Reinforcement Learning from Human Text Feedback:
Learning a Reward Model from Human Text Input

Belen Martin-Urcelay ! Andreas Krause? Giorgia Ramponi*

Abstract

We explore the use of human-generated text inputs
to model rewards in Reinforcement Learning with
Human Feedback (RLHF). Human text contains
rich and nuanced information, yet most previous
work relies on preference feedback or restricts the
text structure. We propose using Large Language
Models (LLMs) as a way of harnessing the infor-
mation from natural text to train a reward model
efficiently. Our empirical evaluations demonstrate
the advantages of this approach in both tabular
and continuous reinforcement learning tasks. The
results show that even with minimal human in-
teractions, integrating text feedback with LLMs
enables our method to approximate the reward
function accurately, leading to significant perfor-
mance improvements.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a
powerful framework for solving complex decision-making
problems by training agents to maximize cumulative re-
wards through interactions with an environment. RL has
achieved remarkable success in a variety of domains, from
games (Mnih et al., 2015) and robotics (Kaufmann et al.,
2023) to healthcare (Yu et al., 2021) and finance (Pend-
harkar, 2022). Central to the RL paradigm is the concept of
a reward function, which provides the agent with feedback
on its actions and guides its learning process.

However, defining an appropriate reward function in real-
world applications is a significant challenge (Hadfield-
Menell et al., 2017). In many cases, crafting a precise
and comprehensive reward function that captures all aspects

"Department of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, U.S.A. *Department of Com-
puter Science, ETH Zurich, Switzerland *Department of Computer
Science, University of Zurich, Switzerland. Correspondence to:
Anonymus <Anonymus>.

Proceedings of the 41t ICML Workshop on Models of Human
Feedback for Al Alignment, Vienna, Austria. PMLR 235, 2024.
Copyright 2024 by the author(s).

of desired behavior is difficult or impractical. Moreover,
the reward function might need frequent adjustments as
task requirements evolve, adding further complexity. This
limitation hinders the deployment of RL in many practical
scenarios where the specification of a reward function is
ambiguous or subjective.

To address these challenges, preference-based Reinforce-
ment Learning from Human Feedback (RLHF) (Christiano
et al., 2017b) has emerged as a promising approach. Instead
of relying solely on predefined reward functions, RLHF
leverages human preferences to shape the learning process.
By asking humans to compare and rank different trajectories,
RLHEF infers a reward function that aligns more closely with
human values and intentions. This approach has shown suc-
cess in areas where human judgment is critical for defining
task performance.

In this paper, we propose a novel algorithm for reinforce-
ment learning without explicit rewards. Our approach in-
volves learning a reward function through human textual
comments on the presented trajectories. Unlike traditional
preference-based methods that rely on binary or ranked
choices, our method utilizes natural language feedback to
provide richer and more nuanced information about the tra-
jectories. This allows the agent to understand the context
and subtleties of human preferences more effectively. Our
approach is based on the intuition that human text feedback
contains much more information than pairwise comparisons.
By harnessing this information through large language mod-
els (LLMs), we can train a more sophisticated and accurate
reward model.

Our contributions are as follows:

* We introduce a new framework for reinforcement learn-
ing that derives a reward function from human textual
feedback on trajectories.

* We develop an algorithm that integrates natural lan-
guage processing with reinforcement learning to in-
terpret and utilize human comments. We leverage the
capabilities of LLMs to extract and encode the rich
information contained in human textual feedback.

* We demonstrate the effectiveness of our approach

Reinforcement Learning from Human Text Feedback (RLHTF)

through experiments in various simulated environ-
ments, showing improved performance over traditional
RL methods with predefined reward functions.

By harnessing human insights through textual comments,
our method aims to bridge the gap between human pref-
erences and machine learning, paving the way for more
adaptable and human-aligned RL systems.

2. Related Work

2.1. Preference Based Reinforcement Learning

Traditional Reinforcement Learning (RL) relies on explicit
reward functions to drive the learning process. When the re-
ward function is not known or difficult to construct, one may
collect human feedback to model the reward. In Preference
Based Reinforcement Learning (PbRL), human oracles pro-
vide their preferences between pairs of trajectories or ac-
tions. These preferences are used to train a reward model,
enabling the deployment of standard RL algorithms to find
the optimal policy (Busa-Fekete et al., 2014; Christiano
etal., 2017a).

2.2. Learning from Natural Human Feedback

A natural way for humans to interact and express their inten-
tions is through text. Consequently, there is much interest
in leveraging natural language in RL. One common strategy
is to map natural language instructions to trajectories or
features. To achieve this mapping, previous works limit the
instructions to a finite set (Goyal et al., 2019; Bahdanau
et al., 2019; Nguyen et al., 2021; Lin et al., 2022), or force a
specific sentence structure, e.g., "Go to X" (Fu et al., 2019).
These restrictions simplify the mapping process but also
limit the flexibility of the language used.

Another approach, which allows for more general language,
employs Neural Networks (NN) to map from natural lan-
guage to rewards (MacGlashan et al., 2015; Tung et al.,
2018; Narasimhan et al., 2018; Yang et al., 2021). These
networks receive two inputs: a language description of the
goal and the observed trajectory. The NNs are trained to
compute how close a given trajectory is to the described
goal. The output is used as a reward for standard RL algo-
rithms. While this approach achieves good performance, it
requires a large labeled dataset to train the NNs.

