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Abstract

Prior studies show that spurious features are
inevitable to avoid in the data collection pro-
cess. These spurious features cause a short-
cut for a model making bad prediction in real
world test data due to ignoring the real fea-
tures. In this work, we focus on designing
a learning scheme to hinder the model from
leveraging spurious features. To achieve this,
prior studies usually make strong assumptions
about the spurious features and identify them
purely by manipulating the training data. In
contrast, we make weaker assumptions and
purpose a new framework for combating spuri-
ous features by observing the distribution shift
between training and auxiliary data. In partic-
ular, with the help of unlabeled auxiliary data,
we design a regularization technique based on
the embedding distribution difference between
training and auxiliary data to mitigate the ef-
fect of spurious features. Experimental re-
sults on NLI and coreference resolution tasks
demonstrate that we improve the models on
out-of-domain test data and reduce the con-
tribution of spurious features in model predic-
tions.

1 Introduction

Recently, neural networks have demonstrated re-
markable performance in several NLP bench-
marks. However, due to dataset collection bias',
several studies (Clark et al., 2019; Belinkov et al.,
2019b; Sanh et al., 2021; Clark et al., 2020) show
that these models may make predictions by lever-
aging spurious correlation between some features
(a.k.a. spurious features) and class labels instead
of learning to actually solve the tasks. For exam-
ple, in natural language inference (NLI) datasets,
SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018), a pair of sentences is more likely to
be labelled as “entailment” if there are overlaps

"For example, the examples provided during the annotat-
ing process (Gururangan et al., 2018).

between the premise and the hypothesis, and it is
more likely to be “contradiction” if the hypothesis
contains negation tokens (Naik et al., 2018; Mc-
Coy et al., 2019).

Under i.i.d. assumption, when the test samples
are drawn from the same distribution as the train-
ing corpus, spurious features indeed help a model
in leveraging shortcut. Therefore, the model
seems perform well on the benchmarks. How-
ever, when we deploy the system, the real-world
might have a different distribution from the train-
ing data as they are collected from a different pro-
cess. As a result, models that rely on spurious
features perform terribly in the out-of-distribution
samples (Mahabadi et al., 2020) as spurious fea-
tures block the models from learning the correct
and general features. For example, He et al.
(2019); Utama et al. (2020) show that a control-
lable synthetic spurious feature causes the model
performance drop on unbiased data even when the
feature is not strong. Our goal is is fo design a
learning scheme to hinder the model from leverag-
ing spurious features during the training process.

Prior studies on spurious features detection and
mitigation often assume that the spurious features
are shallow. They design models with limited ca-
pacity (e.g., linear models) to capture those fea-
tures by ensemble method Clark et al. (2019); Ma-
habadi et al. (2020), filtering method (Sakaguchi
et al., 2020; Bras et al., 2020) or adversarial train-
ing method (Belinkov et al., 2019b). However, we
argue that the definition of spurious feature is not
precise. In fact, not all the shallow features are
spurious features. For example, in named entity
recognition (NER), capitalization is a shallow fea-
ture but it is a legitimate feature that is helpful
in recognizing name, locations and organizations
(e.g., distinguish Apple Inc. from the fruit apple).

We argue that the key difference between spu-
rious features and real task features is that real
task features are always correlated with the task



labels in a similar way, while spurious features al-
ter when the data collecting process or distribution
changes. Inspired by this, we consider spurious
features as features with the following two prop-
erties: 1) spurious features are highly correlated
with prediction labels. Therefore, they are often
used by a model as dominant features for making
predictions. 2) spurious features may not hold the
same correlation with task label or may not appear
in the test data if the test set is collected from a
different process from the training set.

