2018). The spuri-127

ous features lay over hypothesis-only (Belinkov128

et al., 2019b,a), lexical features (Glockner et al.,129

2018; Naik et al., 2018), token overlap (McCoy130

et al., 2019), etc. spurious features also exist in 131

other tasks like visual question answering (VQA) 132

(Goyal et al., 2017), visual semantic role labeling 133

(vSRL) (Zhao et al., 2017; Jia et al., 2020), coref- 134

erence resolution (Zhao et al., 2018), etc. Models 135

that rely on those spurious features fail to general- 136

ize to out-of-domain samples or real world scenar- 137

ios (Mahabadi et al., 2020). 138

Following the categories defined in Shah et al. 139

(2020), in this work we focus on the spurious fea- 140

tures over label bias and selection bias. Com- 141

pared to the prior work focusing on the the label 142

distribution conditional on the spurious features 143

(He et al., 2019; Mahabadi et al., 2020), we pay 144

more attention on embedding space, which is more 145

flexible in complex downstream tasks like struc- 146

ture prediction where we are not able to enumer- 147

ate all possible labels. Under the selection bias 148

umbrella, prior work usually treats spurious fea- 149

tures as shallow but very helpful features in train- 150

ing set. He et al. (2019); Clark et al. (2019); Ma- 151

habadi et al. (2020) and design ensemble based 152

methods to learn the spurious features by a shal- 153

low model and further remove it; Sakaguchi et al. 154

(2020); Bras et al. (2020) apply adversarial filters 155

to filter out the samples with high confidence given 156

by shallow model to improve the out-of-domain 157

performance. Different from these prior work, 158

considering the spurious features are harmful in 159

out-of-domain samples, we leverage the unlabeled 160

out-of-domain data to help remove the spurious 161

features. 162

Unsupervised Transfer Learning with Distri- 163

bution Distance Regularization Utilizing dis- 164

tance metric between two distributions is common 165

in unsupervised transfer learning (domain adapta- 166

tion) to capture the cross-domain features to for 167

model transfer. Metrics like Wasserstein distance 168

(Shen et al., 2018), maximum mean discrepancy 169

(MMD) (Long et al., 2016) and domain adversar- 170

ial similarity (Ganin et al., 2016) are widely used. 171

Although our setting and methods are similar, we 172

are different from transfer learning in the follow- 173

ing three aspects: 1) Our goal is different. In trans- 174

fer learning we aim to better performance on the 175

target domain, while here we focus on mitigating 176

the effect of spurious features. Getting rid of spu- 177

rious features makes models perform better in out- 178

of-domain samples, but they are not equivalent. 2) 179

Our motivation is different. Transfer learning is an 180

application that leverage data from rich-resource 181
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domain to train a model on low-resource domain.182

However, spurious features are inevitable to avoid183

in the data collection process and cause a short-184

cut for a model making bad prediction due to ig-185

nore the real features, which is actually a system-186

atic problem in existing machine learning models.187

3) The purpose of the distribution difference reg-188

ularization is different. In transfer learning usu-189

ally we capture the commonalities between two190

diverse domains, while in our setting the train and191

test distribution are much more similar and we aim192

to get rid of the difference.193

3 Regularization by Embedding194

Distribution Distance195

According to our definition, spurious features have196

different behaviours in the training and auxiliary197

sets. Since we do not have access to the labels198

in auxiliary set, we estimate the spurious features199

based on the embedding distribution. We posit200

that features have similar embedding distribution201

in training and auxiliary are safe to use, while fea-202

tures with distinguishable embedding distributions203

should be avoided. Therefore, we design the regu-204

larization term by the embedding distribution dif-205

ference between training and auxiliary .206

Formally, we denote the training distribution as207

Dtr and the auxiliary distribution as Dau. The208

training set sampled from Dtr is denoted as D̂tr209

and similarly, D̂au. In NLP tasks we usually210

first apply an embedding model to learn a rep-211

resentation for the text input, based on which212

we build a model to get the output for the task.213

We denote these two models as E(·), T (·), pa-214

rameterized by θE , θT , respectively. Therefore,215

for a training sample (x, y), the loss is given216

by Ltask(T (E(x)), y), where Ltask(·) is the loss217

function. we denote E(Dtr), E(Dau) as the train-218

ing and auxiliary distribution in the embedding219

space, and the distribution distance function as220

Ldist(·). We define the regularized objective func-221

tion as222

L =

Expected Loss︷ ︸︸ ︷
E(x,y)∼Dtr [Ltask(T (E(x)), y)]

