Under review as a conference paper at ICLR 2025

TEAMCRAFT: A BENCHMARK FOR EMBODIED MULTI-
AGENT SYSTEMS IN MINECRAFT

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex 3D environments replete with dynamic interactions among multiple
agents and objects are essential for the development of embodied intelligent agents.
To facilitate research on Multi-Agent (MA) systems, we introduce TeamCraft, a
challenging MA benchmark based on the Minecraft game. Instead of the abstract
vector inputs commonly provided to agents in MA systems research, TeamCraft
provides agents with multi-modal task specifications and observations. Given the
three-orthographic-view graph of the environment along with language instructions,
the agents must efficiently collaborate to complete assigned tasks. Such multi-
modal inputs pose a higher level of difficulty, since agents must generalize across
diverse object and background imagery, different numbers of agents, a wide range
of tasks, etc. Our planner-generated dataset includes various tasks, such as building
construction, smelting, and farming, with a total of 70,000 procedurally-generated
demonstrations that feature over 50 objects across a wide variety of scenes. We
test the generalization abilities of several baseline Vision-Language Model (VLM)
multi-agent control strategies in centralized and decentralized settings.

The TeamCraft platform and dataset are made publicly available at:
https://github.com/teamcraft-bench/teamcraft.

1 INTRODUCTION

In an open-ended world, multiple autonomous agents with diverse skill sets should collaborate to
efficiently perform a broad spectrum of tasks. However, research aimed at developing agents capable
of efficiently performing intricate tasks within complex, embodied Multi-Agent (MA) environments
remains relatively limited. In particular, the autonomous agent research community has primarily
focused on navigation and object-based interactions in vision-language task-planning.

One research avenue endeavors to establish MA methodologies within 2D environments employing
solely vector inputs (Leibo et al., 2021; Suarez et al., 2021). However, such inputs suffer from limited
realism and are characterized by an inherent scarcity of comprehensive information. Concurrently,
another research avenue focuses on the creation of singular multi-task agents with the ability to
proficiently undertake a diverse range of tasks within domains encompassing both gaming and
robotics (Wang et al., 2023b;a; Ahn et al., 2022; Huang et al., 2022b;a). However, when considering
the elaborate interactions and uncertainties that arise in MA systems, the endeavor of formulating
multi-task agents within MA settings is decidedly more formidable and challenging.

To foster advancements in this domain, we have developed a comprehensive benchmark tailored
to MA embodied systems, dubbed TeamCraft. It utilizes the acclaimed Minecraft game as an
experimental platform and is targeteted at confronting the elaborate dynamics of MA interactions.
The benchmark encompasses the design of four multi-modal task categories: building construction,
ground clearing, farming, and object acquisition. Within the cooperative tasks, each assignment
necessitates consideration of fellow agents, spanning factors such as spatial positioning, inventory
holdings, skill differentials, and initial vitality. Such nuanced assessments require divergent role
allocation and task strategies during the planning phase. The collaborative actions unfolding during
the execution phase encompass resource sharing and joint pursuit.

The TeamCraft dataset encompasses fundamental skills and tasks, meticulously orchestrated by
hand-designed planners. We introduce two alternative baseline models, both trained on the TeamCraft

https://github.com/teamcraft-bench/teamcraft

Under review as a conference paper at ICLR 2025

dataset, that validate the efficacy of the generated data. The first model, MA-GPT-40, employs a Multi-
modal Large Language Model (MLLM) as the planner to generate subgoals that guide individual
agents. The second model, MA-LLAVA, comprehensively encodes input facets and subsequently
fuses embeddings through an attention mechanism, culminating in the prediction of ultimate actions.
Our experimental findings demonstrate that both baseline models achieve competence across a subset
of tasks.

In a nutshell, the primary contributions of this paper to the MA research community are as follows:

1. TeamCraft, a new embodied multi-modal multi-agent benchmark encompassing complex
tasks challenging multi-agent systems in a wide variety of generalization scenarios.

2. Novel applications of the GPT-40 and LLAVA models tailored to multi-agent scenarios.

2 RELATED WORK

Environments for Multi-Agent Reinforcement Learning (MARL): The recent success of MARL
methods (Lowe et al., 2020; Yu et al., 2021; Long et al., 2020; 2024) has garnered attention, as these
methods explore cooperation and competence behaviors among agents. These methodologies have
been developed and tested on prominent platforms. However, many of these platforms involve 2D
environments (Leibo et al., 2021; Suarez et al., 2021; Mordatch & Abbeel, 2017; Vinyals et al., 2019)
and rely solely on vector observations. This limited scope poses challenges in terms of extending
applicability to real-world scenarios.

Environments based on Minecraft: Minecraft games have fostered the development of embodied
Al methods. Initially, Malmo (Johnson et al., 2016) marked the advent of a Gym-style API tailored
to Minecraft. This endeavor paved the way for subsequent developments, such as MineRL (Guss
et al., 2019) and MineDojo (Fan et al., 2022), which augmented the dataset and introduced a suite of
benchmarking tasks. However, the focus of these benchmarks predominantly centers around single-
agent tasks, with limited exploration of multi-agent scenarios in Minecraft. Despite their contributions,
they remain devoid of multi-agent tasks. By contrast, TeamCraft concentrates exclusively on the
multi-agent setting. This distinctively sets it apart from all preceding Minecraft benchmarks.

Embodied agents in MA systems: Within the embodied multi-agent setting, several researchers
have employed the AI2-THOR environment (Kolve et al., 2022). Jain et al. (2019) delved into the
communication dynamics that enhance collaboration between two agents. Tan et al. (2020b) and
Liu et al. (2022a) propounded the efficient exploration of environments as a central task for agents.
Meanwhile, Liu et al. (2022b) introduced a model that dynamically decomposes tasks among different
agents, enabling dynamic task allocation. It is noteworthy, however, that the task propositions thus far
have primarily revolved around navigation subject to environmental constraints. However, Minecraft
is a multidimensional, visually immersive realm characterized by procedurally generated landscapes
and extraordinarily versatile game mechanics supporting an extensive spectrum of activities. This
provides rich environments ripe for intricate collaborations and the emergence of competence.

Comparison: Table 1 compares TeamCraft with prior benchmarks.

3 TEAMCRAFT BENCHMARK

Existing benchmarks in MA systems research are founded on state or voxel-based observation in
a controlled, closed environment. Actions and task types are also limited by the environments.
TeamCraft advances the state-of-the-art in multi-agent benchmarks by exploiting the dynamic and
open-ended Minecraft environment, offering 1) high-quality RGB first-person perspective observa-
tions on top of the traditional voxel-based and state-based observations, 2) the ability to benchmark
on existing MA cooperation tasks and define custom tasks with a variety of interactions, 3) the ability
to control multiple agents in an open world to perform open-ended 3D tasks, in both centralized or
decentralized settings, 4) the capacity to execute hundreds of actions individually for multiple agents
that expand all possible task spaces with high-level, abstract language input, and 5) the ability to
provide expansive visual diversity in tools, blocks, entities, and richly-detailed backgrounds.

Under review as a conference paper at ICLR 2025

Table 1: Comparison of TeamCraft and other benchmarks. TeamCraft features RGB image and
language inputs for multi-agents control with a large number of widely-varied demonstrations in
Minecraft. The columns refer to the following features: RGB: Real-time first-person perspective
RGB images are provided to agents and serve as observations. Language: Task goals are specified
by human language instruction. 3D: Task requires agents to have perception and be able to interact
with the 3D world (i.e., movement in 3D, objects interacted with have 3D relations). Note: “Obs”
denotes only support of 3D observation, no movement or action in 3D. Allocation: Multiple tasks
must be dynamically allocated to multiple agents to obtain maximum benefit. Agents must use
visual perception to understand other agents’ states and make decisions to increase efficiency. Multi-
Agents: Multiple agents can be present in a single experiment. (De)centralized: Agents can be
operated separately in both centralized and decentralized settings. Tool Use: Completing tasks
necessitates the use of specific tools by the agents, or using various tools results in different task
efficiencies. Interaction: Agents must manipulate or engage with different items or environmental
elements or objects to achieve certain goals with irreversible actions. Generalization: Standardized
generalization across a diversity of goals, objects, backgrounds, and inventories.