To avoid curating extensive datasets, recent research fo-
cuses on exploiting pre-trained models. Pre-trained Visual-
Language Models (VLM), such as CLIP (Radford et al.,
2021), encode images and text in a shared latent space such
that semantically close instances are embedded close to-
gether. Leveraging this property, a scalar reward is com-
puted by the dot product between the embeddings of the
image observations and the text description of the goal

(Mahmoudieh et al., 2022; Rocamonde et al., 2024). We
may also compute a preference reward by prompting the
VLM to describe two image observations, and then query-
ing for the description most aligned with the goal (Wang
et al., 2024). To obtain a good zero-shot performance, previ-
ous works finetune the VLM for each specific environment
(Mahmoudieh et al., 2022), or they edit the environments to
resemble photorealistic scenarios (Rocamonde et al., 2024).
Unfortunately, current VLM struggle to distinguish subtle
differences (e.g. standing with crossed arms vs. standing
with arms on hips) or to generalize to novel environments
(e.g. humanoid with round feet). These limitations may lead
to failures in complex tasks (Rocamonde et al., 2024).

Another line of research focuses on pre-trained valence
analyzers (Hutto & Gilbert, 2014) to translate text feedback
into a sentiment score (Sumers et al., 2021). The scores
drive the Bayesian updates describing the expected reward
of each feature. At each iteration, the features are updated
according to the sentiment score of the whole text. A single
sentiment score may not capture all nuances in human text,
e.g. “the start is good, but the end is bad”. We believe a
more fine-grained interpretation of the feedback would be
beneficial.

Similarly, Kwon et al. (2023) leverage a pretrained Large
Language Model (LLM) as a proxy for the reward signal.
The authors prompt an LLM with a language description of
the task together with an episode’s outcome and ask whether
the outcomes satisty the objective. Complex episodes and
goals may not be readily interpretable by current LLMs.
Additionally, the binary nature of the feedback limits the
information gained per query.

3. Preliminaries and Problem Setting

In this paper, we consider an agent who interacts with an
environment aiming to maximize an expected reward. We
describe the interactions between the agent and the envi-
ronment as an episodic Markov Decision Process without
reward function (MDP\R) (Puterman, 2014). Formally, an
episodic MDP\R is a tuple M := (S, A,P,T), where S
is the state space, A is the set of actions that the agent can
perform in the environment, PP : S x A — A(S) captures
the transition probabilities, mapping state-action pairs to a
probability distribution of the next state over S, and 7' is
the time horizon. The reward function, which maps action
pairs to areward 7 : S x A — R, is unknown to the agent.
Instead, the agent learns a reward model 77 : S — R based
on human feedback.

At each step, the agent performs an action according to
a deterministic policy 7 : & — A. The goal is to learn
the policy 7* that maximizes the expected return from the

Reinforcement Learning from Human Text Feedback (RLHTF)

Predicted
Reward

A
State
—
Action
S

Agent Environment Human

Figure 1. Block diagram of RLHF learning a reward model from
human text input. We use an LLM to translate human evaluations
in the form of natural language into state level rewards. These
labeled states are used to train a reward model, which in turn, is
employed with standard RL algorithms to train the agent.

current state s,

t _ ! t—1/_/
VT(S)—Igggr(&a)ilzeggﬂ”(SIS?a)Vr), M

where V,0(s) = maxaesr(s,a) and t € [0;T — 1] repre-
sents the number of timesteps left until the trajectory fin-
ishes. We denote the state-action pairs visited when follow-
ing 7* as the optimal trajectory 7 = {s},aj }7_,.

As the agent does not have direct access to the reward func-
tion r, the agent follows instead the policy 7 that maximizes
value function V4 derived from the estimated reward. Our
primary goal is to minimize the performance gap between
this learned policy 7 and optimal policy 7*. We denote this
difference in expected rewards as imitation gap, which we
formally define as

T
E Y r(si,af) —r (8.8,
t=0

where T = {8;,a;}_, represents the trajectory when fol-
lowing 7.

4. Algorithm

The proposed algorithm consists of two phases, which are
executed iteratively. First, we leverage human feedback to
train a reward model. Second, we train an agent to perform a
policy that maximizes the reward as estimated by the model.
The algorithm, which we call Reinforcement Learning from
Human Text Feedback (RLHTF), is outlined in Algorithm
1. Next, we describe each phase in detail.

4.1. Learning a Reward Model

Our key insight is that human text feedback contains much
more information than pairwise comparisons, and this infor-
mation may be harnessed through LLMs to train a reward
model.

The dashed lines in Figure 1 depict how the reward model is
trained. At each interaction, the human evaluator observes
and evaluates the trajectory given by the current policy. For
example, the human evaluation may include criticisms of
specific states, or suggestions for alternative, unexplored
states.

The human evaluation, together with information about the
environment and the trajectory, is fed into an LLM. The
prompt is further described in Appendix B. The LLM then
processes this information and identifies which states the hu-
man feedback refers to, and with what connotation. Namely,
the LLM generates a set of states with their corresponding
labels (positive or negative). This set is used as a training
dataset to train the reward model.

