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Abstract
We explore the use of human-generated text inputs
to model rewards in Reinforcement Learning with
Human Feedback (RLHF). Human text contains
rich and nuanced information, yet most previous
work relies on preference feedback or restricts the
text structure. We propose using Large Language
Models (LLMs) as a way of harnessing the infor-
mation from natural text to train a reward model
efficiently. Our empirical evaluations demonstrate
the advantages of this approach in both tabular
and continuous reinforcement learning tasks. The
results show that even with minimal human in-
teractions, integrating text feedback with LLMs
enables our method to approximate the reward
function accurately, leading to significant perfor-
mance improvements.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) is a
powerful framework for solving complex decision-making
problems by training agents to maximize cumulative re-
wards through interactions with an environment. RL has
achieved remarkable success in a variety of domains, from
games (Mnih et al., 2015) and robotics (Kaufmann et al.,
2023) to healthcare (Yu et al., 2021) and finance (Pend-
harkar, 2022). Central to the RL paradigm is the concept of
a reward function, which provides the agent with feedback
on its actions and guides its learning process.

However, defining an appropriate reward function in real-
world applications is a significant challenge (Hadfield-
Menell et al., 2017). In many cases, crafting a precise
and comprehensive reward function that captures all aspects
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of desired behavior is difficult or impractical. Moreover,
the reward function might need frequent adjustments as
task requirements evolve, adding further complexity. This
limitation hinders the deployment of RL in many practical
scenarios where the specification of a reward function is
ambiguous or subjective.

To address these challenges, preference-based Reinforce-
ment Learning from Human Feedback (RLHF) (Christiano
et al., 2017b) has emerged as a promising approach. Instead
of relying solely on predefined reward functions, RLHF
leverages human preferences to shape the learning process.
By asking humans to compare and rank different trajectories,
RLHF infers a reward function that aligns more closely with
human values and intentions. This approach has shown suc-
cess in areas where human judgment is critical for defining
task performance.

In this paper, we propose a novel algorithm for reinforce-
ment learning without explicit rewards. Our approach in-
volves learning a reward function through human textual
comments on the presented trajectories. Unlike traditional
preference-based methods that rely on binary or ranked
choices, our method utilizes natural language feedback to
provide richer and more nuanced information about the tra-
jectories. This allows the agent to understand the context
and subtleties of human preferences more effectively. Our
approach is based on the intuition that human text feedback
contains much more information than pairwise comparisons.
By harnessing this information through large language mod-
els (LLMs), we can train a more sophisticated and accurate
reward model.

Our contributions are as follows:

• We introduce a new framework for reinforcement learn-
ing that derives a reward function from human textual
feedback on trajectories.

• We develop an algorithm that integrates natural lan-
guage processing with reinforcement learning to in-
terpret and utilize human comments. We leverage the
capabilities of LLMs to extract and encode the rich
information contained in human textual feedback.

• We demonstrate the effectiveness of our approach
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through experiments in various simulated environ-
ments, showing improved performance over traditional
RL methods with predefined reward functions.

By harnessing human insights through textual comments,
our method aims to bridge the gap between human pref-
erences and machine learning, paving the way for more
adaptable and human-aligned RL systems.

2. Related Work
2.1. Preference Based Reinforcement Learning

Traditional Reinforcement Learning (RL) relies on explicit
reward functions to drive the learning process. When the re-
ward function is not known or difficult to construct, one may
collect human feedback to model the reward. In Preference
Based Reinforcement Learning (PbRL), human oracles pro-
vide their preferences between pairs of trajectories or ac-
tions. These preferences are used to train a reward model,
enabling the deployment of standard RL algorithms to find
the optimal policy (Busa-Fekete et al., 2014; Christiano
et al., 2017a).

