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ABSTRACT

Diffusion models have greatly improved visual generation but are hindered by
slow generation speed due to the computationally intensive nature of solving gen-
erative ODEs. Rectified flow, a widely recognized solution, improves generation
speed by straightening the ODE path. Its key components include: 1) using the
linear interpolating diffusion form of flow-matching, 2) employing v-prediction,
and 3) performing rectification (a.k.a. reflow). In this paper, we argue that the suc-
cess of rectification primarily lies in using a pretrained diffusion model to obtain
matched pairs of noise and samples, followed by retraining with these matched
noise-sample pairs. Based on this, components 1) and 2) are unnecessary. Further-
more, we highlight that straightness is not an essential training target for rectifica-
tion; rather, it is a specific case of flow-matching models. The more critical train-
ing target is to achieve a first-order approximate ODE path, which is inherently
curved for models like DDPM and Sub-VP. Building on this insight, we propose
Rectified Diffusion, which generalizes the design space and application scope of
rectification to encompass the broader category of diffusion models, rather than
being restricted to flow-matching models. We validate our method on Stable Dif-
fusion v1-5 and Stable Diffusion XL. Our method not only greatly simplifies the
training procedure of rectified flow-based previous works (e.g., InstaFlow) but
also achieves superior performance with even lower training cost. Our code is
available at https://github.com/G-U-N/Rectified-Diffusion.

1 INTRODUCTION

Diffusion models have greatly advanced the field of visual generation, enabling the creation of high-
quality images and vivid videos from text (Ho et al., 2020; Song et al., 2020b; Rombach et al.,
2022a; Singer et al., 2022; Podell et al., 2023; Esser et al., 2024; Shi et al., 2024). However, the
generation process of diffusion models involves solving an expensive generative ODE numerically,
which significantly slows down the generation speed compared to other generative models (e.g.,
GAN) (Goodfellow et al., 2020; Sauer et al., 2023b;a). A widely recognized solution to this issue
is rectified flow. The training target of rectified flow, as highlighted in the previous works (Liu
et al., 2023; 2022; Yan et al., 2024), is to make the new ODE path straighter, enabling the models to
generate high-fidelity images with fewer steps while retaining the flexibility of sampling with more
inference steps for further quality enhancement. The key components of rectified flow are threefold:

1) Flow-Matching. Rectified flow proposes to employ the linear interpolating diffusion form (Liu
et al., 2022; Lipman et al., 2022), which is also known as flow matching form. The intermediate
noisy state xt is defined as (1−t)x0+tϵ, where x0 is the clean data, ϵ ∼ N (0, I) is normal noise,
and t ∈ [0, 1] is the timestep. This design is more straightforward compared to the semi-linear
form of the original DDPM (Ho et al., 2020).

2) v-prediction. Rectified flow proposes to adopt v-prediction (Salimans & Ho, 2022; Liu et al.,
2022). That is, the model learns to predict v = x0 − ϵ. This makes the denoising form simple.
For example, one can predict x0 based on xt with x̂0 = xt + tv̂θ, where θ denotes the model
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Figure 1: Overview of comparison between rectified flow and our rectified diffusion.

parameters and ˆ denotes the predictions. Moreover, it avoids the numerical issue when t ≈ 1
with ϵ-prediction. For example, x̂0 = xt−tϵ̂θ

1−t ≈ xt−tϵ̂θ
0 , which is invalid.

3) Rectification. Rectification, also known as reflow, is an important technique proposed in rec-
tified flow (Liu et al., 2022). It is a progressive retraining technique that greatly improves the
generation quality at low-step regime and maintains the flexibility of standard diffusion models.
To be specific, it turns an arbitrary coupling of x0 ∼ P0 (real data) and ϵ ∼ P1 (noise) adopted
in standard diffusion training to a new deterministic coupling of x̂0 ∼ Pθ

0 (generated data) and
ϵ ∼ P1 (pre-collected noise). To put it in a nutshell, it replaces the xt = (1 − t)x0 + tϵ with
xt = (1− t)x̂0+ tϵ̂, where x0 is real data, x̂0 is data generated by pretrained diffusion models θ,
ϵ is the randomly sampled noise, and ϵ̂ is the noise used to generate data x̂0. Previous works em-
phasize the rectification procedure is only feasible to v-prediction based flow-matching models.
That is, they believe the first two points are the foundations to adopt rectification for improving
efficiency. And they emphasize the rectification procedure ‘straightens’ the ODE path.

