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Abstract

Neural Architecture Search (NAS) can automatically design promising neural
architectures without artificial experience. Though it achieves great success, pro-
hibitively high search cost is required to find a high-performance architecture,
which blocks its practical implementation. Neural predictor can directly evaluate
the performance of neural networks based on their architectures and thereby save
much budget. However, existing neural predictors require substantial annotated
architectures trained from scratch, which still consume many computational re-
sources. To solve this issue, we propose a Cross-Domain Predictor (CDP), which
is trained based on the existing NAS benchmark datasets (e.g., NAS-Bench-101),
but can be used to find high-performance architectures in large-scale search spaces.
Particularly, we propose a progressive subspace adaptation strategy to address the
domain discrepancy between the source architecture space and the target space.
Considering the large difference between two architecture spaces, an assistant space
is developed to smooth the transfer process. Compared with existing NAS methods,
the proposed CDP is much more efficient. For example, CDP only requires the
search cost of 0.1 GPU Days to find architectures with 76.9% top-1 accuracy on
ImageNet and 97.51% on CIFAR-10. The source code will be available 3.

1 Introduction

Neural Architecture Search (NAS) [16] can automatically design promising architectures of deep
neural networks for real-world applications, such as image classification, language modeling, and
medical image segmentation [50, 46, 62]. In recent years, there have been many architectures
searched by NAS methods, which can surpass the performance of those manually designed [43, 23].
Generally, performing NAS methods often requires thousands of GPU Days. Unfortunately, such a
large amount of computing resources is not necessarily available to most researchers and enterprises
interested. As a result, NAS researchers are paying increasing attention to improve the efficiency of
NAS through developing effective acceleration methods, to complete the search within an acceptable
cost [34].

Generally speaking, most of the existing search acceleration methods are developed based on some
heuristic strategies, e.g., reducing the size of search space [65, 15], searching upon a smaller proxy
dataset [43, 33], and sharing the parameters of different architectures (weight sharing) [44, 42].
∗Equal contribution.
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3https://github.com/lyq998/CDP (Pytorch)
https://gitee.com/mindspore/models/tree/master/research/cv/CDP (MindSpore)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/lyq998/CDP
https://gitee.com/mindspore/models/tree/master/research/cv/CDP


However, the shortcomings of the above methods are obvious. Reducing the size of search space
also limits the diversity of architectures [52], and the architectures optimized on the proxy dataset
are not guaranteed to perform best on the target dataset [4]. Weight sharing first trains a supergraph
that is manually designed in advance and then searches subgraphs as the potential architectures in
the supergraph. The weights in the same components between different architectures are shared
from the trained supergraph without further training, thus the efficiency of performing of NAS is
greatly improved. However, the weight sharing also suffers from performance instability and dramatic
performance collapse [8, 6], which severely limits its application.

Neural predictor is a promising acceleration method, which directly estimates the performance of
neural architectures without any training of the neural network during NAS [55]. For example,
Sun et al. [49] proposed an end-to-end performance predictor that employed random forest [21]
which reduced the consumed time of NAS significantly. Tang et al. [54] used a graph convolution
network (GCN) as the neural predictor and fully exploited the unlabeled architectures to improve
the prediction accuracy. Though these predictor-based methods tend to be more efficient than other
methods, sufficient architectures which play as the annotated examples to train the predictor, are still
required to sample from the target search space. These sampled architectures are usually required to
train fully to obtain their actual performance [55, 49]. A large search space requires a mass of samples,
which becomes a bottleneck for further improving predictor-based methods. Consequently, neural
predictor still requires massive computing costs largely due to annotating the sampled architectures.

Fortunately, we note that many benchmark datasets have been released for NAS research, such
as NAS-Bench-101 [60], NAS-Bench-201 [13], NAS-Bench-nlp [29], NAS-Bench-ASR [38], etc.
These datasets contain a great number of architectures with known real performance, and constructing
them has consumed massive computational resources. If these data can come in handy, there is no
need to annotate other architectures for predictors and the search cost is greatly reduced.