+β Ldist(E(Dtr), E(Dau))︸ ︷︷ ︸
Distribution Distance Regularization

(1)223

For selection of function Ldist, there are num-224

bers of functions that measure the distance be-225

tween two distributions, e.g., KL-divergence, use226

maximum mean discrepancy (MMD) (Gretton227

et al., 2012), etc. In this paper we choose to com- 228

pare two methods: Wasserstein distance (Arjovsky 229

et al., 2017; Gulrajani et al., 2017; Shen et al., 230

2018) Jensen-Shannon (JS) divergence (Goodfel- 231

low et al., 2014) which are widely used in domain 232

adaptation and generative adversarial networks. 233

3.1 Wasserstein Distance 234

Formally, Wasserstein distance is given by 235

W(D1, D2) =

sup
‖f‖L≤1

{Ex∼D1 [f(x)]− Ey∼D2 [f(y)]}, 236

where ‖ · ‖L is the Lipschitz semi-norm, and func- 237

tion f is a real value function called critic function 238

parameterized by θf . To remove the Lipschitz con- 239

straint, we add gradient penalty for parameter θf 240

as 241

Lgrad(x) = (‖∇xf(x)‖2 − 1)2. 242

Empirically, let D̂1, D̂2 are the empirical distribu- 243

tion of D1, D2, the distance loss is given by 244

L̂dist(D̂1, D̂2) =

−max
θf

 1

|D̂1|

∑
x∈D̂1

f(x)− 1

|D̂2|

∑
x∈D̂2

f(x)

 ,
245

and the function f is trained with gradient penalty- 246

regularized distance L̂dist + λLgrad. The training 247

process is listed in Algorithm 1. 248

3.2 JS-Divergence 249

JS-divergence is a distance metric of two distribu- 250

tions, and it is used in GAN when it is firstly pur- 251

posed (Goodfellow et al., 2014). However, when 252

the support sets for the two distributions are quite 253

different, JS-divergence suffers from gradient van- 254

ishing and cannot provide meaningful supervision. 255

However, in our setting that training and auxiliary 256

set are mainly from the same domain but different 257

in spurious features, JS divergence might be more 258

suitable. Formally, JS-divengence is defined by 259

JS(D1, D2) =
1

2
KL(D1‖Dm) +

1

2
KL(D2‖Dm), 260

where Dm is the mixture distribution as Dm = 261
1
2(D1 + D2). This value is exactly same as the 262

cross-entropy loss of an optimal binary classifier 263

on D1, D2 if we equivalently sample data from 264

D1 and D2. We upper bound this divergence by 265
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Algorithm 1 Training Process

Input: D̂tr, D̂au, Ltask, Ldis, β,, scheduler s :
N→ {“task”, “adv”}.
Output: θE , θT , θf .
1: iter ← 0
2: θE ← pre-trained model
3: θT , θf ← randomly initialize
4: repeat
5: sample btr = (xtr,ytr) from D̂tr

6: sample bau = xau from D̂au

7: state← s(iter)
8: if state == “task” then
9: loss← L̂task(btr) + βL̂dist(btr,bau)

10: θE ← θE − αE∇θE loss
11: θT ← θT − αT∇θT loss.
12: else
13: sample xgrad from btr ∪ bau
14: θf ← θf+

αf∇θf
(
L̂dist(btr,bau) + Lgrad(xgrad)

)
15: iter ← iter + 1
16: until iter > MAX ITER

the loss of a parameterized classifier fθ. Empiri-266

cally, let D̂1, D̂2 are the empirical distribution of267

D1, D2, we have268

L̂dist(D̂1, D̂2) =

−min
θf

 1

|D̂1|

∑
x∈D̂1

log f(x) +
1

|D̂2|

∑
x∈D̂2

log(1− f(x))

