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Abstract
DeepSeek-R1 has successfully enhanced Large
Language Model (LLM) reasoning capabilities
through its rule-based reward system. While it’s a
“perfect” reward system that effectively mitigates
reward hacking, such reward functions are often
discrete. Our experimental observations suggest
that discrete rewards can lead to gradient anomaly,
unstable optimization, and slow convergence. To
address this issue, we propose ReDit (Reward
Dithering), a method that dithers the discrete re-
ward signal by adding simple random noise. With
this perturbed reward, exploratory gradients are
continuously provided throughout the learning
process, enabling smoother gradient updates and
accelerating convergence. The injected noise also
introduces stochasticity into flat reward regions,
encouraging the model to explore novel policies
and escape local optima. Experiments across di-
verse tasks and different LLMs demonstrate the
effectiveness and efficiency of ReDit. On aver-
age, ReDit achieves performance comparable to
vanilla GRPO with only approximately 10% the
training steps, and furthermore, still exhibits a
4% performance improvement over vanilla GRPO
when trained for a similar duration. Visualizations
confirm significant mitigation of gradient issues
with ReDit. Moreover, theoretical analyses are
provided to further validate these advantages.

1. Introduction
Reinforcement learning (RL) is pivotal in Large Language
Model (LLM) development(AI@Meta, 2025; Anthropic,
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2024; OpenAI et al., 2024). Initially, RL from human
feedback (RLHF) (Christiano et al., 2017; Ziegler et al.,
2019) was employed to align pre-trained LLMs with human
preferences (Lang et al., 2024; Ouyang et al., 2022). This
typically involves training a separate reward model (RM)
on human preference data (Kaufmann et al., 2024), which
then guides the LLM policy optimization (Lambert, 2025).
While effective, this approach introduces considerable train-
ing overhead (Cao et al., 2024b). Subsequently, methods
like Direct Preference Optimization (DPO) (Rafailov et al.,
2023) were developed, enabling LLMs to learn directly from
preference data and thus bypassing explicit RM training.
However, these methods still require extensive collection of
high-quality preference data. For reasoning tasks such as
mathematics and coding, DeepSeek-R1 (DeepSeek-AI et al.,
2025) with Group Relative Policy Optimization (Shao et al.,
2024)(GRPO) proposes an alternative: optimizing the LLM
policy directly using a rule-based reward system (Kong &
Yang, 2022; Wang et al., 2025), thereby avoiding the need
for external RMs or large preference datasets. For instance,
such a system might assign a reward of 1 for outputs meet-
ing predefined criteria (e.g., correctness, format compliance)
and 0 otherwise (DeepSeek-AI et al., 2025). The simplicity
and unbiased nature of these rule-based rewards prevent
LLMs from hacking them, potentially fostering enhanced
reasoning capabilities (Chan et al., 2023).

However, such reward functions are often discrete, posing
significant optimization challenges (Rengarajan et al., 2022;
Vasan et al., 2024; Goyal et al., 2019). Consider an RL
scenario with a binary reward (Chatterji et al., 2021): a
policy model receives 1 for a correct answer and 0 other-
wise. During early training phases, a policy LLM rarely
generates completely correct answers, resulting in predomi-
nantly zero rewards across mini-batches (Cao et al., 2024a).
Although the model may engage in exploratory behavior
on difficult examples, the corresponding gradients remain
minimal due to small advantage magnitudes (Chan et al.,
2024). Thus, these hard examples and potentially beneficial
explorations (Chan et al., 2024) are largely unexploited dur-
ing the early stages. Conversely, the model may repeatedly
reinforce easy examples (Xie et al., 2024), thus reducing
incentives to explore alternative strategies for more difficult
problems (Weaver & Tao, 2001). This phenomenon can
lead to training stagnation in intermediate and advanced
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(a) GRPO Training Dynamic on GSM8K
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(b) GRPO Training Dynamic on GSM8K with ReDit
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Figure 1. Training Dynamics of Gradient Norm and Reward for Qwen2.5-7B (Qwen et al., 2025) on GSM8K Dataset. Fig.s (a) and (b)
compare gradient distributions and reward trends across training steps. The original GRPO method (Fig. (a)) suffers from significant
gradient instability—both vanishing (red dots, norms ¡ 0.01) and exploding (purple asterisks, norms ¿ 5). In contrast, ReDit with Gaussian
reward smoothing (Fig. (b)) effectively stabilizes optimization throughout training.

stages. Consistent with this, as shown in Fig. 1(a), we ob-
serve that the policy model frequently suffers from gradient
vanishing (Razin et al., 2024; Abdul Hameed et al., 2023)
or explosion (Zhang et al., 2025) during these phases. This
combination of insufficient exploration and gradient instabil-
ity substantially impedes model convergence, representing
a critical obstacle to efficient RL in LLM.
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Figure 2. The figure illustrates how ReDit of different variances
gradually smooth the reward distribution, showing the smoothing
effect of perturbations of different variances.

This observed phenomenon highlights that even perfectly ac-
curate discrete reward functions face significant limitations
within gradient-based optimization frameworks. Lending
theoretical support to this, recent studies (Ivison et al., 2024;
Chen et al., 2024; Wen et al., 2025) have established that a
singular focus on increasing reward model accuracy does
not necessarily translate to enhanced language model per-
formance. In particular, Wen et al. (2025) theoretically
substantiates the necessity for effective reward models to

integrate adequate variance and uncertainty to enable ef-
ficient optimization. The theoretical details are given in
Sec. 3.2. Consequently, an optimal reward system must
balance accuracy with appropriate levels of variance.

Inspired by these observations and theoretical insights, we
propose ReDit, a simple yet effective technique that ap-
plies zero-mean random perturbations to discrete reward
signals during training. By introducing controlled noise
to the reward function (Fig. 2), ReDit transforms hard re-
ward boundaries into smoother gradients. This softened
approach generates greater reward variance within mini-
batches which, as established in previous research, enhances
model performance and accelerates convergence.

Fig.1 demonstrates the impact of ReDit on LLM policy op-
timization for GSM8K. The orange lines reveal that GRPO
with ReDit achieves substantially higher early-phase re-
wards than the baseline, indicating the effectiveness of
ReDit . We hypothesize that ReDit encourages broader
exploration by assigning varied rewards to outputs that only
partially meet strict evaluation criteria, thereby accelerating
convergence. Although both approaches eventually attain
high rewards after 1000 training steps, our method exhibits
superior test set performance, suggesting better general-
ization. As evidenced by Fig.1(a), ReDit maintains stable
gradients throughout training while the baseline suffers from
gradient vanishing (red point) and explosion (purple star).
These results confirm the advantages of ReDit: more sta-
ble optimization, faster convergence, and enhanced overall
performance.

Moreover, theoretical analysis indicates that a greater re-
ward variance can enhance performance and accelerate con-
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vergence in RL (Wen et al., 2025). We increase reward
variance within mini-batches while preserving the expected
gradient through reward dithering. By carefully injecting
noise into the reward function, ReDit achieves a balance
between reward signal fidelity and reward variance, leading
to enhanced policy optimization.

In summary, our main contributions are:

• We observe that policy optimization under discrete
reward functions suffer from unstable gradients and
slow convergence (Section 3.1).

• We propose Reward Dithering (ReDit), a simple yet
effective technique that introduces perturbations to dis-
crete rewards. This method is shown to accelerate con-
vergence speed and enhance final model performance
(Algorithm 1 and Section 4).

• Extensive experiments across diverse downstream
tasks, RL algorithms, perturbation distributions and dif-
ferent LLMs demonstrate that ReDit achieves superior
performance and enhanced convergence (Section 5).

• Theoretical analysis proves that ReDit produces an
unbiased estimate of the original gradient (Proposi-
tion 6.1), introduces beneficial gradient variance that
mitigates vanishing and exploding gradients (Proposi-
tion 6.2), and significantly improves convergence speed
(Proposition 6.3).

