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ABSTRACT

This work explores stochastic adaptive gradient descent, i.e., stochastic AdaGrad-
Norm, when applied to linearly separable datasets. For the stochastic AdaGrad-
Norm method equipped with a wide range of sampling noise, we demonstrate
its almost surely convergence result to the £? max-margin solution. This means
that stochastic AdaGrad-Norm has an implicit bias that yields good generaliza-
tion, even without regularization terms. We show that the convergence rate of

the classification direction is o(1/In*=9/2 n). Our approach takes a novel stance
by explicitly characterizing the £? max-margin direction. By doing so, we over-
come the challenge that arises from the dependency between the stepsize and the
gradient and also address the limitations in the previous AdaGrad-Norm analyses.

1 INTRODUCTION

With the growth of computing power in recent years, various models like neural networks have
gained the ability to perfectly fit training data. These models have a capacity that exceeds the data’s
capacity, which are referred to as over-parametrized models. Over-parametrized models often ex-
hibit numerous global optimums, yielding a zero training loss, yet exhibiting substantial disparities
in test performance (Wu et al., 2018} |Chatterji et al.,2022). Fascinatingly, investigations have indi-
cated that optimization algorithms tend to converge towards those optimal points associated with a
good generalization (Zhang et al.,|2021). This intriguing phenomenon is referred to as the implicit
bias of optimizers and is widely speculated to exist (Neyshabur et al.l [2014; Zhang et al.l 2005}
Keskar et al., [2017; [Wilson et al., 2017).

Evidence of implicit bias has been established under different settings. For the linear classification
task with cross-entropy loss,[Soudry et al.| (2018) demonstrate that gradient descent (GD) converges
to the £2 max-margin solution. This solution is also commonly known as the hard support vector
machine (hard-margin SVM) solution. This revelation underscores that even fundamental optimiz-
ers like GD have an implicit bias. Subsequent endeavors have extended their work, adapting GD into
stochastic gradient descent (SGD), momentum-based SGD (mSGD), and deterministic adaptive di-
agonal gradient descent (AdaGrad-Diagonal) (Gunasekar et al.| (2018)); |Qian & Qian| (2019); [Wang
et al.|(2021bga); [Wu et al.|(2021)). In recent years, as a varient of deterministic AdaGrad-Diagonal,
stochastic AdaGrad-Norm has been a major focus in the theoretical community (Faw et al.| (2022);
Wang et al.| (2023); Jin et al.| (2022)). The iterates generated by the stochastic AdaGrad-Norm
method enjoy the following dynamics (see Streeter & Mcmahan| (2010); Ward et al.| (2020)):
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where ¢g(0) refers to the objective function, Vg(0,&,) is an unbiased estimation of the gradient
Vg(0) with {&,} being mutually independent. S,, is the cumulative stochastic gradient norm, and
ap > 0 represents the constant step size. Compared to traditional GD or SGD, AdaGrad-Norm
maintains a uniform update step size for continuously shared stochastic gradient components and
eliminates the need for a complex learning rate tuning process. However, to the best of our knowl-
edge, most of these theoretical analyses (Faw et al.| (2022); [Wang et al.| (2023)); Jin et al.| (2022))
have focused on studying its convergence. A critical question then arises:

Can stochastic AdaGrad-Norm converge to the L? max-margin solution?

If the answer is true, we can show that stochastic AdaGrad-Norm has an implicit bias.
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Formulation of the convergence We investigate the linear classification problem with linearly
separable data set {(x;,;)}Y,, where y; € {0,1}. The £2 max-margin solution 6*/||0*|| as the
vectors that maximizes the margin between positive data (y; = 1) and negative data (y; = 0), i.e.,

0* { 6 sgn(y; — 0.5)(z] ¢)
=< — | § € argmax min { L } , 2)
16~ 101 $ERT 1IN 1]l
where || - || denotes ¢ norm. Denote the cross-entropy loss g(f) = %Zfil g(6,x;), where

9(0,z;) = —y;In(9;) — (1 — y;) In(1 — g;) and g; = ﬁ Our main goal is to show that
(& K3
running stochastic AdaGrad-Norm H on the cross-entropy loss g(6) obtains H(;%H — ﬁ a.s..

For a detailed description of the problem formulation and its background, please refer to Section

Challenges in analyzing stochastic AdaGrad-Norm Compared to SGD, mSGD, and determinis-
tic AdaGrad-Diagonal, the analysis of stochastic AdaGrad-Norm presents distinct challenges arising
from the following four aspects.

(D Even if one manages to demonstrate the last-iterate convergence of the objective function
g(0,) — 0, it only implies #,, — oo, leaving the limit of the £ max-margin direction,
i.e., 0,,/0,|, unknown. Since the £? max-margin direction is important in some ma-
chine learning problems, such as classification, reinforcement learning, we must conduct
additional effort to establish convergence of the £2 max-margin direction. Moreover, the
relevant techniques used to prove the last-iterate convergence for stochastic AdaGrad-Norm
cannot be directly applied to establish the corresponding results for implicit bias. We will
explain why the techniques cannot be transferred in Section 4] after Theorem [.1]

(I) Previous results on the implicit bias of SGD and mSGD are based on the situation that
mini-batch stochastic gradient holds (see Section 3 for more details). Specifically, they
use the strong growth property which holds for the mini-batch stochastic gradient, i.e.,
Ee, [|[Vg(0,€.)]> < M|[Vg()||>. In contrast, the stochastic AdaGrad-Norm method is
not related to the choice of mini-batch gradient.

(IIT) For the stochastic AdaGrad-Norm, the properties of the generated iterate points 6,, are
sensitive to the distance between 6,, and the stationary point. Such a challenge does not
exist in previous settings. For example, considering deterministic or stochastic algorithms
under a quadratic growth condition, this challenge is successfully bypassed by considering
the dynamic system in different segments. However, for the stochastic AdaGrad-Norm, the
segment of iterates near and far from the stationary point is highly random, making the
previous technique unavailable. Therefore, it becomes challenging in this setting,

Related works There are several works that is related to this topic. For example, Soudry et al.
(2018) prove that GD converges to the L2 max-margin solution for linear classification tasks with
exponential-tailed loss. In|Nacson et al.| (2019), authors mainly extended the form of the loss from
the work of [Soudry et al.|(2018)), and considered the case of linear neural networks. For SGD and
momentum-based SGD, [Wang et al. (2021a) prove the convergence to the £2 max-margin solution
for linear classification task with exponential-tailed loss and mini-batch stochastic gradient.

For deterministic AdaGrad-Diagonal, |Soudry et al.| (2018)); |Gunasekar et al.| (2018)); |Qian & Qian
(2019) claim that it does not converge to the £2 max-margin solution as the non-adaptive methods
do (e.g. SGD, GD). Instead, for stochastic AdaGrad-Norm, Jin et al.|(2022)) presents the last-iterate
convergence. [Wang et al.| (2023) and [Faw et al.| (2022) obtained the convergence rates of stochas-
tic AdaGrad-Norm. The characterization of the converging point (like implicit bias) of stochastic
AdaGrad-Norm remains unknown.

Contributions In this work, we present an affirmative response to the aforementioned question.
Specifically, we provide rigorous proof demonstrating the almost surely convergence of the stochas-
tic AdaGrad-Norm method to the £2 max-margin solution. This result emphasizes that the resulting
classification hyperplane closely conforms to the solution obtained through the application of the
hard support vector machine (see Theorems {.2]and [4.3)).

In comparison to previous works that mainly focused on mini-batch stochastic gradient (Wang et al.,
2021b), our study stands out by its capacity to handle a wide range of stochastic settings (Assumption
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[3.1). As a special case, our study can be applied to any stochastic algorithms with bounded noise,
ie., Vg(0,&,) = Vg(0) + &, (for some &,,sup,,~ ||€n]] < +00), and the stochastic algorithms
with mini-batch stochastic gradient. -

We conducted a small numerical experiment in Section [5]to further support our conclusions.

Our technical contributions are summarized as follows:

(I) We begin by adopting a divide-and-conquer approach, simultaneously applying a specific
indicator function at both ends of the stochastic dynamical system. This new approach
allows us to analyze the generated iterate points’ properties properly. When the iterate
point is close to the stationary point, we leverage second-order information from the loss
function to provide a deeper characterization of the algorithm’s behavior. Conversely, when
the iterate point is far from the stationary point, we establish a local strong growth property.
Combining these two scenarios, and exploiting the separability property inherent in the
dataset, we conclude that the AdaGrad-Norm algorithm converges towards a max-margin
solution.

(I) In a separate line of investigation, we employ the martingale method to establish the almost
everywhere convergence result. This outcome enables us to convert the convergence order

of the partition vector into an order related to the iterates’ norm, specifically, Hzﬁ —
2 .. . . .
Hz—*” ’ = O(||6n]|7®) (V0 < a < 1) a.s.. By combining this result with the earlier

amplitude findings, we eventually derive the convergence rate of the partition vector as

minj<p<n ||m — Hg—:ﬂ | = o(ln_¥ n) (Ve>0) as..

2 PROBLEM FORMULATION

In this section, we give a detailed formulation of our aimed problem. We consider the linear classifi-
cation problem with linearly separable data set {(z;,y;)}},, where y; € {0, 1}. Here, separability
means that there exists a vector 6y € R?, such that for any y; = 1, §J z; > 0, and for any y; = 0,
6 ; < 0. Meanwhile, we call §, as a margin vector. The setting has been considered in many

existing works (Soudry et al.|(2018)); Wang et al.|(2021a)); Qian & Qian|(2019)).

Define a o-filtration .%,, := o{61,&1,&2,...,&,—1}. Denote || - || as the ¢5 norm. Denote the £?
max-margin solution as 6* /||6*||, which can be formulation by Equation . It is also common in
the literature to denote

0* { 0 ‘ . T ,
——— =4 —— | § € arg min {||@|| | sgn(y; — 0.5)(¢ " x;) > 1, Vi} 5.
= T |7 € e el }

The two definitions are equivalent.

Remark 1. The existing techniques of the works (Soudry et al.|l 2018} |Wang et al.| 20214} |Qian
& Qian| |2019) are all based on the dual definition. In contrast to their techniques, our analysis is
completely based on the original definition (Equation (2))) for the proof.

