
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEAMCRAFT: A BENCHMARK FOR EMBODIED MULTI-
AGENT SYSTEMS IN MINECRAFT

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex 3D environments replete with dynamic interactions among multiple
agents and objects are essential for the development of embodied intelligent agents.
To facilitate research on Multi-Agent (MA) systems, we introduce TeamCraft , a
challenging MA benchmark based on the Minecraft game. Instead of the abstract
vector inputs commonly provided to agents in MA systems research, TeamCraft
provides agents with multi-modal task specifications and observations. Given the
three-orthographic-view graph of the environment along with language instructions,
the agents must efficiently collaborate to complete assigned tasks. Such multi-
modal inputs pose a higher level of difficulty, since agents must generalize across
diverse object and background imagery, different numbers of agents, a wide range
of tasks, etc. Our planner-generated dataset includes various tasks, such as building
construction, smelting, and farming, with a total of 70,000 procedurally-generated
demonstrations that feature over 50 objects across a wide variety of scenes. We
test the generalization abilities of several baseline Vision-Language Model (VLM)
multi-agent control strategies in centralized and decentralized settings.
The TeamCraft platform and dataset are made publicly available at:
https://github.com/teamcraft-bench/teamcraft.

1 INTRODUCTION

In an open-ended world, multiple autonomous agents with diverse skill sets should collaborate to
efficiently perform a broad spectrum of tasks. However, research aimed at developing agents capable
of efficiently performing intricate tasks within complex, embodied Multi-Agent (MA) environments
remains relatively limited. In particular, the autonomous agent research community has primarily
focused on navigation and object-based interactions in vision-language task-planning.

One research avenue endeavors to establish MA methodologies within 2D environments employing
solely vector inputs (Leibo et al., 2021; Suarez et al., 2021). However, such inputs suffer from limited
realism and are characterized by an inherent scarcity of comprehensive information. Concurrently,
another research avenue focuses on the creation of singular multi-task agents with the ability to
proficiently undertake a diverse range of tasks within domains encompassing both gaming and
robotics (Wang et al., 2023b;a; Ahn et al., 2022; Huang et al., 2022b;a). However, when considering
the elaborate interactions and uncertainties that arise in MA systems, the endeavor of formulating
multi-task agents within MA settings is decidedly more formidable and challenging.

To foster advancements in this domain, we have developed a comprehensive benchmark tailored
to MA embodied systems, dubbed TeamCraft . It utilizes the acclaimed Minecraft game as an
experimental platform and is targeteted at confronting the elaborate dynamics of MA interactions.
The benchmark encompasses the design of four multi-modal task categories: building construction,
ground clearing, farming, and object acquisition. Within the cooperative tasks, each assignment
necessitates consideration of fellow agents, spanning factors such as spatial positioning, inventory
holdings, skill differentials, and initial vitality. Such nuanced assessments require divergent role
allocation and task strategies during the planning phase. The collaborative actions unfolding during
the execution phase encompass resource sharing and joint pursuit.

The TeamCraft dataset encompasses fundamental skills and tasks, meticulously orchestrated by
hand-designed planners. We introduce two alternative baseline models, both trained on the TeamCraft

1

https://github.com/teamcraft-bench/teamcraft

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

dataset, that validate the efficacy of the generated data. The first model, MA-GPT-4o, employs a Multi-
modal Large Language Model (MLLM) as the planner to generate subgoals that guide individual
agents. The second model, MA-LLAVA, comprehensively encodes input facets and subsequently
fuses embeddings through an attention mechanism, culminating in the prediction of ultimate actions.
Our experimental findings demonstrate that both baseline models achieve competence across a subset
of tasks.

In a nutshell, the primary contributions of this paper to the MA research community are as follows:

1. TeamCraft , a new embodied multi-modal multi-agent benchmark encompassing complex
tasks challenging multi-agent systems in a wide variety of generalization scenarios.

2. Novel applications of the GPT-4o and LLAVA models tailored to multi-agent scenarios.

2 RELATED WORK

Environments for Multi-Agent Reinforcement Learning (MARL): The recent success of MARL
methods (Lowe et al., 2020; Yu et al., 2021; Long et al., 2020; 2024) has garnered attention, as these
methods explore cooperation and competence behaviors among agents. These methodologies have
been developed and tested on prominent platforms. However, many of these platforms involve 2D
environments (Leibo et al., 2021; Suarez et al., 2021; Mordatch & Abbeel, 2017; Vinyals et al., 2019)
and rely solely on vector observations. This limited scope poses challenges in terms of extending
applicability to real-world scenarios.

Environments based on Minecraft: Minecraft games have fostered the development of embodied
AI methods. Initially, Malmo (Johnson et al., 2016) marked the advent of a Gym-style API tailored
to Minecraft. This endeavor paved the way for subsequent developments, such as MineRL (Guss
et al., 2019) and MineDojo (Fan et al., 2022), which augmented the dataset and introduced a suite of
benchmarking tasks. However, the focus of these benchmarks predominantly centers around single-
agent tasks, with limited exploration of multi-agent scenarios in Minecraft. Despite their contributions,
they remain devoid of multi-agent tasks. By contrast, TeamCraft concentrates exclusively on the
multi-agent setting. This distinctively sets it apart from all preceding Minecraft benchmarks.

Embodied agents in MA systems: Within the embodied multi-agent setting, several researchers
have employed the AI2-THOR environment (Kolve et al., 2022). Jain et al. (2019) delved into the
communication dynamics that enhance collaboration between two agents. Tan et al. (2020b) and
Liu et al. (2022a) propounded the efficient exploration of environments as a central task for agents.
Meanwhile, Liu et al. (2022b) introduced a model that dynamically decomposes tasks among different
agents, enabling dynamic task allocation. It is noteworthy, however, that the task propositions thus far
have primarily revolved around navigation subject to environmental constraints. However, Minecraft
is a multidimensional, visually immersive realm characterized by procedurally generated landscapes
and extraordinarily versatile game mechanics supporting an extensive spectrum of activities. This
provides rich environments ripe for intricate collaborations and the emergence of competence.

Comparison: Table 1 compares TeamCraft with prior benchmarks.

3 TEAMCRAFT BENCHMARK

Existing benchmarks in MA systems research are founded on state or voxel-based observation in
a controlled, closed environment. Actions and task types are also limited by the environments.
TeamCraft advances the state-of-the-art in multi-agent benchmarks by exploiting the dynamic and
open-ended Minecraft environment, offering 1) high-quality RGB first-person perspective observa-
tions on top of the traditional voxel-based and state-based observations, 2) the ability to benchmark
on existing MA cooperation tasks and define custom tasks with a variety of interactions, 3) the ability
to control multiple agents in an open world to perform open-ended 3D tasks, in both centralized or
decentralized settings, 4) the capacity to execute hundreds of actions individually for multiple agents
that expand all possible task spaces with high-level, abstract language input, and 5) the ability to
provide expansive visual diversity in tools, blocks, entities, and richly-detailed backgrounds.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of TeamCraft and other benchmarks. TeamCraft features RGB image and
language inputs for multi-agents control with a large number of widely-varied demonstrations in
Minecraft. The columns refer to the following features: RGB: Real-time first-person perspective
RGB images are provided to agents and serve as observations. Language: Task goals are specified
by human language instruction. 3D: Task requires agents to have perception and be able to interact
with the 3D world (i.e., movement in 3D, objects interacted with have 3D relations). Note: “Obs”
denotes only support of 3D observation, no movement or action in 3D. Allocation: Multiple tasks
must be dynamically allocated to multiple agents to obtain maximum benefit. Agents must use
visual perception to understand other agents’ states and make decisions to increase efficiency. Multi-
Agents: Multiple agents can be present in a single experiment. (De)centralized: Agents can be
operated separately in both centralized and decentralized settings. Tool Use: Completing tasks
necessitates the use of specific tools by the agents, or using various tools results in different task
efficiencies. Interaction: Agents must manipulate or engage with different items or environmental
elements or objects to achieve certain goals with irreversible actions. Generalization: Standardized
generalization across a diversity of goals, objects, backgrounds, and inventories.