2. Preliminaries
We frame LLM generation as a sequential decision-making
problem solvable via RL. The process is modeled as a
Markov Decision Process (MDP) (Hallak et al., 2015) where
the state st = q; o<t includes the prompt q and generated
tokens o<t, the action ot is the next token selected from the
vocabulary, and the policy πθ(ot|st) is parameterized by θ.
The goal is to optimize the policy to maximize the expected
sequence-level reward R(q, o) =

∑|o|
t=1 r(st, ot) over the

prompt distribution pQ:

J(πθ) = Eq∼pQ

[
Eo∼πθ(·|q)[R(q, o)]

]
. (1)

Recently, GRPO (Shao et al., 2024) was proposed as a PPO
alternative that eliminates the need for independent RMs
and value functions. GRPO typically processes sparse, dis-
crete rewards directly, rather than continuous RM scores.
For tasks like mathematical reasoning, this discrete reward
R(q, o) ∈ {0, 1} is often determined by a simple function
checking correctness or format. GRPO estimates the advan-
tage ÂGRPO

i,t by sampling G responses {oi}Gi=1 and normal-
izing their discrete rewards within the set. Its objective func-
tion, which includes a KL divergence term DKL(πθ||πref)

for stability, is given by:

JGRPO(θ) = Eq∼pQ

[
1

G

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Â

GRPO
i,t ,

clip (ri,t(θ), 1− ϵ, 1 + ϵ) ÂGRPO
i,t

)]
− βEq∼pQ

[DKL(πθ(·|q)||πref(·|q))] ,

(2)

where ri,t(θ) =
πθ(oi,t|si,t)
πθold (oi,t|si,t)

. Subsequent methods such
as DAPO (Yu et al., 2025), Dr.GRPO (Liu et al., 2025),
and REINFORCE++ (Hu et al., 2025) generally adopt this
discrete reward paradigm (see Appendix A for more re-
lated work). While simplifying the overall RL process by
avoiding complex RMs, this shift to discrete, sequence-level
rewards introduces significant optimization challenges. The
inherent sparsity and abrupt value changes (e.g., 0 to 1) hin-
der policy gradient estimation and lead to training instability
(Section 3.1).
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Figure 3. GRPO has unstable performance on the MATH test set.
The figure plots the test accuracy achieved for the checkpoints
saved during the training run shown in Fig. 4(b).

3. Motivation
This section articulates the fundamental motivations driv-
ing our research and establishes the critical challenges that
our work aims to address. In Section 3.1, we examine the
optimization challenges inherent in discrete reward struc-
tures, followed by an exposition of the theoretical principles
informing our methodological framework in Section 3.2.

3.1. Difficulties in Optimization Caused by Discrete
Rewards

Optimizing LLM policies using algorithms like GRPO in
conjunction with discrete sequence-level rewards (e.g., bi-
nary correctness metrics) presents significant optimization
challenges. Fig. 4 plots the policy gradient norm (blue line)
and average reward (orange line) during standard GRPO
training on the GSM8K and MATH datasets, respectively.
Two main issues are immediately apparent:
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(a) GRPO Training Dynamic on GSM8K
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(b) GRPO Training Dynamic on Math
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Figure 4. Qwen2.5-7B Gradient norm and reward training dynamics of standard GRPO on GSM8k and MATH datasets. During the whole
optimization process, the gradient of standard GRPO is unstable, and there are a lot of gradient vanishing or gradient exploding cases.

Gradient Vanishing. The figure illustrates instances where
the gradient norm approaches zero (red dot), occurring when
most examples in a GRPO batch yield identical binary re-
wards. Consequently, the population relative advantage esti-
mate ÂGRPO

i,t becomes negligible across examples, providing
insufficient learning signals and causing training stagnation.
This phenomenon is evident in Fig. 4(b) post-step 2000.

Gradient Eplosion. Conversely, training dynamics exhibit
sporadic sharp spikes in gradient norm (purple asterisks)
when small policy changes cause sequences to transition
from incorrect (reward 0) to correct (reward 1). These tran-
sitions create disproportionately large advantage estimates
for newly successful sequences, triggering sudden, destabi-
lizing gradient updates as shown in Fig. 4(a). Such spikes
induce reward fluctuations in subsequent steps, hindering
smooth convergence and learning efficiency.

The discrete, sparse rewards induce unstable oscillations
between vanishing and exploding gradients. Fig. 3 demon-
strates that model performance fluctuates correspondingly
with these oscillations. This inherent instability not only
compromises optimization efficiency but also serves as a
key motivation for our research.

3.2. Theoretical Principles to Address the Limitations of
Discrete Rewards

To overcome the critical challenges with discrete rewards
outlined in Section 3.1, we propose a approach to improve
the quality of the reward signal. Our solution derives from
Theorem 3.3 and Theorem 3.4, which reveal fundamental re-
lationships between reward variance, accuracy, and learning
efficiency. From Definition 1, 2 in Razin et al. (2025), The
accuracy and variance of the reward function is as follows:

Definition 3.1. Given a prompt x ∈ X , the accuracy of a
reward model rRM : X × Y → [−1, 1] with respect to a
distribution D over unordered output pairs is defined by:

accx,D(rRM ) := E{y,y′}∼D

[
1

[
sign

(
rRM (x, y)

− rRM (x, y′)
)
= sign

(
rG(x, y)− rG(x, y

′)
)]]

,

(3)
where rG is the ground truth reward, 1[·] is an indicator
function, and sign : R→ {−1, 0, 1} is the sign function.1

Definition 3.2. Given a policy πθ, prompt x ∈ X , and
reward model rRM : X ×Y → [−1, 1], the reward variance
induced by rRM for πθ and x is defined by:

Vary∼πθ(·|x)[rRM (x, y)] := Ey∼πθ(·|x)

[(
rRM (x, y)

− Ey′∼πθ(·|x)
[
rRM (x, y′)

])2
]
.

(4)

Theorem 3.3 establishes that the time tγrequired for policy
improvement is inversely proportional to reward variance.
When rewards exhibit insufficient variance—failing to ade-
quately differentiate between high-quality and low-quality
outputs under policy πθ, convergence slows significantly.
This finding suggests that strategically increasing reward
variance can accelerate policy convergence.

1For a set of prompts, accuracy refers to the mean accuracy
over the set.
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Theorem 3.3 (Policy network optimization time lower
bound). From Theorem 1 in Razin et al. (2025).
Suppose that we maximize the objective (Eq. (1)),
using a general autoregressive policy πθ(y|x) =∏y

l=1 softmax(fθ(x,y<l)yl
). For any γ > 0, prompt

x ∈ X , and reward function r, the time it takes until
Ey∼πθ(t)(·|x)[r(x,y)] ≥ Ey∼πθ(0)(·|x)[r(x,y)] + γ is:

Ω

(
Ex′∼S

[
vary∼πθ(0)(·|x′)(r(x

′,y))
]− 1

3

)

Complementarily, Theorem 3.4 demonstrates that effec-
tive reward models must incorporate a calibrated degree
of uncertainty. This controlled uncertainty creates essential
exploration space during early training stages, preventing
premature convergence and facilitating more efficient opti-
mization.

Theorem 3.4 (Policy network optimization time up-
per bound). From Theorem 2 in Razin et al. (2025).
Assume πθ is a policy of the form πθ(y|x) =
softmax[θ:,x]y. Given a hint x ∈ S, let γ >
0 and denote by tγ > 0 the initial time of
Ey∼πθ(t)(·|x)[rG(x,y)] ≥ Ey∼πθ(0)(·|x)[rG(x,y)] + γ.
For any initial policy πθ(0), a perfect RM converges to
tγ that can be arbitrarily large, while a relatively inac-
curate RM has an upper bound of O(πθ(0)(y

γ |x)−1).

While perfectly accurate reward functions resist reward
hacking, they paradoxically impede optimization by produc-
ing discrete rewards with minimal variance and insufficient
randomness. This limitation severely constrains the growth
rates of both training reward rRM and true reward rG dur-
ing policy gradient updates. To address this fundamental
tension, we introduce ReDit—a method that injects zero-
mean perturbations into discrete rewards. This approach
preserves the expected reward value while introducing ben-
eficial variance and controlled uncertainty in each update
step, dramatically improving both model performance and
convergence speed.