In this paper, we utilize the cross-entropy loss function along with the linear sigmoid activation
function, i.e., g(f) = %Zi]\ilg(&xi), where g(0,2;) = —y; In(9;) — (1 — y;) In(1 — §;) and

Ui = ﬁ This setup is indeed the familiar logistic regression. This is a special case of the
e k3

exponential-tail loss, as discussed in Soudry et al.| (2018)); [Wang et al.|(2021a). Since the choice of
logistic regression does not affect the validity of our analysis, while the use of exponential-tail loss
does introduce many tedious notations, we present our results under the logistic regression setting
in the rest of this paper for brevity. Our results can easily be generalized to the stochastic AdaGrad-
Norm method with tight exponential-tail loss For function g, we have the following property.

Property 1. The gradient of the loss function, denoted as V g(0), satisfies Lipschitz continuity, i.e.,
V01, 05 € R, there is |V g(01) — Vg(0a)|| < c||01 — 02|, where c is the Lipschitz constant of the
Sfunction Vg(0).

"We will justify this generalization in Appendix
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Due to the particularity of classification problems, the global optimal point does not exist. When 6,,
tends to infinity along a certain margin vector, the value of the loss function tends to zero. For any
€ > 0 and any margin vector e, there exists a positive constant Ny associated with e, such that for
any 0/||0]| = e and ||0]| > Ny, we have g() < ¢, i.e.,

g(0) =0,

lim
10]|—=+00,0/]10]|=¢

where e is a margin vector of the data set {(z;,y;)}.,. However, we are more interested in the
direction e that the regression vector 6/||0|| converges to. We aim to show that this vector converges
to the direction of the L2 max-margin of the hard-margin SVM.

In the following, we will give the convergence results of the stochastic AdaGrad-Norm method,
described in , with the aforementioned objective function g(9).

3 STOCHASTIC GRADIENT SETTING

The results we are going to present hold for the natural noise model induced by mini-batch sampling.
Nevertheless, to incorporate a broader family of noise model, such as the bounded variance model,
we present a general noise model under which we derive our main results.

We first give our assumption on the unbiased estimation Vg(6, &,,) of the gradient. Here, unbiased-
ness implies that E¢, Vg(60,&,,) = Vg(0).

Assumption 3.1. There exist My > 0, a > 0, such that the variance of V (6, &,,) satisfies

Ee, Vo0, &)II" < Mol V()" +
Meanwhile, there exist 5 > 0, K > 0, such that when g(0) < &y, there is |Vg(0,&,)| < K a.s..
It is worth remarking that Assumption [3.T|differs from that in the existing works on the implicit bias
of stochastic algorithms, in which mini-batch stochastic gradient is taken into consideration. In con-

trast, we consider all estimation noise in the assumption, which includes the mini-batch stochastic
gradient (see the following elaboration).

Mini-batch stochastic gradient The mini-batch stochastic gradient is given by

Vo(6,6,) = — > Vg0, z), 3)

Gl

where C; is a randomly selected mini-batch from the given data set. Through Lemma 8 in
Wang et al| (2021b), we know that sampling noise satisfies the strong growth condition, i.e.,
Ee, [Vg(0,&)[I* < M|[[Vg(0)].

Since any subset (mini-batch) of a linearly separable data set is separable, we know that 6§ satisfying
g(0) < o is a margin vector of {z;,y;} by Lemma with §g = (In2)/2N. Then by Lemma
we have

1 N 1 _ k _
IV90.6)1 = 7| 2. Vo.2)| < 5y X Ve )| < 5 3 9(6.2)
| zec;, nlzec;, nl zec;
k/’gN k‘g In2 2
< 9(0) < o = K
'Y < e

Hence the mini-batch stochastic gradient satisfies Assumption [3.1] Our setting also encompasses
more stochastic gradients. In reinforcement learning, the policy we aim to learn can be viewed as
a classification problem in the policy space. However, instead of simple mini-batch sampling, we
perform Markov sampling based on the parameterized policy for policy gradients. Consequently, the
policy gradients in reinforcement learning generally do not satisfy the strong growth condition (even
when the parameterized policy is an over-parameterized model). Nonetheless, since the rewards
obtained at each step in the reinforcement learning setting are bounded, it can be shown that the
stochastic gradients are almost surely bounded. Therefore, they still fit within our setting.
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4 MAIN RESULTS

Now, we are ready to present our main results. We first recall the last-iterate convergence result of
stochastic AdaGrad-Norm, which was previously proved by Jin et al.[(2022]).

Theorem 4.1. (Theorem 3 in|Jin et al|(2022)) Suppose that Assumption 31| holds. Consider the
classification problem with the cross-entropy loss on a linearly separable data set (Section [2). For
the stochastic AdaGrad-Norm method given in Equation equipped with step size oy > 0 and
initial parameter 61 € R%, we have g(0,,) — 0 a.s., and ||0,,|| — +o0 a.s..

The original proof of this theorem can be found in the referred paper, but to make this manuscript
self-contained, we provide a proof of this theorem with our notation and convention in Appendix
[C8] Nevertheless, the method in the original proof cannot be directly applied to the analysis for the
implicit bias. The original proof constructs a recursive iterative inequity therein for g(#), i.e.,

9(0ny1) —g9(0n) < +cn 4)

Sn—l

with > "> ¢, < +oc and k > 0. Then, their goal is to prove that the difference between
IVg(6 n+1)|\2 and ||[Vg(0,,)||? becoming sufficiently small as the iterations progress. To do so, they
try 10 bound [[ Vg (6,+1) | = [|Vg(6) | via g(81) — 9(6,,) and inequity [ Vg(8)[2 < 2¢g(6) for
Lipschitz constant c of Vg. However, to obtain the implicit bias, their techniques become unsuitable
due to the nuanced nature of Lyapunov function, i.e., ||6,, /|0, || —6*/||0*||||*. Specifically, the terms
V((|0,/]10n] —6 TV 9(0n,0)// Sy and [0,/ |0, || — 0% /0% ]|||* lack a clear and evident
quantitative relationship, making it difficult to obtain Equation (). Consequently, novel methods
and techniques become imperative to address this challenge.

Next, we present the almost surely convergence analysis of the £? max-margin direction 6,,/||6,, .

Theorem 4.2. Suppose that Assumption [3.1] holds. Consider the classification problem with the
cross-entropy loss on a linearly separable data set (Section[2). For the stochastic AdaGrad-Norm
method given in Equation equipped with step size oy > 0 and initial parameter 6; € R?, we
have

0 0*

T = T .S
(L[ [ T

where 0% /||0* || is the £? max-margin solution.

In Theorem [4.2] we prove that the stochastic AdaGrad-Norm method has the implicit bias to find
the £2 max-margin solution.

Below, we provide the intuition behind the proof.

Intuition of the theorem We know the update direction of #,, under stochastic AdaGrad-Norm can
be seen as —Vg(0,,, &,), which is an unbiased estimate of the reverse gradient —Vg(6,,). By virtue
of the law of large numbers, we can roughly think that the update direction of {6,,} is —Vg(6,,) when
n — +oo (we will need additional arguments). We know if this direction is a reverse direction of

YV (10./ 101 — 6% /116%]|]|?), this algorithm has the power to make ||9 /1101l — 67 /1|6%|]|? close to
0. This means, we just need to inspect the value of the term —V g(6,,)TV (||0,./1|01| — 6% /116" ||]1)-
When we expand the term we will obtain

A S AR (T ||9 [ W
— Vg(0 TVH — ~ T m( 0*%—)
6|0t~ Tl W16 + 12y Bns \ 2
N T
7 wi 971 T AT ..
+k0¢z.e(dﬂ,i_d"y'in)(|‘9”|+1) HenH —0" 'z,
= An+Bn7

where ’(/JZ' = sgn(yi —0.5), i, ;= {Z|Z = argminlSiSN z/JZHnTxl/HHnH}, dn,i = |9;|L—.%'Z|/H9n|| and
i, is a element of i,,. We can find that z; , which is the closest vector to ,,, plays a leading role.



Under review as a conference paper at ICLR 2025

In the above inequality, A,, is the negative term, and it is bigger in absolute value (see Step 2
of the proof sketch for the reason). That concludes A,, is the dominate term, so we can obtain
~Vg(0,)IV |0/ 1001l — 0% /116*]1*) < 0 as desired. That means stochastic AdaGrad-Norm has
a tendency to make ||0,,/||0, ]| — 6% /||0*||||* decrease as n increases.

Notice that this is just an intuitive understanding. The full proof will be quite long and we defer that
to Appendix [C.9] Now we provide a proof sketch that illustrates the main arguments that compose
the proof.

Proof Sketch. Given
676"
10]] + 1

]2 as ||0]| = +o00. We now aim to prove f(6,,) —

f(0):=1-

with 6% := 6% /[|6*[|, which tends to || 67 — 1=
0a.s..

Step 1: In this step, we construct a recursive inequality for f(6,,). We derive that

0°161l = 55\ " a0 Vg(6)
E(f(9n+1)) *E(f(gn)) <-E (( (||9n||_|_ 1)2 )

where

) FE(G), O

n—1

n -

A 0,0, 6
a2 00 Vg0 ) ( 1 ) , T3 V(0. &)
o7 nsySn

(6] +1)2 Vo1 VS S,

a0f* T Vg(0n, &) | N?maxicicn{]lil*} IVg(@,)]7
(10nll + 1)2+/Sp 1 2k2In” 2 Sh_1

3

where T;, is defined in Equation . It can be shown that ,fi‘j E(G,) < +oo (see the specific
proof in Appendix[C.9). Thus, we focus on studying the first term on the right-hand side of Equation
®).

Step 2 In this step, we focus on decomposing the first term in Equation (3.

As 0,0 0" T
E (9 ||9n|| RS ) v.g(on) <E Z On mz - 9 I1||97,|| _ E(H )
—_ = njs
(161l +1)2 Sn—1 N\/ -1 (N6l + 1)
where the definition of f,, (6, z;) can refer Equation in Appendix|C.9|and v; := sgn(y; — 0.5).
We then prove that the right-hand side of the above inequality is negative. Denote the index of the

support vector as i, := {i|i = argmin;<;<n wiGnTxi/HHnH}, and i,, is a element of i,,. Then we
have 3 ko > 0, such that

n =

f:cl(env‘rzn ‘9 || (Zw< n Lj é*Tx)
\N16nl '

N([|6n + 1]} ia
l ” 0, x ©
2 7 n 1 o Ax T ) L
+ ko ; eldn,i—dn,iy)(|[0n]|+1) ( HenH 0 .’L‘Z)> = An + Bn7
i,

where d,, ; := |0,] 2;|/||6,,]|. We can assert that the first term A,, on the right side of the inequality is
negative. But at this moment, we cannot obtain ::g E|B,| < +00. This requires the introduction
of CZ and C,,. We continue to answer specific questions about these two sets in the next step.