Benchmark RGB Language 3D Allocation Multi-Agents (De)centralized Tool Use Interaction ~Generalization
Alfred (Shridhar et al., 2020) v v Obs X X X v 4 100,000+
DialFRED (Gao et al., 2022) v v Obs v X X v v 53,000+
MultiagentEQ (Tan et al., 2020a) v v Obs X v X v v X
EmbodiedMA (Liu et al., 2022b) v v Obs v v v X X X
Cordial Sync (Jain et al., 2020) v v Obs w/ Action v v v X v X
MineLand (Yu et al., 2024) X v v v v X v v 6,000+
MindAgent (Gong et al., 2023) X v Obs v v X v v 100,000+
Creative Agents (Zhan, al., 2023) v v v N/A X N/A v v X
MineDojo (Fan et al., 2022) v v v N/A X N/A v v 1,000+
Overcooked-Al (Carroll et al., 2020) X X Obs v v N/A X 4 X
Watch&Help (Puig et al., 2021) X X Obs v v X X v X
Too many cooks (W al., 2020) X X X v v v X v X
SQA3D (Ma et al., v 4 v X X N/A X X 40,000+
OpenEQA (Majumdar et al., 2024) v v Obs X X N/A X X 2,000+
AlexaArena (Gao et al., 2023) v v Obs X X N/A v v X
TeamCraft v v v v v v v v 70,000+

3.1 SIMULATION ENVIRONMENT

TeamCraft utilizes Minecraft as its foundational environment, offering a complex, open-world setting
for multi-agent interactions. The environment features procedurally generated tasks, visually rich
changes, web-scale knowledge, and diverse cooperation strategies among agents. Each agent is
individually controlled via the Mineflayer' interface, which provides low-level API functionalities for
bots to interact with the environment. TeamCraft utilizes Mineflayer’s APIs to 1) translate high-level
actions into low-level commands through nested API calls, 2) generate both first-person and third-
person RGB image perspectives, 3) enable Gym-like interactions across four tasks that challenge
visual perception, spatial reasoning, and multi-agent task planning, and 4) support multiple agents.
This framework facilitates the execution of intricate commands via self-explanatory high-level actions,
allowing agents to collaboratively complete sophisticated tasks. Figure 1 illustrates the platform
architecture.

3.2 OBSERVATION AND ACTIONS

TeamCraft captures a wide array of observational data to ensure that agents have a comprehensive
understanding of their environment.

Visual: It provides 640 x 480 resolution images from a first-person perspective for agents before
each time step. It also provides orthographic projections images for task specifications. Images are
also illustrated in each task description.

Agent inventory: It provides detailed reporting about each agent’s inventory.

The action space mainly involves high-level self-explanatory skills such as obtainBlock and farmWork.
We provide 8 such atomic actions. Most actions take three input parameters, including 1) agent name
such as botl, as the action-executing entity, 2) item name such as dirt, which is strongly associated

"https://github.com/PrismarineJS/mineflayer

https://github.com/PrismarineJS/mineflayer

Under review as a conference paper at ICLR 2025

Task Observation High-Level Actions Agents
farmWork
ﬁ::;i‘:osk (F:z‘mL:’ndi S X
First Person H il s
bl () i TR
3 lookAt @) ¢ e)
Third Person Instruction | o () | =
... E..“" o [R TS [
=] nventory 1 3
Reward Done EoE! N ety Agento Agent1
] e

Action APls

% I't? ;ﬁ . Model

attack equip dig goto
P 8 @
harvest smelt place chat

H | ‘

[

Minecraft ‘ a
Server craft look collect
Mineflayer

Figure 1: TeamCraft platform architecture consists of three main components: 1) a Minecraft server
that hosts the game as an online platform, 2) Mineflayer, which serves as the interface for creating and
controlling bots in the Minecraft server, and 3) a Gym-like environment that defines tasks, provides
RGB and inventory observations, and allows models to control multiple agents through high-level
actions.

with the task goal or the agent’s inventory, 3) a vector indicating the position of the target on the test
field. A complete list of the atomic actions are described in Appendix C.

3.3 CENTRALIZED AND DECENTRALIZED AGENTS

We have implemented two different categories of agents: centralized agents and decentralized agents.

Centralized agents: These agents are given complete observational access to the environment,
including the first person view, action history, and inventory information of all the agents. Based
on these comprehensive data, the model generates the actions for all agents simultaneously. This
approach leverages the full scope of information available in the environment to coordinate and
optimize the actions of all the agents collectively.

Decentralized agents: These agents do not receive information about other agents except for the
initial environment settings, which may include some inventory details of other agents, and the task
description. The model generates actions solely for each individual agent based on the agent’s own
limited view. This setting simulates a more realistic scenario where agents operate independently
with restricted information, focusing on their own observations and actions absent of any centralized
coordination.

3.4 TASK DESIGN

TeamCraft introduces a variety of complex and interactive tasks that challenge the agents’ capabilities
in planning, coordination, and execution within a collaborative and dynamic environment. Each
task is designed to test different facets of MA interaction, including communication strategies,
role distribution, real-time decision-making, and adaptability to changing environments. Tasks
require capabilities in visual observation understanding, agent status intercepting, action capability
understanding, language prompt understanding, continuous state understanding, and task action
sequence planning. Here, we detail the specific tasks included in the TeamCraft benchmark. Task
examples are shown in Figure 2.

Building: This task requires agents to collaboratively erect a structure based on a provided three
orthographic views blueprint (front, side, and top). Each agent possesses a unique inventory of
building blocks necessary for the construction. The task requires agents not only to understand their

Under review as a conference paper at ICLR 2025

Building Clearing Farming Farming Smelting Smelting
Scenes village snow_mountain village swamp ice_on_water desert_villege
Base cyan_concrete gold_block hay_block obsidian oak_wood glass
Goal Build 1x2x4 building Clean 3D building Potato *3 wheat *4 cooked_mutton *1 smooth_quartz *2
Object [dirt, wool, fence [grass_block, dirt - - [birch_planks, sheep] [oak_planks,
sandstone, sponge] birch_log, bookshelf,] quartz_block]
Agent 3 3 2 2 3 2
Inventory [dirt, wool, fence [stone_axe, [carrot, [wheat_seeds, [iron_pickaxe, [iron_pickaxe,
sandstone, sponge, stone_sword, beetroot] carrot, potato] iron_axe, iron_sword] iron_axe]
log, stone, sand] stone_sword]

R e Pl xSy
il » = ;

Figure 2: Examples of the four tasks. We introduce 7 scenes featuring over 40 blocks and objects,
which are arranged into more than 40,000 unique placement configurations. A detailed distribution is
provided in Appendix H.

individual capabilities and inventories, but also to plan their movements and actions in coordination
with other agents so as to efficiently construct the building on a designated 5 x 5 foundation.

Clearing: This task challenges agents to remove all blocks from a specified 6 x 6 area. Agents must
employ appropriate tools to break the blocks, which vary in durability, thereby requiring multiple
interactions for complete removal. The use of correct tools can dramatically reduce the time required
to remove blocks (up to 3x speedup). The agents must manage their tool assignments to optimize
block-breaking efficiency such that the time steps needed for one task can be minimized. Strategic
coordination is essential in this task as agents need to dynamically decide which blocks to target
based on their current tools and help each other minimize the overall time taken to clear the area.