2.2. Learning from Natural Human Feedback

A natural way for humans to interact and express their inten-
tions is through text. Consequently, there is much interest
in leveraging natural language in RL. One common strategy
is to map natural language instructions to trajectories or
features. To achieve this mapping, previous works limit the
instructions to a finite set (Goyal et al., 2019; Bahdanau
et al., 2019; Nguyen et al., 2021; Lin et al., 2022), or force a
specific sentence structure, e.g., ”Go to X” (Fu et al., 2019).
These restrictions simplify the mapping process but also
limit the flexibility of the language used.

Another approach, which allows for more general language,
employs Neural Networks (NN) to map from natural lan-
guage to rewards (MacGlashan et al., 2015; Tung et al.,
2018; Narasimhan et al., 2018; Yang et al., 2021). These
networks receive two inputs: a language description of the
goal and the observed trajectory. The NNs are trained to
compute how close a given trajectory is to the described
goal. The output is used as a reward for standard RL algo-
rithms. While this approach achieves good performance, it
requires a large labeled dataset to train the NNs.

To avoid curating extensive datasets, recent research fo-
cuses on exploiting pre-trained models. Pre-trained Visual-
Language Models (VLM), such as CLIP (Radford et al.,
2021), encode images and text in a shared latent space such
that semantically close instances are embedded close to-
gether. Leveraging this property, a scalar reward is com-
puted by the dot product between the embeddings of the
image observations and the text description of the goal

(Mahmoudieh et al., 2022; Rocamonde et al., 2024). We
may also compute a preference reward by prompting the
VLM to describe two image observations, and then query-
ing for the description most aligned with the goal (Wang
et al., 2024). To obtain a good zero-shot performance, previ-
ous works finetune the VLM for each specific environment
(Mahmoudieh et al., 2022), or they edit the environments to
resemble photorealistic scenarios (Rocamonde et al., 2024).
Unfortunately, current VLM struggle to distinguish subtle
differences (e.g. standing with crossed arms vs. standing
with arms on hips) or to generalize to novel environments
(e.g. humanoid with round feet). These limitations may lead
to failures in complex tasks (Rocamonde et al., 2024).

Another line of research focuses on pre-trained valence
analyzers (Hutto & Gilbert, 2014) to translate text feedback
into a sentiment score (Sumers et al., 2021). The scores
drive the Bayesian updates describing the expected reward
of each feature. At each iteration, the features are updated
according to the sentiment score of the whole text. A single
sentiment score may not capture all nuances in human text,
e.g. “the start is good, but the end is bad”. We believe a
more fine-grained interpretation of the feedback would be
beneficial.

Similarly, Kwon et al. (2023) leverage a pretrained Large
Language Model (LLM) as a proxy for the reward signal.
The authors prompt an LLM with a language description of
the task together with an episode’s outcome and ask whether
the outcomes satisfy the objective. Complex episodes and
goals may not be readily interpretable by current LLMs.
Additionally, the binary nature of the feedback limits the
information gained per query.

3. Preliminaries and Problem Setting
In this paper, we consider an agent who interacts with an
environment aiming to maximize an expected reward. We
describe the interactions between the agent and the envi-
ronment as an episodic Markov Decision Process without
reward function (MDP\R) (Puterman, 2014). Formally, an
episodic MDP\R is a tupleM := (S,A,P, T ), where S
is the state space, A is the set of actions that the agent can
perform in the environment, P : S × A → ∆(S) captures
the transition probabilities, mapping state-action pairs to a
probability distribution of the next state over S, and T is
the time horizon. The reward function, which maps action
pairs to a reward r : S ×A → R, is unknown to the agent.
Instead, the agent learns a reward model r̂ : S → R based
on human feedback.