269

The training process with JS-divergence is simi-270

lar as described in Algorithm 1 except that the gra-271

dient penalty part in line 14.272

4 Experiments273

We apply the proposed approaches in three sce-274

narios to demonstrate its efficiency: (1) NLI task275

with a synthetic spurious feature; (2) NLI task276

with negation features; (3) coreference resolution277

with the gender feature. To simulate the real-278

world scenarios where we observe a distribution279

shift on some data, we create auxiliary sets based280

on training data manipulating the spurious fea-281

ture distribution. To analyze the effect of the282

spurious features, we evaluate our model on a283

test set with different distribution of spurious fea-284

tures (could be different from the unlabeled auxil-285

iary distribution). The experimental details about286

hyper-parameters in architectures or training are287

included in Appendix.288

Model Base Ens. Ours(JS) Ours(W-dis)
Acc. 88.0 85.1 86.2 83.6

Table 1: The accuracy on SNLI dataset with leakage
rate p = 0. JS stands for the JS-divergence and W-dis is
the Wasserstein distance. Ens. stands for the ensemble
method (He et al., 2019).
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Figure 1: The accuracy on SNLI dataset with propor-
tion of p leakage labels. Red dotted line shows that the
leakage label accuracy given by 2p+1

3 , and p = 0.82
is the point that leakage label accuracy is same as the
baseline performance without leakage labels.

4.1 NLI with Synthetic Leakage Label 289

Feature 290

NLI is a sentence classification task on pairs of 291

sentences. In this experiment we introduce a con- 292

trollable synthetic spurious feature to demonstrate 293

that our methods are able to work well against both 294

strong and weak spurious features. We also com- 295

pare the Wasserstein distance and JS-divergence. 296

Setup Following the synthetic dataset bias set- 297

ting in He et al. (2019); Utama et al. (2020) on 298

SNLI dataset, we manually leak the labels for the 299

training and development set and concatenate it 300

to the hypothesis. To create the auxiliary set, we 301

equally split the original training set into two sub- 302

sets and use one subset as the training set, the other 303

as the unlabeled auxiliary set. In the training set, 304

we leak the ground truth labels and concatenate 305

them to the input sentence in ratio p of the in- 306

stances, for the rest (1 − p) of the instances this 307

leakage label position is uniformly randomly se- 308

lected. In development, auxiliary and test set the 309

leakage label position is set as 0. Now the spurious 310

feature (leakage label) distribution in training and 311

the unlabeled auxiliary or test set are different. We 312

would like to verify that this difference is able to 313
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help model avoid leveraging the spurious feature.314