However, the search spaces of these datasets are small and have a huge difference from the large
search spaces adopted by popular NAS algorithms such as DARTS [33] and ProxylessNAS [4].
Although the architectures are all made up of operations, the settings are quite different, such as the
types and the maximum number of operations. As a result, these well-trained benchmark architectures
cannot be directly used to build predictors.

In this paper, we develop a Cross-Domain Predictor (dubbed as CDP) by exploiting the existing NAS
benchmarks, and then the predictor is implemented to find high-performance neural architectures in
large search spaces.

The contributions of CDP are summarized as follows: 1) We divide the architecture space for subspace
adaptation, and propose a progressive subspace partition to accurately exploit the local information.
2) We design an assistant space, to achieve smoother transfer from the source space to the target
one because of the significant differences between searching domains. 3) We experimentally show
that CDP can search promising architectures with only 0.1 GPU days on ImageNet and CIFAR-10,
achieving 76.9% and 97.51% classification accuracy, respectively.
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Figure 1: Neural predictor-assisted NAS. Existing neu-
ral predictors need to annotate sufficient architectures
from the target space, which incurs a high computa-
tional cost. Our method uses existing NAS benchmark
datasets where massive available labeled architectures
can be used to train the neural predictor.

In general, there are three important parts
in NAS [16], namely architecture space1,
search strategy, and performance evalua-
tion. During the search process, each NAS
method first specifies the architecture space
that includes all the potential architectures
to be searched. Secondly, a particular search
strategy is utilized to perform the search. In
practice, reinforcement learning [26], evolu-
tionary computation [1], and gradient-based
methods are the mainstream search strate-

1It is also named as search space in some literature, in this paper, we treat them as the same.
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gies widely used. Finally, the performance evaluation assesses the architectures searched to guide the
search strategy.

In recent years, how to accelerate the performance evaluation is one of the most valuable research
directions in NAS [34]. As a promising acceleration method, neural predictors have received great
attention from researchers since 2017 [11]. The red and black parts in Fig. 1 illustrate a typical neural
predictor-assisted NAS for a glance. Recently, with the design of new predictors [49, 54, 55], the
prediction performance of neural predictors has been continuously improved. However, existing
predictors request the source and the target architecture spaces to be the same. If the predictor
makes predictions for a specific NAS method, it must collect sufficient labeled architectures from the
search space of the corresponding NAS method in advance. The CDP algorithm we proposed in this
paper gets rid of the constraint that the source and the target architecture spaces must be the same.
Particularly, CDP directly utilizes the existing benchmark datasets as the training architectures in the
source space, yet to predict the architectures in other target spaces. In this way, the neural predictor
will not need to sample labeled data from the target space of the particular NAS method, thus greatly
reducing the cost of annotating the training architectures.

2.2 Transfer Learning and Domain Adaptation

Transfer learning is to apply knowledge learned in previous domains to other domains, thus reducing
the need and effort to recollect labeled data [40]. Specifically, domain adaptation is a subcategory of
transfer learning, where the source and target tasks are the same and labeled data is available in the
source domain, which is the scenario of CDP. According to [64], transfer learning can be classified
into two different categories based on the consistency between the source and the target domains.
If the feature spaces are different in both domains, the scenario is termed heterogeneous transfer
learning. Otherwise, it is homogeneous transfer learning. The proposed CDP algorithm in this paper
follows heterogeneous transfer learning because the architecture spaces are different. But observing
that much more current literature addresses the scenario of homogeneous transfer learning [10], we
proposed a uniform encoding strategy that unifies the architecture spaces, so that it can be treated as
homogeneous transfer learning.