Estimating the correlation between features and
task label in the training set is relatively simple as
we have the task label annotations, but we do not
have the distribution or task labels for the test data.
Therefore, in this paper, we consider an unsuper-
vised transfer learning setting, where we assume
that a brunch of unlabelled data from an auxiliary
distribution are revealed during the training. The
auxiliary distribution differs from training in spu-
rious features and it may or may not be the test dis-
tribution. We purpose an regularization by distri-
bution difference method to control the embedding
difference between training and auxiliary distribu-
tion. Discussion about the difference from unsu-
pervised transfer learning is included in Sec. 2.

We follow the prior work to consider the NLI
task with a synthetic spurious feature and the nega-
tion feature. In contrast to earilier work only con-
sider simple text classificaiton tasks, we also con-
sider coreference resolution, which is a more com-
plex langauge task involved structured label which
is more challenging. Results on test set where the
spurious features have different distribution from
training get improved, which is an evidence that
the spurious features’ effects are mitigated. We
also do further analysis to interpret the models’
behaviour in terms of those spurious features and
demonstrate we indeed reduce their contribution
to the final predictions.

2 Related Work

Spurious Features Prior studies show that spu-
rious features widely exist in datasets nowa-
days. Among them, natural language inference
(NLI) datasets are well learned, like SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018)
or SWAG (Zellers et al., 2018). The spuri-
ous features lay over hypothesis-only (Belinkov
et al., 2019b,a), lexical features (Glockner et al.,
2018; Naik et al., 2018), token overlap (McCoy

et al., 2019), etc. spurious features also exist in
other tasks like visual question answering (VQA)
(Goyal et al., 2017), visual semantic role labeling
(vSRL) (Zhao et al., 2017; Jia et al., 2020), coref-
erence resolution (Zhao et al., 2018), etc. Models
that rely on those spurious features fail to general-
ize to out-of-domain samples or real world scenar-
ios (Mahabadi et al., 2020).

Following the categories defined in Shah et al.
(2020), in this work we focus on the spurious fea-
tures over label bias and selection bias. Com-
pared to the prior work focusing on the the label
distribution conditional on the spurious features
(He et al., 2019; Mahabadi et al., 2020), we pay
more attention on embedding space, which is more
flexible in complex downstream tasks like struc-
ture prediction where we are not able to enumer-
ate all possible labels. Under the selection bias
umbrella, prior work usually treats spurious fea-
tures as shallow but very helpful features in train-
ing set. He et al. (2019); Clark et al. (2019); Ma-
habadi et al. (2020) and design ensemble based
methods to learn the spurious features by a shal-
low model and further remove it; Sakaguchi et al.
(2020); Bras et al. (2020) apply adversarial filters
to filter out the samples with high confidence given
by shallow model to improve the out-of-domain
performance. Different from these prior work,
considering the spurious features are harmful in
out-of-domain samples, we leverage the unlabeled
out-of-domain data to help remove the spurious
features.

Unsupervised Transfer Learning with Distri-
bution Distance Regularization Utilizing dis-
tance metric between two distributions is common
in unsupervised transfer learning (domain adapta-
tion) to capture the cross-domain features to for
model transfer. Metrics like Wasserstein distance
(Shen et al., 2018), maximum mean discrepancy
(MMD) (Long et al., 2016) and domain adversar-
ial similarity (Ganin et al., 2016) are widely used.
Although our setting and methods are similar, we
are different from transfer learning in the follow-
ing three aspects: 1) Our goal is different. In trans-
fer learning we aim to better performance on the
target domain, while here we focus on mitigating
the effect of spurious features. Getting rid of spu-
rious features makes models perform better in out-
of-domain samples, but they are not equivalent. 2)
Our motivation is different. Transfer learning is an
application that leverage data from rich-resource



domain to train a model on low-resource domain.
However, spurious features are inevitable to avoid
in the data collection process and cause a short-
cut for a model making bad prediction due to ig-
nore the real features, which is actually a system-
atic problem in existing machine learning models.
3) The purpose of the distribution difference reg-
ularization is different. In transfer learning usu-
ally we capture the commonalities between two
diverse domains, while in our setting the train and
test distribution are much more similar and we aim
to get rid of the difference.