We use BERT (Devlin et al., 2019) as embed-315

ding and in baseline model we use a one-layer316

MLP to do the prediction. In our method, addi-317

tionally we use a one-layer transformer (Vaswani318

et al., 2017) with a one-layer MLP to parameter-319

ize function f in Wasserstein distance, and use320

the same architecture for the discriminator. We321

also compare our results with ensemble method322

(He et al., 2019). Basically it is not exactly a fair323

comparison since we leverage unlabeled auxiliary324

data, while the ensemble method relies on then as-325

sumption that the spurious feature exists in the hy-326

pothesis.327

Results The experimental results that leakage328

rate p = 0 is shown in Tab. 1, and in Fig. 1329

when p ∈ [0.6, 1.0]. The performance of all mod-330

els in p ∈ [0, 0.6] are about linearly decreasing.331

Considering the labels in this dataset are relatively332

balanced, the model will get 2p+1
3 accuracy if it333

purely relies on the leakage labels. The refer-334

ence line intersects with the baseline performance335

(p = 0) at (0.82, 0.88), showing that when the336

leakage rate p = 0.82, purely using the spurious337

feature can achieve same performance as the base-338

line without using it. We call the spurious feature339

is strong when p > 0.82.340

When the spurious feature is not strong (p <341

0.82) that using the spurious feature may not give342

better performance than using other features, we343

also observe the performance drop. This shows344

that spurious features block the model from learn-345

ing the meaningful features. Although the dis-346

tribution difference is not large, our method still347

provides supervision to reduce the spurious fea-348

ture effect and our model drops less than the base-349

line mode. When the spurious feature gets strong,350

since the spurious feature is shallow, the model351

learns to leverage it, which gives low accuracy in352

test time and even random guess when p = 1.0.353

Our method shows a relatively stable performance354

even when in the extreme scenario. Compared to355

ensemble based related work (He et al., 2019) we356

get similar performance when the feature is not357

strong, while we are better in the extreme sce-358

nario where the biased model is so confident that359

the ensemble output may suffer from gradient van-360

ish. This actually demonstrates that the distribu-361

tion regularization provides a stronger signal to362

avoid leveraging the spurious feature.363

Compared to the Wasserstein distance, JS-364

divergence is consistently better a lot. This shows 365

that in this spurious feature mitigation scenario, 366

the distribution difference between training and 367

test can be better represented by JS-divergence. 368

There are some arguments that the parameter- 369

ized critic funtion in Wasserstein distance usually 370

do not have enough capacity (Li et al., 2017). 371

Given that we use a the multilayer transformer 372

and a MLP layer to parameterize critic function 373

(Wasserstein) or discriminator (JS), the capacity 374

is more appropriate for JS. Thus, in the follow- 375

ing experiments, we only show the results of the 376

JS-divergence method and use “ours” to refer to it. 377

4.2 Coreference Resolution with Gender 378

Feature 379

Prior work categorized in label bias defined in 380

Shah et al. (2020) focuses on the imbalanced con- 381

ditional distribution p(y|h), where y is the task 382

output and h is the spurious feature. This could be 383

efficient for some tasks that the output is simple, 384

e.g., sentence classification. However, coreference 385

resolution task is a structure prediction task, where 386

the output space is exponentially large. One can- 387

not enumerate all the possibilities in the output 388

space and spurious feature detection or mitigation 389

is challenging. 390

We do experiments focusing on the gender fea- 391

ture stated in Zhao et al. (2018). Basically, model 392

tends to assign higher score to male-towards oc- 393

cupations to pronoun he/him, or female-towards 394

occupations to she/her due to biased data collec- 395

tion. To mitigate it, we may apply data argu- 396

mentation (Zhao et al., 2018) method, where we 397

can flip the gender-related tokens in training data 398

by a rule-based approach as the argumented train- 399

ing set. This argumented training set can also be 400

treated as our auxiliary set. Therefore, we would 401

like to explore whether the effect of the gender fea- 402

ture can be further reduced by our method. 403

Setup We train our models on Ontonotes v5.0 404

dataset (Weischedel et al., 2013) with the argu- 405

mented data. To evaluate the effect of the gen- 406

der feature, we test the models on the type-2 test 407

set in WinoBias dataset purposed in Zhao et al. 408

(2018). In this test set, each sentence contains two 409

occupations and one pronoun, and there is exactly 410

one linking in ground truth from the pronoun to 411

the second occupation, which can be correctly in- 412

ferred by the grammatical structure. The test set 413

is divided into two subsets: one is pro-stereotype 414
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Figure 2: An example of winobias data.

Model Test Pro Anti
Baseline 77.4 91.4 78.3

DA (Zhao et al., 2018) 76.9 87.9 83.8
DA+JS (Ours) 76.8 90.5 88.3

Table 2: Test is the test F1 of Ontonotes v5.0. Pro,
Anti are the type-2 pro/anti-stereotype Winobias test
set Zhao et al. (2018). DA stands for the data-
argumentation method, and DA+JS stands for our
method additionally using JS-divergence as regulariza-
tion.