The feature-based transfer is one of the most prevalent methods. It aims at reducing the distribution
difference between the source domain and the target domain with the help of some instances. A
common metric for measuring the difference is Maximum Mean Discrepancy (MMD) [18], which
can quantify the difference by calculating the average distance of the instances sampled from both
domains [64]. Inspired by MMD, many variants and improved approaches are proposed such as
MK-MMD [19], weighted MMD [59], and Local Maximum Mean Discrepancy (LMMD) [63].
Among them, LMMD can take advantage of local affinity for more delicate adaptation and can
achieve extraordinary results. Specifically, LMMD first classifies the domain into several subspaces
and then aligns the subspaces of the same category in pairs. Secondly, LMMD uses the pseudo-labels
output by the neural network to classify the target data throughout the training process. However, it is
well known that the neural network cannot achieve satisfactory results in the initial training stage,
that is, the pseudo-label obtained through it may be seriously inconsistent with the real label in the
early training process. In this paper, we propose a progressive approach to alleviate the disadvantages
of misclassification.

3 Approach

In this section, we will document how the proposed cross-domain predictor bridges the gap between
different architecture spaces. The overall process of the proposed CDP algorithm is shown in Fig. 2.

3.1 Formulation

Supposing the architectures in the search space X are X = {x1, x2, ..., xn}, and their respective
performances in space Y are Y = {y1, y2, ..., yn}, the predictor P : X → Y , which is trained to
predict the performance of architecture, can be formulized by Equation (1):

min
W

1

n

n∑
n=1

L(P (W, xn), yn), (1)
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Figure 2: The CDP flowchart for evaluating neural architectures. The blue and red dashed circles
represent the source architecture space and target architecture spaces, respectively. The size of
assistant space is between those of source and target spaces, and this space is used in early training
for a smoother transfer. Architectures from these spaces are required to go through the uniform
encoding to be represented by adjacency matrix M and operation features O0. Note that the true
label of source architecture data and the pseudo-label of target architecture data, i.e., ys and ŷt, need
to go through the proposed Progressive Subspace Partition (PSP) strategy first, and then are used to
calculate LMMD. The detailed figure of PSP is displayed on the right. In the beginning, this strategy
divides all architectures into the same space. As the neural network training progresses, the number
of subspaces will continue to increase until it finally reaches the specified maximum number. The
partition of subspace is based on true and pseudo labels.

whereW denotes the trainable weight of predictor P , and L is the loss function. After the training, the
predictor with trained weightW will evaluate other architectures, say xi where i is not in {1, 2, ..., n},
via Equation (2):

ŷi = P (W, xi). (2)

Mathematically, neural architectures can be presented as directed graphs, and a common encoding
scheme of architecture x is to use feature vectors of operations O0 and adjacency matrix M , which
are further collectively employed to represent the type of each operation and the connection between
operations. GCN [28] is a prevalent technique tackling non-Euclidean data such as graphs and has
achieved great success in representing neural architectures [55]. Therefore, it is used as the first
component in P to extract features of neural architecture G : X → Z , where Z is the feature space.

In this paper, we follow the convention and choose the GCN version implemented in [55] as the
neural predictor, and the feature vectors are updated by Equation (3):

Ol+1 =
1

2
ReLU(MOlW

+
l ) +

1

2
ReLU(MTOlW

−
l ), (3)

where MT is the transposed matrix of M and ReLU is an activation function. W+
l and W−l are

two trainable weights of the l-th layer in GCN. Specifically, the last two terms of Equation (3) allow
the graph information to flow forward and backward, respectively, which makes it more suitable for
dealing with directed graphs like neural architectures. In addition, the second component of P is a
hypothesis h : Z → Y , consisting of several fully connected layers, and is tailed to the GCN for
obtaining the predicted performance values. As for loss function L, we also follow the convention
suggested in the reference [55] using mean square error.

3.2 Progressive Subspace Adaptation

Although neural predictor can largely save search cost for NAS, the limitation of itself is also serious:
it cannot be well trained due to the lack of available labeled architectures of the corresponding NAS
algorithm. Observing that many architecture datasets have been released, these data can be potentially
used to train the neural predictors. However, the distribution of these massive labeled architectures is
significantly different from that of the architectures from the popular search space that is often large.
In principle, domain adaptation is useful for reducing the distribution gap between these architecture
spaces. Let D̃S and D̃T be the source and target distributions over Z . We will specifically introduce
how to bridge the gap between D̃S and D̃T in the proposed method as below.