In the tabular setting, the agent tracks the reward proba-
bility distribution for every state, which is modeled as a
beta distribution. Specifically, we initialize the reward dis-
tributions as $(0.5,0.5) to introduce a bias towards binary
rewards: O (negative) or 1 (positive). For analytical tractabil-
ity, we model the observed labels with the conjugate prior,
i.e., as Bernoulli distributions. This way, the posterior of a
given state probability distribution 5(a, b) simply becomes
B(a, b+ 1) when receiving a positive label, or (a + 1, b)
if the label is negative.

To extend RLHTF beyond the tabular setting, we approx-
imate the reward function as a NN. At each iteration, we
expand the training dataset with the state-reward pairs out-
putted by the LLM. Then, we employ Stochastic Gradient
Descent (SGD) to finetune the NN with the expanded train-
ing dataset. This supervised learning process utilizes a
cross-entropy loss function.

4.2. Learning a Policy

The reward model learns to measure how close the trajectory
is to the human intentions. Consequently, to find the opti-
mal policy the agent may directly query the reward model,
instead of the human evaluators. This approach significantly
reduces time, energy, and monetary costs during policy
learning. The interactions are described by the solid arrows
in Figure 1 and line 8 of Algorithm 1.

In the tabular setting, we employ Q-learning (Watkins &
Dayan, 1992) to guide the agent. Specifically, the agent
uses a greedy policy, selecting actions that maximize the
expected future rewards as in (1). In contrast, for the con-
tinuous setting, we model the policy with a NN. We train
the network using the REINFORCE algorithm (Williams,
1992), where the reward signal is given by the reward model.
Following standard practices from Reinforcement Learning
from Human Feedback (RLHF), we compute several REIN-
FORCE epochs before querying the human evaluators and
updating the reward model again.

Reinforcement Learning from Human Text Feedback (RLHTF)

Algorithm 1 RLHTF

1: Input: number of human iterations NV

2: Initialize Policy g and reward model 7.

3: fori =0to N do

4: Record trajectory following policy: t; +— m;

5: Query human for feedback: f; < t;

6: Translate feedback to state-reward pairs with LLM:
si, i < £, t;

7. Update reward model: 7; 1 < 7, {ss, T¢ }i g
8: Update policy: ;11 < 74, i1
9: end for

Figure 2. Gridworld environment. The aim of the agent is to follow
the a specific path (in grey) from the start (yellow circle) to the
end (yellow star). The agent’s trajectory (in red) currently deviates
from this path.

5. Experiments

We empirically evaluate RLHTF against three RL baselines:

* Sentiment: We measure the sentiment of the human
text feedback, and apply it as a reward for all states in
the trajectory (Sumers et al., 2021).

* PbRL: We query human evaluators for pairwise com-
parisons between trajectories (Christiano et al., 2017a).

* True: The agent receives the true reward from the
environment.

The details of the implementation may be found in Appendix
A.

5.1. Gridworld

We first test our approach in a tabular setting. Particularly
we apply the algorithm to the Gridworld shown in Figure
2. An agent aims to follow a specific path, which is known
to the human evaluators but unknown to the agent. Human
evaluators observe the agent’s trajectory and provide feed-
back to guide the agent. To provide context, we randomly
include landmarks in the environment, e.g.: a clock or a

©

W Trajectory Level Feedback
I State Level Feedback

2 3 4

Iteration

N WA U O N ©

Average Error + Standard Error
-

o

Il

(a) True feedback from environment.

o N o ©

ENE |

I Sentiment
mmm PbRL
- RLHTF (ours)

Average Error = Standard Error
- N oW

o

Iteration

(b) Human feedback.

Figure 3. Performance comparison of algorithms in the Gridworld.

bed. We use YOLOvVS8 (Jocher et al., 2022) to detect these
landmarks and their locations. This enables the LLM to
translate feedback such as “The behavior to the left of the
PC is bad” in Figure 2 to a negative reward at position "c5’.

Figure 3 shows the error evolution as the agent interacts
with the environment, where the error is defined as the num-
ber of steps in which the agent deviates from the ideal path.
Figure 3a show the performance when the agent receives
the true feedback from the environment. We consider two
scenarios: under the first scenario, the agent receives the
accumulated reward for the entire trajectory, this is used
to equally update all the states visited; under the second
scenario, the environment provides state-level rewards, ex-
plicitly indicating whether each of the observed states are
part of the ideal trajectory or not. We observe, that the agent
rapidly improves its performance under both scenarios, but
the state-level feedback is significantly more effective. The
agent with state-level feedback identifies the correct path
after only two iterations. This highlights the advantage
of having fine-grained feedback in reinforcement learning,
where detailed information about each state’s contribution
leads to faster learning.

A main advantage of RLHTF is the algorithm leverages
LLM to perform reward attribution. In contrast, previous

Reinforcement Learning from Human Text Feedback (RLHTF)

Figure 4. Modified reacher environment. The aim of the robotic
arm is to stay close to the red ball. We add circles and a timestamp
to aid human evaluation of specific states.

works update all states in a trajectory (Sumers et al., 2021)
or all differing states between two trajectories (Christiano
et al., 2017a) with a single reward. Figure 3b compares
the performance of RLHTF against these other strategies
for learning from human feedback. We observe that break-
ing down the feedback into fine-grained rewards with an
LLM greatly benefits the performance. The error decreases
faster with RLHTF than the state of the art Sentiment or
PDRL algorithms. After only receiving 4 instances of human
feedback, RLHTF on average reduces the error by half.