The motivation of this paper is to investigate what is most essential about rectified flow. We ar-
gue that the effectiveness of rectified flow stems from using a pretrained diffusion model to acquire
matched pairs of noise and samples, followed by retraining with these matched noise-sample pairs
(i.e., the aforementioned third point). Based on this, the aforementioned first two points (i.e., flow-
matching & v-prediction) are unnecessary. This allows us to generalize the design space of recti-
fied flow and make it adaptable to various diffusion variants, including DDPM (Ho et al., 2020),
EDM (Karras et al., 2022), Sub-VP (Song et al., 2020b), and etc.

To this end, we propose rectified diffusion, as illustrated in Fig. 1, our overall design is straightfor-
ward. We keep everything of the pretrained diffusion models unchanged, including noise schedulers,
prediction types, network architectures, and even training and inference code. The only difference
is that the noise ϵ and data x0 adopted for training are pre-collected and generated by the pretrained
diffusion models instead of independently sampled from Gaussian and real data datasets.

Additionally, we highlight that straightness is no longer an essential training target when we gen-
eralize the design space from solely linear interpolating diffusion form to more general diffusion
forms. We analyze and show that the training target of rectified diffusion is to obtain a first-order
approximate ODE path1. In simple terms, a first-order approximate ODE path implies the predic-
tions of models remain consistent along the ODE trajectory and it still maintains at the same ODE
trajectory after each denoising step. For models like DDPM (Ho et al., 2020), the first-order ap-
proximate ODE path is inherently curved instead of straight. Therefore, ‘straightness’ is no longer
suitable for rectified diffusion and is just a special case when we use the form of flow-matching.

1Note: It should be clarified that the “first-order approximate ODE path” in this paper is distinct from the
traditional concept of a “first-order ODE”. In the conventional sense, a first-order ODE does not include terms
such as dnx

dtn
where n > 1. In this context, the ODE of general diffusion models is already “first-order ODE”.

However, in our work, the “first-order approximate path” refers to an ODE with the property of being immune
to high-order discretization errors. This distinction will become clearer in later sections.
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Figure 2: Training iterations. 1-step performance of rectified diffusion significantly surpasses the
1-step performance of rectified flow within only 20,000 iterations with batch size 128 (only 8%
trained images of rectified flow) and consistently grows with more training iterations. The dashed
lines represent the final performance of the rectified flow (Liu et al., 2023). Since the training code
of rectified flow (Liu et al., 2023) is not open-sourced, intermediate metrics cannot be tested.

To empirically validate our claim, we conduct experiments using Stable Diffusion, comparing our
approach with InstaFlow (Liu et al., 2023), a key baseline based on rectified flow for text-to-image
generation. We adhere to the training setting of InstaFlow. The primary distinction is that In-
staFlow requires transforming the Stable Diffusion into a v-prediction flow-matching model, while
our method leaves everything of the original Stable Diffusion unchanged. Our results demonstrate
apparently better performance and faster training, likely due to our minimal differences in diffusion
configurations. Our one-step performance achieves significantly superior performance with only 8%
trained images of InstaFlow as shown in Fig. 2.

Besides, we propose to replace the second-stage distillation adopted in InstaFlow with consistency
distillation. We observe that the first-order approximate ODE path greatly facilitates consistency
distillation, allowing us to achieve better performance at 3% the GPU days than the further distilled
model of InstaFlow. Additionally, we introduce rectified diffusion (Phased), which divides the ODE
path along the time axis into multiple segments and enforces first-order approximate ODE paths
within each segment. While this segmentation increases the minimum number of generation steps to
match the number of segments, it substantially reduces both training costs and time. When compared
to the previous segment-based rectified flow method, PeRFlow (Yan et al., 2024), our approach
demonstrates significantly better performance in experiments conducted on Stable Diffusion v1-
5 (Rombach et al., 2022a) and Stable Diffusion XL (Podell et al., 2023).

We summarize our main contributions as follows: (i) We conduct an in-depth analysis of the essence
of rectification and extend rectified flow to rectified diffusion. (ii) We identify that it is not straight-
ness but first-order approximate ODE path is the essential training target of rectified diffusion. (iii)
Comprehensive comparisons on rectification, distillation, and phased OED segmentation demon-
strate our method achieves superior trade-off between generation quality and training efficiency
over rectified flow-based models.