3 Regularization by Embedding
Distribution Distance

According to our definition, spurious features have
different behaviours in the training and auxiliary
sets. Since we do not have access to the labels
in auxiliary set, we estimate the spurious features
based on the embedding distribution. We posit
that features have similar embedding distribution
in training and auxiliary are safe to use, while fea-
tures with distinguishable embedding distributions
should be avoided. Therefore, we design the regu-
larization term by the embedding distribution dif-
ference between training and auxiliary .

Formally, we denote the training distribution as
Dy, and the auxiliary distribution as D,. The
training set sampled from Dy, is denoted as ﬁtr
and similarly, ﬁau. In NLP tasks we usually
first apply an embedding model to learn a rep-
resentation for the text input, based on which
we build a model to get the output for the task.
We denote these two models as E(-), T(-), pa-
rameterized by 0g, 07, respectively. Therefore,
for a training sample (x,y), the loss is given
by Ligsk(T(E(x)),y), where Ly,sx(+) is the loss
function. we denote E (D, ), E(Dg,) as the train-
ing and auxiliary distribution in the embedding
space, and the distribution distance function as
Lgist(+). We define the regularized objective func-
tion as

Expected Loss

L= E(x,y)wDM [Ltask (T(E(IL‘)), y)]
+/B Ldist(E(Dtr)yE(Dau))

Distribution Distance Regularization

ey

For selection of function Lg;4, there are num-
bers of functions that measure the distance be-
tween two distributions, e.g., KL-divergence, use
maximum mean discrepancy (MMD) (Gretton

et al., 2012), etc. In this paper we choose to com-
pare two methods: Wasserstein distance (Arjovsky
et al., 2017; Gulrajani et al., 2017; Shen et al.,
2018) Jensen-Shannon (JS) divergence (Goodfel-
low et al., 2014) which are widely used in domain
adaptation and generative adversarial networks.

3.1 Wasserstein Distance

Formally, Wasserstein distance is given by

W(Dy, D) =

2 (Eeep [f(@)] = By, [},

where || - ||, is the Lipschitz semi-norm, and func-
tion f is a real value function called critic function
parameterized by 6/ ;. To remove the Lipschitz con-
straint, we add gradient penalty for parameter 6 ¢
as

Lgrad(x) = (vaﬂf(x)HQ - 1)2'

Empirically, let D1, Dy are the empirical distribu-
tion of D1, D5, the distance loss is given by

fldist(Dl7 DQ) =

1
—max { —— f(z
Oy {D1| Z

xzeDy

and the function f is trained with gradient penalty-
regularized distance Lg;st + ALgpqq. The training
process is listed in Algorithm 1.

3.2 JS-Divergence

JS-divergence is a distance metric of two distribu-
tions, and it is used in GAN when it is firstly pur-
posed (Goodfellow et al., 2014). However, when
the support sets for the two distributions are quite
different, JS-divergence suffers from gradient van-
ishing and cannot provide meaningful supervision.
However, in our setting that training and auxiliary
set are mainly from the same domain but different
in spurious features, JS divergence might be more
suitable. Formally, JS-divengence is defined by

1 1

where D,,, is the mixture distribution as D,, =
%(Dl + Dy). This value is exactly same as the
cross-entropy loss of an optimal binary classifier
on Dy, Dy if we equivalently sample data from
D; and Dy. We upper bound this divergence by



Algorithm 1 Training Process

Input: Diry Daus Liasks Lais, 5,, scheduler s :
N — {“task”, “adv”}.

Output: 0g, 07, 0.