4. Reward Dithering (ReDit)
As discussed previously, the discrete nature of rewards com-
monly used in GRPO can lead to unstable gradient dynamics.
To address this, we propose ReDit . The core idea, detailed
in Algorithm 1, is to inject calibrated, zero-mean perturba-
tions into the discrete rewards obtained from sampled out-
puts before using them to compute the GRPO objective for
policy updates. Importantly, our ReDit method preserves
the overall optimization structure of the GRPO objective
function as defined in Eq. (2), the optimization still aims to
maximize this objective.

Algorithm 1 ReDit within one optimization step
1: Input: Base policy πθold ; Discrete reward function r :
O → {0, 1, 2, 3, ...}; Prompt q; Number of samples G.
Noise parameters: Gaussian std dev σ > 0 or Uniform
radius a > 0.

2: Output: Updated policy πθ.

3: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) and compute
ri ← r(oi) for i = 1, . . . , G.

4: Sample ϵi ∼ N (0, σ2) or U [−a, a] and compute
r̃i ← ri + ϵi for i = 1, . . . , G.// Generate noise
and smooth rewards.

5: Compute JGRPO using {r̃i}Gi=1 and θ ←
Optimize(θold, JGRPO, r̃i).// Optimization

6: return Updated policy πθ.

The crucial modification introduced by ReDit lies in how
the advantage term ÂGRPO

i,t within Eq. (2) is computed. In-
stead of directly using the raw discrete rewards ri = r(oi)
obtained for each sampled output oi in the batch {oi}Gi=1

(line 3 in Algorithm 1), we first compute smoothed re-
wards r̃i. This is done by adding independently sampled
zero-mean perturbation ϵi (e.g., fromN (0, σ2) or U [−a, a])
to each discrete reward (line 6 in Algorithm 1):

r̃i = ri + ϵi (5)

These smoothed rewards {r̃k}Gk=1 are then used as the basis
for calculating the advantage. GRPO often computes ad-
vantage based on the relative performance within the batch,
typically involving normalization. With ReDit, the core
component of the advantage calculation, which relies on
these rewards, is effectively modified as follows:

ÂGRPO
i,t ∝ ri −mean({rk}Gk=1)

std({rk}Gk=1)

ReDit−−−→ ÂDithering
i,t ∝ r̃i −mean({r̃k}Gk=1)

std({r̃k}Gk=1)

(6)

Thus, the relative standing of each output oi within the batch,
which informs its advantage ÂGRPO

i,t used in Eq. (2), is deter-
mined by the continuous smoothed reward r̃i rather than the
discrete ri. This substitution transforms the optimization
landscape. By introducing continuous variations via r̃i, the
added noise provides informative, non-zero gradients even
when discrete rewards ri are sparse or identical within a
batch, mitigating gradient vanishing. It also dampens the
sharp changes in expected advantage resulting from small
policy shifts affecting discrete outcomes, thus reducing the
likelihood of gradient explosion. This overall smoothing
effect facilitates a more stable gradient flow, enabling more
robust and efficient optimization of the policy πθ using the
GRPO objective (line 8 in Algorithm 1).
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Figure 5. Test accuracy across datasets on Qwen2.5-7B-Instruct and Qwen2.5-VL-7B-Instruct. The horizontal dashed line marks ReDit’s
performance at 1000 steps, which GRPO fails to match even after 9000 steps.

5. Empirical Results
This section presents a thorough evaluation of our ReDit
framework, assessing its effectiveness and efficiency. We be-
gin by detailing the datasets and experimental configurations
in Section 5.1. Subsequently, Section 5.2 provides a com-
prehensive analysis of the primary findings. To isolate the
contributions of key components, we also conduct ablation
studies, the results of which are presented in Section 5.3.

5.1. Datasets and Setup

To rigorously evaluate the effectiveness of our proposed
ReDit framework, we conducted extensive experiments.
The specific experimental settings are detailed below.

Datasets. Our dataset selection and setup largely follow
the methodology of (Shao et al., 2024), primarily to assess
the mathematical reasoning capabilities of the models. This
encompasses mathematical problem-solving datasets such
as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021), as well as the multimodal geometric reason-
ing dataset Geometry3K (Lu et al., 2021). Each dataset
provides distinct training and test splits, which we utilize
accordingly for model training and subsequent evaluation.
See the Appendix D.1 for details of the dataset.

Reward Functions. We designed dataset-specific reward
functions. For the GSM8K dataset, which involves sim-
pler problem structures, we implemented several reward
types: accuracy-based, strict format adherence, sort format
adherence, integer value correctness, and inference step ad-
herence. For the more complex MATH and Geometry3K
datasets, our supervision relied solely on accuracy-based
and inference-based reward functions. Detailed implemen-
tations of these reward functions are provided in the Ap-
pendix D.2.

Initial Policy. To rigorously assess the effectiveness of
ReDit without confounding factors introduced by super-
vised fine-tuning (SFT), we initialized our experiments di-
rectly with instruct models without any additional SFT train-

ing. Previous research by Shao et al. (2025) demonstrated
that even random rewards can enhance performance for
Qwen models. Therefore, we conducted comprehensive
evaluations across a diverse set of instruction-tuned models,
including Qwen2.5-7B-Instruct, Qwen2.5-VL-7B-Instruct,
Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, Ministral-
8B-Instruct-2410, and Mistral-7B-Instruct-v0.3, to establish
the generalizability of ReDit.

Other Training Settings. For parameter-efficient fine-
tuning, we employed Low-Rank Adaptation (LoRA) (Hu
et al., 2022). Our implementation leverages the official
GRPO implementation within the TRL library (von Werra
et al., 2020). Specific configurations for LoRA and GRPO
parameters are detailed in the Appendix D.3. Model evalua-
tion was conducted using the OpenCompass (Contributors,
2023). All experiments were executed on single NVIDIA
H20 GPU.

5.2. Main Results

In our main experiments, we validate the effectiveness of
our proposed ReDit. For these experiments, we primarily
use either a uniform smoothing kernel with radius a = 0.05
or a Gaussian smoothing kernel with standard deviation
σ = a/

√
3. More experimental results can be found in the

Appendix E.

Accelerated Convergence Across Datasets and LLMs.
We demonstrate that integrating our proposed method,
ReDit, with GRPO substantially accelerates convergence
and improves final performance across a wide range of
datasets (Fig. 5) and LLMs, including Llama-3.2-3B, Llama-
3.1-8B, Ministral-8B and Mistral-7B (Fig. 6). On all tested
models, both Gaussian and uniform variants of ReDit en-
able GRPO to reach a competitive performance level within
merely 1000 training steps. Notably, this performance al-
ready surpasses that of the baseline GRPO trained for the
full 9000 steps. Consequently, ReDit not only enhances
training efficiency but also leads to superior final accuracy.
The Gaussian variant, in particular, consistently yields the
strongest results and promotes more stable training trajecto-
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Figure 6. Accuracy of different LLMs on GSM8K. ReDit improves training efficiency and final performance in various LLMs.

ries with lower volatility compared to the baseline.

Table 1. Test accuracy comparison across datasets for original
Backbone, GRPO, and ReDit represents percentage point improve-
ment of the superior ReDit variant over the GRPO.

Name GSM8K MATH Geometry3K

Backbone 84.91 39 40.43
GRPO(Baseline) 89.07 48.01 43.10
w/ ours(Gauss) 90.76 52.55 44.67
w/ ours(Uniform) 90.46 51.96 44.36

∆ +1.69 +4.54 +1.57

Generalization to Diverse Baselines. Fig. 8 presents re-
sults from applying ReDit to additional reinforcement learn-
ing baselines (DAPO, Dr.GRPO, and REINFORCE++) on
the GSM8K dataset. Across all algorithms, ReDit (both
Gaussian and uniform variants) consistently enhances per-
formance and accelerates learning. Beyond these early-stage
improvements, ReDit also substantially boosts the final ac-
curacy of these baselines, as quantitatively demonstrated in
Table 2. These accuracy gains (Table 1) complement the
qualitative evidence in Fig. 8, confirming that ReDit enables
faster and more stable learning across diverse algorithms.