2 RECTIFIED DIFFUSION: GENERALIZING THE DESIGN SPACE OF RECTIFIED
FLOW INTO GENERAL DIFFUSION MODELS

Rectified flow is a subset of rectified diffusion. In the following discussion, we apply the general
diffusion form (Kingma et al., 2021) xt = αtx0+σtϵ to introduce rectified diffusion. Note that this
form of diffusion covers the flow-matching since we can simply set αt = 1 − t and σt = t. Con-
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sidering the different prediction types, we apply the epsilon-prediction for the following discussion.
But note that different prediction types can be converted effortlessly through re-parameterization.
For x0-prediction, we have x0 = xt−σtϵ

αt
. For v-prediction utilized in rectified flow, we have

v = x0 − ϵ = xt−(αt+σt)ϵ
αt

. Hence, we claim that rectified flow is a subset of rectified diffusion, and
rectified diffusion is a generalization of rectified flow.

2.1 THE NATURE OF RECTIFICATION IS THE RETRAINING WITH PRE-COMPUTED
NOISE-SAMPLE PAIR

The secret of rectification is using paired noise-sample for training. To illustrate the differences
clearly, we visualize the training processes for standard flow matching and rectification (reflow)
training, as described in Algorithm 1 and Algorithm 3, respectively. Differences are highlighted in
red. A key observation is that in standard flow matching training, x0 represents real data randomly
sampled from the training set, while the noise ϵ is also randomly sampled from Gaussian. This
results in random pairing between noise and sample. In contrast, in rectification training, the noise
is pre-sampled from Gaussian, and the images are generated using pre-sampled noise by the model
from the previous round of rectification (the pre-trained model), leading to a deterministic pairing.

Flow-matching training (with linear interpolating form) is a subset of standard diffusion train-
ing. In addition, Algorithm 2 visualizes the training process of a more general diffusion model, with
differences to Algorithm 1 highlighted in blue and orange. It’s important to note that flow matching
is a specific case of the diffusion forms we discuss. From the algorithms, it is evident that the only
distinctions between them lie in the diffusion form and prediction type. Consequently, flow match-
ing training with linear interpolating form is just a special case of general diffusion training under a
particular diffusion form and prediction type.

By comparing Algorithms 2 and 3 with Algorithm 1, it is straightforward to derive Algorithm 4.
Essentially, by incorporating the pre-trained model to collect noise-sample pairs and replacing the
randomly sampled noise and real samples with these pre-collected pairs in the general diffusion
training, we obtain the training algorithm for rectified diffusion.

Algorithm 1 Flow Matching v-Prediction

Input:
Sample x0 from the data distribution
Sample time t from a predefined schedule or
uniformly from [0, 1]
Sample noise ϵ from normal distribution
Compute xt : xt = (1− t) · x0 + t · ϵ
Predict velocity v̂ using the model: v̂ =
Model(xt, t)
Compute loss: L = ∥v̂ − (x0 − ϵ)∥22
Backpropagate and update parameters

Algorithm 2 Diffusion Training ϵ-Prediction

Input: αt, σt

Sample x0 from the data distribution
Sample time t from a predefined schedule or
uniformly from [0, 1]
Sample noise ϵ from normal distribution
Compute xt : xt = αt · x0 + σt · ϵ
Predict noise ϵ̂ using the model: ϵ̂ =
Model(xt, t)
Compute loss: L = ∥ϵ̂− ϵ∥22
Backpropagate and update parameters

Algorithm 3 Rectified Flow v-Prediction

Input: noise-data pair (ϵ, x̂0)
Sample x0 from the data distribution
Sample time t from a predefined schedule or
uniformly from [0, 1]
Sample noise ϵ from normal distribution
Compute xt : xt = (1− t)·x̂0+t · ϵ
Predict velocity v̂ using the model: v̂ =
Model(xt, t)
Compute loss: L = ∥v̂−(x̂0−ϵ)∥22
Backpropagate and update parameters