1: iter <0

2: O « pre-trained model

3: Or, 07 < randomly initialize

4: repeat

5: sample by, = (X4, y4r) from Dy,
6:  sample by, = X4, from ﬁau

7. state < s(iter)

8: if state == “task” then X

9: loss < Liqsk (btr) + 6Ldist (btm bau)
10: Op < 0 — OzEVQElOSS
11: Or < O — arVy,loss.
12:  else
13: sample Xg;.qq from by U bg,,
14: Of < 07+

afVGf (ﬁdist (btra bau) + Lgrad(xgrad)>
15:  iter < iter + 1
16: until iter > MAX_ITER

the loss of a parameterized classifier fy. Empiri-
cally, let D1, Do are the empirical distribution of
D1, D5, we have

Laist(D1, D2) =

1 1
— min - E log f(z) + —
o5 {|D1| ) | D2|

xEﬁl

S log(1 - f(a:))}

z€ﬁ2

The training process with JS-divergence is simi-
lar as described in Algorithm 1 except that the gra-
dient penalty part in line 14.

4 Experiments

We apply the proposed approaches in three sce-
narios to demonstrate its efficiency: (1) NLI task
with a synthetic spurious feature; (2) NLI task
with negation features; (3) coreference resolution
with the gender feature. To simulate the real-
world scenarios where we observe a distribution
shift on some data, we create auxiliary sets based
on training data manipulating the spurious fea-
ture distribution. To analyze the effect of the
spurious features, we evaluate our model on a
test set with different distribution of spurious fea-
tures (could be different from the unlabeled auxil-
iary distribution). The experimental details about
hyper-parameters in architectures or training are
included in Appendix.

Model ‘ Base ‘ Ens. ‘ Ours(JS) ‘ Ours(W-dis)

Acc. | 880 [851| 862 | 836

Table 1: The accuracy on SNLI dataset with leakage
rate p = 0. JS stands for the JS-divergence and W-dis is
the Wasserstein distance. Ens. stands for the ensemble
method (He et al., 2019).
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Figure 1: The accuracy on SNLI dataset with propor-
tion of p leakage labels. Red dotted line shows that the
leakage label accuracy given by @, and p = 0.82
is the point that leakage label accuracy is same as the
baseline performance without leakage labels.

4.1 NLI with Synthetic Leakage Label
Feature

NLI is a sentence classification task on pairs of
sentences. In this experiment we introduce a con-
trollable synthetic spurious feature to demonstrate
that our methods are able to work well against both
strong and weak spurious features. We also com-
pare the Wasserstein distance and JS-divergence.

Setup Following the synthetic dataset bias set-
ting in He et al. (2019); Utama et al. (2020) on
SNLI dataset, we manually leak the labels for the
training and development set and concatenate it
to the hypothesis. To create the auxiliary set, we
equally split the original training set into two sub-
sets and use one subset as the training set, the other
as the unlabeled auxiliary set. In the training set,
we leak the ground truth labels and concatenate
them to the input sentence in ratio p of the in-
stances, for the rest (1 — p) of the instances this
leakage label position is uniformly randomly se-
lected. In development, auxiliary and test set the
leakage label position is set as 0. Now the spurious
feature (leakage label) distribution in training and
the unlabeled auxiliary or test set are different. We
would like to verify that this difference is able to



help model avoid leveraging the spurious feature.

We use BERT (Devlin et al., 2019) as embed-
ding and in baseline model we use a one-layer
MLP to do the prediction. In our method, addi-
tionally we use a one-layer transformer (Vaswani
et al., 2017) with a one-layer MLP to parameter-
ize function f in Wasserstein distance, and use
the same architecture for the discriminator. We
also compare our results with ensemble method
(He et al., 2019). Basically it is not exactly a fair
comparison since we leverage unlabeled auxiliary
data, while the ensemble method relies on then as-
sumption that the spurious feature exists in the hy-
pothesis.

Results The experimental results that leakage
rate p = 0 is shown in Tab. 1, and in Fig. 1
when p € [0.6,1.0]. The performance of all mod-
els in p € [0,0.6] are about linearly decreasing.
Considering the labels in this dataset are relatively
balanced, the model will get % accuracy if it
purely relies on the leakage labels. The refer-
ence line intersects with the baseline performance
(p = 0) at (0.82,0.88), showing that when the
leakage rate p = 0.82, purely using the spurious
feature can achieve same performance as the base-
line without using it. We call the spurious feature
is strong when p > 0.82.