Table 2. Comparison of the accuracy for different baselines under
9000 steps on GSM8K.
Name DAPO DR.GRPO REINFORCE++

Baseline 87.52 86.13 86.25
w/ ours(Gauss) 89.34 87.69 87.96
w/ ours(Uniform) 88.57 87.34 87.59

∆ +1.82 +1.56 +1.71

Optimal Performance with Scheduled Perturbation. We
further investigate convergence behavior under various
scheduled perturbation schemes: SquareRoot, Cosine, and
CosineReverse perturbations. These schedules dynamically
adjust perturbation variance throughout training, potentially
benefiting model learning. Fig. in the Appendix E.7 il-
lustrates the different perturbation schedules, while Fig. 7
presents their performance. Compared to standard GRPO,
ReDit achieves both faster convergence and superior final
performance, with the CosineReverse perturbation schedule
yielding particularly strong results. Additional details are

provided in the Appendix E.7.
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Figure 7. CosineReverse achieves the best performance.

5.3. Ablation Studies

Perturbation variance affects performance. To study
the sensitivity of ReDit to the perturbation amplitude, we
performed an ablation study by varying the parameter a
in the Gaussian smoothing kernel with standard deviation
σ = a/

√
3. This effectively changes the variance of the

applied perturbation. As shown in Fig. 9, applying reward
smoothing (i.e., for any a > 0.00) consistently leads to
faster convergence compared to the baseline without smooth-
ing (a = 0.00). Moreover, in most cases, increasing the
perturbation amplitude (larger a) tends to improve the fi-
nal performance of the model. Notably, the configuration
with a = 0.05 shows superior performance, achieving not
only the fastest convergence but also the best peak model
performance, see the Fig. 9 annotation. However, these
results highlight a key trade-off. While moderate perturba-
tions are beneficial, excessive perturbations (e.g., a = 0.5)
may over-smooth the reward landscape. This may mask
the original reward signal and lead to performance degrada-
tion. Conversely, if the perturbation variance is too small
(e.g., a = 0.01), the smoothing effect is small and the im-
provement over the baseline is limited. This suggests that
there is an optimal perturbation variance. We recommend
conducting preliminary experiments on a smaller dataset to
effectively determine this optimal variance before applying
it to larger-scale training scenarios. For a detailed theoretical
introduction to σ, please refer to Section 6.
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Figure 8. Accuracy of different GRPO variants tested on the GSM8K dataset. The horizontal dashed line highlights the performance of
using ReDit at about 1000 training steps, and even after 9000 steps, its accuracy is comparable to the baseline.
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Figure 9. Appropriate perturbation achieves the best performance.

Isolating the Effect on Discrete Rewards. To verify that
the performance gains of ReDit stem specifically from
smoothing discrete rewards, we conducted a crucial ablation
study. In this experiment, we replaced the discrete reward
signal with a continuous one generated by a reward model
pre-trained on human preference data. This model provides
a continuous quality score within the range [0,1]. We then
applied the ReDit perturbation mechanism directly to these
continuous rewards. The results, presented in Fig. 10, show
that applying ReDit in this setting yields no discernible
impact on either the convergence speed of model or its fi-
nal performance. This outcome strongly indicates that the
benefits of ReDit are nullified when the reward landscape
is already smooth. We therefore conclude that the efficacy
of ReDit lies specifically in addressing the optimization
challenges inherent to sparse and discrete reward signals.

Comparison with Direct Gradient Manipulation Base-
lines. We benchmark ReDit against established techniques
that directly address gradient instability: Gradient Clip-
ping (Zhang et al., 2020), which mitigates exploding gra-
dients, and Dynamic Sampling (Yu et al., 2025), which
alleviates vanishing gradients. The objective is to compare
our ReDit approach with methods that operate directly on
the gradient signal. As illustrated in Figure 11, ReDit sub-
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Figure 10. ReDit has little effect on improving the performance of
GRPO based RM.

stantially outperforms both baseline methods. We attribute
this performance gap to the inherent limitations of these
heuristics. Gradient Clipping, for instance, crudely trun-
cates gradient magnitudes, a non-principled operation that
can introduce significant estimation bias. Conversely, while
Dynamic Sampling can be effective for vanishing gradients,
it offers no mechanism to prevent gradients from exploding.
In contrast, ReDit stabilizes the training process by smooth-
ing the reward, which provides a more principled solution
to prevent both gradient vanishing and explosion, thereby
leading to more efficient and effective training.
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Figure 11. Appropriate perturbation achieves the best performance.
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6. Theoretical Insights
We provides a theoretical analyzing how perturbing discrete
reward signals with, e.g., Gaussian noise, accelerates RL
convergence, offering a principled explanation for observed
empirical benefits.

Problem Setup. Our analysis uses a simplified RL frame-
work (from Eq. (1)) focusing on binary rewards R(q, o) ∈
{0, 1} for complete outputs (e.g., GRPO (Shao et al., 2024)),
not token-level rewards. We investigate how Gaussian noise
ϵ ∼ N (0, σ2) injection improves convergence. The per-
turbed objective is:

J̃(πθ) = Eq∼pQ

[
Eo∼πθ(·|q)R̃(q, o)

]
, (7)

where the perturbed reward is R̃(q, o) = R(q, o) + ϵ.

Proposition 6.1 (Unbiased estimate of gradient). Intro-
ducing noise will still ensure the unbiased estimate of
the gradient of the original optimization target Eq. (1),
that is:

E
[
∇θJ̃(πθ)

]
= E [∇θJ(πθ)] .

Remark. Proposition 6.1 provides theoretical proof that
introducing Gaussian noise perturbations into the discrete
reward signal preserves the unbiased nature of the policy
gradient estimate. This means that, under the perturbed
reward, the expected direction of the policy update is con-
sistent with the original objective being optimized. Main-
taining this unbiased nature ensures that the injected noise
does not introduce systematic biases into the learning dy-
namics, thus providing a theoretical basis for the empirical
observation that our approach helps to consistently improve
performance. See Appendix B.1 for a detailed proof.

Proposition 6.2 (Introducing the variance of gradient es-
timation). Suppose we are optimizing a non-degenerate
strategy, that is, its gradient∇θ log πθ is not completely
zero. Introducing noise will introduce gradient noise on
the originally calculated gradient, and its variance is:

Var(Gradient Noise) = σ2·E
[
∥∇θ log πθ(o|q)∥2

]
> 0.

Remark. In Proposition 6.2, we analyze how Gaussian
reward perturbations affect the variance of policy gradient
estimates. Adding Gaussian noise ϵ ∼ N (0, σ2) to the re-
ward introduces a ”gradient noise” component proportional
to ϵ · ∇θ log πθ(o|q) in the gradient estimate. The increased
variance has significant optimization benefits: Mitigate
vanishing gradients: Gradient noise provides consistent
stochastic updates even when the original gradient terms are
small or vanishing, thus helping to avoid flat regions. Avoid
exploding gradients: The randomness induced by the noise

enables the optimization trajectory to probabilistically by-
pass unstable regions of high curvature. Furthermore, the
noise variance σ can be adjusted to control the magnitude
of the gradient noise for optimal results. This mechanism
enhances the robustness of policy optimization and explains
the empirical improvements observed in training stability
and convergence speed from reward perturbations. For de-
tailed derivation, see Appendix B.2.

Proposition 6.3 (Optimization time upper and lower
bounds). When we introduce Gaussian noise ϵ ∼
N (0, σ2) to the reward, it not only increases the vari-
ance of the reward, but also reduces the accuracy of the
originally perfect reward function. According to (Razin
et al., 2025), for the target J(πθ) (Eq. (7)), the time tγ
required for the real reward rG to increase γ satisfies:

Ω
((

Eq∼pQ

[
varo∼πθ(·|q)R(q, o)

]
+ σ2

)− 1
3

)
≤ tγ .

tγ ≤ O
(
πθ(0)(y

γ |x)−1
)
.