At each step, the agent performs an action according to
a deterministic policy π : S → A. The goal is to learn
the policy π∗ that maximizes the expected return from the
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Figure 1. Block diagram of RLHF learning a reward model from
human text input. We use an LLM to translate human evaluations
in the form of natural language into state level rewards. These
labeled states are used to train a reward model, which in turn, is
employed with standard RL algorithms to train the agent.

current state s,

V t
r (s) = max

a∈S
r(s,a) +

∑
s′∈S

P(s′|s,a)V t−1
r (s′), (1)

where V 0
r (s) = maxa∈S r(s,a) and t ∈ [0;T − 1] repre-

sents the number of timesteps left until the trajectory fin-
ishes. We denote the state-action pairs visited when follow-
ing π∗ as the optimal trajectory τ ∗ = {s∗t ,a∗t }Tt=0.

As the agent does not have direct access to the reward func-
tion r, the agent follows instead the policy π̂ that maximizes
value function Vr̂ derived from the estimated reward. Our
primary goal is to minimize the performance gap between
this learned policy π̂ and optimal policy π∗. We denote this
difference in expected rewards as imitation gap, which we
formally define as

E

[
T∑

t=0

r (s∗t ,a
∗
t )− r (ŝt, ât)

]
,

where τ̂ = {ŝt, ât}Tt=0 represents the trajectory when fol-
lowing π̂.

4. Algorithm
The proposed algorithm consists of two phases, which are
executed iteratively. First, we leverage human feedback to
train a reward model. Second, we train an agent to perform a
policy that maximizes the reward as estimated by the model.
The algorithm, which we call Reinforcement Learning from
Human Text Feedback (RLHTF), is outlined in Algorithm
1. Next, we describe each phase in detail.

4.1. Learning a Reward Model

Our key insight is that human text feedback contains much
more information than pairwise comparisons, and this infor-
mation may be harnessed through LLMs to train a reward
model.

The dashed lines in Figure 1 depict how the reward model is
trained. At each interaction, the human evaluator observes
and evaluates the trajectory given by the current policy. For
example, the human evaluation may include criticisms of
specific states, or suggestions for alternative, unexplored
states.

The human evaluation, together with information about the
environment and the trajectory, is fed into an LLM. The
prompt is further described in Appendix B. The LLM then
processes this information and identifies which states the hu-
man feedback refers to, and with what connotation. Namely,
the LLM generates a set of states with their corresponding
labels (positive or negative). This set is used as a training
dataset to train the reward model.

In the tabular setting, the agent tracks the reward proba-
bility distribution for every state, which is modeled as a
beta distribution. Specifically, we initialize the reward dis-
tributions as β(0.5, 0.5) to introduce a bias towards binary
rewards: 0 (negative) or 1 (positive). For analytical tractabil-
ity, we model the observed labels with the conjugate prior,
i.e., as Bernoulli distributions. This way, the posterior of a
given state probability distribution β(a, b) simply becomes
β(a, b+ 1) when receiving a positive label, or β(a+ 1, b)
if the label is negative.

To extend RLHTF beyond the tabular setting, we approx-
imate the reward function as a NN. At each iteration, we
expand the training dataset with the state-reward pairs out-
putted by the LLM. Then, we employ Stochastic Gradient
Descent (SGD) to finetune the NN with the expanded train-
ing dataset. This supervised learning process utilizes a
cross-entropy loss function.

4.2. Learning a Policy

The reward model learns to measure how close the trajectory
is to the human intentions. Consequently, to find the opti-
mal policy the agent may directly query the reward model,
instead of the human evaluators. This approach significantly
reduces time, energy, and monetary costs during policy
learning. The interactions are described by the solid arrows
in Figure 1 and line 8 of Algorithm 1.