Step 3: From a high-level perspective, since we cannot confirm that ZZZ'} E|B,| < +oo, we need
to further decompose B,,. We wish to achieve a decomposition B,, = C,, + D,,, where we allow
C,>0 but not excessively large; specifically, it must satisfy C,, < _A" , and at the same time, we

have > E|D,,| < +o0. By merging these two decompositions, we obtam H, < " +D,,, which
meets our need When completing the second decomposition B,, = C,, + D,,, we need to introduce
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the sets C;, and C;t, where C; := {|(6,,/(|0n]]) — 0*|| > L}, Cy := {[|(6n/]10n]) — 0*]| < £}.1n
these two different sets, our ways of decomposition are different. In the case where C,, occurs, that
is, when 6/]|0]| is to 6*, we have the following geometric relationship lemma.

Lemma 4.1. Let {x;}}Y, be d-dimensional vectors. Then there is a vector xg such that
0T 2o|/116] = mlnlSlSN {107 2;|/||0||}. Let 0*/|0%|| as the max-margin vector. Then there
exists &g > 0, # > 0, such that for all 0/1|0]] € U(0*/|10*|,0)/{0*/||0*||}, where U(6* /1|0*||, do)

means 8g-neighborhood of vector 6* /||0*||, it holds HTegﬁ ﬁ;—fﬁ <7 9”;”‘”'9 -8 | (Vi€ [LN]).

Through this lemma, we obtain

P; HnTxi AT . U Nr Gn T; T
_ - ) < — n
i;inlcn (i 0T+ \ 6] 0 Ty | < kOCNH@nlI = ko A 0"z, |,
where U is an undetermined constant. Similarly, where C;" occurs, we get
1/%‘ gnTmi Ax T NMl 7 N gn Zj Ax T
_ ) < no_
;m; (i) T+D) \ 6] 0* ;| < ] +k TR 0* 'z, |,
(3=
where M, is a constant. Combining the arguments, we get
’(/JZ‘ eanL’i AxT ~ ~ N HnTxl *—|— N~M1
_ ) < no_ T
2 e g, 0 ) = R G S 0 e+ o
A U
+ kg N —.
[0l +1

By adjusting the value of U, we can always cancel out the first term with the half of the negative
term in Equation (6)), and then we only need to prove that the remainder term can be neglected. That
is to prove

$ip (Sl (Nt
AN ([10n +1]))2/ Sy el

Step 4 In this step, we will prove the convergence of the series sum in the final step of the third step.
We prove this conclusion by the following lemma:

~ U
kocN ———— .
+ Koc ||0n||+1)> < 400

Lemma 4.2. Consider the AdaGrad-Norm Equation ([I)) under our problem setting in Section[2|and

A onb.1 SR ( IV g(0s)II2 )
ssumptton’ We have for any ag > 0, o > 0, 0y, thereis ), _, 5 0(6) In 7 (g (6n) <
+0o0.

Step 5 Through the above steps, we have obtained the following recursive formula:

L f2,(0n,2,)]0,]] ( | T T >
E(f(Ons1|Fn) — f(0n) < —2 . N i *9* + ¢p,
(f(Ons1|Fn) — f(On) 2 N (10 + 11)2 /5o lgw

where Zn 1 ¢n < +00. According to the martingale difference sum convergence theorem, we can
conclude that f(6,) convergence almost surely. Then, we prove by contradiction that this limit
can only be 0. We assume that this limit is not 0, and immediately derive a contradiction from the
following result:

—+o00 +oo

= > q I |01 — In (|6, ]]) — = +00 a.s..
2 Nl + 125 Z ’ Z HMIQS
Therefore, we have proved this theorem. O

Clearly, we can directly derive the following corollary regarding mini-batch stochastic gradients
from our theorem.
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Corollary 4.1. Suppose that mini-batch stochastic gradient holds (Equation (3))). Consider the
classification problem with the cross-entropy loss on a linearly separable data set (Section ). For
the stochastic AdaGrad-Norm method given in Equation (1) equipped with step size oy > 0 and
initial parameter 6, € R?, we have

b, 0"
— — a.S.,
1611 (6]

where 0* /||0* || is the £* max-margin solution.

Previous works (Soudry et al., |2018}; (Gunasekar et al., 2018} |Qian & Qianl [2019) have pointed out
that whether AdaGrad-Diagonal converges to the max-margin direction depends on the initial point
and step size depends on the initial point and step size. They subsequently concluded that it is not as
predictable and robust as the non-adaptive methods (e.g., SGD, GD). However, the claim only holds
for the deterministic AdaGrad-Diagonal method, which is described by the system

Ont1 = 0, —1G,/?Vg(0,),

where G,, € R?*? is a diagonal matrix such that, Vi : G,[i,i] = > ,_, (Vg(0%)[i])* . Nonethe-
less, it is crucial to emphasize the substantial distinctions inherent in the properties of the algo-
rithm under discussion when compared to the stochastic AdaGrad-Norm method. Specifically, the
stochastic AdaGrad-Norm method maintains a uniform step size consistently across all components,
leading to fundamental differences in the analytical methods and techniques that are used to prove
the convergence of these two algorithms. For the AdaGrad-Diagonal algorithm, we can compute the
key component, denoted as —V f(6,,) T (6,41 — 0,,), which determines the update direction of the
decision boundary, as analogous to Equation (39). This computation yields the following equation.

))

Here we have omitted higher-order terms, while the full proof is available in the appendix. It is
worth noting that, given the diagonal matrix structure of (,, with distinct diagonal elements, as
the iterations progress, our pursuit effectively converges towards identifying the max-margin vector

E(Vf(6,)Gn¥Vg(6,)) = E sen(yi — 0.5)fo, (O, 1)

(AH/ n 12:
(027G e =0T G 0] 6, G
(161 1)2 20101 +1)2

en

— b*

_1
associated with the dataset {Goo® - x;,y; } Y ;. This differs from the previous result.

Finally, we present the convergence rate analysis of the stochastic AdaGrad-Norm method, as shown
in Theorem

Theorem 4.3. Suppose that Assumption [3.1] holds. Consider the classification problem with the
cross-entropy loss on a linearly separable data set (Section[2). For the stochastic AdaGrad-Norm
method given in Equation equipped with step size oy > 0 and initial parameter 6; € R?, we
have

min [0/ 10kl — 67 /1|6%]||| = o(1/In"Z n) (VO <e<1)as

1<k<n

where 0% /||0* || is the £* max-margin solution.

l—e
This theorem presents the convergence rate o1 / In"2 n) Ve >0 as. of the £2 max-margin
direction. This result is new to the area.

Analysis against corresponding GD results, given by |Soudry et al.| (2018), reveals that the conver-
gence rate for both ¢g(6,,) and 6,,/||6,,|| within stochastic AdaGrad-Norm is comparatively slower.
This observation is not surprising, as the stochastic AdaGrad-Norm method uses a decreasing step
size, which will be much smaller than that used in GD as iteration grows. However, for GD, one has
to verify whether the step size « satisfies o < 237 to 2 (X) Soudry et al.| (2018), where X is the
data matrix, omax(+) denotes the maximal singular value and [ is a constant characterized by loss
function g. This checking rule requires an extra burden of hyperparameter tuning. In contrast, the
stochastic AdaGrad-Norm method uses simple step sizes.
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Figure 1: Numerical experiments on AdaGrad-Norm and other gradient descent variants.

The proof strategy of this theorem is very similar to that of Theorem [4.2] We only need to replace
the function f(6) in the proof of Theorem[d.2]with [|6|*- f(6) (V0 < o < 1). We provide the proof
in Appendix We immediately derive the following corollary regarding mini-batch stochastic
gradients from our theorem.

Corollary 4.2. Suppose that mini-batch stochastic gradient holds (Equation (B))). Consider the
classification problem with the cross-entropy loss on a linearly separable data set (Section [2). For
the stochastic AdaGrad-Norm method given in Equation (1) equipped with step size oy > 0 and
initial parameter 0; € R%, we have
1—e
in |0k /||0k]] —07/]|07]||| = o(1/In 2" VO 1) a.s.
min [[60/160] = 7/167 ][] = o(1/1n 5" m) (V0 <e<1)as.,

where 0% /||0* || is the L£* max-margin solution.

5 EXPERIMENT

On a small dataset containing 8 data points, we run the number of training steps to 107. The Norm of
differences between the obtained hyperplanes and the hard SVM solutions is plotted in Figure[T} It is
more evident on this dataset that, as iterations progress, the hyperplanes trained by AdaGrad-Norm
and gradient descent (GD) tend to overlap, whereas the hyperplanes trained by AdaGrad-Diagonal
and GD exhibit a bias that does not converge to zero when the number of step approaches very large.
This validates our theoretical findings that AdaGrad-Norm has an implicit bias that is similar to GD,
while methods like AdaGrad-Diagonal do not have such properties.

6 CONCLUSION

This work focuses on the convergence analysis of the stochastic AdaGrad-Norm method, a variant
of the AdaGrad method, with linearly separable data sets. While previous perspectives often sug-
gest that AdaGrad’s convergence might hinge on initialization and step size, our findings present a
contrasting view. Specifically, we establish that stochastic AdaGrad-Norm exhibits an implicit bias,
consistently converging towards the £2 max-margin solution, even without regularization terms.
Furthermore, we present the convergence rates for the £2 max-margin solution, offering compre-
hensive insights into the algorithm’s convergence dynamics.
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A IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of machine learning and optimization
methods. We do not see immediate societal impact. There are potential indirect societal conse-
quences of our work, but we do not foresee them at the moment.

From the technical standpoint, our study overcomes a key challenge arising from the dependency
between step size and gradient. The challenge is solved by intricately examining the direction re-
cursion of the optimization variable, enabling us to disentangle these dependencies. Moreover, we
tackle extra radial noise through insightful geometric transformations. By harnessing a blend of mar-
tingale theory and geometric reasoning, we provide a new way to show the convergence of the £
max-margin direction. Notably, the techniques developed in this study extend beyond the boundaries
of the stochastic AdaGrad-Norm method. The techniques are also valuable in analyzing the conver-
gence behavior of other stochastic methods, such as Adam, and in gaining a deeper understanding
of neural networks.