When the spurious feature is not strong (p <
0.82) that using the spurious feature may not give
better performance than using other features, we
also observe the performance drop. This shows
that spurious features block the model from learn-
ing the meaningful features. Although the dis-
tribution difference is not large, our method still
provides supervision to reduce the spurious fea-
ture effect and our model drops less than the base-
line mode. When the spurious feature gets strong,
since the spurious feature is shallow, the model
learns to leverage it, which gives low accuracy in
test time and even random guess when p = 1.0.
Our method shows a relatively stable performance
even when in the extreme scenario. Compared to
ensemble based related work (He et al., 2019) we
get similar performance when the feature is not
strong, while we are better in the extreme sce-
nario where the biased model is so confident that
the ensemble output may suffer from gradient van-
ish. This actually demonstrates that the distribu-
tion regularization provides a stronger signal to
avoid leveraging the spurious feature.

Compared to the Wasserstein distance, JS-

divergence is consistently better a lot. This shows
that in this spurious feature mitigation scenario,
the distribution difference between training and
test can be better represented by JS-divergence.
There are some arguments that the parameter-
ized critic funtion in Wasserstein distance usually
do not have enough capacity (Li et al., 2017).
Given that we use a the multilayer transformer
and a MLP layer to parameterize critic function
(Wasserstein) or discriminator (JS), the capacity
is more appropriate for JS. Thus, in the follow-
ing experiments, we only show the results of the
JS-divergence method and use “ours” to refer to it.

4.2 Coreference Resolution with Gender
Feature

Prior work categorized in label bias defined in
Shah et al. (2020) focuses on the imbalanced con-
ditional distribution p(y|h), where y is the task
output and h is the spurious feature. This could be
efficient for some tasks that the output is simple,
e.g., sentence classification. However, coreference
resolution task is a structure prediction task, where
the output space is exponentially large. One can-
not enumerate all the possibilities in the output
space and spurious feature detection or mitigation
is challenging.

We do experiments focusing on the gender fea-
ture stated in Zhao et al. (2018). Basically, model
tends to assign higher score to male-towards oc-
cupations to pronoun he/him, or female-towards
occupations to she/her due to biased data collec-
tion. To mitigate it, we may apply data argu-
mentation (Zhao et al., 2018) method, where we
can flip the gender-related tokens in training data
by a rule-based approach as the argumented train-
ing set. This argumented training set can also be
treated as our auxiliary set. Therefore, we would
like to explore whether the effect of the gender fea-
ture can be further reduced by our method.

Setup We train our models on Ontonotes v5.0
dataset (Weischedel et al., 2013) with the argu-
mented data. To evaluate the effect of the gen-
der feature, we test the models on the type-2 test
set in WinoBias dataset purposed in Zhao et al.
(2018). In this test set, each sentence contains two
occupations and one pronoun, and there is exactly
one linking in ground truth from the pronoun to
the second occupation, which can be correctly in-
ferred by the grammatical structure. The test set
is divided into two subsets: one is pro-stereotype



occu_1 occu_2 pronoun

Figure 2: An example of winobias data.

Model ‘ Test ‘ Pro ‘ Anti
Baseline 774|914 | 78.3

DA (Zhao et al., 2018) | 76.9 | 87.9 | 83.8
DA+JS (Ours) 76.8 | 90.5 | 88.3

Table 2: Test is the test F1 of Ontonotes v5.0. Pro,
Anti are the type-2 pro/anti-stereotype Winobias test
set Zhao et al. (2018). DA stands for the data-
argumentation method, and DA+JS stands for our
method additionally using JS-divergence as regulariza-
tion.

and one is anti-stereotype. Fig. 2 shows an exam-
ple in the anti-stereotype since in training data. If
the model relies much on the gender feature, the
pronoun “him” tends to incorrectly link to ‘physi-
cian’ which is a much male-towards occupation.
The absolute performance and the gap between the
two test sets reflect the effect of the gender feature.
We use SpanBERT (Joshi et al., 2020) as em-
bedding, and use the end-to-end neural architec-
ture (Lee et al., 2017) to do the coreference reso-
Iution. For the discriminator, we use a multilayer
transformer and an MLP layer to parameterize it.