Benchmark RGB Language 3D Allocation Multi-Agents (De)centralized Tool Use Interaction Generalization

Alfred (Shridhar et al., 2020) ✓ ✓ Obs ✗ ✗ ✗ ✓ ✓ 100,000+
DialFRED (Gao et al., 2022) ✓ ✓ Obs ✓ ✗ ✗ ✓ ✓ 53,000+
MultiagentEQ (Tan et al., 2020a) ✓ ✓ Obs ✗ ✓ ✗ ✓ ✓ ✗
EmbodiedMA (Liu et al., 2022b) ✓ ✓ Obs ✓ ✓ ✓ ✗ ✗ ✗
Cordial Sync (Jain et al., 2020) ✓ ✓ Obs w/ Action ✓ ✓ ✓ ✗ ✓ ✗
MineLand (Yu et al., 2024) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6,000+
MindAgent (Gong et al., 2023) ✗ ✓ Obs ✓ ✓ ✗ ✓ ✓ 100,000+
Creative Agents (Zhang et al., 2023) ✓ ✓ ✓ N/A ✗ N/A ✓ ✓ ✗
MineDojo (Fan et al., 2022) ✓ ✓ ✓ N/A ✗ N/A ✓ ✓ 1,000+
Overcooked-AI (Carroll et al., 2020) ✗ ✗ Obs ✓ ✓ N/A ✗ ✓ ✗
Watch&Help (Puig et al., 2021) ✗ ✗ Obs ✓ ✓ ✗ ✗ ✓ ✗
Too many cooks (Wang et al., 2020) ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗
SQA3D (Ma et al., 2023) ✓ ✓ ✓ ✗ ✗ N/A ✗ ✗ 40,000+
OpenEQA (Majumdar et al., 2024) ✓ ✓ Obs ✗ ✗ N/A ✗ ✗ 2,000+
AlexaArena (Gao et al., 2023) ✓ ✓ Obs ✗ ✗ N/A ✓ ✓ ✗

TeamCraft ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 70,000+

3.1 SIMULATION ENVIRONMENT

TeamCraft utilizes Minecraft as its foundational environment, offering a complex, open-world setting
for multi-agent interactions. The environment features procedurally generated tasks, visually rich
changes, web-scale knowledge, and diverse cooperation strategies among agents. Each agent is
individually controlled via the Mineflayer1 interface, which provides low-level API functionalities for
bots to interact with the environment. TeamCraft utilizes Mineflayer’s APIs to 1) translate high-level
actions into low-level commands through nested API calls, 2) generate both first-person and third-
person RGB image perspectives, 3) enable Gym-like interactions across four tasks that challenge
visual perception, spatial reasoning, and multi-agent task planning, and 4) support multiple agents.
This framework facilitates the execution of intricate commands via self-explanatory high-level actions,
allowing agents to collaboratively complete sophisticated tasks. Figure 1 illustrates the platform
architecture.

3.2 OBSERVATION AND ACTIONS

TeamCraft captures a wide array of observational data to ensure that agents have a comprehensive
understanding of their environment.

Visual: It provides 640 × 480 resolution images from a first-person perspective for agents before
each time step. It also provides orthographic projections images for task specifications. Images are
also illustrated in each task description.

Agent inventory: It provides detailed reporting about each agent’s inventory.

The action space mainly involves high-level self-explanatory skills such as obtainBlock and farmWork.
We provide 8 such atomic actions. Most actions take three input parameters, including 1) agent name
such as bot1, as the action-executing entity, 2) item name such as dirt, which is strongly associated

1https://github.com/PrismarineJS/mineflayer

3

https://github.com/PrismarineJS/mineflayer

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Minecraft
Server

Mineflayer

Action APIs

attack gotoequip dig

harvest chatsmelt place

craft look collect
…

Observation

First Person

Agents

Agent 1Agent 0

…

Model

Task

Instruction

Reward Done

High-Level Actions

goto 𝜏

lookAt (𝜏)

equip (𝜀)

dig (𝜏)

collect (𝜏)

obtainBlock
(𝑇𝑎𝑟𝑔𝑒𝑡	𝜏)

goto 𝜏

checkSeed (𝑠)

checkLand (𝑡)

lookAt(𝑡)

sow (𝜏)

farmWork
(𝐹𝑟𝑎𝑚𝐿𝑎𝑛𝑑	𝜏
, 𝑆𝑒𝑒𝑑	𝜍)

…
placeBlock()

mineBlock()

putFuel()

killMob()

Inventory

Third Person

Figure 1: TeamCraft platform architecture consists of three main components: 1) a Minecraft server
that hosts the game as an online platform, 2) Mineflayer, which serves as the interface for creating and
controlling bots in the Minecraft server, and 3) a Gym-like environment that defines tasks, provides
RGB and inventory observations, and allows models to control multiple agents through high-level
actions.

with the task goal or the agent’s inventory, 3) a vector indicating the position of the target on the test
field. A complete list of the atomic actions are described in Appendix C.

3.3 CENTRALIZED AND DECENTRALIZED AGENTS

We have implemented two different categories of agents: centralized agents and decentralized agents.

Centralized agents: These agents are given complete observational access to the environment,
including the first person view, action history, and inventory information of all the agents. Based
on these comprehensive data, the model generates the actions for all agents simultaneously. This
approach leverages the full scope of information available in the environment to coordinate and
optimize the actions of all the agents collectively.

Decentralized agents: These agents do not receive information about other agents except for the
initial environment settings, which may include some inventory details of other agents, and the task
description. The model generates actions solely for each individual agent based on the agent’s own
limited view. This setting simulates a more realistic scenario where agents operate independently
with restricted information, focusing on their own observations and actions absent of any centralized
coordination.

3.4 TASK DESIGN

TeamCraft introduces a variety of complex and interactive tasks that challenge the agents’ capabilities
in planning, coordination, and execution within a collaborative and dynamic environment. Each
task is designed to test different facets of MA interaction, including communication strategies,
role distribution, real-time decision-making, and adaptability to changing environments. Tasks
require capabilities in visual observation understanding, agent status intercepting, action capability
understanding, language prompt understanding, continuous state understanding, and task action
sequence planning. Here, we detail the specific tasks included in the TeamCraft benchmark. Task
examples are shown in Figure 2.

Building: This task requires agents to collaboratively erect a structure based on a provided three
orthographic views blueprint (front, side, and top). Each agent possesses a unique inventory of
building blocks necessary for the construction. The task requires agents not only to understand their

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

SmeltingSmeltingFarmingFarmingClearingBuilding
desert_villegeice_on_waterswampvillagesnow_mountainvillageScenes

glassoak_woodobsidianhay_blockgold_blockcyan_concreteBase

smooth_quartz *2cooked_mutton *1wheat *4Potato *3Clean 3D buildingBuild 1x2x4 buildingGoal

[oak_planks,
quartz_block]

[birch_planks, sheep]--[grass_block, dirt
birch_log, bookshelf,]

[dirt, wool, fence
sandstone, sponge]

Object

232233Agent

[iron_pickaxe,
iron_axe]

[iron_pickaxe,
iron_axe, iron_sword]

[wheat_seeds,
carrot, potato]

[carrot,
beetroot]

[stone_axe,
stone_sword,
stone_sword]

[dirt, wool, fence
sandstone, sponge,
log, stone, sand]

Inventory

Demonstration

Figure 2: Examples of the four tasks. We introduce 7 scenes featuring over 40 blocks and objects,
which are arranged into more than 40,000 unique placement configurations. A detailed distribution is
provided in Appendix H.

individual capabilities and inventories, but also to plan their movements and actions in coordination
with other agents so as to efficiently construct the building on a designated 5× 5 foundation.

Clearing: This task challenges agents to remove all blocks from a specified 6× 6 area. Agents must
employ appropriate tools to break the blocks, which vary in durability, thereby requiring multiple
interactions for complete removal. The use of correct tools can dramatically reduce the time required
to remove blocks (up to 3× speedup). The agents must manage their tool assignments to optimize
block-breaking efficiency such that the time steps needed for one task can be minimized. Strategic
coordination is essential in this task as agents need to dynamically decide which blocks to target
based on their current tools and help each other minimize the overall time taken to clear the area.