Algorithm 4 Rectified Diffusion ϵ-Prediction

Input: noise-data pair (ϵ, x̂0), αt, σt

Sample x0 from the data distribution
Sample time t from a predefined schedule or
uniformly from [0, 1]
Sample noise ϵ from normal distribution
Compute xt : xt = αt·x̂0+σt · ϵ
Predict noise ϵ̂ using the model: ϵ̂ =
Model(xt, t)
Compute loss: L = ∥ϵ̂− ϵ∥22
Backpropagate and update parameters
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2.2 UNDERSTANDING THE FIRST-ORDER APPROXIMATE ODE PATH (⋆ ⋆ ⋆)

How do we define a first-order approximate ODE path, and what are its requirements? For
the above discussed general diffusion form xt = αtx0 + σtϵ, there exists an exact ODE solution
form (Lu et al., 2022),

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵθ(xtλ , tλ)dλ , (1)

where λt = ln αt

σt
, and tλ is the inverse function of λt. As indicated in previous work (Kingma

et al., 2021), λt should be a monotonically decreasing function. The left term αt

αs
xs is a pre-defined

deterministic scaling. The right term is the exponentially weighted integral of epsilon predictions.
The first-order approximate ODE path means the above integral with arbitrary t and s is equivalent
to

xt =
αt

αs
xs − αtϵθ(xs, s)

∫ λt

λs

e−λdλ =
αt

αs
xs + αtϵθ(xs, s)(

σt

αt
− σs

αs
) . (2)

We show that the equivalent of Equation 1 and Equation 2 for arbitrary t and s holds and only holds
if the epsilon prediction on the same ODE trajectory is a constant in Thereom 1.

What is the principle behind the first-order approximate ODE path? The equivalence between
Equation 1 and Equation 2 does not generally hold across most cases. Specifically, Equation 2 serves
as a first-order Taylor series approximation of Equation 1. Let’s assume the outcome of Equation 1
is represented as f(s, t) and that of Equation 2 as f̃(s, t). Their relationship can then be written as:

f(s, t) = f̃(s, t) +O((λt − λs)
2) . (3)

Widely adopted ODE solvers in the community, such as DDIM and the Euler solver, operate under
the premise that Equation 1 and Equation 2 are interchangeable, thus disregarding the higher-order
error terms. These terms, denoted as O((λs − λt)

2), are typically overlooked during inference,
leading to issues when the gap λs − λt grows significant. This explains why DDIM necessitates
a minimum of 50 steps to produce high-quality results. By contrast, our work sidesteps such ap-
proximations. Our key aim is to enhance the PF-ODE to guarantee first-order accuracy, eliminating
higher-order error terms via a paired retraining approach (rectification). This underpins why Recti-
fied Diffusion achieves high-quality generation in a single step.

Why rectified diffusion leads to a first-order approximate ODE path? Suppose the ODE trajec-
tory is already a first-order approximate ODE path with a solution point x0. We define the constant
epsilon prediction along this ODE trajectory as ϵ. Substituting s = 0, x0, αs = 1, σs = 0, and ϵ
into Equation 2, we obtain:

xt =
αt

1
x0 + αtϵ

(
σt

αt
− 0

1

)
= αtx0 + σtϵ. (4)

This matches the structure of the predefined forward process precisely. Hence, the first-order ap-
proximate ODE path represents a weighted blend of data and noise, aligning with the predefined
forward diffusion framework. The difference, however, is that in this equation, ϵ and x0 are a de-
terministic pair tied to the same ODE trajectory, while in standard diffusion training, x0 and ϵ are
sampled randomly.

Now, if we achieve perfect coupling between the noise ϵ and data x0 during training and ensure the
no-intersection condition holds, xt will correspond to a unique noise-data pair. In the absence of
optimization errors, this leads to:

sθ(xt, t) = ∇xt
logP(xt | x0) = −xt − αtx0

σ2
t

= − ϵ

σt
. (5)

Given that ϵθ = −σtsθ, it follows that the epsilon prediction along the PF-ODE will consistently
equal ϵ. Referring back to Theorem 1, this implies that we successfully recover the first-order
approximate ODE path.