5.2. Reacher Environment

We also test RLHTF in a continuous environment of the
physics simulator MuJoCo (Todorov et al., 2012). Namely,
we apply RLHTF to Reacher, a two-jointed robot arm. The
aim is to apply appropriate torques to the hinges so that
the robot’s fingertip reaches a target. The human evalua-
tors watch and criticise a video of the robot arm moving
under the current policy. To aid human evaluators in their
assessment, we incorporate a timestamp and some visual
landmarks (colored circles) into the environment. These
aids the human evaluator to refer to specific locations (“Go
to the left of the blue circle.”) or moments in the trajectory
(“The movement from frame 4 to 8 is wrong.”). Figure 4
shows the modified reacher environment.

The standard observation space contains information about
the goal (target location) and the performance (distance to
target). We remove this information before inputting the
observation to the LLM, as the performance should be solely
deduced from the human feedback. This filtering is further
detailed in Appendix A.2.

The LLM processes three inputs: The human feedback,
the landmark locations and the sequence of filtered states
making up the video. The LLM’s task is to interpret these
inputs to deduce what states are described as positive or
negative. Figure 5 shows how the state-reward pairs are gen-
erated. The LLM outputs pairs of filtered states and binary
labels. Each label indicates whether the corresponding state
is positive or negative. If a filtered state is returned partially,

missing elements are filled in by randomly sampling from
the set of observed trajectory states.

We suggest that feedback in natural language is more infor-
mative than the traditional approach of selecting the pref-
erence among two trajectories, and thus RLHTF requires
less interactions with humans to achieve an accurate reward
model. To verify the hypothesis, we compare the evolution
of the reward model with RLHTF versus PbRL. Figure 6
shows the reward predictions for different positions of the
arm, with darker colors indicating lower predicted rewards.
The blue star marks the target location. On the left, Fig-
ure 6a displays the reward model at random initialization.
Figures 6b, 6¢ and 6d at the top show the reward model evo-
Iution as more text feedback is gathered. Whereas Figures
6e, 6f and 6g on the bottom show the reward model evo-
lution with pairwise comparison feedback. After just one
interaction, both feedback types significantly enhance the
reward model. However, text feedback offers a more precise
model. By the tenth interaction, Figure 6d shows that only
a small area around the target receives a high reward with
RLHTF, whereas Figure 6g shows that PbRL results in a re-
ward model more uncertain about the target location, giving
high reward to large areas of the environment. In conclusion,
Figure 6 suggests that natural language feedback enables
the reward model to more quickly and accurately identify
the target.

We also compare the agent’s performance, in terms of av-
erage distance to the target, when there is a budget of 10
human interactions. Figure 7 shows how the reward evolves
as the agent learns. Although RLHTF is not as effective as
directly observing the true reward, RLHTF performs much
better in regimes with low feedback than PbRL. In fact, in
our experiments RLHTF increases the reward by 40% with
only 10 human inputs, while the reward even decreases with
PbRL when the agent only has access to 10 comparison.

6. Discussion

Our work leverages LLMs to extract state level rewards
from human feedback. This approach tackles the challenge
of reward attribution and garners richer information from
human interactions beyond mere binary comparisons. How-
ever, we study just one way of interactivity with humans, in
which the human evaluates the current agent’s trajectory, in
future work we could prompt humans in different manners,
for instance, asking humans to directly describe the goal
(Li et al., 2023). Moreover, in the current implementation
of RLHTF, the human only observes a greedy realization
of the agent’s trajectory. As a next step, we will incorpo-
rate strategies balancing exploration and exploitation, such
as the Upper Confidence Bound (UCB) algorithm (Lai &
Robbins, 1985).

Reinforcement Learning from Human Text Feedback (RLHTF)

Human Feedback

“Gotothe leftofthe [
blue point.”

Landmark Locations

¢ Yellow: 18b

Positive reward at state S . Positive reward at state
* Orange: 5b *Fingertip position: 20p Fill missing entries by +Fingertip position: 20p
* Blue:20q «Angle of arm: -- s g el lolin *Angle of arm: [5.8, 1.6]
* White: 60 *Speed: [0, 0] e e *Speed: [0, 0]
ChatGPT
Trajectory

State (fingertip
position + angle of arm
+ speed) at each
timeframe of the
video.

Figure 5. Example of Step 6 in Algorithm 1.

0.65
0.40

5 10 15 20

(b) RLHTF after 1 query (c) RLHTF after 5 queries (d) RLHTF after 10 queries

0.60

055

0.9

0.50

0.45

°
S

°
&

(a) Random Initialization

°
S

°
[

5 10 15 20

(e) PbRL after 1 query (f) PbRL after 5 queries (g) PbRL after 10 queries

Figure 6. Reward model visualization for RLHTF vs PbRL. The top row illustrates the evolution of the reward estimations as more text
feedback is gathered, while the bottom row shows the corresponding evolution with preference feedback. Darker colors indicate lower
predicted rewards and the blue star marks the target location. Notably, RLHTF quickly converges to a more accurate reward model with
fewer interactions than PbRL, as evidenced by the more localized high-reward region around the target.

Reinforcement Learning from Human Text Feedback (RLHTF)

i
)

— True
RLHTF
—— PbRL

Average Reward
= u o =
o N B o

@

0 10000 20000 30000 40000 50000 60000 70000 80000
Episodes

Figure 7. Reward evolution with episodes of the REINFORCE
algorithm. We compare the performance for RLHTF with 10
text feedback, PbRL with 10 trajectory comparisons, and true
environment reward.