Farming: This task is designed to simulate agricultural activities, where agents must sow and harvest
crops. Agents are required to plant seeds on designated farmland plots and observe plantings until the
crops reach maturity. Each crop has several growth stages from Level 0 (newly planted) to Level 7
(fully grown), and agents must identify when crops are ready to be harvested. The challenge lies in
dynamically allocating tasks among agents based on their positions, available seeds, and the maturity
of different crops. Effective task distribution and coordinated actions ensure maximum yield and
efficiency. For example, some agents can sow while others are planting, and they should stop when
their total crop yield is satisfactory.

Smelting: This task requires agents to obtain items processed using furnaces by gathering materials
and coordinating actions. Agents collect resources from the environment—by harvesting blocks or
killing mobs—and place them, or existing inventory items, into furnaces as smelting inputs. The
output will be the final goal item that can be categorized as food or item, where food can be “cooked
beef”, “cooked porkchop”, or “baked potato”, and item can be “glass” or “gold ingot” by smelting
sand or gold ore, respectively. Agents must also gather fuel (e.g., coal or lava buckets), with each
furnace accepting only one type of fuel. Furnaces are placed near the playground center (one or two
per task) and automatically smelt when supplied with fuel and items. Agents must use the provided
tools, communicate effectively, and assign tasks efficiently due to dependencies in the smelting
process.

3.5 MULTI-MODAL PROMPT

For each task, the benchmark provides a multi-modal prompt consisting of both a set of orthographic
projections (i.e. top, left, front views) and a language instruction for task specification. For the
building task, the images depict the target structure. For tasks such as clearing, farming, and smelting,
the images will show the initial state of the environment. The language instruction will specify the
goal: for building, it will be “build a structure”; for clearing, “break the blocks on the platform”; for
farming, “harvest a specific number of crops”; and for smelting, “smelt a specific number of items”.
The detailed prompt examples are shown in Figure 3

3.6 DIVERSITY

The design of these tasks incorporates several layers of complexity to test and develop robust multi-
agent systems capable of operating in diverse and unpredictable environments. Table 2 shows the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Building Clearing Farming Smelting

System
Prompt

Three
orthographic
views

Language
Instruction

Three bots need to build a building on the
platform. bot1 has 5 bricks. bot1 has 2
sea_lantern. bot1 has 3 iron_ore ... bot3
has 1 brick… Write the actions for bot1,
bot2 and bot3 based on this given
observation.

Three bots need to break everything on
the platform. bot1 has a stone_axe…,
bot3 has a stone_axe. Write the actions
for bot1, bot2, bot3 based on this given
observation.

Two bots need to grow on the platform.
The goal is to get 4 carrot. bot1 has 3
carrot. bot1 has 1 potato. bot2 has 3
carrot. bot2 has 2 beetroot. Write the
actions for bot1, bot2 based on this given
observation.

Three bots need to craft 3
smooth_sandstone. here are the
introductions: Cooking Food: 1. To cook
a 'cooked_beef', I need 'beef'. To get
'beef', I need to kill a 'cow' or a
'mushroom'. 2. To cook a
'cooked_porkchop' ... bot1 has 1 beef ...
bot3 has 1 iron_shovel. Write the actions
for bot1, bot2 and bot3 based on this
given observation.

Observation First Person
View

Inventory
Information

bot1 has 5 bricks. bot1 has 2
sea_lantern…

bot1 has a stone_axe…bot3 has a
stone_axe…

bot1 has 3 carrot. bot1 has 1 potato. bot2
has 3 carrot. bot2 has 2 beetroot…

bot1 has 1 beef ... bot3 has 1 iron_shovel

Action placeItem(bot1, 'bricks', new Vec3(-1,0,-
1))
placeItem(bot2, 'oak_planks', new
Vec3(0,0,0))
placeItem(bot3, 'iron_ore', new Vec3(0,0,-
1))

mineBlock(bot1, new Vec3(-1,0,1))
mineBlock(bot2, new Vec3(-2,0,0))
mineBlock(bot3, new Vec3(-1,1,1))

farm_work(bot1, new Vec3(-1,-1,1), 'sow',
'carrot')
farm_work(bot2, new Vec3(-1,-1,-2),
'sow', 'carrot')

putItemFurnace(bot1, 'sandstone', new
Vec3(0,0,-1))",
"obtainBlock(bot2, new Vec3(2,0,0))",
"obtainBlock(bot3, new Vec3(1,0,-3))

Top Front SideTop Front Side Top Front Side Top Front Side

bot1 bot2 bot3 bot1 bot2bot1 bot2 bot3 bot1 bot2 bot3

Figure 3: Multi-modal prompts are provided for all tasks. The system prompt includes both the three
orthographic views and specific language instructions. Observations consist of first-person views
from different agents, along with agent-specific information.

statistics and variants for each task. Appendix E demonstrates a sample of the visual diversity
included.

Object diversity: More than 30 3D objects are used as the target item or resource in tasks. Objects,
such as a fence, an anvil, or a stone block, have different shapes and different textures, such as
pink wool and dirty blocks. Farm crops will have different visual appearances during growth so
that the agent can determine their growth stages from observations. The smelting task requires
agents to obtain different resources, such as killing different mods that have different shape, size, and
orientation, such as a chicken, rabbit, or pig.

Inventory diversity: Each agent’s inventory might include essential items mixed with non-essential
ones (i.e., distractors), realistically simulating scenarios where agents must choose the right materials
for specific tasks while managing inventory constraints. Agents are also provided with random tools
at the beginning of each task, which are critical for efficient action execution. Possessing the proper
tools impacts task efficiency in the clearing task and can lead to action failure in smelting when
collecting blocks.

Scene diversity: More than 10 scenes are included in the tasks, covering biomes such as village,
mountain, forest, swamp, desert, etc. The task interaction area (e.g., the 5 × 5 area for building
construction) are spawned in a random position of the scene to ensure visual diversity. Tasks take

Table 2: Task variants and dataset statistics

Building Clearing Farming Smelting
Action Sequences 2 – 6 2 – 9 2 – 7 2 – 8
Agents 2 – 3 2 – 3 2 – 3 2 – 3
Tools – 1 – 4 – 1 – 4
Scenes 6 5 4 5
Base Types 10 11 9 11
Furnaces – – – 1 – 2
Target Types 19 16 3 13
Target Counts 5 – 12 4 – 9 2 – 14 1 – 4
Fuel Types – – – 12
Resource Types – – – 20
Dimensional Shapes 2 2 2 1
Placement Shapes 7715 12724 13188 8885
Total Demonstrations 14998 14641 14815 10803
Test Set 50 50 50 50
Generalization Set 200 200 150 200

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

place on grounds with diverse textured bases such as glass, concrete, and quartz. Certain tasks may
involve additional complexity, such as farmland intermixed with non-plantable blocks.

Goal diversity: Goals vary between tasks. For the place and construction task, we introduce different
block placement shapes; e.g., a 2 × 4 × 2 tower with top right intentionally not occupied. We
categorized those shapes into different dimensionalities; e.g., 2D (all blocks are at the same level) or
3D (some blocks are on the top of others). For the farming task, the total target corp type and counts
are randomized. For the smelting task, the target object is randomized from various food or processed
items, and the fuel for smelting is also randomized.

Task diversity: Each task requires achieving a varying number of goal targets, determined by
the randomly assigned number of agents per task, which range from two to four. This variability
challenges the agents’ flexibility and adaptability in coordination and task execution. Additionally,
differing task requirements lead to varying numbers of actions necessary for optimal task completion.

3.7 EXPERT DEMONSTRATION GENERATION PIPELINE

To create a rich learning environment and effective training dataset for the TeamCraft tasks, systematic
scenario design and data collection methods are employed, as follows:

Planner-based scenario design: Each task scenario is carefully crafted using classical planning
algorithms, such as BFS, greedy search, and DFS, that consider all possible interactions within the
environment. This includes optimal paths, resource distribution, and agent role assignments based on
capabilities and task requirements.

Trajectory generation: Using Mineflayer interfaces controlled by heuristic methods such as the
Hungarian Algorithm and dynamic programming, the planner orchestrates the agents to execute the
task, ensuring that actions are taken optimally. Each step’s effectiveness is assessed to guarantee
efficient task completion.