B USEFUL LEMMAS

Lemma B.1. (Lemma 6 in Jin et al|(2022)) Suppose that {X,,} € R is a non-negative sequence
of random variables. If it holds that %~ (E (X,) < +oo, then >, o X,, < +00 holds almost
surely.

Lemma B.2. (Wang et al.l 2019) Suppose that { X,,} € R? is an Lo martingale difference sequence,
and (X, Fy,) is an adaptive process. Suppose it holds that

S E(IXnl?) < 400, or Y E (| Xal?[Fnsi) < +o0.

n=1 n=1
Then, it holds Z;O:O X < +o00 almost surely.

Lemma B.3. (Lemma 13 in|Jin et al.|(2022)) Consider the AdaGrad update under our problem
setting given in Section[2|and Assumption 3.1} It holds that for any oy > 0, 61,

Z]E(Wg H )<—|—oo.

ey
Lemma B.4. Consider the AdaGrad update ({I)) under our problem setting in Section[2land Assump-
tion[3.1] We havefor any o > 0, 01, there is

Z]E (va H ) < 400, and Z ||V H < 40 a.s..
vV n n—=2 \V4 Sn—l

Lemma B.5. Conszder the AdaGrad update under our problem setting in Section[2|and Assump-
tion and function f(0) :=1— H9|H-1 , where 6* (|6*|| = 1) is a max margin vector. We have for

any ag > 0,601,319 >0, M, > 0, such that
E (Vf(@n))TVg(ﬂn))
\Y4 Sn—l
for Onyzi )0nll (1 (9”T1‘i T ) o M
<E e " 5 Yin =0, |+ +—
} (Nﬂenn 02yE o 2\ TE 0 ) e e
\Y

|
 MmeicinlloiF) g (IS0l
n—1

4cln 2
where 1; := sgn(y; — 0.5) and

f(9, Z‘i) =

1+ e—sgn(yi—0.5)97wi '

12
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Lemma B.6. 1 and x4 are two d-dimensional. Then there is a vector € R® which hold
0T 21| /116l < |07 22|/|16]]. We assign 6% := argmingg| ;g7 ., |=j07 2oy [I0]l- Then there exists
09 > 0, 7# > 0, such that
QTJTQ _ 9*5(}2
el 116l
for any 0 satisfying 0/)|0| € U(6*,80)/{6*}.
Lemma B.7. (Lemma 10 in\Jin et al.|(2022)) Suppose f(z) € C* (x € RY) with f(x) > —oco and
its gradient satisfying the following Lipschitz condition

IVf@) = VW) < el =yl

HT.”L’l _ 9*3?1
lef— el

<7 @)

then¥ xo € RY, there is
IVF@o)||” < 2¢(f(x0) = £7),
where f* = inf,c gn ().
Lemma B.8. {&;,9;} is a linear separable data set and §(0) is the loss of logistic regression. Then
we have that if 0 is a margin vertor of {Z;, §; }, the loss function will hold that

k19(0) < [V(0)|| < k29(0),
where k1 > 0, ko > 2 are two constant.
Lemma B.9. For a linear separable data set S, we assum its max-margin vertor as 0* /||0*||, Then
exists a constant &y > 0, making for any 0/|0]| € U(0*/||0*]|,d0), 0/6|| is @ margin vector.
Lemma B.10. [fa vector § € R? is not a margin vector, it will make g() > (In2)/N.

C PROOFS OF LEMMAS AND THEOREMS

C.1 THE PROOF OF LEMMA [B 4]

Proof. Based on calculations, it is easy to observe that when |[Vg(0)|| — 0, there is || V2g(0)|| =
O(||IVg(0)||) (Here, the norm represents the maximum eigenvalue of the Hessian matrix.). That

means existing do > 0, 6; > 0, such that for any ||Vg(8)|| < &y, there is | V2g(8)|| < do|Vg(8)]|.
Then we assign 0; := min{ln2/N, 8, /k;}. Lemma B.8|and Lemma we know when g(6) <
81, there is [|[V2g(8)| < do|[Vg(6)]|. Then we define S := {#]g(f) < dy := min{dy,d1}},
where &y defined in Assumption 1. We know that within the set S(%2), the Hessian matrix is Lipschitz
continuous. We define ¢ as the Lipschitz constant of the Hessian matrix. We consider an event

B, :={0, €S (52)}. Meanwhile, we assign its complementary event as Br(f). Then, through the

third-order Taylor expansion, we have

gl V2g(On)ll - IVg(On, &n)lI?
Sn

1z, (9(0n+1) - g(@n)) < _anQOSf?EVQ(Gn)TVQ(Gm &) +15,

o ||Vg(0n, &a)l®
S3 '
Combining Assumption [3.1] we can get

+15

n

aoVg(0,) "V (0, &) ( 1 1 )
1 9n - 071 S_l +1 t _ —
Bn(g( +1) = 9( )) B, \/ﬁ B, to 5 U5 N
1 do0dI V9O Vg6 &I | eKadlVg(0n, €I
By S + 13, S% )

where tg = g 31 K. For the third term on the right side, we have

doad|Vg(0n)]l - IVg(0n, €)1 _ 2000do Ky doc2 Vg (@) - [V g(0n, €)1
1z, S =1{ [[Vg(0n)]l < vl L -
2 JK J ollV )l - IV 9117 n 2
+1<||Vg<on>||z "‘3510>1ﬂ sl Vo) [Tt

©))

13
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Then we can acquire

15 doagl|Vg(0n) ] - IV 9(0n, &n)11”

2
S < Qd%ag](?llgnw
L0 4 VeIV, €)1
~ 15, .
9K?2 NES

Substitute above inequity into Equation (§)), and make the mathematical expectation, getting

B (16, (500-1) ~900,) < 25 (1, IV (L L)

n Sn— S’I’L
- : o (10
E ((cmad 3E)|Vo(0,.6,)] )

S

We make E (15, (9(0n+41)) 0 E (1, (9(6rn41)) + E (15, — 18,.,)(9(Fn+1)), acquiring

& (1o 0000)) —E (15,600,
<_ % < ao”vg 3l > —l—toIE(\/%—\/g—n) (11)
—HE( (eK + HVg Gn,fn)||2> E ((15, —18,,.)(9(0n+1)).

We notice

—-E ((13 13n+1) (0n+1)>
- _E ((1,3 —1p,15,.,)g (9n+1)) —E ((1,3”1,3"“ 15,..)g (en+1))

< min{dg,d:} - E ((1&, -1z, 1Bn+1)) +min{do, o1} - E <(13n 15,0 = 13"“))
= min{éo, 61} : E (IBn - 18711»1)'

we getting

E (15,0, (9(0n11)) —E (15,9(0,)) ) < g (IB" aoIIVg(Gn)Hz) g (

2 \Y4 Sn 1
i <<K + 208K |Vg(60: &)1

1 1
V Snfl \/ﬂ)
S% ) min{do, 41} - E(l[gn ﬂ+1).

Then we make a sum, acquiring

+oo 2
5 (1, 2T _ o, )
n=1 S”_l

Then we consider the case when Bﬁf) occurs. We know Vg must hold the Lipschitz condition; we
assign its Lipschitz constant as c. Then we get

—1 a2c||Vg(bn, &)
15;—)(9(9n+1) _g(an)) S _183;)040571 QVQ(GTL)TVQ(emfn) + 1851*) 0 || gé, g )H .

n

14
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First, we have

2
- —) @ Vg(@n)TVg(ngn) _yead v9<9n75n)
15 (00) — 9(0,)) < —15) ¥ IO) T o Vol &)

(=) Qo 1 HVQ(emgn)HQ ||v9(0n)||2
__13"2<M+1 5 +(M+1)T

Vg(anvfn) -V M + 1v9(0n)

(=) %o

1
Bn ? Sn—lH\/]\47‘i’1
<% (M+1)<||V9(9n—1>||2 B HVQ(%)HQ)

+1

2
2 (—)ﬁ ||v9(9n7£n)||
+16n > —Sn

2 vV Sn—l \% Sﬂ
oo (1 V0 &)l” o (M= DIIVe@]® (M + )] Ve@nn)lf
Bn 2 M + 1 vV Sn—l Bn vV Sn—l V Sn—l
2
+18n 2 Sni +Xn7

(13)
where X, is defined as follow

o = 15— 20,7 (T00) ~ Va6

and M := 2My + 2(a/k}05) — 1. Then we can find

IV90)|° = |V9(0n-1) + (Vg(0) — Vg(61)) ||’

2 Volon 1,60 D> (14
< Vo0l + f“nw7~mwgnﬁnw+zﬂ|gsf ol”

Then we multiple M + 5 on the both side of above inequity, acquiring

1) 2apc

F||Vg h—1 ||||Vg n—1,&n— 1)”

(314 3) Iwa@] < (3 + 3) Vot + (31 +

(M+ ) ) 2HV9 1 &n)]” .
2

Sn 1

Noting

1\ 2apc IVg(On—1,&n—1)|?
(M+ )\/LHVQ n—1 HHVQ n— lyfn 1 H *va n—1 H +2<M+2) 2 2 5:71 1 .
We get that

; 1 IVg(Bnr, &)l
(3143 IVa(6.)|* < (1) Vg(Ba)| +< <M+§) agc2+(M+2) ) —ubl?,
that is

2 +k25 2

(01 =]Vt + =552 9at6)]

IVg(0r—1,&n— 1)||2
Sn 1

< 900"+ (0 4 D[ Tot0u |+ (2(01+ 5) e+ (314 ) )

Then we multiple 1(_) /+/Sn—1 on both side of above inequity, and noting where lg_n) = 1, there is

M0+k262
M+1

1

V@l > 5

]E(||Vg(9n,§n)||2|9n),

15
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getting

(- )E<1<>|| g((mHQ)+ 1 E(lg;?W)

Sh_1 M+1 Sh_1

Vo(0)||” Vg0’
< _g (10 [¥e)| > (M +1) (1( )) 15
< < T + (M + T (15)

+<2< *) ol +(M+ 5)¢ ) <1< ||vg(9ns_§f”_1)|2>.

Substitute it into Equation (T3), we get

B (15, (00ni) ~ B (15900, < - (15 o020

\V n 1
22 2 2 Vg1, )”2
( ( ) e+ (M+ ) 0)1@(1}%) 5311 ) (16)
<1< V20041 (HVg(zzll)H? N HVQ(ZZ)H2>> + %E <||Vg(9§;§n)||2>
( =15, ( (9'l+1))'

Then we use inequality 2a”b < Alla/|? + 1[|b]|*> (A > 0) on Equation to get

2 2 HVg(en_l)HQ
20820 +1)

Sn—l

amn
aoc

HVQ n— 17€n 1 H + va n— 17€n l)H .