Our preliminary experiments in Section 5 show the potential
of our approach. Nonetheless, the scope of these experi-
ments remains limited. Moving forward, we will apply
RLHTF to other domains and we will perform extensive
experiments with a wider range of human evaluators.

By addressing these aspects, we aim to enhance the robust-
ness, adaptability, and practical utility of our approach in
integrating human text with reinforcement learning.

Acknowledgements

We extend our sincere gratitude to the reviewers for their
valuable feedback and insights. This work was supported by
the Rafael del Pino Foundation. We also acknowledge the
contributions of the Learning and Adaptive Systems Group.

References

Bahdanau, D., Hosseini, A., Hill, F., Kohli, P, Leike, J.,
Hughes, E., and Grefenstette, E. Learning to understand
goal specifications by modelling reward. In Proc. of

International Conference on Learning Representations,
2019.

Busa-Fekete, R., Szorényi, B., Weng, P., Cheng, W., and
Hiillermeier, E. Preference-based reinforcement learn-
ing: Evolutionary direct policy search using a preference-
based racing algorithm. In Machine Learning, volume 97,
pp. 327-351. Kluwer Academic Publishers, 10 2014. doi:
10.1007/s10994-014-5458-8.

Christiano, P. F.,, Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Proc. of Advances in Neural In-

formation Processing Systems, volume 2017-Decem, pp.
4300-4308, 2017a.

Christiano, P. F.,, Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Advances in Neural Information
Processing Systems, pp. 4299-4307, 2017b.

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S. From
language to goals: Inverse reinforcement learning for
vision-based instruction following. In Proc. of Interna-
tional Conference on Learning Representations, pp. 1-14,
2019.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning.
In Proc. of International Joint Conference on Artificial
Intelligence, volume 2019-Augus, pp. 2385-2391, 2019.
ISBN 9780999241141. doi: 10.24963/ijcai.2019/331.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,
A. D. Inverse reward design. Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pp. 6765-6774, 2017.

Hutto, C. J. and Gilbert, E. Vader: A parsimonious rule-
based model for sentiment analysis of social media text.
In Prof. of Conference on Artificial Intelligence, pp. 216—
225,2014. URL http://sentic.net/.

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J.,
NanoCode012, Kwon, Y., Michael, K., TaoXie, Fang,
J., imyhxy, Lorna, Yifu, Z., Wong, C., V, A., Montes,
D., Wang, Z., Fati, C., Nadar, J., Laughing, UnglvK-
itDe, Sonck, V., tkianai, yxNONG, Skalski, P., Hogan, A.,
Nair, D., Strobel, M., and Jain, M. ultralytics/yolov5:
v7.0 - YOLOvV5 SOTA Realtime Instance Segmenta-
tion, November 2022. URL https://doi.org/10.
5281/zenodo.7347926.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Miiller, M.,
Koltun, V., and Scaramuzza, D. Champion-level drone
racing using deep reinforcement learning. Nature, 620
(7976):982-987, 2023.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Reward
design with language models. In ICLR 2023, 2023. URL
http://arxiv.org/abs/2303.00001.

Lai, T. L. and Robbins, H. Asymptotically efficient adap-
tive allocation rules. Advances in Applied Mathemat-
ics, 6(1):4-22, 1985. ISSN 10902074. doi: 10.1016/
0196-8858(85)90002-8.

Li, B. Z., Tamkin, A., Goodman, N., and Andreas, J. Elic-
iting Human Preferences with Language Models. 2023.
URL http://arxiv.org/abs/2310.11589.

Lin, J., Fried, D., Klein, D., and Dragan, A. Inferring
rewards from language in context. In Proc. of the
Association for Computational Linguistics, volume 1,

http://sentic.net/
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
http://arxiv.org/abs/2303.00001
http://arxiv.org/abs/2310.11589

Reinforcement Learning from Human Text Feedback (RLHTF)

pp- 8546-8560, 2022. ISBN 9781955917216. doi:
10.18653/v1/2022.acl-long.585.

MacGlashan, J., Babes-Vroman, M., DesJardins, M.,
Littman, M. L., Muresan, S., Squire, S., Tellex, S., Aru-
mugam, D., and Yang, L. Grounding english commands

to reward functions. Robotics: Science and Systems, 11,
2015. ISSN 2330765X. doi: 10.15607/RSS.2015.X1.018.

Mahmoudieh, P., Pathak, D., and Darrell, T. Zero-shot
reward specification via grounded natural language. Proc.
of Machine Learning Research, 162:14743-14752, 2022.
ISSN 26403498.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Narasimhan, K., Barzilay, R., and Jaakkola, T. Grounding
language for transfer in deep reinforcement learning. Ar-
tificial Intelligence Research, 63:849-874, 2018. ISSN
10769757. doi: 10.1613/jair.1.11263.

Nguyen, K., Misra, D., Schapire, R., Dudik, M., and Shafto,
P. Interactive learning from activity description. Pro-
ceedings of Machine Learning Research, 139:8096-8108,
2021. ISSN 26403498.

Pendharkar, P. C. Reinforcement learning in financial mar-
ket applications: a survey and research agenda. Artificial
Intelligence Review, 55(2):1247-1306, 2022.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
Proc. of International Conference on Machine Learn-
ing,22021. URL http://arxiv.org/abs/2103.
00020.