Remark. Proposition 6.3 analyzes the time required for
a policy to reach or exceed a certain performance thresh-
old starting from πθ(0). Compared with optimization using
the unperturbed reward, the perturbed reward introduces a
larger reward variance, which can reduce the lower bound
of the convergence time. Meanwhile, the perturbation in-
troduces inaccuracies relative to the perfect reward. This
inaccuracy limits the upper bound of the convergence time.
This advantage arises because the random noise in the per-
turbation can effectively improve the perturbed rewards of
non-zero probability outputs under the initial policy πθ(0),
thereby effectively encouraging broader exploration, see
Fig. 1. This makes these outputs easier to perform gradient
ascent, which helps to discover outputs with higher true
rewards. For detailed proof, see Appendix B.3.

7. Limitations and Conclusions
ReDit enhances RL by introducing zero-mean noise to dis-
crete rewards, effectively smoothing gradients, preventing
gradient pathologies, and accelerating convergence through
increased reward variance. Our empirical evaluation across
multiple benchmarks confirms these benefits, demonstrat-
ing improvements in both speed and performance. Though
effective, the approach requires perturbation variance tun-
ing—currently done through experimentation. Future work
will focus on automating this parameter selection.
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Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Gray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., and
Lowe, R. Training language models to follow instruc-
tions with human feedback. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=TG8KACxEON.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng,

B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H.,
Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J.,
Lin, J., Dang, K., Lu, K., Bao, K., Yang, K., Yu, L.,
Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R.,
Li, T., Tang, T., Xia, T., Ren, X., Ren, X., Fan, Y., Su,
Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and
Qiu, Z. Qwen2.5 technical report, 2025. URL https:
//arxiv.org/abs/2412.15115.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=HPuSIXJaa9.

Razin, N., Zhou, H., Saremi, O., Thilak, V., Bradley, A.,
Nakkiran, P., Susskind, J. M., and Littwin, E. Vanishing
gradients in reinforcement finetuning of language models.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=IcVNBR7qZi.

Razin, N., Wang, Z., Strauss, H., Wei, S., Lee, J. D.,
and Arora, S. What makes a reward model a good
teacher? an optimization perspective, 2025. URL
https://arxiv.org/abs/2503.15477.

Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., and
Shakkottai, S. Reinforcement learning with sparse re-
wards using guidance from offline demonstration. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=YJ1WzgMVsMt.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Shao, R., Li, S. S., Xin, R., Geng, S., Wang, Y., Oh, S., Du,
S. S., Lambert, N., Min, S., Krishna, R., Tsvetkov, Y.,
Hajishirzi, H., Koh, P. W., and Zettlemoyer, L. Spurious
rewards: Rethinking training signals in rlvr, 2025. URL
https://arxiv.org/abs/2506.10947.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Tariq, S., Chhetri, M. B., Nepal, S., and Paris, C. A2c: A
modular multi-stage collaborative decision framework for
human-ai teams, 2024. URL https://arxiv.org/
abs/2401.14432.

12

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=IcVNBR7qZi
https://openreview.net/forum?id=IcVNBR7qZi
https://arxiv.org/abs/2503.15477
https://openreview.net/forum?id=YJ1WzgMVsMt
https://openreview.net/forum?id=YJ1WzgMVsMt
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2401.14432
https://arxiv.org/abs/2401.14432


ReDit: Reward Dithering for Improved LLM Policy Optimization

Vasan, G., Wang, Y., Shahriar, F., Bergstra, J., Jagersand,
M., and Mahmood, A. R. Revisiting sparse rewards
for goal-reaching reinforcement learning, 2024. URL
https://arxiv.org/abs/2407.00324.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
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A. Related Work
Reinforcement Learning with Discrete Rewards. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) utilizes
discrete rewards generated by a rule-based reward function to guide the policy model update. This reward function, known
for its simplicity and unbiasedness, effectively mitigates reward hacking and has demonstrated strong performance. However,
GRPO faces challenges related to slow training speed and unstable gradients during training. To address these issues,
various methods have been proposed. DAPO (Yu et al., 2025) introduced a dynamic sampling strategy to improve gradient
effectiveness by dynamically filtering invalid samples, thereby increasing sample efficiency, although this reduced training
speed. CPPO (Zhang et al., 2024) prunes completions with low absolute advantages, significantly reducing the number of
gradient calculations and updates required, which enhances training efficiency but can lead to gradient estimation errors.
GPG (Chu et al., 2025) directly optimizes the original reinforcement learning objective, eliminating the need for a proxy
loss function and improving training efficiency. However, this simplification may result in a significant divergence between
the actor and policy models. Dr.GRPO (Liu et al., 2025) improves token efficiency while maintaining inference performance.
Despite these efforts, a critical challenge remains: these algorithms largely neglect the inherent difficulties introduced by
discrete rewards during the optimization process. The oscillations caused by gradient vanishing and exploding are major
contributors to the slow optimization speed. Our work specifically aims to overcome the challenges in gradient optimization
that arise from using discrete rewards.

The Reward Design Challenge in LLM Reinforcement Learning.

The predominant approach to aligning Large Language Models (LLMs), Reinforcement Learning from Human Preferences
(RLHF), relies on a learned reward model to score model outputs (Christiano et al., 2017). However, this paradigm introduces
a fundamental trade-off between reward accuracy and variance. On one hand, low-fidelity reward models are prone to reward
hacking, where the policy model exploits inaccuracies in the reward signal rather than achieving the intended goal (Ivison
et al., 2024; Chen et al., 2024; Wen et al., 2025). On the other hand, increasing the reward model’s accuracy often reduces
reward variance, which can lead to vanishing gradients and subsequently slow down policy optimization (Razin et al., 2024).
This accuracy-variance dilemma is formalized in recent theoretical work, which posits that an effective reward function must
strike a balance between its bias and variance (Razin et al., 2025). Several lines of work attempt to navigate this challenge.
For instance, GRPO (Shao et al., 2024; Liu et al., 2025) sidesteps reward model inaccuracies by using a deterministic,
high-accuracy reward function. However, by providing sparse, low-variance rewards, it can exacerbate gradient instability
and hinder optimization. Other approaches rely on heuristics. For instance, the addition of spurious rewards has shown
empirical gains but lacks a theoretical foundation and has only been validated on a narrow range of models (Shao et al.,
2025). In stark contrast, our method, ReDit, is not only underpinned by a rigorous theoretical framework but has also
demonstrated broad effectiveness and applicability across various LLMs. Similarly, while methods like Random Reward
Perturbation (RRP) (Ma et al., 2025) also use perturbations, their focus is on improving sample efficiency in classic RL
algorithms like PPO (Schulman et al., 2017), DQN (Mnih et al., 2015) and A2C (Tariq et al., 2024), not on accelerating the
convergence of modern LLM policy optimization frameworks like GRPO. Our work, therefore, is specifically designed to
address the aforementioned accuracy-variance trade-off by introducing structured perturbations to a high-accuracy reward
signal, preserving low bias while injecting sufficient variance for stable and efficient optimization.