Multiple both sides of Equation by 1%;)/ \/Sn—1 and notice S,,_2 < S,,_1 < 5, then we have

lgsg(uwwwuz . Hw<9n1>|\2>

\/?n vV Sn 1
1vg(6, DI 2M +3)15
< Bn H 9l 1)H +aoc( 3 ) HVg n—1,&n— 1)”
2(M +1)y/5, Si,
157157 Vg0 1Vg(0n)|

_|_(1§3) 1( ) 11))

2(M +1)y/Sh—2 - 2(M +1)1/S,_2 )
oM +3 1< )
L WECH s G e
Sp 1
(=) 2 2
Lo, [Vo@adl” V91|

2M + 1)\/Sps oM+ 1)y/Sps
)
a?e 2M—|—31
Lo 2( : )
S: .

n—

||Vg n— 17§n 1)” .
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Substitute Equation (I8) into Equation (T3]), acquiring

(15 (o0,00) ~ B (15)000,))) < - 2B (15 = 1H )

1\2 NIV 2
+<2(M+2) a§c2+(M+ )62(13)1@(1533 90 S%I =l )
n—1
(=)
Vg(0n,&0)|2 aZc2(2M + 3)(M + 1)1
+ca0]E M +E 0 ( ( )B (Qn_1,§n_1)”2
2 Sn 252,

+ E ((IB IBT,+1)( (9n+1)) + E <an_1 va(en_l)H )

19)

N

3 vl

2(M +1)y/Sp_s

We know when BS™) occurs, through Lemma there is | Vg(0)|| > 04 := k1 - min{dp, 01 }. That
means

E ([IVg(0n: &)1 F0) < M[[Vg(6)]* +a < <M+ )HVQ( w12

" Vg0 &) a . (v
> () = (g = ()

Through Lemma[B.3] we can get

E <vaéik)H2> <oE <qu;§k)|‘2) < +o0.

We back to Equation (TT), we can get

E (15, — 18,,.) (9(0n11) < E (18,9(60)) ) — E (18, (9(0n41)) + o B (1 - 1)

Sp—1 VSn
1 (2T 1)

So we get

si
(20)
which means
ZE(( 13n+1)( (9n+1)) < 400 2n
Substitute Equation (20) and Equation (ZI)) into Equation (T9), and make a sum, we get
+oo 2
_ Vg(6
ZE (1% )ozog(n)) < 400. (22)
n=1 ! Sn—l
Combine Equation (I2) and Equation (22)), we get
v 2
Z]E<Oéo g(8n)l ) < +00.
V/Sn-1
With this, we complete the result. O

C.2 THE PROOF OF LEMMA [B.8]

Proof. We can get

N
N 1 . 1 N 1
0) = N ; (yl In (1 n esgn(g}i(].E))OT:Ei) +(1—%)n (1 T 1 4 eoen(@:i—05)07 & ))
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Due to # is a margin vector, we can get

1 1
H)Z‘N;m(l‘mm)-

Since 1/(1 + e|9T’3i|) € (0,1/2), we can get following inequality

21n2 <1 < 1
1+€|97;EL| = 1—|—e\9T£i‘ - 1—|—e\9T5“‘.

That means
N

N
1 1 21n2 1
— ——— < g <
N z—:l 1+ el0Ta:| — g(e) - N 2_; 1+ FICAR (23)

On the other hand, we can calculate

Va0l =

N
z(mm )|
1

Due to 6 is a margin vector, we can get

1

N
IVaO)l = + ZM

1+ el0T&l

IR

First, we use the norm inequality, getting

N —sgn(y; —0.5)
1t eloTal

< maxi<ien {[[F]]} Z
- N 1+ e“‘)Tm

Second, we assume 6* /||6*|| is the max margin vector of this data set, we getting

N
1 1
>
IR

1Va0)] =

i=1

G*T
16

1
N

> — —_—.
- N ; 1+ el0T&il

Then we can get

max; <;<n {[|Z]|} 1
NZ e ww < |[Vg()| < ~ Zl+elm|. (24)

Combining Equation (23) and Equation (24), we can get the result.

i —sgn(y; —0.5) _

199(6)] = e

%

C.3 THE PROOF OF LEMMA [B. 10|

Due to 6 is not a margin vector of the data set {z;,v;}2,, we know that there is at least one data
(x,y;) has a wrong classification which is formed by ¢. That means

—y;In(9;) — (1 —y;) In(1 = g;) > In2,

SO we can get

N In2
Z yi In(9;) + (1 —y;) In(1 — yz)) > -

18
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C.4 THE PROOF OF LEMMA [B.6]

Proof. Obviously, since * := argmingg||g7a,|=|97x,} I0ll, We can get rank{z;,zo} =
rank{x1, z,0*}. Then we assign S := span{x1, z2}. For any vector #, we assign the vector which
9 projects on S as . Without loss of generality, we can think 8* ' z; = 0* 25 > 0. (if * " 2; < 0,

we can construct a new vector z; := —x; to substitute x;.) Then we assign
QITQ*
( 1= arccos —————
le’fe=|’
Q*Tl‘l H*ng
(p] 1= arccos ——————, (P9 := arccos ———
16 [[{|1]” 10l |2l
A
¢ := arccos it
lele’

In order to prove Equation , we just need to prove exists o, > 0, making the binary function

D(p, ) = 1] | cos(er — ) cos(¢) — cos(en)|
" el cos(ipz) — coslps + 9) cos(9)
Absolutely, when ¢ and ¢ are small enough, we can cancel the absolute value, i.e.,

]l Jcos(pr — @) cos() — cos(in)]

<7, (VO <, ¢<dp). (25)

PO = faall cos(pa) — conlin + ) cos(d)
That means
limsup D(p, ¢)
©—0,0—0
< i ey N7l 081 = 9) cos(9) — cos(p) cos(@)] + | cosir) cos() — cos(gn)|
< limsup )

00,60 |72l cos(pa) — cos(p2 + @) cos(¢)

el {sTn«ol)’ cos(m)}
l|lz2| sin(gp2) " cos(p2)
That means we can take

Ao [EA _max{s?n(%)’ms(%)}
sin(psz)’ cos(p2)
to make Equation (7)) holding. O

C.5 THE PROOF OF LEMMA [4.1]

Proof. The proof is similar to those to obtain the arguments in the proof of Lemma[B.6 O

C.6 PROOF OF LEMMA[4.2]

Proof. Given two unary function y;(z) = —1/a|lnz|* (0 < z < 1/4), yo(z) = 1 (x > 1/2).
We know that there is a smooth connecting function ys(z) (1/4 < x < 1/2), making the following
function

. In2
—1/alnz|*, ifzr < 3F
y(z) =<1, ifr>1
ys(x), ifh‘T?gzgl
is an infinite order continuous function.
We construct a function
h(8) == y(g(9)), (26)

and a set S©) = {610 < g(0) < &}. We make 6 = (In2)/N. Then we use the taylor expansion
and the structure of g, getting that for any #(1) € S(®) and (2 ¢ R?, there exists three positive
constants dy, d; and do, making
d
hO@Y — h(0M) < VRO T (02 — gy L 20 __119(2) _ g(1))2
(6)) — h(6V) < Vh(0™)T( )+ ! || o

+ o0 — oW,
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where ¢ is a constant that can not affect the result. For convenience, we assign
doag
[
We construct an event A, := {6, € S(S)} (6 = (In2)/N). Combining Equation , we get
lAn (h(9n+1) - h(en)) < IAHVh(an)T(enH - en) + lAnTnHQn+1 - 9n||2
+ &[|0n+1 — 9n||3

T, =

(28)
T )
_ (Vg(0,)) Vg(0n,&n) Tl Vg(ns €)1 003 IVg(6ns &)
— 14, M1, T Gy, ; .
V89(0n)In(g(0n))| T Sn Sz
Then we get
IAW (h(9n+1) ( n))
T .
( n)) V 9"7571 TnHvS](emfn)‘P COagHVQ(emgn)Hs
—14, o +14, +14, 3
VSng(0)[In(g(0)) [+ Sn 52
g, (Ve6) Ven&) (Vg(9n>)TVg<en,§n> 1 1
"/ Sn-19(0n)|In(g(0,))* T " g(0,)In(g(0n)" > \ /S, 1 VS,
2 3 3
+ IA,,, TnHVQ(ena gn)H + lAn COOZOHVQ(SGn; gn)” )
Sh Sz
Then we use an identical equation, i.e.,
lAnh(en-i-l) = 1An+1h(9ﬂ+1) + (lAn - 1An+1)h(6n+1)7
getting
1An+1 h(en"l‘l) - 1Anh’(9n)
1 (V96) V9On &) (Vo) Vo) (1 1
= S g0 (@) e g0 (g (0)) e \ /Sy VB, ) (29)
Tn v 0%7 n 2 3 v 0%7 n 3
+ I-Anw + lAn C()Oé()” -f;(a 5 )” o (I,An _ 1An+1)h(07’1+1)

We make the mathematical expectation on the both side of Equation ([29), getting
E (14,,,7(0n11)) —E (14,h(6,))

B [V9(8)[I” (ngn))TVg(en,en) 1 |
: E(l*‘n Siaa )@= ) P\ e mGE e \ e Ve,
L E (IATIIW(HNI) L E (un coa8||v9<en,gn>||3> = ((un ) h(f )

30)

Sn 53

For the second item in Equation (30) right, through Assumption[3.1] there is

(w(en))Tw(en,gn) 1 1 - I
E(lAn 9(0.,)[In(g(0,)) [+ ( /S, \/S—n>> <50E< 5 m) a3n

Next we get
—E ((La, = 14, hl0ni1))

=—E ((IAn — lAnlAnH)h(on_,_l)) —E ((lAnlAnJrl — 1An+1)h(9n+1)>

1 1
<—— EB((Mu, —1ads ))+—— o E((Aada,,, —1a.,
~ In(min{J, 5}) (( An A )) In (min{4, 1}) <( AnTAntr T Mt ))
1

=———E(14 —1 .
In (min{(5, %}) ( A AHI)
(32)
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We make the sum of Equation (30)), getting

n 2
E (La, h(0ns1)) —E (I1h(6:1) < =S E <1Ak |Vg(6x)]| )

P Sk—19(0%) [ In(g (1)) "+
(Vo(0r)) ' Vg(Or,80) (1 1
+ZE<1Ak (6r)[ (g (6x)) [+ (MS,H N VS?))
Tull V(0. €)I° | ¥ €005 V9 (Or, &)
+ Y E (1, E(1
(1 A e o )

k =1 52

B kzi:lE ((lAk - 1Ak+1)h(0k+1))-

We can get that

+oo 9
[V4(60) | )
Z : <1An Sn—19(6n)] In(g(0,))|* e < E(Lih(61))

Vg ak)) Vg(Or, &) 1 1
+ZE<1Ak 9k Hn( 9k |1+a ( )

VS Ve .
n 9 n 5

+ZE<1AkW)+ZE<I |V (O m)

k=1 F k=1 S?