Rocamonde, J., Montesinos, V., Nava, E., Perez, E., and
Lindner, D. Vision-language models are zero-shot reward
models for reinforcement learning. In Proc. of Interna-
tional Conference on Learning Representations, 10 2024.
URL http://arxiv.org/abs/2310.12921.

Sumers, T. R., Ho, M. K., Hawkins, R. D., Narasimhan, K.,
and Griffiths, T. L. Learning rewards from linguistic feed-
back. In Proc, of Conference on Artificial Intelligence,
volume 7, pp. 6002-6010, 2021. ISBN 9781713835974.
doi: 10.1609/aaai.v35i7.16749.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Proc. of International
Conference on Intelligent Robots and Systems, pp. 5026—
5033, 2012. doi: 10.1109/IROS.2012.6386109.

Tung, H. Y., Harley, A. W., Huang, L. K., and Fragki-
adaki, K. Reward learning from narrated demonstra-
tions. In Proc. of Conference on Computer Vision
and Pattern Recognition, pp. 7004-7013, 2018. ISBN
9781538664209. doi: 10.1109/CVPR.2018.00732.

Wang, Y., Sun, Z., Zhang, J., Xian, Z., Biyik, E., Held,
D., and Erickson, Z. RL-VLM-F: Reinforcement Learn-
ing from Vision Language Foundation Model Feedback.
In Proc. of International Conference on Machine Learn-
ing, 2024. URL http://arxiv.org/abs/2402.
03681lhttps://rlvimf2024.github.io/.

Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine
Learning, 8(3-4):279-292, may 1992. ISSN 0885-6125.
doi: 10.1007/BF00992698.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F.,, Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models.
In Proc. of Advances in Neural Information Processing
Systems, 1 2022. URL http://arxiv.org/abs/
2201.11903.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229-256, 1992. ISSN 0885-6125. doi:
10.1007/bf00992696.

Yang, T. Y., Hu, M., Chow, Y., Ramadge, P. J., and
Narasimhan, K. Safe reinforcement learning with natural
language constraints. In Proc. of Advances in Neural

Information Processing Systems, volume 17, pp. 13794—
13808, 2021. ISBN 9781713845393.

Yu, C., Liu, J., Nemati, S., and Gregg, W. M. Reinforce-
ment learning in healthcare: A survey. arXiv preprint
arXiv:1908.08796, 2021.

http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2310.12921
http://arxiv.org/abs/2402.03681 https://rlvlmf2024.github.io/
http://arxiv.org/abs/2402.03681 https://rlvlmf2024.github.io/
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

Reinforcement Learning from Human Text Feedback (RLHTF)

Default Observation

cosine of the angle of the first arm 1.3184
cosine of the angle of the second arm 1.3184
sine of the angle of the first arm 0.9996
. Filtered State

sine of the angle of the second arm 0.9995 -

. Angles of arms in degrees [5.8,11.6]
x-coordinate of the target -0.0288 ; -

. Fingertip position in algebraic notation x15
y-coordinate of the target -0.0307 .

- - Angular speed in rads/sec [0.62, 3.73]

angular velocity of the first arm -0.1320
angular velocity of the second arm 0.1214
x-value of positiongee i, - POSItION;, e 3.9565
y-value of positiongngeri, - POSItION,ge 3.9607

Figure 8. Preprocessing of state observation.

A. Experiment Details
A.1. Gridworld

The agent takes 10 steps. At each timestep the possible actions are either to move right or up. The agents movement are
restricted to a 5x10 grid. When the agent is in a border and performs an action that would take the agent outside of the
allowed region, the agent doesn’t move.

We randomly add landmarks to the gridworld to aid with the evaluation. Then, the landmarks are detected with YOLOv8
model trained on the Microsoft COCO dataset, and its positions are fed to the LLM for context. Namely, we use gpt-4-1106-
preview to translate human feedback into state-level reward.

We conducted the experiments with the assitance of volunteer Ph.D. students who acted as evaluators. We tested the
Sentiment and PbRL algorithms for 14 trials each and RLHTF for 18 trials.

A.2. Reacher Environment

Each trajectory in the reacher environment spans 7' = 50 frames. The default observations for each frame include the
target location and the distance between the arm and target. However, to proof that the LLM is capable of deducing the
performance solely from the human feedback, we filter this information from our prompt. The LLM obtains a filtered
state that includes the fingertip’s location, arm’s joint angles, and angular velocities. The filtering and preprocessing of the
observation are detailed in Figure 8.

We use the LLM gpr-4o to translate the human feedback to state-reward pairs. To conduct a fair comparison with PbRL,
we reconstruct the filtered states output by the LLM back into the complete original observation space. Using this full
observations with their corresponding binary labels, we train a reward model in a supervised learning framework. The
architecture of this reward model is a neural network (NN) with one hidden layer consisting of 32 nodes, employing a RELU
activation function characterized by a leaky parameter & = 0.01. In the case of PbRL, three such NNs are initialized at
random to create an ensemble. Before asking the human for a preference, we sample random trajectories and then chose
the pair whose preference is most uncertainty, specifically, the pair for which there is the most disagreement among the
ensemble’s predictive outcomes. During policy training, the agent observes the average reward from the ensemble.