Results The results are shown in Table 2. Our
method further reduces the performance differ-
ence between pro-subset and anti-subset compared
to purely using data argumentation. On both of
the test sets our performance is better than the
data argumentation, which indicates that after get-
ting rid of the effect of the ender feature, model
focuses more on the correct and meaningful fea-
tures, which can be the grammatical structure in
this case. However, the gender feature in the
Ontonotes test set also strongly correlated to la-
bels, we observe performance drop a little bit on
the Ontonotes test set. In Sec. 5 we do experi-
ments to further demonstrate that our model pays
less attention on the gender feature.

4.3 NLI with Negation Feature

Negation feature is one of the spurious feature in
NLI task (Lai and Hockenmaier, 2014; Gururan-
gan et al., 2018; Naik et al., 2018). As shown
in Naik et al. (2018), there are about 13% mis-
classified samples in MNLI are due to negation

words and classify samples from entailment or
neutral to contradiction. Thus, the model perfor-
mance may drop when the distribution of the nega-
tion words changes.

Setup Since the test set of MNLI is not public,
we treat the matched development set as test set,
and split the training set by 90%/10% as train-
ing/development set. On development set we se-
lect the optimal hyper-parameters and use them
to train the model on the whole original training
set. To study the negation feature, We use point-
wise mutual information (PMI) metric (Gururan-
gan et al., 2018) to select top-5 most biased to-
kens towards contradiction in hypothesis: {never,
no, nothing, any, none}, and treat the samples with
these tokens in hypothesis as negation samples. In
this experiment, we consider a even harder setting
that the test data are not from the same distribution
of auxiliary data. We randomly split the training
set into two equal subsets D; and Dy satisfying
that 1) in both set the labels are balanced; 2) Do
has no negation samples. We use D; to train our
model while treat Do as the unlabeled auxiliary
set. Thus Dy, D5 are diffenent in the negation dis-
tribution. We filter out the negation samples from
test set and balance the label. Thus our auxiliary
set is “no-negation” set while test set is “negation-
only” set. We also do testing on STRESS (Naik
et al., 2018) negation test set, where each hypothe-
sis in MNLI development set is concatenated with
an adversarial suffix “and false is not true”. We
compare our results with the (reimplemented) en-
semble based method (He et al., 2019), with the
assumption that the spurious features exist in the
hypothesis. The model architectures are same as
Sec. 4.1.

Results The results on MNLI are shown in
Table. 3. Our baseline performance and re-
implementation is slightly lower than existing
one with similar structure (Devlin et al., 2019)
and published results, since we only use half of
the training data to make the comparison to our
method fair, and the distribution is also slightly
different. Generally, our method improves the
baseline in both neutral and contradiction classes,
and keep stable in entailment in the negation only
test samples. Compared to the ensemble based
method, we are better in each class while the trend
is similar. The reason could be that in this ex-
periment the distribution difference mainly comes



Neg. Onl
Model Test Ace, Entailment | Neutrg;ll 31 Contradiction | Acc.
Baseline (BERT) 814 | 92.0/74.5/82.3 | 80.0/61.2/69.3 | 67.8/96.3/79.6 | 77.3
Ens. (Heotal, 2019) | 809 | 92.0/74.5/82.3 | 79.4/62.0/69.6 | 68.3/95.9/79.8 | 77.5
Ours (8 = 2.0) 81.2 91.0/74.5/81.9 | 79.0/61.2/69.4 | 69.3/96.3/80.6 | 77.6
Ours (8 = 5.0) 80.8 90.6/74.9/82.0 | 77.3/69.0/72.9 | 73.6/93.8/82.5 | 79.3

Table 3: Performance on the MNLI matched development set. Ens. represent the ensemble method. Factor f is
defined in Eq. (1). The performance for the negation-only subset per class is shown in precision / recall / F1-score,

and accuracy for the rest.