Research has shown that deep neural networks have the ability to learn the transferable features
well [61, 39]. In addition, many methods [35, 63] add metrics of discrepancy to the objective function
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to jointly optimize the neural network. Based on Equation (1), the term of adaptation regularizer
d(·, ·) is added, and the objective function becomes:

min
W

1

ns

ns∑
n=1

L(P (W, xsn), ysn) + θd(D̃S , D̃T ), (4)

where xsn and ysn denote architectures with labels in source search space XS , and θ > 0 is a penalty
parameter.

Maximum Mean Discrepancy (MMD) [18] is a classic metric and has been widely used in domain
adaptation. LetHk denote the reproducing kernel Hilbert space (RKHS) endowed with a characteristic
kernel k, and ŨS , ŨT are samples of sizes ns, nt drawn from D̃S , D̃T respectively. The regularizer
term d(·, ·) can be implemented by MMD, and the unbiased estimator of MMD is defined by latent
representation zs, zt:

d̂k(D̃S , D̃T ) , ‖ 1

ns

∑
zsi∈ŨS

φ(zsi )−
1

nt

∑
ztj∈ŨT

φ(ztj)‖2Hk , (5)

where φ denotes feature map function mapping original space to Hk and it is associated with k,
k(zs, zt) = 〈φ(zs), φ(zt)〉 where 〈·, ·〉 means the inner product operation.

Considering that the differences between search spaces are quite large, the gap cannot be handled
well if only MMD is used. In addition, MMD is a global domain adaptation, which often ignores
the local relationship. In order to take full use of the local information between architectures, we
present a progressive subspace adaptation strategy. First, the source space and the target space are
divided into several subspaces whose number will increase during the training process. Secondly,
MMD loss is used between corresponding subspaces for adaptation. Specifically, these two spaces
will be divided according to the performance Y = {y1, y2, ..., yn} of architectures. Between these
two spaces, the architectures with good performance may share some characteristics, such as long
shortcut connections and preferred operations.

We directly use the true labels y of architectures in the sources space and predict the pseudo-labels
ŷ of architectures in the target space to divide the subspaces. The performance value yi is a scalar,
which needs to be classified first to become a classification label yi that is a vector. Secondly, the
weight wci which presents the xi belonging relationship to the c-th subspace can be calculated via
Equation (6):

wci =
yci∑

yj∈Y y
c
j

, (6)

where yci denotes the c-th element of label vector yi. With the weight wci and Equation (5), the
unbiased estimator of the discrepancy between subspaces becomes Equation (7):

d̂k(D̃S , D̃T ) ,
1

C

C∑
c=1

‖
∑

zsi∈ŨS

wsci φ(zsi )−
∑

ztj∈ŨT

wtcj φ(ztj)‖2Hk . (7)

This discrepancy is termed Local Maximum Mean Discrepancy (LMMD) [63] that takes the correla-
tion from the same category of subspaces into consideration.

With the help of the kernel k, Equation (7) can be further modified to obtain the following formula
for easy calculation of LMMD:

d̂k(D̃S , D̃T ) =
1

C

C∑
c=1

[

ns∑
i=1

ns∑
j=1

wsci w
sc
j k(zsi , z

s
j)

+

nt∑
i=1

nt∑
j=1

wtci w
tc
j k(zti, z

t
j)− 2

ns∑
i=1

nt∑
j=1

wsci w
tc
j k(zsi , z

t
j)].

(8)

However, there is a severe issue that the pseudo-label ŷ may be incorrect, especially when the neural
network is not fully trained. This will further affect the accuracy of d̂k(D̃S , D̃T ) in Equation (8).
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In order to alleviate the misclassification due to inaccurate pseudo-labels, we propose a progressive
subspace partition strategy. All the architectures are partitioned into one space in the early stage
of neural network training so that there will be no classification errors caused by incorrect pseudo
labels. As the training progresses, the neural network can predict more accurately. At this time, we
slowly increase the number of subspaces. Finally, the number of subspaces will end at the specified
maximum K.