B éE <(1Ak - 1Ak+1)h(9k+1)>-

For the third term in the right side of Equation (33), we have

n

= Tr||Vg(Or, &) dol|[Vg (O, &r)lI?
ZE(I 5o ) = ZE(‘ (g < faow) PR )
" 1 ~ do||Vg (O, &)1

kz_: <1Ak (\/S—k>k9(9k)> ABEED )

2 n 9
< E<1Ak dokg(01)|[Vg(0r: &) | )+ZE(4d0Vg Ok, &)l )
k=1

10k [1? Sk SiIn'te S,

=1
taking proper I;, we can make

- T Vg(Or, )12
ZE (IA,C’“S:’“>

2
Vg(0) n 2
Sk—19(0k)[ In(g(0x)) '+ = Sk\lnsk\ +o
I V(0 Y T 2
*Z || 90| +4d0/ g4 TilVeOL &I
2 Sk—19(0k) | In(g(0k)|"*) s, *|Inaltre 51

(34
Substitute Equation (31), Equation (32) and Equation (34) into Equation (33), getting

S V90|
El|1l . 35
n; (A" So19(0) In(g (B 1+ ) = (35)

For the event A, := {0,, ¢ S (3)} (6 = (In2)/N). Combining Equation , Through Lemma ,

we have
" Vg0 & (Ve
Ef1l < E|*— | < +oo, 36
1;2 <“‘k Si_19(0)| In(g(0x)) |+ ) S oo, (36)

k=2 k-1
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where ¢, is a constant which can not effect the result. We calculate Equation (35) plus Equation

(36), getting
o
< +o00. 37
— Sk—19(0k)[ In(g(0x)) '+
O

C.7 PRrROOF OoF LEMMA [B.3]

Proof. We know

1 & 1 1
9(0) = N (yz In (1 + esgn(yi0.5)0Tmi> + (1 —y)In (1 C 14 e—sen(yi—0.5)07T > )

i=1
We defined .
f(a L ) 1+e sgn(y; —0.5)0 T z; ’
and
Ja (O, 2i):= {1 — f(0,x;), ify, =1 (38)

We can calculate the gradient

N
Z (0, x)x

Then we get

VI (00) Vo0 &)\ (0180 = ST\ T Vg(6,) -\ V(o)
- Vo )‘E<< (10, + 17 ) ) 2 (qroe) o

18] — 250" )TVg(G )) ( 1 < b )T al
- n | -E Z sgn(y; — 0.5) fu, (0n, )2
(( (o, |\+1 NG NS\ +12)
‘B ( 9% 16 — Ho \| ) Vg(6,)
- (10n]] + 1) VSn-1
0 16 — L2 T)
-E SgIl _O5fz enaxz T
(zvﬁ A\ ) = (O )
6] — %\ T
-E sgn(y; — 0.5) le(ﬁn,xl)<"> Z;
(zvﬁ S0 (0l + 12
0y 070,
#,9* zZHQHH
(28]
=E sgn(y; — 0.5) fo, (O, ;
<Nﬁ 3 N (A ESIE
en—rxz_é*—rxznenll en—rxi On I
=E sgn(y; — 0.5) fu, (O, 1) - ’
< N /Sy 12 (16l + 1) 2(]16n ]l +1)?
0, xi —0*T;)|60,]|
<E sgn(y; — 0.5) fz, (On, x;) Bn,
( \/ n IZ (||07l||+1)2
(39)
where
Br
:=E | 1(0,, is not a margin vector) ——— ngn 5) fu, (0 x) 6, 2] On__ e i
' ! Ny/Sn-1 (10,0 + 12 {165l '
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through Lemma[B-T0] we know following inequity

. 12
Bn < maxlSZS;V{”wZ” i -E <l(t9n is not a margin vector)

=)
Snl

N2 , 2 2
< max1 i<y {2 }~E(1(9n is not a margin vector)|| é 2l >

- 2k?1n* 2 n—1
o Vmaxicion{llz]?} L (||V9(9n)||2>
- 2k21n* 2 Sp—1

For convenient, we assign
On i — 0% T 2|0, |
H = 9 y L )
= T Iszfxl ) T D)2

where 1; = sgn(yZ — 0.5). We denote the index of the support vector as i, := {i|i =

arg minj <;<n Y0 :cl/||9nH}, and i, is a element of i,,. Then for H,,, we have 3 ko > 0, such
that

(40)

O @i — 0", |6, |

(6]l +1)2

H, = fxl anaxz)

mez
16l <9nT33¢ AT ) (enTxi - )
= i fa; (Ons i -0 ifw; On, i) | =5 — 0" @
NIt T 1|))2 /75"1<ieziz/}fl( ;) A x +Z¢fl( ;) T T

idtin

le( ny ||0 [ ( On xz _ 0Ty ) Ja; (O, ;) <9nT$i _ T )
N (16, + 1) \ﬁ< 2V FLF G Ul

Zel
Sy Oy 24) ][00 | ( On CCZ AxT ) 2 v <9nTxi AT )
d i —0* x; | + k —0* xX; s
Wil + 115 2 Tl 0 2 S T \ ]
where d,, ; == |0, z;]/||0,||. Through Lemma we know that there exists &, > 0, # > 0 making
when (| (6n/116n11) — é*” < £ :=min{by, 80}, (& is defined in Lemma for any j # iy, there
0
Cr = >Ls, C = H -
{ 16,1 } { 6]

is
< ﬁ},
and their characteristic function as 1,+. Natruely, we can separate H,, as

Hy =1,-Hp+ 1.+ H,. (41)

|07z ~

GTLL'J‘ ~
— 0%z |.
H9|| '
‘We construct two events
0,

*

-
16]] ’

<7

For 1.- Hy,, we have

1.-H, <1

sz( = xl é*TCﬂl)

i€ip

e (B )04
Cn N([|0n] + 1) Sn—1

. - “2)
> i n Li T
+ lc,;ko ; e(dn,i—dn,i, )([[0n][+1) ( 10,]] 0 xz>>
T¢I
In Equation (@2)), we know the first term in the bracket is negative. For the second term, we have
N ’L/) 0 T:L‘ N
i n v AT L
o Y s (B 0T ) =t Y (s — s )0l + 1) < 0)
i=1,i¢ti, i=1,i¢ti,
1(d. - 0.1 +1)>0 Vi, 0, x; 0T 2
+ (( e nz,L)(” ||+ ) ) e(dmi*dn,in)(HQHH‘H-) ||0n|| B i)
(43)

23



Under review as a conference paper at ICLR 2025

where U > 0 is an undetermined constant. We know where
(dn,i —dy, zn)(He || + 1) < U

which means

enTxi A en—rxi A A gn—rwi
(16l 16l 165l

0, z; - 0lx; 0, 0z, A
< 1< n v 0*T£€Z‘ > 0) . < n<t  Yn<in + nin Q*Txi,, +9*Txin o 9*T£C2>
101l N0l [16nl ’

U
< (dps — i) €
S BT

On the other hand, Due to the characteristic function 1,-, we can confine Equation @) on the set
C,, . That means

,[r/)i enT‘xi nxT
1.- 1((dpyi — dnys, ) (100 ] +1) < U) e(ni=dn, i, )[16a1+1) \ ][0, || -0

i (44)
U
< EN
[0l +1
and .
2 U On x5 AxT
Z 1((dn,1 - nln)(Hg || + 1) U) e(dn,z nLin )([|0n]141) HenH -0 Ti
idin . (45)
NT On i, —Q*T%n )
160l
We substitute Equatlon (#3) and Equation (#4) into Equation (#3), getting
N T A
wi O x; AxT L U
‘ Z eni=duc) 10T+ \ 16, —0e) s kOCN||0n|| +1
i=1i¢tin (46)
~ NT 0, " z;
+k0 n_Zin Ty |
[[6n |

We substitute Equatlon @) into Equation {#2), acquiring
T; ena 3 an nT [ 7 Ij
lcanSI B fm( xn)H H <¢zw< Li,, 70*T >+k06N

g N (10a]] + 1)24/Sn1 161 16| +1

).

We take the undetermined constant U/ = In (21%0 N f), getting 3 M > 0, such that

Lep Hn S des g 3Vin T ) | @)
= N ol DS 2 T .0+ 1

For 1.+ H,, in Equation @) we can use the similar techniques (from Equation (@) to Equation
.) to acquire 3 M; > 0, such that

for Oz (1 (9in - ) i,
Loy Hn <1 o 5 5 Win =0, |+ — |- 48
et = ler y o+ 02 vEs \ 2V UTonl T (48)

Then we calculate Equation plus Equation , and we get 319 > 0, My > 0, such that
. 97 9 . 0 ]_ enT 7 ~ M
Foun G0 ) 10n] <2¢in ( T G*Tfrin) + du + 0 ) . (49)

N’I‘ 07, Zi,

_9*T
[[6n |

—I—k

Lip,

" N([0nll + 1)2/S0 s 16,1 B =1 eloal
With this, we complete the proof. 0
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C.8 PROOF OF THEOREM [4.1]

Proof. For the sequence {S,, }, we separate the proof into two situation. The first situation is S,, <
+00. In this situation, we use Lemma[B.4Jand Lemma[B.2] getting

IVg(6..)I1”

— 0.
V Sn—l
Combine lim,,_, 4 o Sy, < +00, getting
Vg (0n)]| — 0. (50)

Then we consider the second situation S,, — +o0. Through Equation (I0) and Equation (T6)), we
can get g(0n11) — g(6h) as

1 N

+ Ty,
om (1))

where &g > 0 is a constant and Tn is a sequence which satisfies Z:g Tn < 400 a.s.. Then we
can get