Real-time interaction and feedback: Agents receive immediate feedback on their actions, which
includes success, failure, and updates on environmental states. This real-time data is crucial for
adjusting strategies and learning from interactions.

3.8 TEST SET AND GENERALIZATION SET

Each task features a test set, where agents are initialized with random position, orientation, and
inventory. The rest variables follow the same distribution as the training data. To evaluate specific
generalization capabilities of the model, we designed a generalization set for each task with hold-out
elements excluded from the training data. We withheld test cases involving four agents, whereas the
training demonstrations include only two or three agents. We also introduced one unseen scene and
an associated base block type not present during training. In addition to these general hold-outs, we
implemented the following task-specific exclusions:

Building task: We randomly excluded 8 block placement shapes, defining how target blocks are
arranged on the ground. These shapes varied in complexity, containing 5 to 12 blocks in both 2D and
3D configurations. Additionally, we omitted 3 block materials that appeared in the clearing task but
not in the building task.

Clearing task: We randomly held out 6 block placement shapes with block counts ranging from 4 to
9. We also excluded 3 block materials present in the building task but absent in the clearing task.

Farming task: We withheld one crop type, beetroot, that was unseen during training.

Smelting task: We excluded four unseen objects from both food and item categories and introduced
scenarios with 3 furnaces, as opposed to 1 to 2 furnaces in the training data.

As shown in Table 2, with 50 samples per task for the test set and each generalization set, our
benchmark contains a total of 950 test cases.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 BASELINES

In our experiments, we utilized the pretrained LLaVA-v1.6-Vicuna-7B and LLaVA-v1.6-Vicuna-13B
models. We modified the LLaVA architecture by concatenating image embeddings with language
embeddings to handle multiple images. All models were pretrained for 3 epochs. The model’s input
includes both the system prompt and the agent’s observation. We trained a unified model for all tasks
in both the centralized and decentralized settings.

In the centralized setting, the observation consists of first-person views, previous actions, and the
information of all agents.

In the decentralized setting, the observation includes the first-person view, previous actions, and
information of only the specific agent.

GPT-4o: For the GPT-4o method, we employed a one-shot learning approach. The prompt provided
to the model includes a single successful demonstration of the task from the training set. Based on
this example, we then asked the GPT-4o model to generate the actions for agents in response to new
observations. This approach leverages the model’s ability to generalize from a minimal amount of
information.

4.2 EVALUATION METRICS

We evaluated the performance of the methods based on two key metrics: task success rate and
competence percentage.

Task success rate: The task success rate is determined by the ratio of the number of completed tasks
to the total number of tested tasks. This metric indicates the proportion of test cases that the model
can successfully complete from start to finish. A higher success rate reflects the model’s ability to
consistently achieve the desired outcomes in various scenarios.

Subgoal success rate: This metric measures the overall effectiveness of the agents in performing the
tasks, considering partial successes and the extent to which the tasks are completed. It is calculated
by dividing the number of subgoals accomplished by the total number of subgoals. For the building
tasks, subgoals are defined by the number of blocks to be built. For the clearing task, subgoals are
defined by number of blocks to be cleared. For the farming task, subgoals are defined as the number
of farms to be farmed. For the smelting task, subgoals are defined as the number of target objects
to be smelt. The subgoal success rate provides a more granular view of the model’s performance,
highlighting how well the agents can handle different aspects of the tasks even if they do not fully
complete them.

4.3 EVALUATION RESULTS

We fine-tuned the LLaVA-Vicuna-7B model on three data scales: one-tenth, one-half, and the full
training split, in both the centralized and decentralized settings. The task success rates and subgoal
success rate are shown in Table 3 with the task success rate on the left and the subgoal success rate
on the right.

Comparing horizontally, the centralized settings generally yielded higher task success rates and
subgoal success rate, underscoring the advantage of having comprehensive environmental data
available to the decision-making processes. By contrast, the decentralized settings showed a noticeable
decline in the performance metrics. Even when trained on the full dataset, the model struggled with
complex tasks such as building, which requires intricate coordination among agents and detailed
interactions with the environment, including correct material selection and coordination. The limited
information flow inherent to decentralized settings clearly hindered the models’ ability to develop
and execute cohesive strategies effectively.

Another observation was the model’s adaptability to out-of-distribution parameters. For instance,
tasks under the “Test” category generally had higher subgoal success rate, suggesting the models were
more proficient at handling familiar scenarios where environmental variables aligned with expected
parameters. However, performance declined in tasks involving “Agents”, “Scene”, “Material”, or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Experimental results with the 7B MA-LLaVA model. Test refers to the test set with the
same distribution as the training data with randomly initialized position, orientation, and inventory
of agents. Shape, material, scene, crop, furnace, and agents refer to the generalization set with the
corresponding holdout element.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (12.4) 0.38 (76.7) 0.42 (81.5) 0.00 (18.1) 0.00 (28.7) 0.00 (38.0)
Shape 0.00 (12.1) 0.20 (67.5) 0.30 (75.5) 0.00 (15.7) 0.00 (25.6) 0.00 (40.1)
Material 0.00 (13.4) 0.18 (64.0) 0.30 (74.2) 0.00 (13.6) 0.00 (20.4) 0.00 (34.0)
Scene 0.00 (14.7) 0.36 (72.8) 0.40 (82.6) 0.00 (15.6) 0.00 (20.6) 0.00 (36.0)
Agents 0.00 (17.6) 0.02 (50.3) 0.02 (57.2) 0.00 (11.5) 0.00 (20.1) 0.00 (14.0)

Clearing

Test 0.00 (13.0) 0.08 (43.4) 0.64 (91.2) 0.00 (45.4) 0.02 (34.9) 0.20 (68.0)
Shape 0.00 (09.0) 0.08 (34.4) 0.56 (90.9) 0.00 (46.6) 0.02 (27.1) 0.16 (74.0)
Material 0.00 (10.0) 0.12 (45.6) 0.56 (90.6) 0.00 (48.9) 0.00 (22.1) 0.16 (67.0)
Scene 0.00 (11.3) 0.10 (43.8) 0.58 (92.3) 0.00 (41.3) 0.04 (37.4) 0.10 (64.0)
Agents 0.00 (15.5) 0.14 (63.7) 0.36 (81.3) 0.02 (50.2) 0.02 (54.0) 0.12 (60.0)

Farming

Test 0.14 (43.1) 0.34 (60.7) 0.36 (63.8) 0.02 (07.4) 0.02 (13.8) 0.00 (09.0)
Crop 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0) 0.00 (00.0)
Scene 0.16 (38.9) 0.34 (65.1) 0.38 (66.9) 0.00 (05.0) 0.00 (10.5) 0.02 (07.3)
Agents 0.02 (17.5) 0.18 (60.8) 0.38 (68.4) 0.00 (07.9) 0.00 (10.5) 0.04 (27.0)

Smelting

Test 0.06 (17.4) 0.20 (36.0) 0.24 (28.0) 0.08 (13.3) 0.08 (09.5) 0.16 (29.1)
Goal 0.08 (20.9) 0.04 (07.5) 0.00 (00.0) 0.08 (17.3) 0.00 (00.0) 0.00 (00.0)
Furnace 0.10 (28.3) 0.10 (20.5) 0.18 (20.0) 0.06 (07.0) 0.06 (06.0) 0.06 (15.6)
Scene 0.08 (19.1) 0.14 (27.8) 0.18 (23.0) 0.08 (18.6) 0.14 (19.8) 0.12 (27.8)
Agents 0.00 (15.1) 0.02 (23.9) 0.06 (13.1) 0.04 (04.8) 0.00 (01.6) 0.02 (28.0)

Data Scale

S
ub

go
al

 S
uc

ce
ss

 R
at

e

Ta
sk

 S
uc

ce
ss

 R
at

e

0

20

40

60

80

0.0

0.1

0.2

0.3

0.4

One Tenth Half Whole

Centralized Vicuna-
7B Subgoal

Centralized Vicuna-
7B Task

Decentralized
Vicuna-7B Subgoal

Decentralized
Vicuna-7B Task

Centralized Vicuna-
13B Subgoal

Centralized Vicuna-
13B Task

Figure 4: Models performance with different scale of training data.