Farming: This task is designed to simulate agricultural activities, where agents must sow and harvest
crops. Agents are required to plant seeds on designated farmland plots and observe plantings until the
crops reach maturity. Each crop has several growth stages from Level O (newly planted) to Level 7
(fully grown), and agents must identify when crops are ready to be harvested. The challenge lies in
dynamically allocating tasks among agents based on their positions, available seeds, and the maturity
of different crops. Effective task distribution and coordinated actions ensure maximum yield and
efficiency. For example, some agents can sow while others are planting, and they should stop when
their total crop yield is satisfactory.

Smelting: This task requires agents to obtain items processed using furnaces by gathering materials
and coordinating actions. Agents collect resources from the environment—by harvesting blocks or
killing mobs—and place them, or existing inventory items, into furnaces as smelting inputs. The
output will be the final goal item that can be categorized as food or item, where food can be “cooked
beef”, “cooked porkchop”, or “baked potato”, and item can be “glass” or “gold ingot” by smelting
sand or gold ore, respectively. Agents must also gather fuel (e.g., coal or lava buckets), with each
furnace accepting only one type of fuel. Furnaces are placed near the playground center (one or two
per task) and automatically smelt when supplied with fuel and items. Agents must use the provided
tools, communicate effectively, and assign tasks efficiently due to dependencies in the smelting
process.

3.5 MULTI-MODAL PROMPT

For each task, the benchmark provides a multi-modal prompt consisting of both a set of orthographic
projections (i.e. top, left, front views) and a language instruction for task specification. For the
building task, the images depict the target structure. For tasks such as clearing, farming, and smelting,
the images will show the initial state of the environment. The language instruction will specify the
goal: for building, it will be “build a structure”; for clearing, “break the blocks on the platform”; for
farming, “harvest a specific number of crops”; and for smelting, “smelt a specific number of items”.
The detailed prompt examples are shown in Figure 3

3.6 DIVERSITY

The design of these tasks incorporates several layers of complexity to test and develop robust multi-
agent systems capable of operating in diverse and unpredictable environments. Table 2 shows the

Under review as a conference paper at ICLR 2025

placeltem(bot2, ‘oak_planks', new
Vec3(0,0.0))

mineBlock(bot2, new Vec3(-2,0,0))
mineBlock(bot3, new Vec3(-1,1,1))

‘carrot)
farm_work(bot2, new Vec3(-1,-1,-2),
'sow!, 'carrot')

Building ‘ Clearing Farming Smelting
System Three s i
Prompt orthographic H & v ol | 5
P riograp ; e L : |
views Top Front Side Top Front Side Front Side Top Front Side
Languagc Three bots need to build a building on the | Three bots need to break everything on Two bots need to grow on the platform. Three bots need to craft 3
€ platform. bot! has 5 bricks. botl has 2 the platform. botl has a stone_axe..., The goal is to get 4 carrot. botl has 3 smooth_sandstone. here are the
Instruction sea_lantern. bot! has 3 iron_ore ... bot3 bot3 has a stone_axe. Write the actions carrot. botl has 1 potato. bot2 has 3 introductions: Cooking Food: 1. To cook
has 1 brick.... Write the actions for botl, | for bot!, bot2, bot3 based on this given | carrot. bot2 has 2 beetroot. Wite the a'cooked_beef, T need ‘beef. To get
bot2 and bot3 based on this given observation. actions for botl, bot2 based on this given | 'beef, I need to kill a ‘cow’ or a
observation. observation. ‘mushroom’. 2. To cook a
‘cooked_porkchop' ... botl has 1 beef ...
bot3 has 1 iron_shovel. Write the actions
for botl, bot2 and bot3 based on this
given observation.
Observation | First Person By 5 . L
bot1 bot2 bot3 bot1 bot2 bot3 bot1 bot2 bot1 bot2 bot3
Inventory botl has 5 bricks. botl has 2 botl has a stone_axe...bot3 has a botl has 3 carrot. botl has 1 potato. bot2 | botl has 1 beef ... bot3 has 1 iron_shovel
) sea_lantern... stone_axe. has 3 carrot. bot2 has 2 beetroot...
Information
Action placeltem(bot1, ‘bricks’, new Vee3(-1,0,- | mineBlock(botl, new Vee3(-1,0,1)) farm_work(bot1, new Vee3(-1.-1,1), 'sow", | putltemFurnace(botl, 'sandstone’, new

Vec3(0,0,-1))",
"obtainBlock(bot2, new Vec3(2,0,0))",
"obtainBlock(bot3, new Vec3(1,0,-3))

placeltem(bot3, ‘iron_ore', new Vec3(0.0.-
n

Figure 3: Multi-modal prompts are provided for all tasks. The system prompt includes both the three
orthographic views and specific language instructions. Observations consist of first-person views
from different agents, along with agent-specific information.

statistics and variants for each task. Appendix E demonstrates a sample of the visual diversity
included.

Object diversity: More than 30 3D objects are used as the target item or resource in tasks. Objects,
such as a fence, an anvil, or a stone block, have different shapes and different textures, such as
pink wool and dirty blocks. Farm crops will have different visual appearances during growth so
that the agent can determine their growth stages from observations. The smelting task requires
agents to obtain different resources, such as killing different mods that have different shape, size, and
orientation, such as a chicken, rabbit, or pig.

Inventory diversity: Each agent’s inventory might include essential items mixed with non-essential
ones (i.e., distractors), realistically simulating scenarios where agents must choose the right materials
for specific tasks while managing inventory constraints. Agents are also provided with random tools
at the beginning of each task, which are critical for efficient action execution. Possessing the proper
tools impacts task efficiency in the clearing task and can lead to action failure in smelting when
collecting blocks.

Scene diversity: More than 10 scenes are included in the tasks, covering biomes such as village,
mountain, forest, swamp, desert, etc. The task interaction area (e.g., the 5 x 5 area for building
construction) are spawned in a random position of the scene to ensure visual diversity. Tasks take

Table 2: Task variants and dataset statistics

Building Clearing Farming Smelting

Action Sequences 2-6 2-9 2-17 2-8
Agents 2-3 2-3 2-3 2-3
Tools - 1-4 - 1-4
Scenes 6 5 4 5

Base Types 10 11 9 11
Furnaces - - - 1-2
Target Types 19 16 3 13

Target Counts 5-12 4-9 2-14 1-4
Fuel Types - - - 12
Resource Types - - - 20
Dimensional Shapes 2 2 2 1

Placement Shapes 7715 12724 13188 8885
Total Demonstrations 14998 14641 14815 10803
Test Set 50 50 50 50
Generalization Set 200 200 150 200

Under review as a conference paper at ICLR 2025

place on grounds with diverse textured bases such as glass, concrete, and quartz. Certain tasks may
involve additional complexity, such as farmland intermixed with non-plantable blocks.

Goal diversity: Goals vary between tasks. For the place and construction task, we introduce different
block placement shapes; e.g., a 2 x 4 x 2 tower with top right intentionally not occupied. We
categorized those shapes into different dimensionalities; e.g., 2D (all blocks are at the same level) or
3D (some blocks are on the top of others). For the farming task, the total target corp type and counts
are randomized. For the smelting task, the target object is randomized from various food or processed
items, and the fuel for smelting is also randomized.

Task diversity: Each task requires achieving a varying number of goal targets, determined by
the randomly assigned number of agents per task, which range from two to four. This variability
challenges the agents’ flexibility and adaptability in coordination and task execution. Additionally,
differing task requirements lead to varying numbers of actions necessary for optimal task completion.

3.7 EXPERT DEMONSTRATION GENERATION PIPELINE

To create a rich learning environment and effective training dataset for the TeamCraft tasks, systematic
scenario design and data collection methods are employed, as follows:

Planner-based scenario design: Each task scenario is carefully crafted using classical planning
algorithms, such as BFS, greedy search, and DFS, that consider all possible interactions within the
environment. This includes optimal paths, resource distribution, and agent role assignments based on
capabilities and task requirements.

Trajectory generation: Using Mineflayer interfaces controlled by heuristic methods such as the
Hungarian Algorithm and dynamic programming, the planner orchestrates the agents to execute the
task, ensuring that actions are taken optimally. Each step’s effectiveness is assessed to guarantee
efficient task completion.