and one is anti-stereotype. Fig. 2 shows an exam-415

ple in the anti-stereotype since in training data. If416

the model relies much on the gender feature, the417

pronoun “him” tends to incorrectly link to ‘physi-418

cian’ which is a much male-towards occupation.419

The absolute performance and the gap between the420

two test sets reflect the effect of the gender feature.421

We use SpanBERT (Joshi et al., 2020) as em-422

bedding, and use the end-to-end neural architec-423

ture (Lee et al., 2017) to do the coreference reso-424

lution. For the discriminator, we use a multilayer425

transformer and an MLP layer to parameterize it.426

Results The results are shown in Table 2. Our427

method further reduces the performance differ-428

ence between pro-subset and anti-subset compared429

to purely using data argumentation. On both of430

the test sets our performance is better than the431

data argumentation, which indicates that after get-432

ting rid of the effect of the ender feature, model433

focuses more on the correct and meaningful fea-434

tures, which can be the grammatical structure in435

this case. However, the gender feature in the436

Ontonotes test set also strongly correlated to la-437

bels, we observe performance drop a little bit on438

the Ontonotes test set. In Sec. 5 we do experi-439

ments to further demonstrate that our model pays440

less attention on the gender feature.441

4.3 NLI with Negation Feature442

Negation feature is one of the spurious feature in443

NLI task (Lai and Hockenmaier, 2014; Gururan-444

gan et al., 2018; Naik et al., 2018). As shown445

in Naik et al. (2018), there are about 13% mis-446

classified samples in MNLI are due to negation447

words and classify samples from entailment or 448

neutral to contradiction. Thus, the model perfor- 449

mance may drop when the distribution of the nega- 450

tion words changes. 451

Setup Since the test set of MNLI is not public, 452

we treat the matched development set as test set, 453

and split the training set by 90%/10% as train- 454

ing/development set. On development set we se- 455

lect the optimal hyper-parameters and use them 456

to train the model on the whole original training 457

set. To study the negation feature, We use point- 458

wise mutual information (PMI) metric (Gururan- 459

gan et al., 2018) to select top-5 most biased to- 460

kens towards contradiction in hypothesis: {never, 461

no, nothing, any, none}, and treat the samples with 462

these tokens in hypothesis as negation samples. In 463

this experiment, we consider a even harder setting 464

that the test data are not from the same distribution 465

of auxiliary data. We randomly split the training 466

set into two equal subsets D1 and D2 satisfying 467

that 1) in both set the labels are balanced; 2) D2 468

has no negation samples. We use D1 to train our 469

model while treat D2 as the unlabeled auxiliary 470

set. Thus D1, D2 are diffenent in the negation dis- 471

tribution. We filter out the negation samples from 472

test set and balance the label. Thus our auxiliary 473

set is “no-negation” set while test set is “negation- 474

only” set. We also do testing on STRESS (Naik 475

et al., 2018) negation test set, where each hypothe- 476

sis in MNLI development set is concatenated with 477

an adversarial suffix “and false is not true”. We 478

compare our results with the (reimplemented) en- 479

semble based method (He et al., 2019), with the 480

assumption that the spurious features exist in the 481

hypothesis. The model architectures are same as 482

Sec. 4.1. 483

Results The results on MNLI are shown in 484

Table. 3. Our baseline performance and re- 485

implementation is slightly lower than existing 486

one with similar structure (Devlin et al., 2019) 487

and published results, since we only use half of 488

the training data to make the comparison to our 489

method fair, and the distribution is also slightly 490

different. Generally, our method improves the 491

baseline in both neutral and contradiction classes, 492

and keep stable in entailment in the negation only 493

test samples. Compared to the ensemble based 494

method, we are better in each class while the trend 495

is similar. The reason could be that in this ex- 496

periment the distribution difference mainly comes 497
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Model Test Acc.
Neg. Only

Entailment Neutral Contradiction Acc.
Baseline (BERT) 81.4 92.0/74.5/82.3 80.0/61.2/69.3 67.8/96.3/79.6 77.3

Ens. (He et al., 2019) 80.9 92.0/74.5/82.3 79.4/62.0/69.6 68.3/95.9/79.8 77.5
Ours (β = 2.0) 81.2 91.0/74.5/81.9 79.0/61.2/69.4 69.3/96.3/80.6 77.6
Ours (β = 5.0) 80.8 90.6/74.9/82.0 77.3/69.0/72.9 73.6/93.8/82.5 79.3

Table 3: Performance on the MNLI matched development set. Ens. represent the ensemble method. Factor β is
defined in Eq. (1). The performance for the negation-only subset per class is shown in precision / recall / F1-score,
and accuracy for the rest.