We perform the experiments four times for every algorithm under consideration. A different target location was set for each
experiment. The human feedback was provided by one of the authors of this paper. The shaded area in Figure 6 shows the
standard error between the four experiments. Note that the plotted lines have been smoothed using a convolution operation
with a window size of 500 episodes, which helps to reduce noise and provide a clearer trend of the data.

B. Prompt Engineering

There are four key elements in the system instructions which lead to a good performance. First, we define the coordinates in
the grid as chess coordinates, i.e., as a letter and number pair indicating the column and row respectively. Second, we follow

9

Reinforcement Learning from Human Text Feedback (RLHTF)

An agentis trying to learn and follow a specific path in a {grid_height}x{grid_width} grid map.

Your job is to translate the feedback of the current trajectory into feedback types, locations in the
map, and a label.

* Ifthe feedback type is imperative, compute what locations in the map the instructions are
referring to and label them as either 'good’ (go to) or 'bad' (avoid).

* Ifthe feedback type is evaluative, determine what locations in the map are being referred to by
the feedback and whether the feedback is positive or negative.

* Ifthe feedback type is descriptive, compute what new locations the agent should have visited,
and label them as positive.

Use the getReward function to only return a JSON file with the specified shape enclosed in double
quotes.

For example: if the user's input is {example_feedback}, then the output should be {example_output}.

Another example: if the user's input is {example_feedback?2}, then the output should be
{example_output2}

Figure 9. System prompt for Gridworld.

chain of thought (CoT) prompting (Wei et al., 2022). As feedback is context dependent, we ask the LLM to categorize the
feedback into imperative, evaluative or descriptive as an intermediate step. Third, in accordance with few shot prompting, we
provide demonstrations to steer the model to better performance. Lastly, we use function calling to force ChatGPT’s output
to have a prespecified json format. The desired output format for the Gridworld and Reacher enviroments are described in

Figures 11 and 14 respectively. While the full system instructions are detailed in Figures 9, 10, 12 and 13.

10

Col

Output
format

Few
Shot

Reinforcement Learning from Human Text Feedback (RLHTF)

grid_height=5
grid_width =10
max_col_letter=j’

example_feedback ="
{"feedback": "it should not go below the bed",
"landmarks": {"clock": ["2f"], "bed": ["2c", "2d"]},
"trajectory": ["1b", "1c", "1d", "1e", "1f", "1g", "2g", "3g", "4g", "4h"]}

example_output ={'locations': ['1c', '1d'], 'label': 'NEG)|, 'feedback_type': 'imperative'}

example_feedback2 ="'
{"feedback": "the last couple steps are good",
"landmarks": {"clock": ["2f"], "bed": ["2c", "2d"]},
"trajectory": ["1b", "1c", "1d", "1e", "1f", "1g", "2g", "3g", "4g", "4h"]}

example_output2 ={'locations': ['4g', '4h'], 'label': 'POS)|, 'feedback_type': 'evaluative'}

Figure 10. Parameters for system prompt in Gridworld.

11

Reinforcement Learning from Human Text Feedback (RLHTF)

"name": "getReward",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "string",
"pattern": [1-{grid_height}][a-{max_col_letter}]
b
"description": ("Locations in the grid referring to feedback with row numbers and a lowercase letter "
"for columns. The rows are numbered from bottom to top (1 is the lowest row, increasing "
"as you move upward), and columns are labeled from left to right (a-j). For example, "1b""
"refers to the lowest row in the second column from the left.")
b
"label": {
"type": "string",
"enum": ["POS", "NEG"],
"description": "The feedback's connotation, positive or negative."

}

feedback_type": {
"type": "string",
"enum": ["imperative", "evaluative", "descriptive"],
"description": """
Imperative: Feedback includes instructions on what locations are good or should be avoided.
Evaluative: Feedback is an assessment of the current trajectory.
Descriptive: Feedback is about modifications for an improved trajectory.

}
}l

"required": ["locations", "label"]

}
}

Figure 11. Function calling to force output format in Gridworld.

12

Reinforcement Learning from Human Text Feedback (RLHTF)

You will return state-reward pairs for a two-joined robotic arm named 'Reacher-v4'"

The arm aims to reach targets with its end effector (fingertip), and you must assess what states are
good or bad based on human observers' feedback.

As input, you will receive:

1. The natural language comment by a human observer who has seen the simulation.

2. The location of landmarks which are circles of different colors.

3. Trajectory of a simulation of the robot trying to reach a target. Each timestep is described by:

a) The fingertip position - letter representing column (left 'a’ to right 'z') and number
representing row (down '0' to up '26’)

b) A 2 item list of angles in degrees corresponding to the first and second joint respectively.

c) Avalue of 0 in the second joint means the arm is fully bent, while it is completely straight
when itis -180 or 180.

d) A 2 item list with the angular speed on the first and second joint respectively.

For each set of observer comments, use the provided trajectory and landmarks to determine
successful and unsuccessful states.

Follow this steps
1. Classify each section (sentence or linked group of sentences) in the feedback text as:

a) Goal description: It describes where the target is, or where the fingertip should go (e.g.: You
should go to the pink dot).

b) Trajectory feedback: It criticizes the simulation observed (e.g.: The first two steps are wrong).

c) Trajectory suggestion: It describes ways to improve upon states in the simulation observed (e.g.:
Go a bit to the right of the state at time 23).