Real-time interaction and feedback: Agents receive immediate feedback on their actions, which
includes success, failure, and updates on environmental states. This real-time data is crucial for
adjusting strategies and learning from interactions.

3.8 TEST SET AND GENERALIZATION SET

Each task features a test set, where agents are initialized with random position, orientation, and
inventory. The rest variables follow the same distribution as the training data. To evaluate specific
generalization capabilities of the model, we designed a generalization set for each task with hold-out
elements excluded from the training data. We withheld test cases involving four agents, whereas the
training demonstrations include only two or three agents. We also introduced one unseen scene and
an associated base block type not present during training. In addition to these general hold-outs, we
implemented the following task-specific exclusions:

Building task: We randomly excluded 8 block placement shapes, defining how target blocks are
arranged on the ground. These shapes varied in complexity, containing 5 to 12 blocks in both 2D and
3D configurations. Additionally, we omitted 3 block materials that appeared in the clearing task but
not in the building task.

Clearing task: We randomly held out 6 block placement shapes with block counts ranging from 4 to
9. We also excluded 3 block materials present in the building task but absent in the clearing task.

Farming task: We withheld one crop type, beetroot, that was unseen during training.

Smelting task: We excluded four unseen objects from both food and item categories and introduced
scenarios with 3 furnaces, as opposed to 1 to 2 furnaces in the training data.

As shown in Table 2, with 50 samples per task for the test set and each generalization set, our
benchmark contains a total of 950 test cases.

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 BASELINES

In our experiments, we utilized the pretrained LLaVA-v1.6-Vicuna-7B and LLaVA-v1.6-Vicuna-13B
models. We modified the LLaVA architecture by concatenating image embeddings with language
embeddings to handle multiple images. All models were pretrained for 3 epochs. The model’s input
includes both the system prompt and the agent’s observation. We trained a unified model for all tasks
in both the centralized and decentralized settings.

In the centralized setting, the observation consists of first-person views, previous actions, and the
information of all agents.

In the decentralized setting, the observation includes the first-person view, previous actions, and
information of only the specific agent.

GPT-40: For the GPT-40 method, we employed a one-shot learning approach. The prompt provided
to the model includes a single successful demonstration of the task from the training set. Based on
this example, we then asked the GPT-40 model to generate the actions for agents in response to new
observations. This approach leverages the model’s ability to generalize from a minimal amount of
information.

4.2 EVALUATION METRICS

We evaluated the performance of the methods based on two key metrics: task success rate and
competence percentage.

Task success rate: The task success rate is determined by the ratio of the number of completed tasks
to the total number of tested tasks. This metric indicates the proportion of test cases that the model
can successfully complete from start to finish. A higher success rate reflects the model’s ability to
consistently achieve the desired outcomes in various scenarios.

Subgoal success rate: This metric measures the overall effectiveness of the agents in performing the
tasks, considering partial successes and the extent to which the tasks are completed. It is calculated
by dividing the number of subgoals accomplished by the total number of subgoals. For the building
tasks, subgoals are defined by the number of blocks to be built. For the clearing task, subgoals are
defined by number of blocks to be cleared. For the farming task, subgoals are defined as the number
of farms to be farmed. For the smelting task, subgoals are defined as the number of target objects
to be smelt. The subgoal success rate provides a more granular view of the model’s performance,
highlighting how well the agents can handle different aspects of the tasks even if they do not fully
complete them.

4.3 EVALUATION RESULTS

We fine-tuned the LLaVA-Vicuna-7B model on three data scales: one-tenth, one-half, and the full
training split, in both the centralized and decentralized settings. The task success rates and subgoal
success rate are shown in Table 3 with the task success rate on the left and the subgoal success rate
on the right.

Comparing horizontally, the centralized settings generally yielded higher task success rates and
subgoal success rate, underscoring the advantage of having comprehensive environmental data
available to the decision-making processes. By contrast, the decentralized settings showed a noticeable
decline in the performance metrics. Even when trained on the full dataset, the model struggled with
complex tasks such as building, which requires intricate coordination among agents and detailed
interactions with the environment, including correct material selection and coordination. The limited
information flow inherent to decentralized settings clearly hindered the models’ ability to develop
and execute cohesive strategies effectively.

Another observation was the model’s adaptability to out-of-distribution parameters. For instance,
tasks under the “Test” category generally had higher subgoal success rate, suggesting the models were
more proficient at handling familiar scenarios where environmental variables aligned with expected
parameters. However, performance declined in tasks involving “Agents”, “Scene”, “Material”, or

Under review as a conference paper at ICLR 2025

Table 3: Experimental results with the 7B MA-LLaVA model. Test refers to the test set with the
same distribution as the training data with randomly initialized position, orientation, and inventory
of agents. Shape, material, scene, crop, furnace, and agents refer to the generalization set with the
corresponding holdout element.

Centralized Decentralized
Tasks Condition
10% 50% 100% 10% 50% 100%
Test 0.00 (12.4) 0.38(76.7) 0.42(81.5) 0.00(18.1) 0.00(28.7) 0.00 (38.0)

Shape 0.00 (12.1) 0.20(67.5) 0.30(75.5) 0.00(15.7) 0.00(25.6) 0.00 (40.1)
Building Material 0.00 (13.4) 0.18(64.0) 0.30(74.2) 0.00(13.6) 0.00(20.4) 0.00 (34.0)
Scene 0.00 (14.7) 0.36(72.8) 0.40(82.6) 0.00 (15.6) 0.00(20.6) 0.00 (36.0)
Agents 0.00 (17.6) 0.02(50.3) 0.02(57.2) 0.00(11.5) 0.00(20.1) 0.00 (14.0)

Test 0.00 (13.0) 0.08 (43.4) 0.64(91.2) 0.00(45.4) 0.02(34.9) 0.20 (68.0)
Shape 0.00 (09.0) 0.08 (34.4) 0.56(90.9) 0.00(46.6) 0.02(27.1) 0.16 (74.0)
Clearing Material ~ 0.00 (10.0) 0.12(45.6) 0.56 (90.6) 0.00(48.9) 0.00(22.1) 0.16 (67.0)

Scene 0.00 (11.3) 0.10(43.8) 0.58(92.3) 0.00 (41.3) 0.04 (37.4) 0.10 (64.0)
Agents 0.00 (15.5) 0.14(63.7) 0.36(81.3) 0.02(50.2) 0.02(54.0) 0.12 (60.0)
Test 0.14 (43.1) 034 (60.7) 0.36(63.8) 0.02(07.4) 0.02(13.8) 0.00 (09.0)
Crop 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0)
Farming Scene 0.16 (38.9) 0.34(65.1) 0.38(66.9) 0.00(05.0) 0.00(10.5) 0.02 (07.3)
Agents 0.02 (17.5) 0.18(60.8) 0.38(68.4) 0.00(07.9) 0.00(10.5) 0.04 (27.0)
Test 0.06 (17.4) 0.20(36.0) 0.24(28.0) 0.08 (13.3) 0.08 (09.5) 0.16 (29.1)
Goal 0.08 (20.9) 0.04 (07.5) 0.00 (00.0) 0.08 (17.3) 0.00 (00.0) 0.00 (00.0)

Smelting Furnace 0.10(28.3) 0.10(20.5) 0.18(20.0) 0.06 (07.0) 0.06 (06.0) 0.06 (15.6)
Scene 0.08 (19.1) 0.14(27.8) 0.18(23.0) 0.08 (18.6) 0.14(19.8) 0.12 (27.8)
Agents 0.00 (15.1) 0.02(23.9) 0.06(13.1) 0.04 (04.8) 0.00 (01.6) 0.02 (28.0)

80 0.4 == Centralized Vicuna-
7B Subgoal

== == Centralized Vicuna-
7B Task

Decentralized

60 Vicuna-7B Subgoal

0.3

Decentralized
Vicuna-7B Task

== Centralized Vicuna-
13B Subgoal

IS
o

0.2

== == Centralized Vicuna-
13B Task

Subgoal Success Rate
Task Success Rate

N
o

0.1

0.0

One Tenth Half Whole

Data Scale

Figure 4: Models performance with different scale of training data.