Progressive Subspace Partition: Supposing the neural network is specified to be trained for a total
of E epochs, and the maximum number of subspaces is K, when the training progresses arrive at the
e-th epoch, the number of subspace categories Ce can be scheduled by Equation (9):

Ce = Sche(e;E,K), (9)

and ∀i < j, Sche(i;E,K) < Sche(j;E,K). Based on experience and experiments, in this paper
we let Ce = K − bcos( π

2E e) ∗Kc, where b·c denotes the round-down operation. Ce calculated by
this schedule meets the characteristics discussed above, i.e., when e is relatively small, Ce is equal
to 1, while e is close to E, Ce will be K. Furthermore, we use the cosine function to increase the
number of epochs with a small value of Ce. This strategy ensures that the neural network has been
sufficiently trained before the Ce becomes larger. Therefore, the occurrence of classification errors
will be greatly reduced.

After determining the number of subspace categories Ce during the e-th training epoch, we can use
fractile to generate a new label y for the original label y which is a scalar. To be more specific, the
fractiles {f0, f1, f2, ..., fCe} of scalar labels need to be found at first, where fCe is the largest one in
the labels and f0 is the lower bound. Then, we can find the corresponding subspace category c for
yi if fc−1 < yi ≤ fc. After that, we set the c-th element of yi to one and other elements as zeros.
Finally, the classification vector yi is used by Equation (6) for the calculation.

Here, we will further analyze the role of the proposed progressive subspace partition strategy. When
the number of subspaces is one, the numerator yci in Equation (6) is always one, and the denominator∑

yj∈Y y
c
j is equal to the number of source (or target) data. Hence, wsci is equal to 1/ns and wtci is

equal to 1/nt. As a result, the unbiased estimator of LMMD (Equation (7)) becomes that of MMD
(Equation (5)) which is a global adaptation. While the number of subspaces increases to the specified
maximum number K, the measurement of the discrepancy we used is actually LMMD which focuses
on the relationship between the same categories of subspaces to help the subspace adaptation.

3.3 Assistant Architecture Space

Source Spaces Assistant Space Target Space

NAS-Bench-101

NAS-Bench-201
Tiny DARTS DARTS

Small Middle Large

Figure 3: An example of assistant space.

Considering that the source architecture space
and target architecture space are quite different,
it is difficult to directly transfer the source archi-
tecture space to the target space. To address this
issue, we design an assistant architecture space
to make the transfer smoother.

Generally, the source space, where all architectures can be trained from scratch to obtain the per-
formance of each architecture, is often relatively small. However, the target architecture spaces
are often large in practice. An example is given based on two widely used architecture spaces,
namely NAS-Bench-101 [60] and DARTS [33]. In terms of the number of possible architectures,
NAS-Bench-101 is 423K and DARTS is about 1018. In terms of the maximum number of operations
in a cell, NAS-Bench-101 is 5 while DARTS is 8. Thus, the size of the assistant space should be
between the size of the source space and the target space. Besides, other features should be similar to
these two architecture spaces. In this paper, we specify the assistant space more similar to the target
space.

Specifically, an assistant space for NAS-Bench-101, NAS-Bench-201 [13], and DARTS are designed
following the above principles, dubbed as ‘tiny DARTS’ space. Fig. 3 is an illustration of this assistant
space, where we use dark black to represent the large architecture space and gray to represent the
smaller one. The participation of the assistant space makes the adaptation be a continuous process and
alleviates the inadaptability caused by large differences. The only difference between tiny DARTS
and DARTS is that the number of intermediate nodes has changed from 4 to 3. This directly reduces
the number of operations from 8 to 6 which is equal to the situation in NAS-Bench-201. Except
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for this change, any other settings, including the types of operations, etc., have not been changed.
Therefore, the features in DARTS have also been preserved. Specifically, there are two input nodes in
tiny DARTS, and all intermediate nodes are connected to the output node.