B. Theorems and proofs
B.1. Proof of Proposition 6.1

The proof of Proposition 6.1 is expressed as follows:

Proof. By the policy gradient theorem, the gradient of the original objective (1) expands to:

∇θJ(πθ) = Eq∼pQ
Eo∼πθ(·|q) [R(q, o)∇θ log πθ(o|q)] . (8)

For the noise-injected objective, its gradient becomes:

∇θJ̃(πθ) = Eq∼pQ
Eo∼πθ(·|q)

[
R̃(q, o)∇θ log πθ(o|q)

]
. (9)
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Substituting R̃(q, o) = R(q, o) + ϵ and leveraging linearity of expectation:

E
[
∇θJ̃

]
= Eq,o,ϵ [(R(q, o) + ϵ)∇θ log πθ(o|q)] (10)

= Eq,o [R(q, o)∇θ log πθ(o|q)]︸ ︷︷ ︸
E[∇θJ]

+Eϵ[ϵ] · Eq,o [∇θ log πθ(o|q)] . (11)

Zero-mean noise: Eϵ[ϵ] = 0 by definition of N (0, σ2). Thus, the cross-term vanishes:

E[∇θJ̃ ] = E[∇θJ ] + 0 = E[∇θJ ]. (12)

B.2. Proof of Proposition 6.2

Proof. Consider the perturbed objective function with noise-augmented reward R(q, o) + ϵ. The estimated value of the
gradient of the noise enhancement objective function using n samples is:

∇ ˆ̃J(θ) =
1

n

n∑
i=1

[∇ log πθ(oi|qi) · (R(qi, oi) + ϵi)] , (13)

where ϵi ∼ N (0, σ2) is the Gaussian noise. The original reward gradient is:

∇Ĵ(θ) = 1

n

n∑
i=1

[∇ log πθ(oi|qi) · (R(qi, oi))] . (14)

Under this condition, the Eq. (13) simplifies to:

∇ ˆ̃J(θ) = ∇Ĵ(θ)︸ ︷︷ ︸
origin gradient

+
1

n

n∑
i=1

[∇ log πθ(oi|qi) · ϵi]︸ ︷︷ ︸
noise gradient

. (15)

While the expectation Eϵ[ϵ] = 0 implies the noise contribution’s mean is zero, the variance of the gradient term persists. To
compute this variance, we use the definition: Var(X) = E[X2]− (E[X])2. Applying this to the noise-induced component
ϵ · ∇θ log πθ(o|q), we get:

Var (ϵ · ∇θ log πθ(o|q)) = E
[
ϵ2 · ∥∇θ log πθ(o|q)∥2

]
− (E [ϵ · ∇θ log πθ(o|q)])2 . (16)

Since E[ϵ] = 0, the second term vanishes. For the first term, note that:

E[ϵ2] = Var(ϵ) + (E[ϵ])2 = σ2 + 0 = σ2. (17)

This allows us to simplify the variance expression to:

Var(noise gradient) = Var (ϵ · ∇θ log πθ) = σ2 · E
[
∥∇θ log πθ(o|q)∥2

]
> 0, (18)

provided ∇θ log πθ is not identically zero (a reasonable assumption for non-degenerate policies).

B.3. Proof of Proposition 6.3

The proof of Proposition 6.3 is expressed as follows:

Proof. Suppose the original reward model is rRM (x,y). We add a zero-mean Gaussian random variable ϵ with variance σ2

to it, resulting in the new reward signal r̃RM (x,y):

r̃RM (x,y) = rRM (x,y) + ϵ, (19)

where ϵ ∼ N (0, σ2), and we assume that ϵ is independent of y (conditioned on x).
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1. Change in Reward Variance (Based on Definition 2). Definition 2 defines the reward variance induced by the reward
model rRM under policy πθ and prompt x as:

Vary∼πθ(·|x)[rRM (x,y)] := Ey∼πθ(·|x)

[(
rRM (x,y)− Ey′∼πθ(·|x)[rRM (x,y′)]

)2]
. (20)

This is the standard definition of variance: the expected squared deviation from the mean.

Now, we compute the variance of the perturbed reward signal r̃RM :

Vary∼πθ(·|x)[r̃RM (x,y)] = Vary∼πθ(·|x)[rRM (x,y) + ϵ]. (21)

Using the property of variance for two random variables A and B:

Var(A+B) = Var(A) + Var(B) + 2Cov(A,B). (22)

Here, A = rRM (x,y) (a random variable depending on y), and B = ϵ (independent of y). Since ϵ is independent of y, A
and B are independent, so Cov(A,B) = 0. Therefore:

Vary∼πθ(·|x)[rRM (x,y) + ϵ] = Vary∼πθ(·|x)[rRM (x,y)] + Var(ϵ). (23)

Since Var(ϵ) = σ2, the perturbed reward variance becomes:

Vary∼πθ(·|x)[r̃RM (x,y)] = Vary∼πθ(·|x)[rRM (x,y)] + σ2. (24)

Conclusion: If σ2 > 0, adding zero-mean Gaussian noise to the reward model increases the reward variance by exactly σ2.
This aligns with our intuitive understanding based on Theorem 3.3.

2. Change in Reward Model Accuracy (Based on Definition 1). Definition 1 defines the accuracy of a reward model
rRM at a given prompt x and distribution D over unordered output pairs as:

accx,D(rRM ) := E(y,y′)∼D [1 [sign(rRM (x,y)− rRM (x,y′)) = sign(rG(x,y)− rG(x,y
′))]] , (25)

where rG is the ground truth reward function. This measures the probability that the reward model correctly ranks a pair
(y,y′) relative to the ground truth.

Now consider the accuracy of the perturbed reward model r̃RM :

accx,D(r̃RM ) = E(y,y′)∼D [1 [sign(r̃RM (x,y)− r̃RM (x,y′)) = sign(rG(x,y)− rG(x,y
′))]] . (26)

We analyze the difference:

r̃RM (x,y)− r̃RM (x,y′) = (rRM (x,y) + ϵ1)− (rRM (x,y′) + ϵ2), (27)

where ϵ1, ϵ2 ∼ N (0, σ2) are independently sampled. Let:

∆rRM = rRM (x,y)− rRM (x,y′), ∆rG = rG(x,y)− rG(x,y
′), (28)

and define η = ϵ1 − ϵ2 ∼ N (0, 2σ2). Then:

r̃RM (x,y)− r̃RM (x,y′) = ∆rRM + η. (29)

The condition for accuracy becomes:
sign(∆rRM + η) = sign(∆rG), (30)

compared to the original condition:
sign(∆rRM ) = sign(∆rG). (31)

We now analyze how the addition of noise affects this condition:
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- If the original model is accurate, i.e., sign(∆rRM ) = sign(∆rG), then adding noise η may cause sign(∆rRM + η) ̸=
sign(∆rG), especially when |η| is large enough to flip the sign of ∆rRM .

- If the original model is inaccurate, i.e., sign(∆rRM ) ̸= sign(∆rG), there is a small chance that η flips the sign back to
match sign(∆rG), but this is not systematic and depends on the values of ∆rRM and ∆rG.

In general, since η is independent of both ∆rRM and ∆rG, it is more likely to disrupt the correct sign relationship rather
than correct it. Thus, adding random noise tends to make the ranking decisions more random.

Conclusion: Adding zero-mean Gaussian noise to the reward model makes its relative ranking of output pairs more random,
thereby reducing the reward model’s accuracy (acc).

3. Upper and lower bounds of training time). According to Theorem 3.3, the lower bound on the training time tγ is
influenced by the variance of the reward function. Specifically, using Equation (24), we derive that the lower bound on tγ
satisfies:

Ω
((

Eq∼pQ

[
Varo∼πθ(·|q)R(q, o)

]
+ σ2

)− 1
3

)
≤ tγ . (32)

According to Theorem 3.4, in some cases (particularly when a perfectly accurate model would lead to arbitrarily slow
training), an inaccurate model could instead lead to faster increases in the true reward. We derive that the lower bound on tγ
satisfies:

tγ ≤ O(πθ(0)(y
γ |x)−1) (33)

C. Training Dynamic
In this section, we show more Training Dynamic information.
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(a) GRPO Training Dynamic on Math
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(b) GRPO Training Dynamic on Math with ReDit

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

ar
d

0.0

0.5

1.0

1.5

2.0

2.5

R
ew

ar
d

Gradient Norm Raw Reward Smoothed Reward Vanishing Gradient Points Exploding Gradient Points

Figure 12. Training Dynamics of Gradient Norm and Reward on Math Dataset.
Figure 12 shows the training dynamics of using and not using ReDit on the Math dataset, indicating that using ReDit can
solve the problems of gradient oscillation and gradient vanishing, and improve training stability

Fig 13 and Fig 14 Training dynamics using uniform and Gaussian perturbations. For both uniform and Gaussian perturbations,
ReDit shows amazing gradient stability and training stability.