2. Generate state reward pairs depending on the feedback type

a) For Goal description: Provide a "reward": +1, "angular_speed": [0, 0] at the location of the
described target position.

b) For Trajectory feedback:

2.1. Determine whether the feedback has a positive ("reward": +1) or a bad ("reward": -1)
connotation.

2.2. Determine what state or states of the simulation it is referring to, and get the fingertip
position, angles and angular speed of those locations

c) For Trajectory suggestion:

2.1. Determine what state or states of the simulation it is referring to, and get the fingertip
position, angles and angular speed of those locations

2.2. Correct the states as suggested by the feedback and pair with a "reward": +1

Use the getReward function to only return a JSON file with the specified shape.

Figure 12. System prompt for Reacher environment Part 1.

13

CoT

Output
format

Reinforcement Learning from Human Text Feedback (RLHTF)

Example inputs with expected outputs are provided below for guidance:
Example 1:
Input:
\{'feedback': 'The last half is very bad, it should go a bit higher than the blue dot',
'landmarks': \({'yellow': 'b3}, 'blue': 'l6), 'white': 'm7/, ‘orange': 'c23'\},
'fingertip_position': ['k15), 'k14', 'k14', 'k14', 'k13', '112'],
'angle': [[30.7, -63.9], [33.2, -68.2], [35.7, -72.6], [38.3, -76.9], [40.8, -81.3], [43.2, -85.7]],
‘angular_speed': [[0.1, -0.06], [0.12, -0.12], [0.13, -0.17], [0.15, -0.23], [0.16, -0.29], [0.18, -0.34]] \}
Expected Output:
\{"referred_steps": [
\{"fingertip_position": 'k14, "angle": [38.3, -76.9], "angular_speed": [0.15, -0.23], "reward": -1\},
\{"fingertip_position": 'k13', "angle": [40.8, -81.3], "angular_speed": [0.16, -0.29], "reward": -1\},
\{"fingertip_position": 'l12', "angle": [43.2, -85.7], "angular_speed": [0.18, -0.34], "reward": -1\},
\{"fingertip_position": 'l7', "angular_speed": [0, 0], "reward": 1\},
\{"fingertip_position": 'l8', "angular_speed": [0, 0], "reward": 1\}]\}
Example 2:
Input:

\{'feedback': 'The fifth step but slower is good. Stop at the last point. The goal is to go to the white
point.,

‘landmarks': \{'yellow': 'u8’, 'purple': 'k12, 'white': 'w16'\},
'fingertip_position': ['k15), 'k14', 'k14/, 'k14', 'k13}, '112'],
'angle': [[12.2, 34.2],[11.3, 39.6],[10.0, 45.2], [8.2, 50.9], [5.9, 56.6], [3.1, 62.3],],
'angular_speed': [[0.1, -0.06], [0.12, -0.12], [0.13, -0.17], [0.15, -0.23], [0.16, -0.29], [0.18, -0.34]] \}
Expected Output:
\{"referred_steps": [
\{"fingertip_position": 'k13, "angle": [5.9, 56.6], "angular_speed": [0.08, -0.15], "reward": 1\},
\{"fingertip_position": '112', "angle": [3.1, 62.3], "angular_speed": [0, 0], "reward": 1\},
\{"fingertip_position": 'w16', "angle": [13.0, 10.1], "angular_speed": [0, 0], "reward": 1\},]\}

Figure 13. System prompt for Reacher environment Part 2.

14

Few
Shot

Reinforcement Learning from Human Text Feedback (RLHTF)

_pattern ='"26]|[1-3]?[0-9){1,2}{a-z](?:[a-k])?$'
FUNCTION_STRUCTURE ={
"name": "getReward",
"parameters": {
"type": "object",
"properties": {
"referred_steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"fingertip_position": {
"type": "string",
"pattern": _pattern,
"description": ("Location of the fingertip with row numbers and a lowercase letter "
"for columns. The rows are numbered from bottom to top (1 is the lowest row, increasing "
"as you move upward), and columns are labeled from left to right (a, b, ..., 2). "
"For example, '1b’' refers to the lowest row in the second column from the left.")
b
"angle": {
"type": "array",
"items": {
"type": "number",
"format": "float",
"minimum": -180,
"maximum": 180,
"description": "Angle in degrees for the first and second joint of the arm."
h
"minltems": 2,
"maxltems": 2,
"description": "A 2-item list of angles in degrees corresponding to the first and second joint
respectively.”
b
"angular_velocity": {
"type": "array",
"items": {
"type": "number"
h
"minltems": 2,
"maxitems": 2,
"description": ("Vector of two elements corresponding to the angular velocity of the first and second
arm respectively."
"If feedback refers to a location with positive reward, but without specifying the speed, set the
angular speed to [0, 0].")
b
"reward": {
"type": "integer",
"enum": [-1, 1],
"description": "The reward value, which can be +1 for good performance or -1 for bad performance.”
}
h
"required": ["fingertip_position", "reward"],
"minProperties": 2,
"description": ("Dictionary containing information about the state and its reward. "
"Must have the 'reward' and 'fingertip_position' keys and optionally other keys: "
"angle', or 'angular_velocity'")
h
"description": "List of states described by the feedback along with their reward implied by the feedback."
}
h
"required": ["referred_steps"]
}
}

Figure 14. Function calling to force output format in Reacher environment.

15