Model \ E \ N \ C
Baseline (Ours) 11.8 | 55.7 | 69.3
Ens. (He et al., 2019) | 12.8 | 55.1 | 69.1
Ours (5 = 2.0) 11.2 | 55.8 | 70.8
Ours (8 = 5.0) 12.0 | 55.8 | 70.9

Table 4: Performance on the STRESS negation test set.
E, N, C stands for entailment, neutral and contradic-
tion, respectively. The results are shown in F1 score.

from the negation words distribution, while there
can be multiple spurious features existing in the
hypothesis. Our method provides a more straight-
forward supervision for dealing with the negation
feature.

Going deep into the results, we find that there is
always a relatively large gap between the precision
and recall in all three classes in baseline. In con-
tradiction class recall is greater, while in the rest
the precision is greater, which verifies that model
takes the spurious feature as a “prior” that sam-
ples with negation words are contradiction. Our
method, in all three classes, is bridging the gap
between the precision and recall, which demon-
strates that we reduce this kind of “prior”. Our reg-
ularization factor 8 provides a controllable trade-
off between the overall performance and the spu-
rious features reliance.

The results on STRESS negation test set are
shown in Tab. 4. The suffix makes the sentences
semantically unnatural, which can be a problem
for pre-trained language models like BERT. We
find that the performance for different classes
are much imbalance’. Our methods remain sta-
ble in entailment and neutral class, and improve
the baseline in contradiction, while the ensem-
ble method has a trend to balance the classes and
slightly improve the overall performance.

2This is even more serious in original results in He et al.
(2019). Thus we reimplement it to compare with our results.

S Analysis and Discussion

In this section we would like to demonstrate the
models we learn indeed remove or mitigate the
spurious features effects existing in training set.
We focus on the gender feature in coreference res-
olution experiment and the negation feature in NLI
experiment.

Coreference Resolution and Gender Bias Fea-
ture In coreference resolution we do 2-stage in-
ference: at the first stage we do mention detec-
tion, and in the second stage we link the mention
with the same reference together. Hence we fo-
cus on the linking score between the pronoun and
the correct occupation in the type-2 template in
WinoBias (Zhao et al., 2018) dataset. We ran-
domly select N = 500 templates from the test
set. For each template, we enumerate the occus
from all 40 occupations in this test set, the pro-
noun p from {her, him}. We denote the linking
score between the pronoun and occus in template
i as sj(occug, p). We evaluate the gender bias (to-
wards female) for a particular occupation o by the
linking score difference to ‘her’ and ‘him’. Con-
sidering there could also be a scaling issue in the
linking sub-model, we normalize the difference by
the norm of the vector of linking scores. Formally,

1 N )
< > :_.8i(o, her) — si(o, him

B(o) = Nsz]\li ( ) ( ) s
S SN 520, her) + s2(o, him)

For those test case that the model fails to detect
occuy as a mention candidate, we ignore this sam-
ple when we compute the average linking score.

We sort the 40 occupations by percentage of
people in the occupation who are reported as fe-
male? and show the bias results of baseline model,
data argumentation model and ours in Fig. 3.

3 All 40 occupations and their corresponding percentage is
reported in Zhao et al. (2018)
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Figure 3: The bias metric for different occupations de-
fined in Eq. (1). The occupations are sorted by the per-
centage of people in the occupation who are reported
as female. DA stands for data argumentation method.
The standard deviation of absolute bias terms of base-
line, DA and Ours are 0.166, 0.0264 and 0.0208 respec-
tively.