“Goal” conditions, where unpredictable elements affected task dynamics. Notably, all models failed
when dealing with new crops in the farming task, indicating a potential area for improvement in
enhancing model robustness and adaptability to unseen scenarios.

We show the scaling law in Figure 4. As the training data increased, we observed significant
improvements in both subgoal success rate and task success rates across both settings, highlighting
the importance of our dataset in achieving better performance.

We also fine-tuned the LLaVA-Vicuna-13B model under centralized settings and compared it to the
fine-tuned LLaVA-Vicuna-7B and GPT-40 models, as shown in Table 4 with the task success rate on
the left and subgoal success rate on the right. The results show that the LLaVA-Vicuna-13B model

Under review as a conference paper at ICLR 2025

Table 4: Ablations on the base model under the centralized setting

Tasks Condition Vicuna-7B Vicuna-13B GPT-40

Test 0.42 (81.5) 0.48(79.2) 0.00(07.5)
Shape 0.30(75.5) 0.26 (68.6) 0.00 (08.1)
Building Material 0.30(74.2) 0.08 (63.2) 0.00 (07.4)

Scene 0.40 (82.6) 0.48(83.3) 0.00 (07.0)
Agents 0.02 (57.2) 0.04(58.5) 0.00 (0.00)
Test 0.64 (91.2) 0.64(93.7) 0.00 (3.0)

Shape 0.56 (90.9) 0.78 (96.4) 0.00 (3.5)
Clearing Material 0.56 (90.6) 0.56(91.7) 0.00(1.2)

Scene 0.58 (92.3) 0.48(90.4) 0.00(5.7)
Agents 0.36 (81.3) 0.16 (76.5) 0.00 (0.00)
Test 0.36 (63.8) 0.46 (72.6) 0.00 (0.00)
Crop 0.00 (00.0) 0.00 (00.0) 0.00 (0.00)
Farming Scene 0.38 (66.9) 0.44 (74.5) 0.00 (0.00)
Agents 0.38 (68.4) 0.36(71.9) 0.00 (0.00)
Test 0.24 (28.0) 0.32(58.5) 0.02 (2.00)
Goal 0.00 (00.0) 0.00 (00.0) 0.08 (8.00)
Smelting Furnace 0.18 (20.0) 0.18 (38.3) 0.00 (0.00)
Scene 0.18 (23.0) 0.24(55.8) 0.00 (0.00)

Agents 0.06 (13.1) 0.04 (36.6) 0.00 (0.00)

outperforms both the Vicuna-7B and GPT-40 models. GPT-40, using a one-shot demonstration,
struggled to complete most tasks and achieved a significantly lower subgoal success rate compared to
the fine-tuned models, with the exception of a few successes in the smelting task. The smelting task
is less reliant on precise coordination since the locations of the stoves are fixed at three positions, and
it is possible that agents already have the necessary materials in their bags, eliminating the need to
gather resources. This highlights the limitations of Large Language Models (LLMs) in 3D spatial
reasoning and emphasizes the difficulty of multi-modal tasks, further underscoring the critical role
our dataset can play in advancing performance.

5 CONCLUSIONS

The TeamCraft benchmark introduced in this paper provides a novel and rich framework for evaluating
the capabilities of multi-agent systems situated in complex 3D environments. By incorporating a
diverse array of tasks, coupled with dynamic interactions among agents and objects, this benchmark
challenges the conventional paradigm of multi-agent research and paves the way for new explorations
in embodied intelligence.

The implementation of RGB image and language inputs as opposed to traditional abstract vector
inputs has enabled a more realistic simulation of human-like perception and interaction. This setup
has effectively demonstrated the necessity and impact of high-level strategic planning and real-time
decision-making in a controlled yet challenging environment.

Our experimental results highlight the strengths and limitations of current Vision-Language Models
(VLMs) in managing complex, dynamic task environments. While the centralized models exhibited
robust performance across most tasks, reflecting their ability to leverage comprehensive environmental
data for decision-making, the decentralized models underscored the challenges faced when agents
operate with limited information. This dichotomy not only enriches our understanding of agent
interaction dynamics but also underscores the critical role of information accessibility in strategic
multi-agent environments.

In conclusion, the TeamCraft benchmark not only sets a new standard in the study of multi-agent
systems but also promises to act as a catalyst for future innovations in this rapidly evolving field.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine

10

Under review as a conference paper at ICLR 2025

Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-AlI coordination, 2020.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building open-ended embodied
agents with internet-scale knowledge, 2022.

Qiaozi Gao, Govind Thattai, Xiaofeng Gao, Suhaila Shakiah, Shreyas Pansare, Vasu Sharma, Gaurav
Sukhatme, Hangjie Shi, Bofei Yang, Desheng Zheng, et al. Alexa arena: A user-centric interactive
platform for embodied Al. arXiv preprint arXiv:2303.01586, 2023.

Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S. Sukhatme.
DialFRED: Dialogue-enabled agents for embodied instruction following. IEEE Robotics and
Automation Letters, 7(4):10049-10056, October 2022. ISSN 2377-3774. doi: 10.1109/1ra.2022.
3193254. URL http://dx.doi.org/10.1109/LRA.2022.3193254.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng Gao. MindAgent: Emergent
gaming interaction, 2023.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. MineRL: A large-scale dataset of minecraft demonstrations, 2019.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022b.

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task completion,
2019.

Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and
Alexander Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied
tasks, 2020.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In Ijcai, pp. 42464247, 2016.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, Aniruddha Kembhavi, Abhinav Gupta, and Ali
Farhadi. AI2-THOR: An interactive 3D environment for visual Al, 2022.

Joel Z. Leibo, Edgar Duéfiez-Guzmadn, Alexander Sasha Vezhnevets, John P. Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charles Beattie, I[gor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot, 2021.

Xinzhu Liu, Di Guo, Huaping Liu, and Fuchun Sun. Multi-agent embodied visual semantic navigation
with scene prior knowledge. IEEE Robotics and Automation Letters, 7(2):3154-3161, 2022a.

Xinzhu Liu, Xinghang Li, Di Guo, Sinan Tan, Huaping Liu, and Fuchun Sun. Embodied multi-agent
task planning from ambiguous instruction. Proceedings of Robotics: Science and Systems, New
York City, NY, USA, pp. 1-14, 2022b.

11

http://dx.doi.org/10.1109/LRA.2022.3193254

Under review as a conference paper at ICLR 2025

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolutionary popula-
tion curriculum for scaling multi-agent reinforcement learning. arXiv preprint arXiv:2003.10423,
2020.

Qian Long, Fangwei Zhong, Mingdong Wu, Yizhou Wang, and Song-Chun Zhu. Socialgfs: Learning
social gradient fields for multi-agent reinforcement learning, 2024. URL https://arxiv.
org/abs/2405.018309.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments, 2020.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
SQA3D: Situated question answering in 3d scenes, 2023.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. OpenEQA: Embodied
question answering in the era of foundation models. In 2nd Workshop on Mobile Manipulation
and Embodied Intelligence at ICRA 2024, 2024.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B. Tenenbaum, Sanja
Fidler, and Antonio Torralba. Watch-And-Help: A challenge for social perception and human-ai
collaboration, 2021.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks, 2020.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural MMO platform for
massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and Fuchun Sun. Multi-agent embodied question
answering in interactive environments. In European Conference on Computer Vision, 2020a.

Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and Fuchun Sun. Multi-agent embodied question an-
swering in interactive environments. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XIII 16, pp. 663—678. Springer, 2020b.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023a.