In the tabular setting, we employ Q-learning (Watkins &
Dayan, 1992) to guide the agent. Specifically, the agent
uses a greedy policy, selecting actions that maximize the
expected future rewards as in (1). In contrast, for the con-
tinuous setting, we model the policy with a NN. We train
the network using the REINFORCE algorithm (Williams,
1992), where the reward signal is given by the reward model.
Following standard practices from Reinforcement Learning
from Human Feedback (RLHF), we compute several REIN-
FORCE epochs before querying the human evaluators and
updating the reward model again.
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Algorithm 1 RLHTF

1: Input: number of human iterations N
2: Initialize Policy π0 and reward model r̂0.
3: for i = 0 to N do
4: Record trajectory following policy: ti ← πi

5: Query human for feedback: fi ← ti
6: Translate feedback to state-reward pairs with LLM:

si, ri ← fi, ti
7: Update reward model: r̂i+1 ← r̂i, {st, rt}it=0

8: Update policy: πi+1 ← πi, r̂i+1

9: end for

Figure 2. Gridworld environment. The aim of the agent is to follow
the a specific path (in grey) from the start (yellow circle) to the
end (yellow star). The agent’s trajectory (in red) currently deviates
from this path.

5. Experiments
We empirically evaluate RLHTF against three RL baselines:

• Sentiment: We measure the sentiment of the human
text feedback, and apply it as a reward for all states in
the trajectory (Sumers et al., 2021).

• PbRL: We query human evaluators for pairwise com-
parisons between trajectories (Christiano et al., 2017a).

• True: The agent receives the true reward from the
environment.

The details of the implementation may be found in Appendix
A.

5.1. Gridworld

We first test our approach in a tabular setting. Particularly
we apply the algorithm to the Gridworld shown in Figure
2. An agent aims to follow a specific path, which is known
to the human evaluators but unknown to the agent. Human
evaluators observe the agent’s trajectory and provide feed-
back to guide the agent. To provide context, we randomly
include landmarks in the environment, e.g.: a clock or a

(a) True feedback from environment.

(b) Human feedback.

Figure 3. Performance comparison of algorithms in the Gridworld.

bed. We use YOLOv8 (Jocher et al., 2022) to detect these
landmarks and their locations. This enables the LLM to
translate feedback such as “The behavior to the left of the
PC is bad” in Figure 2 to a negative reward at position ’c5’.

Figure 3 shows the error evolution as the agent interacts
with the environment, where the error is defined as the num-
ber of steps in which the agent deviates from the ideal path.
Figure 3a show the performance when the agent receives
the true feedback from the environment. We consider two
scenarios: under the first scenario, the agent receives the
accumulated reward for the entire trajectory, this is used
to equally update all the states visited; under the second
scenario, the environment provides state-level rewards, ex-
plicitly indicating whether each of the observed states are
part of the ideal trajectory or not. We observe, that the agent
rapidly improves its performance under both scenarios, but
the state-level feedback is significantly more effective. The
agent with state-level feedback identifies the correct path
after only two iterations. This highlights the advantage
of having fine-grained feedback in reinforcement learning,
where detailed information about each state’s contribution
leads to faster learning.

A main advantage of RLHTF is the algorithm leverages
LLM to perform reward attribution. In contrast, previous
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Figure 4. Modified reacher environment. The aim of the robotic
arm is to stay close to the red ball. We add circles and a timestamp
to aid human evaluation of specific states.

works update all states in a trajectory (Sumers et al., 2021)
or all differing states between two trajectories (Christiano
et al., 2017a) with a single reward. Figure 3b compares
the performance of RLHTF against these other strategies
for learning from human feedback. We observe that break-
ing down the feedback into fine-grained rewards with an
LLM greatly benefits the performance. The error decreases
faster with RLHTF than the state of the art Sentiment or
PbRL algorithms. After only receiving 4 instances of human
feedback, RLHTF on average reduces the error by half.

5.2. Reacher Environment

We also test RLHTF in a continuous environment of the
physics simulator MuJoCo (Todorov et al., 2012). Namely,
we apply RLHTF to Reacher, a two-jointed robot arm. The
aim is to apply appropriate torques to the hinges so that
the robot’s fingertip reaches a target. The human evalua-
tors watch and criticise a video of the robot arm moving
under the current policy. To aid human evaluators in their
assessment, we incorporate a timestamp and some visual
landmarks (colored circles) into the environment. These
aids the human evaluator to refer to specific locations (“Go
to the left of the blue circle.”) or moments in the trajectory
(“The movement from frame 4 to 8 is wrong.”). Figure 4
shows the modified reacher environment.