We know that different occupations have differ-
ent frequency in the training data. For some less-
frequent occupations, model does not get enough
training or capacity to learn good representation
for them, leading to some systematic fluctuations
in the figure. We observe that the bias of the base-
line model strongly correlated with the order of
the occupations, while data argumentation and our
method mitigate this trend. The standard deviation
of | B(0)| in the three curves are are 0.166, 0.0264
and 0.0208 respectively, where our method reduce
the standard deviation by 21% compared to the
data argumentation. Considering the existence of
systematic fluctuations which we cannot remove,
we believe this demonstrates that our model is fur-
ther better in terms of gender fairness.

NLI and Negation Feature In NLI with nega-
tion feature we use the test performance to show
that our method reduce the effect of the negation
feature. To further demonstrate this, we apply
LIME (Ribeiro et al., 2016) to interpret the model
behaviour. Basically, LIME linearly approximates
the model outputs based on pre-defined and inter-
pretable features, and the coefficient in the lin-
ear model shows the significance of the corre-
sponding feature. Here we use the occurrence
of tokens in premises and hypothesis as binary
features. We consider the top-2,000 frequent to-
kens in training set. Thus, for a token ¢, posi-
tion p € {premise, hypothesis} and class ¢ €

2 . AVg Wneg,hypo
Model | R lw| E | N | C
Baseline| 0.474 | 0.80 | -1.86 | -0.78 | 2.64
Ours | 0.467 | 0.80 | -1.57 | -0.58 | 2.12
Diff. - - F15.6%-25.6% -19.7%

Table 5: Results of the LIME interpretation about NLI
models. Ours stands for our method when 8 = 5.0.
R? is the coefficient of determination showing that how
much the linear regression can represent the model. |1I)|
is the average absolute value of all the coefficient, and
AVE. Wpeg hypo 1s average of coefficients about nega-
tion words in hypothesis.

{E, N, C}, we have feature f;, and the linear re-
gression learns a coefficient wy p . showing the
contribution of token ¢’s occurance in p to label
c. The data for the linear regression are generated
from the model output on MNLI matched devel-
opment set, and we clip the coefficient into range
[—5,5].

The results are shown in Tab. 5. We use the co-
efficient of determination R? to show the quality
of the linear regression. We believe that the value
is big enough to claim the regression is meaning-
ful. Comparing R? in two models, we find that our
model is harder to interpret by surface features.
For each class c, the average coefficient of nega-
tion tokens in hypothesis reflecting how much the
model relies on this negation feature. In baseline
model, the spurious feature strongly contributes to
contradiction and negatively contributes to entail-
ment. For neutral class it has negative impact but
only in an average level compared to other coeffi-
cients. In our method, the scale of the coefficients
and we reduce the impact of the negation bias by
about 15.6% to 25.6%.

6 Conclusion

We purpose a new definition of the spurious fea-
tures existing in training data with consideration
about the test distribution. To mitigate their ef-
fects in machine learning models, we purpose a
regularization about the distribution difference in
the embedding space, which is general and can
be applied in different downstream tasks. Experi-
mental results and related analysis based on model
interpretation demonstrate the effectiveness of our
method in terms of spurious features mitigation.
In the future, we plan to study the design and in-
corporation of prior knowledge from human about
the spurious features.
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A Training Details

The hyper-parameters we use are shown in Tab. 6.
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Hyper-parameter NLI-label Coref NLI-negation
Embedding BERT-base | SpanBERT-base | BERT-base
#Layers in Transformer 1 1 1
#Ratio for ‘task’ state 0.2 0.4 0.2
#Layers fine-tune in BERT 6 12 6
Regularization factor 5.0 5.0 2.0/5.0
Gradient penalty factor 10.0 - -
Warmup 8,000 14,000 14,000
Weight Decay 0.1 0.01 0.1
Optimizer Adam Adam Adam
Learing Rate ag le-5 2e-5 le-5
Learing Rate ar 3e-5 le-4 3e-5
Learing Rate oy 3e-5 le-4 3e-5
Batch size 16 1 16
Epoch 8 20 20

Table 6: Hyper-parameters in our model.
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