In the early training epochs of CDP, the assistant space (e.g., tiny DARTS) is used as the target
domain, i.e., the input at the bottom in Fig. 2. In this stage, CDP focuses on bridging the smaller gap
between the source space and the assistant space. After several training epochs, the gap between
the source space and the target space can be also reduced as the assistant space and target space are
very similar. Therefore, it is much easier to reduce the gap between the source and target spaces at
this time. As a result, the space transfer process becomes smoother with the assistant space, which
improves the prediction performance.

After the determination of the target domain, an encoding strategy is required for different search
spaces. We propose a uniform strategy with four main steps, where The detailed descriptions are
shown in Appendix A.

3.4 Theoretical Analysis

In this section, we give a theoretical analysis of the expected error of target architecture search space.
We first introduce Lemma 1 which is a basic theorem in domain adaptation, and then further deduce
the target error bound of CDP.

Lemma 1. [3] Let εT (h) and εS(h) be the expected error on target and source domain andH be a
hypothesis space, for h ∈ H:

εT (h) ≤ εS(h) + dH(D̃S , D̃T ) + λ, (10)

where λ = εT (h∗) + εS(h∗) is the combined error of ideal hypothesis h∗ = arg minh∈H(εT (h) +

εS(h)) on both domains and dH(D̃S , D̃T ) is the upper bound of the A-distance [27].

Let ŨS,train, ŨS,valid be the training and validation datasets randomly sampled from the distribution
DS respectively, and ŨS,train ∩ ŨS,valid = ∅. After the predictor is trained on the training dataset
ŨS,train, the validation dataset ŨS,valid is used to validate it. The validation hypothesis H′ is a
subset ofH, and is only determined by ŨS,train. The following theorem provides an upper bound of
expected target-domain error in terms of the empirical error on ŨS,valid and MMD dk(D̃S , D̃T ).

Theorem 2. Let d′ be the VC-dimension ofH′, m be the size of ŨS,valid, m′ be the size of unlabeled
samples ŨS and ŨT . With probability of 1− δ, for h ∈ H′:

εT (h) ≤ ε̂S,valid(h) + 2dk(D̃S , D̃T ) + 2(d′ logm−log δ)
3m

+
√

2(d′ logm−log δ)
m + 4

√
d′ log(2m′)+log( 4

δ )

m′ + 2 + λ.
(11)

Proof sketch: The proof is mainly divided into two steps. We first use the empirical error on source
validation dataset ε̂S,valid(h) to represent the upper bound of expected error on source domain εS(h):

εS(h) ≤ ε̂S,valid(h) + 2(d′ logm−log δ)
3m +

√
2(d′ logm−log δ)

m . (12)

The detailed proof can be found in Equations (19)-(24) in Appendix B. Secondly, the upper bound of
the distance dH(D̃S , D̃T ) is constrained by MMD dk(D̃S , D̃T ), i.e.:

dH(D̃S , D̃T ) ≤ 2 + 2dk(D̃S , D̃T ) + 4

√
d′ log(2m′)+log( 4

δ )

m′ , (13)

and Equations (25)-(26) in Appendix B show the proof in detail. Finally, by applying these inequalities
to Lemma 1, the theorem can be obtained.

Theorem 2 shows that the expected error on the target domain is bound by two terms, the empirical
validation error in source domain ε̂S,valid(h) and MMD dk(D̃S , D̃T ) which is minimized as one term
of the objective function. This means that when observing the predictor performs well on the source
validation dataset, the expected error on the target domain will also be small.
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Table 1: Comparison with state-of-the-art and neural predictor-assisted NAS methods on ImageNet.
We report the results with the lowest cost if there are multiple architectures searched in the literature
of the compared methods. The symbol ‘—’ denotes that no results are available in original papers.