“Goal” conditions, where unpredictable elements affected task dynamics. Notably, all models failed
when dealing with new crops in the farming task, indicating a potential area for improvement in
enhancing model robustness and adaptability to unseen scenarios.

We show the scaling law in Figure 4. As the training data increased, we observed significant
improvements in both subgoal success rate and task success rates across both settings, highlighting
the importance of our dataset in achieving better performance.

We also fine-tuned the LLaVA-Vicuna-13B model under centralized settings and compared it to the
fine-tuned LLaVA-Vicuna-7B and GPT-4o models, as shown in Table 4 with the task success rate on
the left and subgoal success rate on the right. The results show that the LLaVA-Vicuna-13B model

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablations on the base model under the centralized setting

Tasks Condition Vicuna-7B Vicuna-13B GPT-4o

Building

Test 0.42 (81.5) 0.48 (79.2) 0.00 (07.5)
Shape 0.30 (75.5) 0.26 (68.6) 0.00 (08.1)
Material 0.30 (74.2) 0.08 (63.2) 0.00 (07.4)
Scene 0.40 (82.6) 0.48 (83.3) 0.00 (07.0)
Agents 0.02 (57.2) 0.04 (58.5) 0.00 (0.00)

Clearing

Test 0.64 (91.2) 0.64 (93.7) 0.00 (3.0)
Shape 0.56 (90.9) 0.78 (96.4) 0.00 (3.5)
Material 0.56 (90.6) 0.56 (91.7) 0.00 (1.2)
Scene 0.58 (92.3) 0.48 (90.4) 0.00 (5.7)
Agents 0.36 (81.3) 0.16 (76.5) 0.00 (0.00)

Farming

Test 0.36 (63.8) 0.46 (72.6) 0.00 (0.00)
Crop 0.00 (00.0) 0.00 (00.0) 0.00 (0.00)
Scene 0.38 (66.9) 0.44 (74.5) 0.00 (0.00)
Agents 0.38 (68.4) 0.36 (71.9) 0.00 (0.00)

Smelting

Test 0.24 (28.0) 0.32 (58.5) 0.02 (2.00)
Goal 0.00 (00.0) 0.00 (00.0) 0.08 (8.00)
Furnace 0.18 (20.0) 0.18 (38.3) 0.00 (0.00)
Scene 0.18 (23.0) 0.24 (55.8) 0.00 (0.00)
Agents 0.06 (13.1) 0.04 (36.6) 0.00 (0.00)

outperforms both the Vicuna-7B and GPT-4o models. GPT-4o, using a one-shot demonstration,
struggled to complete most tasks and achieved a significantly lower subgoal success rate compared to
the fine-tuned models, with the exception of a few successes in the smelting task. The smelting task
is less reliant on precise coordination since the locations of the stoves are fixed at three positions, and
it is possible that agents already have the necessary materials in their bags, eliminating the need to
gather resources. This highlights the limitations of Large Language Models (LLMs) in 3D spatial
reasoning and emphasizes the difficulty of multi-modal tasks, further underscoring the critical role
our dataset can play in advancing performance.

5 CONCLUSIONS

The TeamCraft benchmark introduced in this paper provides a novel and rich framework for evaluating
the capabilities of multi-agent systems situated in complex 3D environments. By incorporating a
diverse array of tasks, coupled with dynamic interactions among agents and objects, this benchmark
challenges the conventional paradigm of multi-agent research and paves the way for new explorations
in embodied intelligence.

The implementation of RGB image and language inputs as opposed to traditional abstract vector
inputs has enabled a more realistic simulation of human-like perception and interaction. This setup
has effectively demonstrated the necessity and impact of high-level strategic planning and real-time
decision-making in a controlled yet challenging environment.

Our experimental results highlight the strengths and limitations of current Vision-Language Models
(VLMs) in managing complex, dynamic task environments. While the centralized models exhibited
robust performance across most tasks, reflecting their ability to leverage comprehensive environmental
data for decision-making, the decentralized models underscored the challenges faced when agents
operate with limited information. This dichotomy not only enriches our understanding of agent
interaction dynamics but also underscores the critical role of information accessibility in strategic
multi-agent environments.

In conclusion, the TeamCraft benchmark not only sets a new standard in the study of multi-agent
systems but also promises to act as a catalyst for future innovations in this rapidly evolving field.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-AI coordination, 2020.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building open-ended embodied
agents with internet-scale knowledge, 2022.

Qiaozi Gao, Govind Thattai, Xiaofeng Gao, Suhaila Shakiah, Shreyas Pansare, Vasu Sharma, Gaurav
Sukhatme, Hangjie Shi, Bofei Yang, Desheng Zheng, et al. Alexa arena: A user-centric interactive
platform for embodied AI. arXiv preprint arXiv:2303.01586, 2023.

Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S. Sukhatme.
DialFRED: Dialogue-enabled agents for embodied instruction following. IEEE Robotics and
Automation Letters, 7(4):10049–10056, October 2022. ISSN 2377-3774. doi: 10.1109/lra.2022.
3193254. URL http://dx.doi.org/10.1109/LRA.2022.3193254.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng Gao. MindAgent: Emergent
gaming interaction, 2023.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. MineRL: A large-scale dataset of minecraft demonstrations, 2019.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022b.

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task completion,
2019.

Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and
Alexander Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied
tasks, 2020.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In Ijcai, pp. 4246–4247, 2016.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, Aniruddha Kembhavi, Abhinav Gupta, and Ali
Farhadi. AI2-THOR: An interactive 3D environment for visual AI, 2022.

Joel Z. Leibo, Edgar Duéñez-Guzmán, Alexander Sasha Vezhnevets, John P. Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charles Beattie, Igor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot, 2021.

Xinzhu Liu, Di Guo, Huaping Liu, and Fuchun Sun. Multi-agent embodied visual semantic navigation
with scene prior knowledge. IEEE Robotics and Automation Letters, 7(2):3154–3161, 2022a.

Xinzhu Liu, Xinghang Li, Di Guo, Sinan Tan, Huaping Liu, and Fuchun Sun. Embodied multi-agent
task planning from ambiguous instruction. Proceedings of Robotics: Science and Systems, New
York City, NY, USA, pp. 1–14, 2022b.

11

http://dx.doi.org/10.1109/LRA.2022.3193254

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolutionary popula-
tion curriculum for scaling multi-agent reinforcement learning. arXiv preprint arXiv:2003.10423,
2020.

Qian Long, Fangwei Zhong, Mingdong Wu, Yizhou Wang, and Song-Chun Zhu. Socialgfs: Learning
social gradient fields for multi-agent reinforcement learning, 2024. URL https://arxiv.
org/abs/2405.01839.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments, 2020.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
SQA3D: Situated question answering in 3d scenes, 2023.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. OpenEQA: Embodied
question answering in the era of foundation models. In 2nd Workshop on Mobile Manipulation
and Embodied Intelligence at ICRA 2024, 2024.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B. Tenenbaum, Sanja
Fidler, and Antonio Torralba. Watch-And-Help: A challenge for social perception and human-ai
collaboration, 2021.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks, 2020.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural MMO platform for
massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and Fuchun Sun. Multi-agent embodied question
answering in interactive environments. In European Conference on Computer Vision, 2020a.

Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and Fuchun Sun. Multi-agent embodied question an-
swering in interactive environments. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pp. 663–678. Springer, 2020b.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023a.

Rose E. Wang, Sarah A. Wu, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collaboration,
2020.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents, 2023b.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games, 2021.

Xianhao Yu, Jiaqi Fu, Renjia Deng, and Wenjuan Han. MineLand: Simulating large-scale multi-agent
interactions with limited multimodal senses and physical needs, 2024.

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks, 2023.

12

https://arxiv.org/abs/2405.01839
https://arxiv.org/abs/2405.01839

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPT EXAMPLES

We include some prompt examples for TeamCraft . The information includes task specific requirement
and agents’ current states.

For the building task, we provide a three orthographic views of the building to accomplish, and we
also include the agents inventory information. Here is one example:

"<image>Two bots need to build a building on the platform. bot1 has 6 coal_ore. bot1 has 3 clay.
bot1 has 4 sandstone. bot1 has 3 purple_wool. bot1 has 1 bricks. bot2 has 3 bricks. bot2 has 4
purple_wool. bot2 has 5 coal_ore. bot2 has 2 sandstone. Write the actions for bot1, bot2 based on
this given observation."