The standard observation space contains information about
the goal (target location) and the performance (distance to
target). We remove this information before inputting the
observation to the LLM, as the performance should be solely
deduced from the human feedback. This filtering is further
detailed in Appendix A.2.

The LLM processes three inputs: The human feedback,
the landmark locations and the sequence of filtered states
making up the video. The LLM’s task is to interpret these
inputs to deduce what states are described as positive or
negative. Figure 5 shows how the state-reward pairs are gen-
erated. The LLM outputs pairs of filtered states and binary
labels. Each label indicates whether the corresponding state
is positive or negative. If a filtered state is returned partially,

missing elements are filled in by randomly sampling from
the set of observed trajectory states.

We suggest that feedback in natural language is more infor-
mative than the traditional approach of selecting the pref-
erence among two trajectories, and thus RLHTF requires
less interactions with humans to achieve an accurate reward
model. To verify the hypothesis, we compare the evolution
of the reward model with RLHTF versus PbRL. Figure 6
shows the reward predictions for different positions of the
arm, with darker colors indicating lower predicted rewards.
The blue star marks the target location. On the left, Fig-
ure 6a displays the reward model at random initialization.
Figures 6b, 6c and 6d at the top show the reward model evo-
lution as more text feedback is gathered. Whereas Figures
6e, 6f and 6g on the bottom show the reward model evo-
lution with pairwise comparison feedback. After just one
interaction, both feedback types significantly enhance the
reward model. However, text feedback offers a more precise
model. By the tenth interaction, Figure 6d shows that only
a small area around the target receives a high reward with
RLHTF, whereas Figure 6g shows that PbRL results in a re-
ward model more uncertain about the target location, giving
high reward to large areas of the environment. In conclusion,
Figure 6 suggests that natural language feedback enables
the reward model to more quickly and accurately identify
the target.

We also compare the agent’s performance, in terms of av-
erage distance to the target, when there is a budget of 10
human interactions. Figure 7 shows how the reward evolves
as the agent learns. Although RLHTF is not as effective as
directly observing the true reward, RLHTF performs much
better in regimes with low feedback than PbRL. In fact, in
our experiments RLHTF increases the reward by 40% with
only 10 human inputs, while the reward even decreases with
PbRL when the agent only has access to 10 comparison.

6. Discussion
Our work leverages LLMs to extract state level rewards
from human feedback. This approach tackles the challenge
of reward attribution and garners richer information from
human interactions beyond mere binary comparisons. How-
ever, we study just one way of interactivity with humans, in
which the human evaluates the current agent’s trajectory, in
future work we could prompt humans in different manners,
for instance, asking humans to directly describe the goal
(Li et al., 2023). Moreover, in the current implementation
of RLHTF, the human only observes a greedy realization
of the agent’s trajectory. As a next step, we will incorpo-
rate strategies balancing exploration and exploitation, such
as the Upper Confidence Bound (UCB) algorithm (Lai &
Robbins, 1985).
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Figure 5. Example of Step 6 in Algorithm 1.

(a) Random Initialization

(b) RLHTF after 1 query (c) RLHTF after 5 queries (d) RLHTF after 10 queries

(e) PbRL after 1 query (f) PbRL after 5 queries (g) PbRL after 10 queries

Figure 6. Reward model visualization for RLHTF vs PbRL. The top row illustrates the evolution of the reward estimations as more text
feedback is gathered, while the bottom row shows the corresponding evolution with preference feedback. Darker colors indicate lower
predicted rewards and the blue star marks the target location. Notably, RLHTF quickly converges to a more accurate reward model with
fewer interactions than PbRL, as evidenced by the more localized high-reward region around the target.
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Figure 7. Reward evolution with episodes of the REINFORCE
algorithm. We compare the performance for RLHTF with 10
text feedback, PbRL with 10 trajectory comparisons, and true
environment reward.