Rose E. Wang, Sarah A. Wu, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collaboration,
2020.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents, 2023b.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games, 2021.

Xianhao Yu, Jiaqi Fu, Renjia Deng, and Wenjuan Han. MineLand: Simulating large-scale multi-agent
interactions with limited multimodal senses and physical needs, 2024.

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks, 2023.

12

https://arxiv.org/abs/2405.01839
https://arxiv.org/abs/2405.01839

Under review as a conference paper at ICLR 2025

A PROMPT EXAMPLES

We include some prompt examples for TeamCraft. The information includes task specific requirement
and agents’ current states.

For the building task, we provide a three orthographic views of the building to accomplish, and we
also include the agents inventory information. Here is one example:

"<image>Two bots need to build a building on the platform. botl has 6 coal_ore. botl has 3 clay.
botl has 4 sandstone. botl has 3 purple_wool. botl has I bricks. bot2 has 3 bricks. bot2 has 4
purple_wool. bot2 has 5 coal_ore. bot2 has 2 sandstone. Write the actions for botl, bot2 based on
this given observation.”

For the clearing task, we provide a three orthographic views at initialization that they need to clear
out, and we also include the agent’s tool information. Here is one example:

"<image>Two bots need to break everything on the platform. botl has a stone_axe. bot2 has a
stone_axe. Write the actions for botl, bot2 based on this given observation."

For the farming task, we provide a three orthographic views of the farmland and agents inventory
information. Here is one example:

"<image>Three bots need to grow on the platform. The goal is to get 4 carrot. botl has 3 carrot.
botl has 1 potato. bot2 has 3 carrot. bot2 has 2 beetroot. bot3 has 5 carrot. bot3 has 1 wheat_seeds.
bot3 has 3 potato. bot3 has 1 beetroot. Write the actions for botl, bot2 and bot3 based on this given
observation."

For the smelting task, we provide an instruction of how to smelt all objects and agents’ inventory
information. Here is one example:

"<image> Three bots need to craft 4 cooked_beef. here are the introductions: Cooking Food: 1. To
cook a 'cooked_beef’, I need ’beef’. To get "beef’, I need to kill a 'cow’ or a 'mushroom’.

2. To cook a ’cooked_porkchop’, I need ’porkchop’. To get 'porkchop’, I need to kill a pig’.
3. To cook a ’cooked_mutton’, I need 'mutton’. To get 'mutton’, I need to kill a ’sheep’.

4. To cook a ’cooked_chicken’, I need ’chicken’. To get 'chicken’, I need to kill a "chicken’.
5. To cook a ’cooked_rabbit’, I need 'rabbit’. To get 'rabbit’, I need to kill a "rabbit’.

6. To cook a ’cooked_cod’, I need ’cod’.

7. To cook a ’cooked_salmon’, I need ’salmon’.

8. To cook a ’baked_potato’, I need a ’potato’.

Crafting Items: 1. To craft a ’gold_ingot’, I need ’gold_ore’. To get "gold_ore’, I need to obtain
"gold_ore blocks with a pickaxe.

2. To craft an ’iron_ingot’, I need ’iron_ore’. To get ’iron_ore’, I need to obtain ’iron_ore blocks
with a pickaxe.

3. To craft ’glass’, I need ’red_sand’. To get 'red_sand’, I need to obtain 'red_sand’.

>

4. To craft 'smooth_sandstone’, I need 'sandstone’. To get ’sandstone’, I need to obtain 'sandstone
with a pickaxe.

5. To craft ’stone’, I need "cobblestone’. To get 'cobblestone’, I need to obtain ’cobblestone’ with a
pickaxe.

Fuel Sources:
1. To fuel the furnace, I can use ’coal’. To get 'coal’, I need to obtain ’coal_ore’.
2. To fuel the furnace, I can use ’lava_bucket’, ’coal_block’, ’charcoal’, .

3. To fuel the furnace, I can use "oak_log’, birch_log’, ’acacia_log’, ’spruce_log’, "oak_planks’,
’birch_planks’, ’acacia_planks’, or ’spruce_planks’.

13

Under review as a conference paper at ICLR 2025

Type Arguments Description

placeltem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.
obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.
putltemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.
takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

Table 5: Action space within the TeamCraft.

I can also obtain those blocks. I do not need to get those resource if they already in my inventory.botl
has 1 beef. botl has 1 coal_block. botl has 2 iron_axe. bot2 has 3 coal_block. bot2 has I
iron_pickaxe. bot2 has 1 iron_axe. bot3 has I iron_shovel. bot3 has 1 iron_axe. Write the actions for
botl, bot2 and bot3 based on this given observation."

B HIGH LEVEL SKILLS

The action space of agents mainly involves high-level self-explanatory skills such as obtainBlock and
farmWork. We provided 8 such atomic actions. Most actions take three input parameters, including 1)
agent name such as botl, as the action executing entity, 2) item name such as dirt, which strongly
associated with task goal or agent’s inventory, 3) a vector indicating the position of the target on the
test field.

For example, obtainBlock (botl, new Vec3(1l, 0, 1)) takesthe agent name bot1 and
a3Dvector (1, 0, 1) asitsarguments. It directs bot1 to perform multiple actions in Minecraft
via APIs provided by Mineflayer. First, it controls bot 1 to goto a diggable position for block (1,
0, 1),thenhasbot1’svisionray casttotheblockat (1, 0, 1) usingthe lookAt action. Next,
it commands bot 1 to equip a proper tool that can dig the block at (1, 0, 1) most efficiently,
and then instructs bot 1 to dig the target block. Once the target block has been mined, bot 1 will
goto the position where the block item dropped and collect it.

Similarly, farmWork (bot2, "sow", "potato", new Vec3(2, 0, 4)) takes the
agent name bot 2, action type "sow" (as opposed to "harvest"), crop seed item "potato™",
and a 3D vector (2, 0, 4) asits arguments. It directs bot2 to goto a placeable position for
farmland at (2, 0, 4), then check if the seed is a valid item—that is, a crop seed available
within bot 2’s inventory. It then checks if the farmland at (2, 0, 4) is plantable. Finally, it
instructs bot 2 to 1ookAt the farmland and sow it with the seed "potato".

C ATOMIC ACTIONS

Table 5 documents all the atomic actions in our dataset. Atomic functions are JavaScript code
instructing Mineflayer via its APIs to control one agent to perform an action in Minecraft.

D DETAILED MULTI-MODAL PROMPT

We show a more detailed multi-modal prompt in Figure 5

E VISUAL DIVERSITY

Figure 6 illustrates a sample of the visual diversity present in the environment. Each task is visually
rich, constructed from a random combination of scene elements, base block types, shapes, goal
placements, and target types.