For the clearing task, we provide a three orthographic views at initialization that they need to clear
out, and we also include the agent’s tool information. Here is one example:

"<image>Two bots need to break everything on the platform. bot1 has a stone_axe. bot2 has a
stone_axe. Write the actions for bot1, bot2 based on this given observation."

For the farming task, we provide a three orthographic views of the farmland and agents inventory
information. Here is one example:

"<image>Three bots need to grow on the platform. The goal is to get 4 carrot. bot1 has 3 carrot.
bot1 has 1 potato. bot2 has 3 carrot. bot2 has 2 beetroot. bot3 has 5 carrot. bot3 has 1 wheat_seeds.
bot3 has 3 potato. bot3 has 1 beetroot. Write the actions for bot1, bot2 and bot3 based on this given
observation."

For the smelting task, we provide an instruction of how to smelt all objects and agents’ inventory
information. Here is one example:

"<image> Three bots need to craft 4 cooked_beef. here are the introductions: Cooking Food: 1. To
cook a ’cooked_beef’, I need ’beef’. To get ’beef’, I need to kill a ’cow’ or a ’mushroom’.

2. To cook a ’cooked_porkchop’, I need ’porkchop’. To get ’porkchop’, I need to kill a ’pig’.

3. To cook a ’cooked_mutton’, I need ’mutton’. To get ’mutton’, I need to kill a ’sheep’.

4. To cook a ’cooked_chicken’, I need ’chicken’. To get ’chicken’, I need to kill a ’chicken’.

5. To cook a ’cooked_rabbit’, I need ’rabbit’. To get ’rabbit’, I need to kill a ’rabbit’.

6. To cook a ’cooked_cod’, I need ’cod’.

7. To cook a ’cooked_salmon’, I need ’salmon’.

8. To cook a ’baked_potato’, I need a ’potato’.

Crafting Items: 1. To craft a ’gold_ingot’, I need ’gold_ore’. To get ’gold_ore’, I need to obtain
’gold_ore blocks with a pickaxe.

2. To craft an ’iron_ingot’, I need ’iron_ore’. To get ’iron_ore’, I need to obtain ’iron_ore blocks
with a pickaxe.

3. To craft ’glass’, I need ’red_sand’. To get ’red_sand’, I need to obtain ’red_sand’.

4. To craft ’smooth_sandstone’, I need ’sandstone’. To get ’sandstone’, I need to obtain ’sandstone’
with a pickaxe.

5. To craft ’stone’, I need ’cobblestone’. To get ’cobblestone’, I need to obtain ’cobblestone’ with a
pickaxe.

Fuel Sources:

1. To fuel the furnace, I can use ’coal’. To get ’coal’, I need to obtain ’coal_ore’.

2. To fuel the furnace, I can use ’lava_bucket’, ’coal_block’, ’charcoal’, .

3. To fuel the furnace, I can use ’oak_log’, ’birch_log’, ’acacia_log’, ’spruce_log’, ’oak_planks’,
’birch_planks’, ’acacia_planks’, or ’spruce_planks’.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Type Arguments Description
placeItem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.

obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.

putItemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.

takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

Table 5: Action space within the TeamCraft .

I can also obtain those blocks. I do not need to get those resource if they already in my inventory.bot1
has 1 beef. bot1 has 1 coal_block. bot1 has 2 iron_axe. bot2 has 3 coal_block. bot2 has 1
iron_pickaxe. bot2 has 1 iron_axe. bot3 has 1 iron_shovel. bot3 has 1 iron_axe. Write the actions for
bot1, bot2 and bot3 based on this given observation."

B HIGH LEVEL SKILLS

The action space of agents mainly involves high-level self-explanatory skills such as obtainBlock and
farmWork. We provided 8 such atomic actions. Most actions take three input parameters, including 1)
agent name such as bot1, as the action executing entity, 2) item name such as dirt, which strongly
associated with task goal or agent’s inventory, 3) a vector indicating the position of the target on the
test field.

For example, obtainBlock(bot1, new Vec3(1, 0, 1)) takes the agent name bot1 and
a 3D vector (1, 0, 1) as its arguments. It directs bot1 to perform multiple actions in Minecraft
via APIs provided by Mineflayer. First, it controls bot1 to goto a diggable position for block (1,
0, 1), then has bot1’s vision ray cast to the block at (1, 0, 1) using the lookAt action. Next,
it commands bot1 to equip a proper tool that can dig the block at (1, 0, 1) most efficiently,
and then instructs bot1 to dig the target block. Once the target block has been mined, bot1 will
goto the position where the block item dropped and collect it.

Similarly, farmWork(bot2, "sow", "potato", new Vec3(2, 0, 4)) takes the
agent name bot2, action type "sow" (as opposed to "harvest"), crop seed item "potato",
and a 3D vector (2, 0, 4) as its arguments. It directs bot2 to goto a placeable position for
farmland at (2, 0, 4), then check if the seed is a valid item—that is, a crop seed available
within bot2’s inventory. It then checks if the farmland at (2, 0, 4) is plantable. Finally, it
instructs bot2 to lookAt the farmland and sow it with the seed "potato".

C ATOMIC ACTIONS

Table 5 documents all the atomic actions in our dataset. Atomic functions are JavaScript code
instructing Mineflayer via its APIs to control one agent to perform an action in Minecraft.

D DETAILED MULTI-MODAL PROMPT

We show a more detailed multi-modal prompt in Figure 5

E VISUAL DIVERSITY

Figure 6 illustrates a sample of the visual diversity present in the environment. Each task is visually
rich, constructed from a random combination of scene elements, base block types, shapes, goal
placements, and target types.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Building Clearing Farming Smelting

System
Prompt

Three
orthographic
views

Language
Instruction

Three bots need to build a building on the
platform. bot1 has 5 bricks. bot1 has 2
sea_lantern. bot1 has 3 iron_ore ... bot3
has 1 brick… Write the actions for bot1,
bot2 and bot3 based on this given
observation.

Three bots need to break everything on
the platform. bot1 has a stone_axe…,
bot3 has a stone_axe. Write the actions
for bot1, bot2, bot3 based on this given
observation.

Two bots need to grow on the platform.
The goal is to get 4 carrot. bot1 has 3
carrot. bot1 has 1 potato. bot2 has 3
carrot. bot2 has 2 beetroot. Write the
actions for bot1, bot2 based on this given
observation.

Three bots need to craft 3
smooth_sandstone. here are the
introductions: Cooking Food: 1. To cook
a 'cooked_beef', I need 'beef'. To get
'beef', I need to kill a 'cow' or a
'mushroom'. 2. To cook a
'cooked_porkchop' ... bot1 has 1 beef ...
bot3 has 1 iron_shovel. Write the actions
for bot1, bot2 and bot3 based on this
given observation.

Observation First Person
View

Inventory
Information

bot1 has 5 bricks. bot1 has 2
sea_lantern…

bot1 has a stone_axe…bot3 has a
stone_axe…

bot1 has 3 carrot. bot1 has 1 potato. bot2
has 3 carrot. bot2 has 2 beetroot…

bot1 has 1 beef ... bot3 has 1 iron_shovel

Action placeItem(bot1, 'bricks', new Vec3(-1,0,-
1))
placeItem(bot2, 'oak_planks', new
Vec3(0,0,0))
placeItem(bot3, 'iron_ore', new Vec3(0,0,-
1))

mineBlock(bot1, new Vec3(-1,0,1))
mineBlock(bot2, new Vec3(-2,0,0))
mineBlock(bot3, new Vec3(-1,1,1))

farm_work(bot1, new Vec3(-1,-1,1), 'sow',
'carrot')
farm_work(bot2, new Vec3(-1,-1,-2),
'sow', 'carrot')

putItemFurnace(bot1, 'sandstone', new
Vec3(0,0,-1))",
"obtainBlock(bot2, new Vec3(2,0,0))",
"obtainBlock(bot3, new Vec3(1,0,-3))

Observation First Person
View

Inventory
Information

bot1 has 5 bricks. bot1 has 2
sea_lantern…

bot1 has a stone_axe…bot3 has a
stone_axe…

bot1 has 3 carrot. bot1 has 1 potato. bot2
has 3 carrot. bot2 has 2 beetroot…

bot1 has 1 beef ... bot3 has 1 iron_shovel

Action placeItem(bot1, 'coal_ore', new
Vec3(0,1,-1))
placeItem(bot2, 'purple_wool', new
Vec3(-1,1,0))

mineBlock(bot1, new Vec3(0,0,1))
mineBlock(bot3, new Vec3(0,0,-2))

farm_work(bot1, new Vec3(2,0,2),
'harvest')
farm_work(bot2, new Vec3(1,0,-2),
'harvest')

takeOutFurnace(bot1, new Vec3(0,0,1))

Top Front SideTop Front Side Top Front Side

bot1 bot2 bot3 bot1 bot2

. . .
bot1 bot2 bot3

bot1 bot2 bot3

bot1 bot2 bot3 bot1 bot2

bot1 bot2 bot3

bot1 bot2 bot3

Figure 5: Multi-modal prompt for Building, Clearing, Farming and Smelting.