Model E N C
Baseline (Ours) 11.8 55.7 69.3

Ens. (He et al., 2019) 12.8 55.1 69.1
Ours (β = 2.0) 11.2 55.8 70.8
Ours (β = 5.0) 12.0 55.8 70.9

Table 4: Performance on the STRESS negation test set.
E, N, C stands for entailment, neutral and contradic-
tion, respectively. The results are shown in F1 score.

from the negation words distribution, while there498

can be multiple spurious features existing in the499

hypothesis. Our method provides a more straight-500

forward supervision for dealing with the negation501

feature.502

Going deep into the results, we find that there is503

always a relatively large gap between the precision504

and recall in all three classes in baseline. In con-505

tradiction class recall is greater, while in the rest506

the precision is greater, which verifies that model507

takes the spurious feature as a “prior” that sam-508

ples with negation words are contradiction. Our509

method, in all three classes, is bridging the gap510

between the precision and recall, which demon-511

strates that we reduce this kind of “prior”. Our reg-512

ularization factor β provides a controllable trade-513

off between the overall performance and the spu-514

rious features reliance.515

The results on STRESS negation test set are516

shown in Tab. 4. The suffix makes the sentences517

semantically unnatural, which can be a problem518

for pre-trained language models like BERT. We519

find that the performance for different classes520

are much imbalance2. Our methods remain sta-521

ble in entailment and neutral class, and improve522

the baseline in contradiction, while the ensem-523

ble method has a trend to balance the classes and524

slightly improve the overall performance.525

2This is even more serious in original results in He et al.
(2019). Thus we reimplement it to compare with our results.

5 Analysis and Discussion 526

In this section we would like to demonstrate the 527

models we learn indeed remove or mitigate the 528

spurious features effects existing in training set. 529

We focus on the gender feature in coreference res- 530

olution experiment and the negation feature in NLI 531

experiment. 532

Coreference Resolution and Gender Bias Fea- 533

ture In coreference resolution we do 2-stage in- 534

ference: at the first stage we do mention detec- 535

tion, and in the second stage we link the mention 536

with the same reference together. Hence we fo- 537

cus on the linking score between the pronoun and 538

the correct occupation in the type-2 template in 539

WinoBias (Zhao et al., 2018) dataset. We ran- 540

domly select N = 500 templates from the test 541

set. For each template, we enumerate the occu2 542

from all 40 occupations in this test set, the pro- 543

noun p from {her, him}. We denote the linking 544

score between the pronoun and occu2 in template 545

i as si(occu2, p). We evaluate the gender bias (to- 546

wards female) for a particular occupation o by the 547

linking score difference to ‘her’ and ‘him’. Con- 548

sidering there could also be a scaling issue in the 549

linking sub-model, we normalize the difference by 550

the norm of the vector of linking scores. Formally, 551

552

B(o) =
1
N

∑N
i=1 si(o, her)− si(o, him)√

1
2N

∑N
i=1 s

2
i (o, her) + s2i (o, him)

. (2) 553

For those test case that the model fails to detect 554

occu2 as a mention candidate, we ignore this sam- 555

ple when we compute the average linking score. 556

We sort the 40 occupations by percentage of 557

people in the occupation who are reported as fe- 558

male3 and show the bias results of baseline model, 559

data argumentation model and ours in Fig. 3. 560

3All 40 occupations and their corresponding percentage is
reported in Zhao et al. (2018)
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Figure 3: The bias metric for different occupations de-
fined in Eq. (1). The occupations are sorted by the per-
centage of people in the occupation who are reported
as female. DA stands for data argumentation method.
The standard deviation of absolute bias terms of base-
line, DA and Ours are 0.166, 0.0264 and 0.0208 respec-
tively.