Our preliminary experiments in Section 5 show the potential
of our approach. Nonetheless, the scope of these experi-
ments remains limited. Moving forward, we will apply
RLHTF to other domains and we will perform extensive
experiments with a wider range of human evaluators.

By addressing these aspects, we aim to enhance the robust-
ness, adaptability, and practical utility of our approach in
integrating human text with reinforcement learning.
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Figure 8. Preprocessing of state observation.

A. Experiment Details
A.1. Gridworld

The agent takes 10 steps. At each timestep the possible actions are either to move right or up. The agents movement are
restricted to a 5x10 grid. When the agent is in a border and performs an action that would take the agent outside of the
allowed region, the agent doesn’t move.

We randomly add landmarks to the gridworld to aid with the evaluation. Then, the landmarks are detected with YOLOv8
model trained on the Microsoft COCO dataset, and its positions are fed to the LLM for context. Namely, we use gpt-4-1106-
preview to translate human feedback into state-level reward.

We conducted the experiments with the assitance of volunteer Ph.D. students who acted as evaluators. We tested the
Sentiment and PbRL algorithms for 14 trials each and RLHTF for 18 trials.

A.2. Reacher Environment

Each trajectory in the reacher environment spans T = 50 frames. The default observations for each frame include the
target location and the distance between the arm and target. However, to proof that the LLM is capable of deducing the
performance solely from the human feedback, we filter this information from our prompt. The LLM obtains a filtered
state that includes the fingertip’s location, arm’s joint angles, and angular velocities. The filtering and preprocessing of the
observation are detailed in Figure 8.

We use the LLM gpt-4o to translate the human feedback to state-reward pairs. To conduct a fair comparison with PbRL,
we reconstruct the filtered states output by the LLM back into the complete original observation space. Using this full
observations with their corresponding binary labels, we train a reward model in a supervised learning framework. The
architecture of this reward model is a neural network (NN) with one hidden layer consisting of 32 nodes, employing a RELU
activation function characterized by a leaky parameter α = 0.01. In the case of PbRL, three such NNs are initialized at
random to create an ensemble. Before asking the human for a preference, we sample random trajectories and then chose
the pair whose preference is most uncertainty, specifically, the pair for which there is the most disagreement among the
ensemble’s predictive outcomes. During policy training, the agent observes the average reward from the ensemble.

We perform the experiments four times for every algorithm under consideration. A different target location was set for each
experiment. The human feedback was provided by one of the authors of this paper. The shaded area in Figure 6 shows the
standard error between the four experiments. Note that the plotted lines have been smoothed using a convolution operation
with a window size of 500 episodes, which helps to reduce noise and provide a clearer trend of the data.

B. Prompt Engineering
There are four key elements in the system instructions which lead to a good performance. First, we define the coordinates in
the grid as chess coordinates, i.e., as a letter and number pair indicating the column and row respectively. Second, we follow
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Figure 9. System prompt for Gridworld.

chain of thought (CoT) prompting (Wei et al., 2022). As feedback is context dependent, we ask the LLM to categorize the
feedback into imperative, evaluative or descriptive as an intermediate step. Third, in accordance with few shot prompting, we
provide demonstrations to steer the model to better performance. Lastly, we use function calling to force ChatGPT’s output
to have a prespecified json format. The desired output format for the Gridworld and Reacher enviroments are described in
Figures 11 and 14 respectively. While the full system instructions are detailed in Figures 9, 10, 12 and 13.
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Figure 10. Parameters for system prompt in Gridworld.
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Figure 11. Function calling to force output format in Gridworld.
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Figure 12. System prompt for Reacher environment Part 1.
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Figure 13. System prompt for Reacher environment Part 2.
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Figure 14. Function calling to force output format in Reacher environment.
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