…

…

…

…

…

Object

Goal

Base

Scenes

Shape

Hold Out

Figure 6: A close-up view of the visual diversity in tasks. The rightmost column displays the example
holdout set for testing generalization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

F DATASET COMPONENT

The dataset is organized in the following structure. The folder “configure” contains the setup
configurations and diversity settings for each task, with files named according to the task number. The
folder “data” contains four sub-folders: sub-folders “1”, “2”, and “3” correspond to the first-person
views of three different agents, while sub-folder “4” corresponds to the orthographic projections.
Inside each of these sub-folders are screenshots for the respective agents, each labeled with a
timestamp indicating the moment of each action. The folder “json” contains observation data for
each agent, along with task-related information such as rewards, completion status (“done”), and
timestamps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

task_building/
|-- configure/
| |-- 0.json
| |-- 1.json
| |-- ...
|-- data/
| |-- 0/
| | |-- 1/
| | | |-- screenshot_<timestamp>.png
| | | |-- screenshot_<timestamp>.png
| | | |-- screenshot_<timestamp>.png
| | | |-- ...
| | |-- 2/
| | | |-- screenshot_<timestamp>.png
| | | |-- ...
| | |-- 3/
| | | |-- screenshot_<timestamp>.png
| | | |-- ...
| | |-- 4/
| | |-- screenshot_<timestamp>.png
| | |-- ...
| |-- 1/
| |-- 2/
| |-- ...
|-- json/
| |-- 0.json
| |-- 1.json
| |-- 2.json
| |-- ...

task_clearing/
| ...

task_farming/
| ...

task_smelting/
| ...

G EXAMPLE TASK/DEMO

G.1 GPT-4O PROMPT

You a r e c o n t r o l l i n g 3 b o t s i n a M i n e c r a f t wor ld . The g o a l i s
t o b u i l d a s p e c i f i c s t r u c t u r e on a p l a t f o r m .

P l e a s e r ev i ew t h e images p r o v i d e d below , which i n c l u d e t h e
c u r r e n t s t a t e o f t h e wor ld and t h e g o a l s t r u c t u r e (

t h e f i n a l image i s t h e t h r e e o r t h o g r a p h i c v iews of t h e
g o a l) . Based on t h e s e o b s e r v a t i o n s , g e n e r a t e a c t i o n s

f o r each b o t t o h e l p b u i l d t h e s t r u c t u r e .

** I n s t r u c t i o n s : * *

− ** Ac t i on Format : * *

− ** Bots : * *
− ‘ botID ‘ can be one of : ’ bot1 ’ , ’ bot2 ’ , ’ bot3 ’ , ’ bot4 ’ (

depend ing on t h e number o f b o t s) .
− ** Blocks : * *
− ‘" b l o c k " ‘ i s t h e t y p e o f b l o c k t o p l a c e .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

− ** A v a i l a b l e Blocks : * *
− ’ oak_fence ’ , ’ b i r c h _ l o g ’ , ’ c o a l _ o r e ’ , ’ b r i c k s ’ , ’

s a n d s t o n e ’ , ’ s t o n e ’ , ’ i r o n _ o r e ’ , ’ go ld_o re ’ , ’ sponge ’ ,
’ s e a _ l a n t e r n ’ , ’ d i r t ’ , ’ g r a s s _ b l o c k ’ , ’ c l ay ’ , ’

oak_p lanks ’ , ’ emera ld_b lock ’ , ’ pumpkin ’ , ’
o r a n g e _ c o n c r e t e ’ , ’ pu rp le_wool ’ , ’ end_s tone ’ , ’
b o o k s h e l f ’ , ’ a c a c i a _ f e n c e ’ , ’ oak_log ’

− ** C o n s t r a i n t s : * *
− ** I n v e n t o r y Awareness : * * Ensure each b o t has t h e

n e c e s s a r y b l o c k s i n t h e i r i n v e n t o r y .
− **No O v e r l a p p i n g Blocks : * * Do n o t p l a c e more t h a n one

b l o c k a t t h e same p o s i t i o n .
− ** Workspace Dimens ions : * * The c e n t e r o f t h e workspace i s

a t (0 , 0 , 0) , and i t s p a n s 3 u n i t s a l o n g t h e x− a x i s ,
3 u n i t s a l o n g t h e z− a x i s , and 2 u n i t s a l o n g t h e y− a x i s
.

− **One Ac t i on p e r Bot : * * Each b o t can p l a c e on ly one
b l o c k a t a t ime .

** Submis s ion G u i d e l i n e s : * *

− P r o v i d e on ly t h e l i s t o f a c t i o n commands f o r a l l b o t s .
− Do n o t i n c l u d e any a d d i t i o n a l t e x t , e x p l a n a t i o n s , o r

f o r m a t t i n g (e . g . , no code b l o c k s o r markdown) .
− Example :
[" p l a c e I t e m (bot1 , ’ s t o n e ’ , new Vec3 (1 , 0 , 0)) " , "

p l a c e I t e m (bot2 , ’ oak_p lanks ’ , new Vec3 (0 , 0 , 1)) "]
You need t o p u t " " each e n t r y i n t h e l i s t .
P l e a s e g e n e r a t e t h e l i s t o f commands based on t h e c u r r e n t

o b s e r v a t i o n s and t h e g o a l image .

(a) Agent1 observation (b) Agent2 observation
(c) three orthographic views of the
goal

Figure 7: Observations to GPT-4o.

Additionally, we provide a one-shot example of the same task from the training set as an example to
GPT-4o.

G.2 GPT-4O COMMON ERRORS

We provide some errors from GPT-4 below:

Harvest without sow.

[" farm_work (bot1 , new Vec3 (0 , 0 , 1) , ’ h a r v e s t ’) " , " farm_work (
bot2 , new Vec3 (0 , 0 , −1) , ’ h a r v e s t ’) "]

Sow never harvest.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

[" farm_work (bot1 , new Vec3 (1 , 0 , 1) , ’ sow ’ , ’ wheat ’) " , "
farm_work (bot2 , new Vec3 (1 , 0 , 0) , ’ sow ’ , ’ wheat ’) " , "
farm_work (bot3 , new Vec3 (0 , 0 , 0) , ’ sow ’ , ’ wheat ’) "]

Fail to understand 3D spatial relations.