9(bny1) — g(0n) < &

Z 1 Z |Vg gnvé-n)” | ) MOHVQ( n)H2
\V n 1 a n=1 Snfl
2| g
> EZ E (”vQ(enafn)H {Jén)
— \V Sn 1
Z IVg( Gn,En 21 i” E (IVg(8n: &)1 Fn) = V9 (0n, &)1
V a n=2 S”_l
where G = +2M0||Vg(0n)||2/a\/5n,1 < 400 a.s.. Next we aim to prove
1/\/ n—1 = +00 a.s. by contradiction. We assume Z:ﬁ; 1/4/Sn—1 < 400 a.s.. Then
through Lemma@, we get that

1 X2 E (IV9(0n; &) IIP|Fn) — [V9(0n, &)1
EZ Snfl

—Co (52)

- CO?

n=2

is convergence a.s.. Substitute it into Equation (52)), acquiring

Z va gnvgn
n 2 \% n 1

) (53)
V 91’7,7 n rf - v ena n
Z _72 |g § ||’ || q( f)” 1 ¢y < +oo.
2V n 1 n=2 \V4 Sn—l
However, we know
Vg(0n,&n)? teo
ZH 9(0n, §n)ll . / Lo - e
\/7 als, Vx
It contradicts with Equation @) That means
S gt
n 1
Combining it with
2
Z IV9OIIT | o s, (54)

o
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we acquire that there is a subsequence {||Vg(0x, )|} of {||Vg(6,)|*} which satisfies that

lim [|Vg(6y,)||* = (55)

n—-+oo

Next we aim to prove lim,,_, 1~ [Vg(6,)]|?> = 0. It is equivalent to prove that {||Vg(6,,)*} has
no positive accumulation points, that is to say, Veg > 0, there are only finite values of {||Vg(6,)|}
larger than eg. And obviously, we just need to prove VO < eg < r, there are only finite values of
{lIVg(6,)||} larger than . We prove this by contradiction. We suppose 3 0 < e < a, making the
set S = {||Vg(6,)||> > a} be an infinite set. We assign the Lipschitz coefficient of Vg(6) (6 € RY)
as ¢. Then we assign b = ¢/8c¢ and define o = min{b,e/4}. Due to Equation , we get
there exists a subsequence {6, } of {6, } which satisfies |Vg(6,,)|| < o. We rank S as a subse-
quence {||Vg(0im, )|} of {[Vg(6,)||?}. Then there is an infinite subsequence {||Vg(6;,, )[|*} of

{lIVg(6:,,)||*} such that Vn € N, 3, n,, € (m;,, m;,,). For convenient, we abbreviate {mn;, }
as {4, }. And we construct another infinite sequence {g, } as follows

g1 = max {n pp<n< min{mil:mil >p1 b HVg(@n)H < o},

g2 =min{n:n>q,||Vg(bn)| > e},

(on—1 = mMax {n smin{m;, : my, > gan—3} < n < min{m; : m; > min{m;, : m;, > qan—3s},
[Vg(6n)[| < o},

Gon =min{n:n > qn_1,||Vg(bn)|| > e}

Now we prove that 3Ny, when g2, > Ny, it has e < ||Vg 4on) H < r. The left side is obvious (the
definition of ¢2,). And for the right side, we know HVg (0gan—1) H < e. It follows from Equation

() that
2
8041 = 0ul* = S| Vo (0n, )]

2
< . (1990 eI~ E (1 990n &]7:)

(M0||V9(9n)||2 +a).

@0
Snfl
Through previous consequences we can easily find that

+oo a2 aQ ) )
> (Snfl(HVg(on,sn)nzE(||vg(9m§n)||2%))+ OMOQZgl(o )| )

n=2
< 400 a.s..

Note that a3a/S,,—1 — 0, a.s.. We conclude

1641 — 6nl| = 0 a.s.. (56)

Then we get [[Vg(0e)| — [V9(6)12] < [IV9(6ne)ll — IVg@I* < [IVg(0nsr) —
Va(0)|I? < c)|0ns1 — Onll = 0 a.s.. ThenthroughLemma we get

||v9(9n>||2 < 2¢g(0n) (n € [g2n-1,q2n])-

Then we get

I

e—o0< ’ vg(9q2n)H2 - va<9q2n71)H2 < ch( q2n va q2n— 1)

g2n—q2n—1—1
= (2C Z g(eqf"nfl"t‘i“rl) - g(9q2nl+i)) + 269(91127%1) - HVg(qufl)HQ.
1=0

From Equation (5T)), we obtain

g(0q2n—1+i+1) - g(9q2n—1+i) < Gg———=+T».
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So there is
g2n—q2n—1—1 & q2n—Qq2n—1—1
0 N
e—o0< E : et E TQ21L71+’L‘
i=0 \V4 SQ2n71+i i=0 (57)

+2¢9(0g,, 1) — || V9(0a )|

Due t0 [|[Vg(fy,, ,)||> < 0 < b, so we get that g(6,,, ,) < e/8c. Substitute it into Equation .
We get

q2n—q2n—1—1 g2n—q2n—1—1

1 . .
Z \/ﬁ > Qo — Z qun—1+i' (58)

=0 =0

Due to Z:g T,, is convergence almost surely. So we get that Z?i”o_qg"‘l_l Typn_r+i — 0 a.s. by

Cauchy’s test for convergence. Combining 1/,/5,, ,+i — 0 a.s., we get

q2n—q2n—1—1 q2n—q2n—1—1

Z Tq%_lﬂ- ) a.s., (59)

1 . 1
>~ —— —

so there is
400 /q2n—q2n—1—1 1
——— | = +00 a.s.. (60)

But on the other hand, we know ||V g(0y,, ,+i)|| > o (i > 0). Together with Equation , we get

Ji’" “"‘%*1_1 1 - 1 = Q%_%fl_l w
n=1 i=1 V/S4zn1+i 0= i=1 V/Sqznr1+i 1)
1 & [V,

It contradicts with Equation (60), so we get that [Vg(6,)|| — 0 a.s.. Combining Equation (50),
we get |[Vg(6,,)| — 0 no matter S,, < +00 a.s. or S, = +00. Through Lemma[B.10]and Lemma
we get g(6,) — 0 a.s.. In the case of linear separable data set, g(dn) — 0 a.s. implies
[105]] = +o0 a.s.. O

C.9 PROOF OF THEOREM[4.2]
Proof. We assign 0% := 0*/||0*||. Then, we assign
070

)= 1= 62)
Then we use the taylor expansion on f(0n1+1) — f(0r), getting
f(9n+1> - f(en) < vf(9n>T(9n+1 - ‘gn) + Tn‘|9n+1 - 9n||2
_ 7a0Vf(9n)TVg(9n,§n) + T | Vg (0, &)1
VS Sn
< _Oéovf(en)TVQ(em &n) O‘Oé*TVQ(ena &n) (63)

< +
\V Sn—l (HenH + 1)2 vV Sn—l

~ T A=

T
(HenHﬁL:‘I.';;H ) Oéovg<9n7§n)<

1 1)+n%wy%&m2
Vo Vo S ’

where

1 1
TnZ:éO( + )7
ol +1)2 = ([fnsa]l +1)2
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where ¢ is a constant which can not effect the result. For convenience, we assign

* 0,07 6"
GHOH—M ng 9 E < 1 > + T, a0||v9(9n7£n)”2
(10n]l 4 1) VS VS, Sn

a0l Vg(0n, &) | N?maxicien{llzil?} [ Vg(6.)]?

_|_
(10n]] +1)2y/Sn—1 2k21n* 2 V/Sn1

Then we make the mathematical expectation of Equation (63), getting
where H,, is defined in Equation (0). Then we make a sum of Equation (64), acquiring

aoiE(—Hk) < E (f(62)) —i—zi:]E(Gk).

n -

(64)

obviously,

f |z @0 < Sz la

670"
Ty O‘OVg(on,fn)”z)

016l — S\
5 Vg(0n,&n E
H( e||+>2> @0V 5<ﬁl r>+z< s,
( 000" TV g(6u, ) ) | N max;cien{[lzi]*} ZE <||Vg ||2>
n—1

+
nzz (16l +1)21/Sn—1 4cln2 S
(65)
and for the first term on the right side of the above inequality, we have 37" > 0, such that
oo X 0,070"\ T
< 07101 — 552 11
ZE (H9 ||+1)2 OVQ envfn S
k=2 \V n 1 V POn
k=2 V/Sn-1 Sn
Through Assumptionﬂand Lemma we can get that 3 To > 0, Ty > 0, such that
1
T E(||Vg(On,&n
> (Iwa 0l 2= - &)
<735 109000, < ) [Fa000.60)] (e~ )
n=2 Sn—1 Sn
(66)
1 1

+TZIE< Vg (6n |>50)|’V90n,§n)||( S_l_ﬁ>>

+o00o 2
N N 0,
_ leE(IVgé )l )< _

n—1

For the second term in Equation (65), Through Assumption [3.T]and Lemma[4.2] we have

T, aOHVQ(GnaSn)HQ
ZE( o)
O‘(Z)”VQ(QMETL)HQ

A &1 HVQ Qnaén)HQ
= (ZE< (162 + 255 )*;E(uwnﬂnﬂvsn)) =
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For the third and forth term of (63), we can use Lemma [B:4] and Lemma [A.1] to prove their are
convergence. That means 3 K7 > 0, such that

ZE K < 4o0. (67)

Through (@9), we get

fai, On,xi,)[|0n ] 1 (enT% T ) ) My
Hos oo Vi =0T, )+ T N )
N([|0n]l +1)24/Sn 1 \ 2 2Y 10 [6a][+1 " esTenll

Substitute Equation (68) into Equation (67), we getting

iOE i, Han:an (9n7xin) (é*T 9nTxin)
T, —
N(|[0n]l +1)%y/Sn—1 [0l

n=2
00 ~

o 100l fz., (On,s xi,,) ( ) 100l fz:, (On,xi,,) My
<2K4+2 El1l,.- o Z + o . — .