14

Under review as a conference paper at ICLR 2025

Building ‘ Clearing ‘ Farming Smelting
System Three s
rom - rtunoe | g e
VIEWS Top Front Side Top Front Side Top Front_ Side
Language Three bots need to build a building on the | Three bots need to break everything on Two bots need to grow on the platform. Three bots need to craft 3
S platform. botl has 5 bricks. botl has 2 the platform. bot! has a stone_axe..., The goal is to get 4 carrot. bot! has 3 smooth_sandstone. here are the
Instruction sea_lantern. botl has 3 iron_ore ... bot3 | bot3 has a stone_axe. Write the actions | carrot. botl has 1 potato. bot2 has 3 introductions: Cooking Food: 1. To cook
has 1 brick... Write the actions for botl, | for botl, bot2, bot3 based on this given | carrot. bot2 has 2 beetroot. Write the a'cooked_beef!, 1 need beef. To get
bot2 and bot3 based on this given observation. actions for botl, bot2 based on this given | 'beef!, I need to kill a 'cow’ ora
observation. observation. ‘mushroom’. 2. To cook a
‘cooked_porkchop' ... botl has 1 beef ...
bot3 has 1 iron_shovel. Write the actions
for botl, bot2 and bot3 based on this
given observation.
Observation | First Person] o
View - z |
bot1 bot2 bot3 bot1 bot2 bot3 bot1 bot2 bot1 bot2 bot3
Inventory botl has 5 bricks. botl has 2 tone_axe...bot3 has a botl has 3 carrot. botl has 1 potato. bot2 botl has 1 beef ... bot3 has 1 iron_shovel
d sea_lantern... stone_axe... has 3 carrot. bot2 has 2 beetraot....
Information
Action placeltem(bot1, 'bricks', new Vec3(-1,0,- | mineBlock(botl, new Vec3(-1,0,1)) farm_work(botl, new Vee3(-1,-1,1), 'sow', | putltemFurnace(botl, 'sandstone’, new
1) mineBlock(bot2, new Vec3(-2,0,0)) ‘carrot)) Vee3(0,0,-1)",
placeltem(bot2, 'oak_planks', new mineBlock(bot3, new Vec3(-1,1,1)) farm_work(bot2, new Vec3(-1.-1,-2), “obtainBlock(bot2, new Vec3(2,0.0))",
Vec3(0,0,0)) 'sow', carro)) “obtainBlock(bot3, new Vec3(1,0,-3))
placeltem(bot3, 'iron_ore’, new Vec3(0,0,-
)
- - L]
Observation | First Person ~
View
4
bot1 bot: bat! bot1 b bot1 bot2 bot1 bot2 bot3
Inventory botl has 5 bricks. botl has 2 botl has a stone_axe...bot3 has a botl has 3 carrot. botl has 1 potato. bot2 botl has 1 beef ... bot3 has 1 iron_shovel
" sea_lantern... stone_axe... has 3 carrot. bot2 has 2 beetroot...
Information
Action placeltem(bot1, 'coal_ore’, new mineBlock(botl, new Vec3(0,0,1)) farm_work(botl, new Vec3(2,0.2), takeOutFurnace(botl, new Vec3(0,0,1))
Vec3(0,1,-1)) mineBlock(bot3, new Vec3(0,0,-2)) harvest')
placeltem(bot2, 'purple_wool, new farm_work(bot2, new Vec3(1,0,-2),
Vee3(-1,1,0) harvest)

LIODODOEDEE
A R T P P
$Pu@® 7

Shape

Goal

Base

Figure 5: Multi-modal prompt for Building, Clearing, Farming and Smelting.

Object ‘ ‘

Figure 6: A close-up view of the visual diversity in tasks. The rightmost column displays the example
holdout set for testing generalization.

L

15

f. =
4 j’

i

Hold Out

o< EOE

Under review as a conference paper at ICLR 2025

F DATASET COMPONENT

The dataset is organized in the following structure. The folder “configure” contains the setup
configurations and diversity settings for each task, with files named according to the task number. The
folder “data” contains four sub-folders: sub-folders “1”, “2”, and “3” correspond to the first-person
views of three different agents, while sub-folder “4” corresponds to the orthographic projections.
Inside each of these sub-folders are screenshots for the respective agents, each labeled with a
timestamp indicating the moment of each action. The folder “json” contains observation data for
each agent, along with task-related information such as rewards, completion status (“‘done”), and
timestamps.

16

Under review as a conference paper at ICLR 2025

task_building/

| -— configure/

| |-— 0.Jjson

| |-— 1.7json

| | ——

| -— data/

| |-— 0/

| | [—— 1/

| | | | -— screenshot_<timestamp>.png
| | | | -— screenshot_<timestamp>.png
| | | | -—— screenshot_<timestamp>.png
| | | | —=

| | |-= 2/

| | | | -—— screenshot_<timestamp>.png
| | | | ——

| | |-— 3/

| | | | -— screenshot_<timestamp>.png
| | | | —=

| | |-— 4/

| | | -—— screenshot_<timestamp>.png
| | | —=

| |l-—— 1/

| [-— 2/

| |- .

|-— Jjson/

| |-— 0.Json

| |-— 1.7json

| |-— 2.7json

|

task_clearing/
[...

task_farming/
[...

task_smelting/
|

G EXAMPLE TASK/DEMO

G.1 GPT-40 PROMPT

You are controlling 3 bots in a Minecraft world. The goal is
to build a specific structure on a platform

Please review the images provided below, which include
current state of the world and the goal structure (

the final image is the three orthographic views of the

goal). Based on these observations , generate actions
for each bot to help build the structure.

#x Instructions ;%=

— =xx Action Format: %=

— xxBots ks

— ‘botID ° can be one of: ’botl’, ’bot2’, ’bot3’, ’bot4’
depending on the number of bots).

— xxBlocks :#*
‘"block"“ is the type of block to place.

17

Under review as a conference paper at ICLR 2025

— =xx Available Blocks:x=*

— ’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’
sandstone ’, ’stone’, ’iron_ore’, ’gold_ore’, ’sponge’,
“sea_lantern ’, ’dirt’, ’grass_block’, ’clay’, ’
oak_planks ’, ’emerald_block’, ’pumpkin’, ’
orange_concrete ', ‘purple_wool’, ’end_stone’, ’
bookshelf ’, ’acacia_fence ', ’oak_log’

— *xConstraints ;s

— xxInventory Awareness:** Ensure each bot has the
necessary blocks in their inventory.

— %xNo Overlapping Blocks:*% Do not place more than one
block at the same position.

— xxWorkspace Dimensions:** The center of the workspace is

at (0, 0, 0), and it spans 3 units along the x-axis,

3 units along the z-axis, and 2 units along the y-axis

— *%*One Action per Bot:xx Each bot can place only one
block at a time.

xx Submission Guidelines :#x*

Provide only the list of action commands for all bots.

— Do not include any additional text, explanations , or
formatting (e.g., no code blocks or markdown).

— Example:

"placeltem (botl, ’stone’, new Vec3(1l, 0, 0))", "

placeltem (bot2, ’oak_planks’, new Vec3(0, 0, 1))"]

You need to put "" each entry in the list.

—

Please generate the list of commands based on the current
observations and the goal image.

a

gl

(c) three orthographic views of the
(a) Agentl observation (b) Agent2 observation goal

Figure 7: Observations to GPT-4o.

Additionally, we provide a one-shot example of the same task from the training set as an example to
GPT-4o.

G.2 GPT-40 COMMON ERRORS

We provide some errors from GPT-4 below:

Harvest without sow.

["farm_work (botl , new Vec3(0, 0, 1), “harvest’)", "farm_work(
bot2, new Vec3(0, 0, —-1), ’harvest’)"]

Sow never harvest.

18

Under review as a conference paper at ICLR 2025

["farm_work (botl , new Vec3(1,0,1), ’sow’, ’wheat’)", "
farm_work (bot2 , new Vec3(1,0,0), ’sow’, ’wheat’)", "
farm_work (bot3, new Vec3(0,0,0), ’sow’, ’wheat’)"]

Fail to understand 3D spatial relations.