D. Experimental setting
D.1. Dataset

In this section, we introduce the statistics of the dataset and the additional processing performed on the dataset. The statistics
of the dataset are shown in Table 3.
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(a)Training Dynamic on GSM8K with Uniform ReDit
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(b) Training Dynamic on GSM8K with Gauss ReDit
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Figure 13. Training dynamics of gradient norm and reward on the GSM8K dataset, showing the impact of perturbations of different
distributions.
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(a)Training Dynamic on Math with Uniform ReDit
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(b) Training Dynamic on Math with Gauss ReDit
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Figure 14. Training dynamics of gradient norm and reward on the Math dataset, showing the impact of perturbations of different
distributions.

In addition, We added new templates to the original dataset to ensure the model could complete the required tasks and
output formats. It is important to note that the added templates did not alter the original dataset, and special processing was
performed for different LLMs. The specific examples are as follows:

Dataset Format of GSM8K

dataset: GSM8K
"prompt": [

{"role": "system", "content": "Respond in the following format:
<reasoning> ... </reasoning> <answer> ...</answer>"},
{"role": "user", "content": "What is the largest single-digit prime number?"},
{"role": "assistant", "content": "<reasoning> 9 is divisble by 3 and 8
is divisible by 2, but 7 is prime. </reasoning>
<answer>7</answer>",
{"role": "user", "content": {question}}
],

"answer": {answer}
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Table 3. Number of samples in the train, validation, and test datasets for various dateset.

Number of samples train dataset validation dataset test dataset

GSM8K 7473 - 1319
MATH 7506 - 5003
Geometry3K 2100 300 601

Dataset Format of MATH

dataset: MATH
"prompt": [

{"role": "system", "content": "Respond in the following format:
<reasoning> ... </reasoning> <answer> ...</answer>"},
{"role": "user", "content": "{question}
Let"s think step by step and output the final answer within \\boxed{}."
],

"answer": {answer}

Dataset Format of Geometry3K

dataset: Geometry3K
"prompt": [

{"role": "user", "content": [{
"type": "image",
"image": {image},

},
{

"type": "text",
"text": {question} + ".
You FIRST think about the reasoning process as an internal monologue and
then provide the final answer. The reasoning process MUST BE enclosed
within <think> </think> tags. The final answer MUST BE put in \\boxed{}."
},],

}
]
"answer": {answer}

D.2. Reward function

We design five reward functions for the GSM8K dataset and show how to implement ReDit:
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GSM8K Accuracy Reward Function� �
1 def correctness_reward_func_with_noise(prompts, completions, answer, **kwargs) ->

list[float]:
2 def extract_number(s: str) -> str:
3 match = re.search(r’\d+’, s)
4 return match.group(0) if match else ’’
5 responses = [completion[0][’content’] for completion in completions]
6 q = prompts[0][-1][’content’]
7 extracted_responses = [extract_xml_answer(r) for r in responses]
8 original_rewards = [2.0 if extract_number(r) == extract_number(a) else 0.0 for r

, a in zip(extracted_responses, answer)]
9

10 # ReDit add
11 noisy_rewards = [r + random.uniform(-m * 2.0, m * 2.0) for r in original_rewards

]
12 #noisy_rewards = [r + random.gauss(0, 2.0 * m / (3 ** 0.5)) for r in

original_rewards]
13 return noisy_rewards � �

GSM8K Int Reward Function� �
1 def int_reward_func_with_noise(completions, **kwargs) -> list[float]:
2 responses = [completion[0][’content’] for completion in completions]
3 extracted_responses = [extract_xml_answer(r) for r in responses]
4 original_rewards = [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
5

6 # ReDit add
7 noisy_rewards = [r + random.uniform(-m * 0.5, m * 0.5) for r in original_rewards

]
8 #noisy_rewards = [r + random.gauss(0, 0.5 * m / (3 ** 0.5)) for r in

original_rewards]
9 return noisy_rewards � �

GSM8K Strict Format Reward Function� �
1 def strict_format_reward_func_with_noise(completions, **kwargs) -> list[float]:
2 pattern = r"ˆ<reasoning>\n[\s\S]*?\n</reasoning>\n<answer>\n[\s\S]*?</answer>$"
3 completion_contents = [completion[0]["content"].strip() for completion in

completions]
4 matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in

completion_contents]
5 original_rewards = [1.0 if match else 0.0 for match in matches]
6

7 # ReDit add
8 noisy_rewards = [r + random.uniform(-m * 1.0, m * 1.0) for r in original_rewards

]
9 #noisy_rewards = [r + random.gauss(0, 1.0 * m / (3 ** 0.5)) for r in

original_rewards]
10 return noisy_rewards � �
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GSM8K Sort Format Reward Function� �
1 def soft_format_reward_func_with_noise(completions, **kwargs) -> list[float]:
2 pattern = r"ˆ<reasoning>[\s\S]*?</reasoning>[\s\S]*?<answer>[\s\S]*?</answer>$"
3 completion_contents = [completion[0]["content"].strip() for completion in

completions]
4 matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in

completion_contents]
5 original_rewards = [1.0 if match else 0.0 for match in matches]
6

7 # ReDit add
8 noisy_rewards = [r + random.uniform(-m * 1.0, m * 1.0) for r in original_rewards

]
9 #noisy_rewards = [r + random.gauss(0, 1.0 * m / (3 ** 0.5)) for r in

original_rewards]
10 return noisy_rewards � �

GSM8K Reasoning Format Reward Function� �
1 def xmlcount_reward_func_with_noise(completions, **kwargs) -> list[float]:
2 def count_xml(text) -> float:
3 count = 0.0
4 if text.count("<reasoning>\n") == 1:
5 count += 0.125
6 if text.count("\n</reasoning>\n") == 1:
7 count += 0.125
8 if text.count("\n<answer>\n") == 1:
9 count += 0.125

10 #count -= len(text.split("\n</answer>\n")[-1])*0.001
11 if text.count("\n</answer>") == 1:
12 count += 0.125
13 count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
14 return count
15 contents = [completion[0]["content"] for completion in completions]
16 original_rewards = [count_xml(c) for c in contents]
17

18 # ReDit add
19 noisy_rewards = [r + random.uniform(-m * 0.5, m * 0.5) for r in original_rewards

]
20 #noisy_rewards = [r + random.gauss(0, 0.5 * m / (3 ** 0.5)) for r in

original_rewards]
21 return noisy_rewards � �
As shown in the above code block, ReDit does not need to be modified in a complex way, only the reward function needs to
be modified, and any method can be easily integrated. The reward functions of other datasets can be found in the code.

D.3. Specific experimental parameters

In this section, we present the experimental parameters, including LoRA parameters, GRPO and other baseline experimental
parameters.

Table 4. LoRA Parameters
LoRA Target LoRA Rank LoRA Alpha LoRA Dropout

q & v Proj 8 64 0.05
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Table 5. GRPO Parameters
Learning Rate Num Generations Epochs

5e-6 4 10

Table 6. DAPO Parameters
Clip Ratio Low Clip Ratio Low Clip Ratio C Num Generations Max

0.2 0.28 10.0 10

E. More result
In this section, we present detailed numerical results for all experiments.

E.1. Main Result

In this section, we show the results in Figure 5, the performance of GRPO and GRPO+ReDit on different datasets.

Table 7. Performance Comparison of Different Training Steps on the Math Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 39 - - - - - - - - -
GRPO - 47.86 49.46 47.18 47.28 47.26 47.57 47.63 47.89 48.01
Uniform ReDit - 50.02 50.23 50.34 50.78 50.96 51.27 51.37 51.37 51.96
Gauss ReDit - 49.78 50.73 51.03 51.07 51.53 51.43 52.01 52.01 52.55

Tables 7, 8, 9 show the comparison of ReDit on different datasets. ReDit significantly improves the convergence speed of
GRPO. At any same step, ReDit achieves better performance.

E.2. Baseline Result

In this section, we present all numerical results in Fig. 8. As shown in Table 10, we demonstrate the effect of using ReDit
on GSM8K based on the GRPO improvement method. The experimental results show that ReDit can also improve the
convergence speed and performance on these algorithms.

E.3. Different LLMs Result

In this section, we present all numerical results in Fig. 6.

E.4. Reward Model Result

In this section, we present all numerical results in Fig. 10.

E.5. Direct Gradient Manipulation Result

In this section, we present all numerical results in Fig. 11.