Model Cost (GPU Days) Top-1 (%) Top-5 (%) FLOPs (M) # Params (M)
NASNet-A [65] 2000 74.0 91.6 564 5.3

AmoebaNet-A [43] 3150 74.5 92.0 555 5.1
DARTS [33] 4 73.3 91.3 574 4.7

MobileNetV3 [23] ≈3000 75.2 92.2 219 5.4
EfficientNet B0 [53] ≈3000 76.3 93.2 390 5.3

FairDARTS-B [8] 0.4 75.1 92.5 541 4.8
PC-DARTS [58] 0.1 74.9 92.2 586 5.3

MoGA-A [7] 12 75.9 92.8 304 5.1
DropNAS [22] 0.6 75.5 92.6 572 5.2

DOTS [20] 0.2 75.7 92.6 581 5.2
NAO [37] 200 74.3 91.8 584 11.35

Neural Predictor [55] 119 Archs* 74.7** — — —
SemiNAS [36] 4 76.5 93.2 599 6.3
WeakNAS [56] 2.5 76.5 93.2 591 5.5

CDP (Ours) 0.1 76.9 93.0 548 5.4
* The search cost is 119 architectures trained on ImageNet, not measured in GPU Days.
** An approximate value estimated from the figure in its original paper.

4 Experiments

In this section, we will empirically investigate the effectiveness of the proposed method, including
the experiments conducted on ImageNet [12] and CIFAR-10 [30], and the ablation studies. Our
experiments are conducted with PyTorch [41] and MindSpore [25].

4.1 Experimental Settings

Architecture spaces for CDP: NAS-Bench-101 and NAS-Bench-201 are chosen as the source spaces
and DARTS is the target space. The training labels in NAS-Bench-101 and NAS-Bench-201 are
normalized separately. This can alleviate the problems caused by different performance scales.

Search strategy: Following the convention in neural predictor [55], a large set of architectures in the
target search space are randomly sampled and their performance is predicted. In addition, according
to the previous work on DARTS search space [5], we limit the max number of skip connections
to 2. After that, we choose the architecture with the best-predicted performance as the searched
architecture.

4.2 Search Results on ImageNet and CIFAR-10

Table 2: Comparison with state-of-the-art NAS meth-
ods on CIFAR-10. GPU Days is used to measure
search cost. ‘Acc.’ denotes the accuracy and ‘Params’
denotes the parameters.

Model Cost Acc. (%) Params (M)
NASNet-A 2000 97.35 3.3

ENAS 0.5 97.11 4.6
FairDARTS 0.4 97.46 2.8
P-DARTS 0.3 97.50 3.4

PC-DARTS 0.1 97.43 3.6
PVLL-NAS 0.2 97.30 3.3

AmoebaNet-A 3150 96.66 ± 0.06 3.2
DARTS 4 97.24 ± 0.09 3.3

BRP-NAS 6 97.29 ± 0.07 —

CDP (Ours) 0.1 97.51 3.397.37 ± 0.08

The experimental results of ImageNet are
shown in Table 1, where the competitors are
all the state-of-the-art NAS methods (shown
in the second row) and neural predictor-
assisted NAS methods (shown in the third
row). As can be seen from Table 1, the pro-
posed CDP method only consumed 0.1 GPU
Days to complete the search, and it is one of
the least costly search methods. Specifically,
compared with the chosen neural predictor-
assisted NAS methods, the search cost of
CDP is 2000× less than NAO, 40× less
than SemiNAS, and 25× less than Weak-
NAS. The main reason for the extremely low
cost of CDP lies in that CDP can make full
use of a large amount of existing data from
the benchmark datasets. In addition, although CDP consumes a similar budget to that of PC-DARTS
which is the state-of-the-art NAS method using weight sharing, CDP achieves the best top-1 accuracy.
The searched architectures are displayed in Appendix C.
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Table 3: The impact of differ-
ent progressive strategy (PS).

PS KTau
None 0.3650
Linear 0.4949
Cosine 0.5176

Table 4: Ablation study on
assistant space (AS).

AS Size KTau

% — 0.5176
! Small 0.5051
! Medium 0.5306

Table 5: Ablation study on do-
main adaptation approaches.