[mineBlock (bot1 , new Vec3 (1 , 1 , 1)) " , " mineBlock (bot2 , new Vec3
(− 1 , 1 , 1)) " , " mineBlock (bot3 , new Vec3 (− 1 , 1 , 0))]

H DATASET STATISTICS TABLES

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences

3 7,777 51.85%
2 3,207 21.38%
4 3,091 20.61%
5 483 3.22%
6 440 2.93%

Agents
3 7,505 50.03%
2 7,493 49.97%

Scenes
ice_on_water 2,555 17.04%
mountain_half 2,553 17.03%
village 2,482 16.55%
desert_village 2,480 16.53%
snow_mountain 2,478 16.52%
swamp 2,450 16.34%

Background Types
stone 1,530 10.20%
pink_wool 1,527 10.19%
glowstone 1,522 10.15%
obsidian 1,511 10.08%
glass 1,509 10.07%
smooth_quartz 1,499 10.00%
hay_block 1,494 9.96%
gold_block 1,473 9.82%
oak_wood 1,471 9.81%
cyan_concrete 1,462 9.75%

Target Types
bricks 10,391 9.92%
sponge 5,438 5.19%
coal_ore 5,370 5.13%
grass_block 5,327 5.09%
clay 5,318 5.08%
sea_lantern 5,296 5.06%
orange_concrete 5,287 5.05%
pumpkin 5,269 5.03%
purple_wool 5,257 5.02%
gold_ore 5,247 5.01%
oak_fence 5,234 5.00%
oak_planks 5,216 4.98%
birch_log 5,184 4.95%
stone 5,182 4.95%
sandstone 5,176 4.94%
emerald_block 5,164 4.93%
iron_ore 5,160 4.93%
dirt 5,124 4.89%
end_stone 5,119 4.89%

Table 6: Diversity Statistics for Task Building

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Target Counts

6 5,653 37.69%
7 2,625 17.50%
8 2,573 17.15%
5 2,122 14.15%
10 526 3.51%
12 515 3.43%
9 496 3.31%
11 488 3.25%

Dimensional Shapes
[3, 1, 2] 3,859 25.73%
[4, 1, 2] 3,770 25.14%
[2, 3, 2] 3,695 24.63%
[2, 2, 2] 3,674 24.49%

Table 7: Diversity Statistics for Task Building (Cont.)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences

4 4,027 27.51%
5 3,751 25.61%
6 3,270 22.32%
3 1,561 10.66%
7 1,396 9.53%
8 424 2.89%
9 133 0.91%
2 79 0.54%

Agents
2 7,358 50.28%
3 7,283 49.72%

Scenes
desert_village 3,012 20.56%
snow_mountain 2,948 20.13%
swamp 2,929 20.00%
ice_on_water 2,894 19.76%
village 2,858 19.54%

Background Types
smooth_quartz 1,405 9.59%
pink_wool 1,357 9.27%
gold_block 1,353 9.24%
oak_wood 1,334 9.10%
hay_block 1,332 9.09%
cyan_concrete 1,332 9.09%
grass_block 1,328 9.06%
glass 1,325 9.04%
glowstone 1,309 8.93%
stone 1,302 8.89%
obsidian 1,264 8.63%

Target Counts
6 4,310 29.43%
5 2,499 17.07%
4 2,436 16.64%
8 1,843 12.58%
7 1,803 12.31%
9 1,750 11.95%

Target Types
oak_fence 5,879 6.45%
grass_block 5,836 6.40%
clay 5,816 6.38%
oak_log 5,772 6.33%
sandstone 5,748 6.30%
acacia_fence 5,744 6.30%
birch_log 5,732 6.28%
bookshelf 5,726 6.28%
stone 5,709 6.26%
bricks 5,695 6.25%
crafting_table 5,684 6.23%
dirt 5,671 6.22%
cobweb 5,605 6.15%
iron_ore 5,603 6.14%
coal_ore 5,555 6.09%
anvil 5,439 5.96%

Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Table 8: Diversity Statistics for Task Clearing

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Tools

stone_pickaxe 9,329 25.51%
stone_sword 9,180 25.10%
stone_axe 9,150 24.99%
stone_shovel 8,906 24.36%

Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Table 9: Diversity Statistics for Task Clearing (Cont.)

Diversity Type Count Percentage
Action Sequences

4 7,458 50.33%
5 3,731 25.17%
3 3,264 22.02%
6 270 1.82%
2 81 0.55%
7 11 0.07%

Agents
2 7,465 50.37%
3 7,350 49.63%

Scenes
snow_mountain 3,732 25.18%
swamp 3,722 25.11%
ice_on_water 3,707 25.01%
village 3,654 24.69%

Background Types
stone 2,892 19.51%
obsidian 1,549 10.46%
hay_block 1,527 10.30%
oak_wood 1,524 10.28%
cyan_concrete 1,492 10.06%
glass 1,465 9.88%
smooth_quartz 1,462 9.86%
pink_wool 1,455 9.81%
dirt 1,449 9.77%

Target Types
potato 4,972 33.56%
carrot 4,955 33.45%
wheat 4,888 32.99%

Target Counts
4 2,873 19.39%
3 2,269 15.31%
5 2,256 15.22%
6 2,151 14.51%
2 1,240 8.37%
8 1,112 7.50%
10 1,062 7.17%
7 933 6.29%
12 512 3.45%
14 407 2.75%

Table 10: Diversity Statistics for Task Farming

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Action Sequences

5 3,261 30.20%
4 3,072 28.45%
6 2,041 18.89%
3 1,824 16.88%
2 358 3.31%
7 239 2.21%
8 8 0.07%

Agents
3 5,480 50.75%
2 5,323 49.25%

Scenes
snow_mountain 2,272 21.04%
desert_villege 2,257 20.92%
swamp 2,171 20.08%
ice_on_water 2,059 19.09%
villege 2,044 18.87%

Background Types
gold_block 1,014 9.22%
smooth_quartz 1,010 9.19%
cyan_concrete 995 9.02%
glowstone 981 8.92%
pink_wool 990 8.99%
glass 978 8.89%
oak_wood 987 8.98%
grass_block 977 8.88%
hay_block 968 8.80%
stone 964 8.76%
obsidian 939 8.54%

Furnace
1 5,772 53.45%
2 5,031 46.55%

Fuel Types
coal_block 999 9.58%
charcoal 962 9.22%
lava_bucket 940 9.01%
coal 921 8.84%
spruce_planks 910 8.73%
acacia_planks 906 8.69%
oak_planks 861 8.26%
birch_log 893 8.57%
acacia_log 887 8.50%
spruce_log 845 8.10%
oak_log 840 8.05%
birch_planks 839 8.04%

Table 11: Diversity Statistics for Task Smelting

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Diversity Type Count Percentage
Goal Types

food 5,412 50.09%
item 5,391 49.91%

Target Types
glass 1,144 10.26%
gold_ingot 1,094 9.81%
stone 1,077 9.66%
smooth_sandstone 1,040 9.32%
iron_ingot 1,036 9.29%
cooked_salmon 712 6.38%
cooked_cod 708 6.35%
baked_potato 758 6.80%
cooked_mutton 664 5.95%
cooked_rabbit 648 5.81%
cooked_porkchop 668 5.99%
cooked_beef 627 5.62%
cooked_chicken 627 5.62%

Target Counts
2 3,999 37.01%
3 3,363 31.13%
1 1,909 17.68%
4 1,532 14.18%

Tools
iron_pickaxe 18,633 29.69%
iron_shovel 13,676 21.78%
iron_axe 13,453 21.43%
iron_sword 13,448 21.42%

Resource Types
red_sand 2,032 10.37%
gold_ore 1,999 10.20%
cobblestone 1,915 9.77%
sandstone 1,818 9.28%
iron_ore 1,780 9.08%
coal_ore 1,714 8.75%
acacia_planks 1,564 7.98%
oak_planks 1,503 7.67%
birch_log 1,486 7.58%
spruce_log 1,477 7.54%
oak_log 1,456 7.44%
spruce_planks 1,471 7.51%
birch_planks 1,344 6.86%
sheep 1,119 5.71%
pig 1,104 5.63%
rabbit 1,097 5.60%
chicken 1,081 5.52%
cow 700 3.57%
mooshroom 675 3.44%

Table 12: Diversity Statistics for Task Smelting (Cont.)

25

	Introduction
	Related work
	TeamCraft Benchmark
	Simulation Environment
	Observation and Actions
	Centralized and Decentralized Agents
	Task Design
	Multi-Modal Prompt
	Diversity
	Expert Demonstration Generation Pipeline
	Test Set and Generalization Set

	Experiments
	Baselines
	Evaluation Metrics
	Evaluation Results

	Conclusions
	Prompt Examples
	High Level Skills
	Atomic Actions
	Detailed Multi-modal prompt
	Visual Diversity
	Dataset Component
	Example Task/Demo
	GPT-4o Prompt
	GPT-4o Common Errors

	Dataset Statistics Tables