We know that different occupations have differ-561

ent frequency in the training data. For some less-562

frequent occupations, model does not get enough563

training or capacity to learn good representation564

for them, leading to some systematic fluctuations565

in the figure. We observe that the bias of the base-566

line model strongly correlated with the order of567

the occupations, while data argumentation and our568

method mitigate this trend. The standard deviation569

of |B(o)| in the three curves are are 0.166, 0.0264570

and 0.0208 respectively, where our method reduce571

the standard deviation by 21% compared to the572

data argumentation. Considering the existence of573

systematic fluctuations which we cannot remove,574

we believe this demonstrates that our model is fur-575

ther better in terms of gender fairness.576

NLI and Negation Feature In NLI with nega-577

tion feature we use the test performance to show578

that our method reduce the effect of the negation579

feature. To further demonstrate this, we apply580

LIME (Ribeiro et al., 2016) to interpret the model581

behaviour. Basically, LIME linearly approximates582

the model outputs based on pre-defined and inter-583

pretable features, and the coefficient in the lin-584

ear model shows the significance of the corre-585

sponding feature. Here we use the occurrence586

of tokens in premises and hypothesis as binary587

features. We consider the top-2,000 frequent to-588

kens in training set. Thus, for a token t, posi-589

tion p ∈ {premise, hypothesis} and class c ∈590

Model R2 ¯|w| Avg. wneg,hypo
E N C

Baseline 0.474 0.80 -1.86 -0.78 2.64
Ours 0.467 0.80 -1.57 -0.58 2.12
Diff. - - -15.6% -25.6% -19.7%

Table 5: Results of the LIME interpretation about NLI
models. Ours stands for our method when β = 5.0.
R2 is the coefficient of determination showing that how
much the linear regression can represent the model. ¯|w|
is the average absolute value of all the coefficient, and
Avg. wneg,hypo is average of coefficients about nega-
tion words in hypothesis.

{E, N, C}, we have feature ft,p and the linear re- 591

gression learns a coefficient wt,p,c showing the 592

contribution of token t’s occurance in p to label 593

c. The data for the linear regression are generated 594

from the model output on MNLI matched devel- 595

opment set, and we clip the coefficient into range 596

[−5, 5]. 597

The results are shown in Tab. 5. We use the co- 598

efficient of determination R2 to show the quality 599

of the linear regression. We believe that the value 600

is big enough to claim the regression is meaning- 601

ful. ComparingR2 in two models, we find that our 602

model is harder to interpret by surface features. 603

For each class c, the average coefficient of nega- 604

tion tokens in hypothesis reflecting how much the 605

model relies on this negation feature. In baseline 606

model, the spurious feature strongly contributes to 607

contradiction and negatively contributes to entail- 608

ment. For neutral class it has negative impact but 609

only in an average level compared to other coeffi- 610

cients. In our method, the scale of the coefficients 611

and we reduce the impact of the negation bias by 612

about 15.6% to 25.6%. 613

6 Conclusion 614

We purpose a new definition of the spurious fea- 615

tures existing in training data with consideration 616

about the test distribution. To mitigate their ef- 617

fects in machine learning models, we purpose a 618

regularization about the distribution difference in 619

the embedding space, which is general and can 620

be applied in different downstream tasks. Experi- 621

mental results and related analysis based on model 622

interpretation demonstrate the effectiveness of our 623

method in terms of spurious features mitigation. 624

In the future, we plan to study the design and in- 625

corporation of prior knowledge from human about 626

the spurious features. 627
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A Training Details798

The hyper-parameters we use are shown in Tab. 6.799

800
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Hyper-parameter NLI-label Coref NLI-negation
Embedding BERT-base SpanBERT-base BERT-base
#Layers in Transformer 1 1 1
#Ratio for ‘task’ state 0.2 0.4 0.2
#Layers fine-tune in BERT 6 12 6
Regularization factor 5.0 5.0 2.0/5.0
Gradient penalty factor 10.0 - -
Warmup 8,000 14,000 14,000
Weight Decay 0.1 0.01 0.1
Optimizer Adam Adam Adam
Learing Rate αE 1e-5 2e-5 1e-5
Learing Rate αT 3e-5 1e-4 3e-5
Learing Rate αf 3e-5 1e-4 3e-5
Batch size 16 1 16
Epoch 8 20 20

Table 6: Hyper-parameters in our model.
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