Approach KTau
DANN [17] 0.4686

CORAL [48] 0.4306
MMD [35] 0.4549

LMMD [63] 0.4969
LMMD + PSP 0.5306

The comparison results of CIFAR-10 are shown in Table 2. In this experiment, in addition to the
methods compared in Table 1, we also compare with three other state-of-the-art methods. They are
ENAS [42], P-DARTS [5], PVLL-NAS [31], and a predictor-assisted NAS method BRP-NAS [14].
The parameters of all comparison methods are similar. In terms of the search cost, CDP requires only
0.1 GPU Days, which is one of the lowest cost methods in the table. In addition, the architecture
searched by CDP also outperforms all the NAS methods compared.

4.3 Ablation Study

To the best of our knowledge, CDP is the first work of neural predictors designed from the cross-
domain view, by directly exploring the architectures of existing NAS benchmark datasets. Therefore,
it is not practical to conduct any experiments on NAS-Bench-101 and NAS-Bench-201 by tradition.
To deal with it, we create a new dataset for neural predictor termed shallow DARTS by randomly
sampling 100 shallow architectures from DARTS search space. In order to save training cost, CIFAR-
10 is chosen as the dataset, and these architectures have only 8 layers which are shallower than the
architectures reported in Table 2. Moreover, we train these shallow architectures for 50 epochs to
further save cost.

After CDP has been trained on NAS-Bench-101 and NAS-Bench-201, it is used to predict the
performance of 100 architectures in the shallow DARTS dataset. Following the conventions, we also
pay more attention to the relative ranking between the architectures. Therefore, we use Kendall’s Tau
(KTau) [45] which is widely used to measure the quality of neural predictors [49, 54] in this ablation
study. KTau concerns the relative ranking between the architectures, and its values vary in [−1, 1].
The larger the value, the more the predicted ranking matches the real ranking.

Table 3 displays the results with and without the proposed progressive subspace partition strategy.
Specifically, we specify that the numbers of subspaces are all 3 in the end. ‘None’ denotes no
progressive strategy is used. In addition, progressive subspace partition with the linear increasing
rate in Equation (9) is also tested to show the effectiveness of the cosine function. Generally, the
performance of the predictor is much better when working with the proposed progressive subspace
partition strategy. Furthermore, the cosine function also works better than the linear increasing rate. In
summary, the ablation study proves the effectiveness of the proposed progressive subspace partition.

The results of the ablation study on the assistant space are reported in Table 4. The KTau value of the
first line is obtained with the help of the progressive subspace partition. On this basis, two assistant
spaces are added separately. The first one is similar to DARTS and the number of internal nodes is set
as 2, which makes its size be smaller than both the source and target architecture spaces. The second
is the tiny DARTS whose size is between the source and target architecture spaces. As can be seen
from Table 4, the small assistant space fails to improve the performance of the predictor. But with the
help of tiny DARTS (the medium space), the prediction performance can be further improved on the
basis of the progressive subspace partition.

Finally, we conduct an ablation study on domain adaptation approaches. In addition to the MMD
and LMMD introduced above, domain-adversarial neural network (DANN) [17] and CORrelation
ALignment (CORAL) [48] are also compared. We fine-tune the hyper-parameters of these approaches
(if feasible), and report the best KTau values they achieved in Table 5. It is obvious that our approach
is far better than peer competitors.

To sum up, the ablation studies prove that the proposed progressive subspace partition and assistant
space can significantly improve the prediction performance of CDP. Other ablation studies can be
found in Appendix E.
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5 Conclusion

This paper aims to develop a cross-domain predictor, named CDP, which does not require training
neural architectures in the particular search space. This goal has been achieved by the two proposed
components. Specifically, the progressive subspace partition has been proposed to largely alleviate
the issue of inaccurate pseudo-label. In addition, the assistant space has been developed to address
the inadaptability caused by large differences between source and target domain. The training
architectures of CDP are collected from the existing NAS benchmark datasets, so it does not have
to spend a lot of computation cost on training neural architectures as the existing neural predictors
do. CDP can find high-performance architectures in the large search space (such as DARTS) with
0.1 GPU Days and achieves the classification accuracy of 76.9% and 97.51% on ImageNet and
CIFAR-10, respectively.
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