E.6. Variance Result

In this section, we show more results on the performance of ReDit as the perturbation changes. As shown in Figure 15,
the variance of uniform perturbation is similar to the variance of Gaussian perturbation, and the appropriate variance can
achieve the best performance. The specific numerical results are shown in Tables 17 and 18.
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Table 8. Performance Comparison of Different Training Steps on the GSM8K Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 84.91 - - - - - - - - -
GRPO - 85.70 86.01 86.47 86.73 87.13 87.78 88.52 88.73 89.07
Uniform ReDit - 89.16 89.16 89.31 89.31 89.31 89.99 89.99 89.99 90.76
Gauss ReDit - 89.02 89.37 89.61 89.54 89.54 89.54 89.61 89.61 90.46

Table 9. Performance Comparison of Different Training Steps on the Geometry3K Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 40.43 - - - - - - - - -
GRPO - 40.60 42.93 38.77 39.77 38.94 39.10 40.10 41.36 43.10
Uniform ReDit - 43.37 43.89 44.01 44.23 44.23 44.23 44.12 44.36 44.36
Gauss ReDit - 43.67 43.98 44.03 44.25 44.25 44.25 44.25 44.67 44.67

E.7. Scheduled Perturbation Result

In this section, we show the changing trends of different scheduled perturbation strategies, as shown in Figure 16. We took
the perturbation of Gauss distribution as an example and conducted experiments. The experimental results are shown in
Table 19. The CosineReverse strategy shows the best performance.
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Table 10. Performance Comparison at Different Training Steps on Different Baseline
Method \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

DAPO 84.99 86.20 86.35 86.35 86.75 87.04 87.12 87.17 87.52
Uniform ReDit 87.03 87.15 87.26 87.54 87.54 87.69 87.83 88.03 88.57
Gauss ReDit 87.76 87.96 88.01 88.01 88.10 88.37 88.67 88.96 89.34

DR.GRPO 84.69 84.23 84.53 84.91 85.67 85.67 85.67 85.90 86.13
Uniform ReDit 86.27 86.36 86.45 86.54 86.75 87.03 87.26 87.16 87.34
Gauss ReDit 86.47 86.23 87.10 87.16 87.56 87.67 87.67 87.67 87.69

REINFORCE++ 84.91 84.69 85.06 85.14 85.14 85.14 86.10 86.17 86.25
Uniform ReDit 86.21 86.11 86.67 86.31 86.75 87.01 87.26 87.59 87.59
Gauss ReDit 86.17 86.27 86.47 86.83 86.83 87.06 87.63 87.76 87.96

Table 11. Llama-3.2-3B-Instruct performance comparison of different training steps on the GSM8K dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 73.62 - - - - - - - - -
GRPO - 73.60 73.34 74.74 74.27 73.90 73.90 73.90 74.01 74.04
Uniform ReDit - 74.81 74.81 74.89 75.05 75.05 75.66 76.13 76.27 76.27
Gauss ReDit - 74.30 74.52 75.13 75.13 75.13 76.48 76.40 76.25 76.25

Table 12. Llama-3.1-8B-Instruct performance Comparison of Different Training Steps on the GSM8K Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 81.05 - - - - - - - - -
GRPO - 81.02 81.30 81.92 81.79 82.01 82.36 82.36 81.63 82.12
Uniform ReDit - 83.81 83.24 83.45 84.32 84.01 84.32 84.12 84.73 84.92
Gauss ReDit - 83.80 83.44 83.92 84.47 84.86 84.62 84.12 84.35 84.12

Table 13. Mistral-7B-Instruct-v0.3 performance Comparison of Different Training Steps on the GSM8K Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 53.68 - - - - - - - - -
GRPO - 56.33 58.00 57.70 57.39 58.23 58.23 57.92 58.91 59.14
Uniform ReDit - 58.25 58.48 58.45 59.83 59.68 59.23 60.29 61.45 62.07
Gauss ReDit - 58.57 58.85 58.68 59.68 59.29 60.68 60.61 61.61 61.76

Table 14. Ministral-8B-Instruct-2410 performance Comparison of Different Training Steps on the Geometry3K Dataset
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 82.34 - - - - - - - - -
GRPO - 82.94 83.85 84.53 84.84 84.84 85.22 84.61 84.15 83.70
Uniform ReDit - 85.39 85.78 85.69 85.69 85.91 86.90 86.90 87.01 87.23
Gauss ReDit - 85.24 85.46 85.44 85.44 86.22 86.44 86.69 86.76 86.12

Table 15. Performance Comparison at Different Training Steps on Reward Model
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 84.91 - - - - - - - - -
RM - 85.03 86.01 86.73 87.06 87.53 87.56 87.87 88.03 88.21
RM + Gauss ReDit - 85.13 85.99 85.79 86.37 87.36 87.36 87.24 87.96 88.12
RM + Uniform ReDit - 85.76 85.63 87.03 86.32 87.13 87.53 88.01 88.63 88.63
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Table 16. Performance Comparison at Different Training Steps on Different Gradient Manipulation
Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 84.91 - - - - - - - - -
GRPO - 85.03 86.01 86.73 87.06 87.53 87.56 87.87 88.03 88.21
Gradient Clipping - 85.65 86.32 86.34 86.37 87.12 87.75 88.31 88.57 88.57
Dynamic Sampling - 85.15 86.12 86.12 86.43 87.01 87.03 87.34 87.92 88.01
Uniform ReDit - 89.16 89.16 89.31 89.31 89.31 89.99 89.99 89.99 90.76
Gauss ReDit - 89.02 89.37 89.61 89.54 89.54 89.54 89.61 89.61 90.46
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Figure 15. ReDit uniform perturbation performance changes with variance.

Table 17. Performance Comparison of Different variance on the Gauss Perturbation
Variance \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.01 85.97 87.01 87.40 87.54 87.92 88.76 88.84 89.54 89.54
0.02 86.40 87.70 88.16 89.23 89.39 90.22 90.14 90.14 90.14
0.05 89.02 89.37 89.61 89.54 89.54 89.54 89.61 89.61 90.46
0.1 87.64 89.08 89.69 89.84 90.07 89.84 89.84 89.84 90.07
0.3 87.87 88.48 88.78 88.93 89.39 89.39 89.39 89.46 89.46
0.5 86.81 87.57 87.41 87.64 87.64 87.95 88.32 88.48 88.95

Table 18. Performance Comparison of Different variance on the Uniform Perturbation
Variance \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.01 85.67 86.79 87.43 87.68 87.96 88.05 88.89 89.01 89.09
0.02 85.44 86.52 87.20 88.03 88.32 88.46 88.99 89.31 89.53
0.05 89.16 89.16 89.31 89.31 89.31 89.99 89.99 89.99 90.76
0.1 88.17 88.25 89.01 89.01 89.84 89.54 89.54 89.61 89.61
0.3 87.49 88.25 88.25 88.02 88.17 87.95 88.93 88.70 88.78
0.5 86.73 87.72 87.64 87.64 87.79 88.48 87.87 88.02 87.87
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Figure 16. ReDit scheduled perturbation Variance trend with training step (taking the original variance as 0.05 as an example)

Table 19. Performance Comparison of Different Scheduled Perturbation Methods
Method \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

SquareRoot 88.10 89.31 88.93 89.69 89.46 89.46 89.46 89.46 90.22
SquareRootReverse 88.55 89.54 89.46 90.07 90.07 89.31 89.61 89.54 89.69
Factor 88.25 88.63 89.69 89.46 89.23 89.54 89.46 89.31 89.69
FactorReverse 88.48 88.32 89.39 88.78 88.93 89.54 89.61 89.76 89.46
MutilFactor 87.87 89.31 89.01 89.01 89.01 89.61 89.16 89.61 89.46
MutilFactorReverse 88.17 88.78 88.86 89.01 88.93 88.93 89.39 89.16 89.54
Cosine 88.32 88.32 89.39 89.84 89.76 89.61 90.14 90.46 90.23
CosineReverse 89.08 87.95 89.54 89.08 89.16 90.37 90.07 90.84 91.84
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