1 Z:; < N (0] + 12/ Sy N ||+1 Z N([[6n]l +1)2/Spy 101
Then we calculate the third term of Equation ( . We know when 0,, € A, there is

o 11
< ko—s = ko T
(16l +1)? In®(g(6x)) | In(g(6:))]

where ko is a constant where can not effect the result. Combine Lemma We can get

+oo
friy (On,2i,) ( o ) 9(0n )
Ell,-.—= . <k E < 400.
7;2 ( Cn N”enH\/m 0, +1 Z \/Sn—1|1n(g(0,))| 1!
Similarly, through Lemma[.2] we can get
+00 ~
S ELATRCER N B
= \NUlOnll +1)%/Spy eI
That means we can get

+oo T
4 gn x; envi A n 2
>op(pell el (g, D)) co
N(l + ||0n |)2 Snfl H97l||

n=2

We simplify the above inequality and obtain

“+oo

on x; ena i A en i
ZE H Hf Lr,L( € n) *Tfl;l'n _ T n < 400.
= ANl +1)2/Sp—1 (16l

Through Lemma [B-T] we have
+o00 T
en x; ena 7 ~ en 3

Z 100l i, (O, 21.) Ty, — Tin | < 400 as.. (69)

We back to Equation (63). We make a sum of Equation (63), which obtains

r 0x00 0"\ T
O (I10kll +1) = 5\ a0 Vg(, &)
16kl + 1) V Sk

F(On) = F01) + Y

k=1 (70)

+ i éagHvQ(Qnagn)‘P )

S,
k=1 n
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For the first series sum, we have

n Ao 0.0, 6* n " 0,0 6* \ T
Z 0" (10l + 1) — w OzOVg Gk,fk Z 0 (16 +1) — kueik,cu aoVyg(0y)
10kl +1)? 10kl + 1) Sk—1

k=2

n (0 (10k]] + 1) = ZEENT /0 a0 V(0
_Z< I Vg0, &) aoVy( kafk +Z<’“
k=2

=2

(N[l + 1) Sk—1 VS
where {(, } is a martingale difference sequence. Through Equation , Equation and Lemma

[B.2] we can get

A Tor\ T
i (0 (16 + 1) — 9@?) a0V g(6k, &)

2 (6] + 12 NG
convergence a.s.. Meanwhile, through Equation (69), we have
znz bog]| Vol b)) < En: ( : 2 : 2) 0]l Vg O &) < +0o a.s..
P Sk 16%11% 116541 Sk
That means

Z": ta IIVg 9k7£k)ll2

is absolute convergence a.s.. Naturally, it is convergence a.s.. Until now, we already prove two series
sums in Equation (70) are both convergence a.s.. That means f(6,,) is convergence a.s.. We assign

c:= lim f(6,) a

n—-+oo

where ¢ < +00 is a random variable about the trajectory. Through Theorem .1] we know

|6, = +o0.

That means 0
n 1
li & =1 a.s
n—+too ||,
o7 )
o 1= T = m f ) = e
so we can get that
2
n_1>+oo 16,1 — = 2c¢ a.s.

Next we aim to prove that ¢ = 0 by contradiction. We assume ¢ > ¢’ > 0. Then we can conclude
that

A 9nT [
lim (0" Ty, — Tin | r(cd) >0 a.s..
n—-+oo [0
We can further conclude that
+o0 T +oo
en x; ena i A n [ x 9n7 7

§3 00l Onszi) Jgor, O Tsi] 3% )
=3 N([10n]] + 1)21/Sh—1 165l = N|0n/Sn—1t

We can get

Z fJ,ln (Gnaxzn) A/+ZOO ||0n||fhn (eruxzn)
n=2 N”an”\/ n—1 ||97LH + 1) vV Sn—l7

where 7' > 0 is a constant. Then we can get

+o0 +00
||07l||f513 (97“.%'1 ) ||Vg Gn fn
. > g (In[|6p41]| — In 6, . = 400 a.s.,
2 N+ 1m0 2 (s = Z 16,1125,
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where q; > 0 and g are two constants will can not effect the result. That means

T
VT ... 9” Zi,

K2
R

JFZOO ||9n||fzi,,,(0mxin)
=5 N[00l +1)?/Sn—1

= +OO7
which is contradict with Equation (70). That means

— 0" =0 as.,

n—oo H 16,

that is
0, . o*
a
0n]  [16%]l

With this, we complete the proof.

C.10 PROOF OF THEOREM [4.3]

Proof. Forany 0 < o < 1, we construct a function 7(0) := ||0||* - f(#) (0 < o < 1), where f is
defined in Equation (62). Then we calculate Vr(6), which obtains

at - f(0
vr(8) = V(|6]*)T £(8) + (V) TI|6]* = '”‘;”H() + 011V £(6),

and ||[V2r(0)| = O((||6]| + 1)*~2). Meanwhile, we assign the Lipschitz constant of V27(6) as c;.
Subsequently, we get

7(0n+1) —7(0n) < Vr(0 )T(9n+1 —0n) + HVQT(en)” NOns1 — 6)n||2 +c1]|fns1 — 9n||3

0,
< ooty V90 &I On) a0V (0n) Vg(Bnn) | 0BIV(En &)
- V[0 1= V5, (6] + 1225,
Vg anvgn 2
+ ool (Sg )2
(72)
Notice that
0 — 6+, 0 0, |7 o
V(0,) = - 7 A
On) = T+ D2 ~ 20T + 1)2 AL

For the first term and second term in the right-hand of Equation , we know that

On
& (aao(m)Tvg(Gmén)f(en) o Haa()Vf(Qn)TVg(en,fn) 2 )
VS |01~ VSn
0
<_aao(m)wg(0n)f(9 n) 1Oy + 0, ]2 1o > 6lVg(6, &l
- VS| [[' ! VS 210l +1)2 (|6 H2 ’

where H,, is defined in Equation (40). Through Theorem 4.2} we know that the vector 6,,/]6,||
approaches to the max-margin vector almost surely, which means

0, Vg(6,)

0
AR
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when n is sufficiently large. Then,

ao(22)TVg(0,,60)f (6, T
_E(a o(gr) " Vg0, &) f( )+||9n||“a°vf(6") Vg (O, En) ﬁ‘n>
NS NiH
ao(7521) Vg (0,) f(6,) 9,2 o7
< (1 @) LT ol 1 - A e G )
NS wi ol + 12| 16l
07 161Vg(0,) 2
4116, |20 I 1
Y A R A e A WH

V(0,2 )
Sn—lg(en) 1n2—a (g(on))
Through Equation (#9), we have

N B ||Vg(9n)||2
n%nﬂa—o( &lwwmm*%M%D)

< 0] H, +0<

Then we use Lemma .2l and obtain

too <aao(ﬁ9"|)—rvg(9n>€n)f(9n)

> -E

Olovf(gn)TVQ(ena gn)

+ (1611

1 VS| 0n |t VS
(73)
2
o 55 Tt )<+m.s..
For the third term in the right-hand side of Equation (72), we have 3 ()1 > 0, such that
“+oo
Z ag[[Vg(Bn, &n)ll> < Z IIVg Gn,En &
1 (0]l +1)2=2S, 9(6))Sn
, (74)
Vy( Hmﬁn H Vy( 9n,€n I”9(6n)
< .
Q Z 1 T 2—a/a o Oé Z 1 2— a ))\/E
For the fourth term in the rlght-hand side of Equation (@, we know
a’ﬂ n 2
Zc a3||Vg ’5 i < +ooa.s.. (75)

Substitute Equation (73)), Equatlon (74) and Equation (73) into Equation (72)), we get
+oo

Z (E (T(9n+1)|yn) —7(0n)) < 400 a.s..

n=1

By The Martingale Convergence Theorem, we get lim,,_, 1 oo 7(6,) < +00 a.s. That is, for any

0 < a <1, we have
f(0n) = O(|0n]) a.s
By the arbitrariness of «, we know the O can be written as o, which indicates
Ok 0*
16kl 116 ]]
Through Lemma|[B.4]and Lemma [B.8] we know

, , En X [[Vg(0r)|2 1
min g(0;) < /-5 min {||Vg(r)|]?} < =0(n"1%) a.s..
1§k<n \/ <k<n nkq = /Sk_1

min = 0(
1<k<n 1<k<n

min ||0x]| 2 )zo(ln 2 1?;32n9(9’“)) V0<a<l) as

As a result, we obtain

05 0* ‘ _
—— — —— || = o( In
0kl 0] (

This completes the proof. O

l1—e

= n) (Ve>0) as

min
1<k<n
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C.11 GENERALIZING TO TIGHT EXPONENTIAL-TAIL LOSS

We show how our technique remains applicable when dealing with tight exponential-tail loss. This
demonstration reinforces the enduring relevance of Lemma [B.8| under the exponential-tail loss set-
ting.

Before we give the main steps, we give the definition of ’tight exponential tail loss’, by adopting the
definition in |Gunasekar et al.| (2018)).

Definition 1. Consider a general classification problem, i.e., L(w) = Zf:;l l(ynwTax,,), where
{zn, yn}izN is a dataset and labels y,, € {—1,1} . Suppose the gradient I’ (u) satisfies:

Vau>ug: U'(u) <c(l+e "+%)e

- - (76)
Vu>u_: U'(u) >ec(l—e ™ ")e

where ux. > 0, u_ > 0, a > 0 are three constants, and lim,_, o l(u) = limy oo '(u) =
0, U'(u) <0, then we call L a tight exponential-tail loss (refer to Assumption 2, Definition 2, and
Assumption 3 in|\Gunasekar et al.|(2018)) for reference).

By solving the corresponding differential equation, we derive

Vau>ug: l(u) <de™ ™, Yu>u_: l(u) > e (77)

By combining the aforementioned inequalities and VL(w) = 25:1 U'(wt)T 2y ynay, we can
derive a similar result to Lemma [B.8] under the "tight exponential tail loss’ setting. We will then
clarify it.

The left side of Lemmamls derived as follows. Since {z,, y, } is a linearly separable dataset, it has

a maximum margin vector w*. The margin vector w* satisfies the separation of y,, = 1, (w*)T >
0andy, = —1, (w*)Tz, < 0. In addition, it has a lower bound r := minn{H(w*)Tan} Then,
we acquire
N N
VL@ = || U ) w0 )ynan | > ](w*)T > e (t) ) ynn
n=1 n=1
N
= || Z l/(ynw(t)Txn)yn(W*)TxnH-
n=1
Due to the conditions y, = 1, (w*)'x, > 0andy, = —1, (w*)Txz, < 0, all the signs of

{yn(w*) 'z, } are the same. Then, we get

IVLO) = lel Ynw () 20| - ynw T

erZW%%wUf@ww

For the right side of Lemma@ we use the triangle inequality, i.e.,

<3 (w(t) )

IVL(w)|| =

xn YnTn

where 7 > ( is a given scalar.

According to Equation and Equation (7€), we can observe that Lemma [B.§]still holds.
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