[mineBlock (botl , new Vec3(1,1,1))","mineBlock(bot2, new Vec3
(-1,1,1))","mineBlock(bot3, new Vec3(-1,1,0))]

H DATASET STATISTICS TABLES

19

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences
3 7,777 51.85%
2 3,207 21.38%
4 3,091 20.61%
5 483 3.22%
6 440 2.93%
Agents
3 7,505 50.03%
2 7,493 49.97%
Scenes
ice_on_water 2,555 17.04%
mountain_half 2,553 17.03%
village 2,482 16.55%
desert_village 2,480 16.53%
Snow_mountain 2,478 16.52%
swamp 2,450 16.34%
Background Types
stone 1,530 10.20%
pink_wool 1,527 10.19%
glowstone 1,522 10.15%
obsidian 1,511 10.08%
glass 1,509 10.07%
smooth_quartz 1,499 10.00%
hay_block 1,494 9.96%
gold_block 1,473 9.82%
oak_wood 1,471 9.81%
cyan_concrete 1,462 9.75%
Target Types
bricks 10,391 9.92%
sponge 5,438 5.19%
coal_ore 5,370 5.13%
grass_block 5,327 5.09%
clay 5,318 5.08%
sea_lantern 5,296 5.06%
orange_concrete 5,287 5.05%
pumpkin 5,269 5.03%
purple_wool 5,257 5.02%
gold_ore 5,247 5.01%
oak_fence 5,234 5.00%
oak_planks 5,216 4.98%
birch_log 5,184 4.95%
stone 5,182 4.95%
sandstone 5,176 4.94%
emerald_block 5,164 4.93%
iron_ore 5,160 4.93%
dirt 5,124 4.89%
end_stone 5,119 4.89%

Table 6: Diversity Statistics for Task Building

20

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Target Counts

6 5,653 37.69%
7 2,625 17.50%
8 2,573 17.15%
5 2,122 14.15%
10 526 3.51%
12 515 3.43%
9 496 3.31%
11 488 3.25%
Dimensional Shapes
(3,1,2] 3,859 25.73%
4,1,2] 3,770 25.14%
(2,3,2] 3,695 24.63%
[2,2,2] 3,674 24.49%

Table 7: Diversity Statistics for Task Building (Cont.)

21

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences
4 4,027 27.51%
5 3,751 25.61%
6 3,270 22.32%
3 1,561 10.66%
7 1,396 9.53%
8 424 2.89%
9 133 0.91%
2 79 0.54%
Agents
2 7,358 50.28%
3 7,283 49.72%
Scenes
desert_village 3,012 20.56%
Snow_mountain 2,948 20.13%
swamp 2,929 20.00%
ice_on_water 2,894 19.76%
village 2,858 19.54%
Background Types
smooth_quartz 1,405 9.59%
pink_wool 1,357 9.27%
gold_block 1,353 9.24%
oak_wood 1,334 9.10%
hay_block 1,332 9.09%
cyan_concrete 1,332 9.09%
grass_block 1,328 9.06%
glass 1,325 9.04%
glowstone 1,309 8.93%
stone 1,302 8.89%
obsidian 1,264 8.63%
Target Counts
6 4,310 29.43%
5 2,499 17.07%
4 2,436 16.64%
8 1,843 12.58%
7 1,803 12.31%
9 1,750 11.95%
Target Types
oak_fence 5,879 6.45%
grass_block 5,836 6.40%
clay 5,816 6.38%
oak_log 5,772 6.33%
sandstone 5,748 6.30%
acacia_fence 5,744 6.30%
birch_log 5,732 6.28%
bookshelf 5,726 6.28%
stone 5,709 6.26%
bricks 5,695 6.25%
crafting_table 5,684 6.23%
dirt 5,671 6.22%
cobweb 5,605 6.15%
iron_ore 5,603 6.14%
coal_ore 5,555 6.09%
anvil 5,439 5.96%
Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Table 8: Diversity Statistics for Task Clearing

22

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Tools
stone_pickaxe 9,329 25.51%
stone_sword 9,180 25.10%
stone_axe 9,150 24.99%
stone_shovel 8,906 24.36%
Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Table 9: Diversity Statistics for Task Clearing (Cont.)

Diversity Type Count Percentage
Action Sequences
4 7,458 50.33%
5 3,731 25.17%
3 3,264 22.02%
6 270 1.82%
2 81 0.55%
7 11 0.07%
Agents
2 7,465 50.37%
3 7,350 49.63%
Scenes
Snow_mountain 3,732 25.18%
swamp 3,722 25.11%
ice_on_water 3,707 25.01%
village 3,654 24.69%
Background Types
stone 2,892 19.51%
obsidian 1,549 10.46%
hay_block 1,527 10.30%
oak_wood 1,524 10.28%
cyan_concrete 1,492 10.06%
glass 1,465 9.88%
smooth_quartz 1,462 9.86%
pink_wool 1,455 9.81%
dirt 1,449 9.77%
Target Types
potato 4,972 33.56%
carrot 4,955 33.45%
wheat 4,888 32.99%
Target Counts
4 2,873 19.39%
3 2,269 15.31%
5 2,256 15.22%
6 2,151 14.51%
2 1,240 8.37%
8 1,112 7.50%
10 1,062 7.17%
7 933 6.29%
12 512 3.45%
14 407 2.75%

Table 10: Diversity Statistics for Task Farming

23

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences
5 3,261 30.20%
4 3,072 28.45%
6 2,041 18.89%
3 1,824 16.88%
2 358 3.31%
7 239 2.21%
8 8 0.07%
Agents
3 5,480 50.75%
2 5,323 49.25%
Scenes
Snow_mountain 2,272 21.04%
desert_villege 2,257 20.92%
swamp 2,171 20.08%
ice_on_water 2,059 19.09%
villege 2,044 18.87%
Background Types
gold_block 1,014 9.22%
smooth_quartz 1,010 9.19%
cyan_concrete 995 9.02%
glowstone 981 8.92%
pink_wool 990 8.99%
glass 978 8.89%
oak_wood 987 8.98%
grass_block 977 8.88%
hay_block 968 8.80%
stone 964 8.76%
obsidian 939 8.54%
Furnace
1 5,772 53.45%
2 5,031 46.55%
Fuel Types
coal_block 999 9.58%
charcoal 962 9.22%
lava_bucket 940 9.01%
coal 921 8.84%
spruce_planks 910 8.73%
acacia_planks 906 8.69%
oak_planks 861 8.26%
birch_log 893 8.57%
acacia_log 887 8.50%
spruce_log 845 8.10%
oak_log 840 8.05%
birch_planks 839 8.04%

Table 11: Diversity Statistics for Task Smelting

24

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Goal Types
food 5,412 50.09%
item 5,391 49.91%
Target Types
glass 1,144 10.26%
gold_ingot 1,094 9.81%
stone 1,077 9.66%
smooth_sandstone 1,040 9.32%
iron_ingot 1,036 9.29%
cooked_salmon 712 6.38%
cooked_cod 708 6.35%
baked_potato 758 6.80%
cooked_mutton 664 5.95%
cooked_rabbit 648 5.81%
cooked_porkchop 668 5.99%
cooked_beef 627 5.62%
cooked_chicken 627 5.62%
Target Counts
2 3,999 37.01%
3 3,363 31.13%
1 1,909 17.68%
4 1,532 14.18%
Tools
iron_pickaxe 18,633 29.69%
iron_shovel 13,676 21.78%
iron_axe 13,453 21.43%
iron_sword 13,448 21.42%
Resource Types
red_sand 2,032 10.37%
gold_ore 1,999 10.20%
cobblestone 1,915 9.77%
sandstone 1,818 9.28%
iron_ore 1,780 9.08%
coal_ore 1,714 8.75%
acacia_planks 1,564 7.98%
oak_planks 1,503 7.67%
birch_log 1,486 7.58%
spruce_log 1,477 7.54%
oak_log 1,456 7.44%
spruce_planks 1,471 7.51%
birch_planks 1,344 6.86%
sheep 1,119 5.71%
pig 1,104 5.63%
rabbit 1,097 5.60%
chicken 1,081 5.52%
cCow 700 3.57%
mooshroom 675 3.44%

Table 12: Diversity Statistics for Task Smelting (Cont.)

25

	Introduction
	Related work
	TeamCraft Benchmark
	Simulation Environment
	Observation and Actions
	Centralized and Decentralized Agents
	Task Design
	Multi-Modal Prompt
	Diversity
	Expert Demonstration Generation Pipeline
	Test Set and Generalization Set

	Experiments
	Baselines
	Evaluation Metrics
	Evaluation Results

	Conclusions
	Prompt Examples
	High Level Skills
	Atomic Actions
	Detailed Multi-modal prompt
	Visual Diversity
	Dataset Component
	Example Task/Demo
	GPT-4o Prompt
	GPT-4o Common Errors

	Dataset Statistics Tables