This indicates that, with perfect pairing of the data x0 and noise ϵ during training, and provided there
are no overlaps between distinct paths (which could otherwise result in epsilon predictions averaging
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Figure 3: First-order approximate ODE paths of different diffusion forms. We show that the first-
order approximate ODE path has the same form as their predefined forward process, i.e., xt =
αtx0+σtϵ. Though the first-order approximate ODE paths of Flow Matching and EDM are straight,
the first-order approximate ODE paths of DDPM and Sub-VP are inherently curved. First-order
approximate ODE paths of all diffusion forms can be converted into straight lines through simple
scaling as shown in Fig. 3e.

over multiple paths), a diffusion model trained under ideal conditions (without optimization errors)
would yield the first-order approximate ODE path. Indeed, as indicated by previous work (Lee
et al., 2024), the probability of overlaps between distinct paths is actually close to zero with only
once rectification. Additional insights are provided in the supplementary Section IV.

First-order approximate ODE path supports consistent generation with arbitrary inference
steps. Additionally, note that if the epsilon predictions on the same trajectory are constant, it is easy
to show that the x0-predictions are also constant. Therefore, the first-order approximate ODE path
can flexibly support one-step generation (xT → x0) or multi-step generation (xT → · · · → x0).
If a perfect first-order approximate ODE path is achieved, we will always get identical generation
results with arbitrary inference steps.

First-order approximate ODE path can be inherently curved. For the first-order approximate
ODE path, though the trajectories of flow-matching based methods are straight, the trajectories of
other forms of diffusion models can be inherently curved. We showcase our findings in Fig. 3. We
select x0 = [0, 1] and ϵ = [1, 1] The Fig. 3a and Fig. 3b show the first-order approximate ODE paths
of flow-matching and EDM. They are both straight, but EDM has a totally different trajectory and
magnitude. Fig. 3c and Fig. 3d show the first-order approximate ODE paths of DDPM and Sub-VP.
Their first-order approximate ODE paths are inherently curved. But if we define yt =

xt

σt
, we will

have yt =
αt

σt
x0+ϵ from the Equation 4. We can easily observe that the trajectory of yt is a straight

line from the initial point ϵ towards the direction of x0 (i.e, first-order trajectories can be converted
to straight lines). Fig. 3e shows the trajectory of yt = αt

σt
x0 + ϵ. It shows that all the first-order

trajectories can be converted into straight lines with simple timestep-dependent scaling.

2.3 RECTIFIED DIFFUSION (PHASED)

Completely smoothen the ODE path of a pre-trained diffusion model into first-order approximate
ODE path is challenging because the original ODE can deviate significantly from the target ODE.
In Fig. 4, we visualize both the original diffusion ODE path and the corresponding first-order ap-
proximate ODE path. Since it’s hard to intuitively determine whether a curved ODE path satisfies
the property, we represent the first-order approximate ODE path with a straight line. A significant
gap between the two paths is evident. However, enforcing local first-order approximate ODE path is
more feasible. As shown on the right side of the figure, when the ODE path is divided into two seg-
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Figure 4: ODE trajectory comparison of diffusion models, rectified diffusion models, and phased
consistency models. Since it’s hard to visually tell whether a curved ODE path satisfies first-order
property,we apply straight lines for more clear demonstration. The solid line shows the original
diffusion ODE path, while the dashed line shows the rectified ODE path.

ments along the time axis and each segment is smoothened separately, the new ODE path is closer to
the original one. This observation motivates the development of our rectification diffusion (phased).

We set intermediate time steps as s0 = 0 < s1 < s2 < · · · < sM−1 = tmax along the time axis
of ODE, where M is the number of phases. The training process begins with sampling x0 from
real data, followed by adding random noise at time step sm to obtain xsm . We then use the pre-
trained diffusion model to perform multi-step numerical solving to obtain xsm−1

for the previous
intermediate step. However, the phasing idea involves two challenges: 1) determining the noise ϵ
corresponding to the first-order approximate ODE path, and 2) determine the sample xt at any time
t between sm and sm−1 on the same first-order approximate ODE path, where t ∈ (sm−1, sm).
Fortunately, the transition formula between any two points on the first-order approximate ODE
path is known, as shown in Equation 2. Through a simple transformation, we have the noise ϵ
corresponding to the ODE path between xsm and xsm−1

can be expressed as:

ϵ =

xsm−1

αsm−1
− xsm

αsm

σsm−1

αsm−1
− σsm

αsm

=
∆z

∆NSR
, (6)

where ∆z represents the change in zt =
xt

αt
, and ∆NSR denotes the change in σt

αt
. Once this noise

ϵ is calculated, it can be directly substituted into Equation 2 to compute xt at any time t along the
ODE path.

At first glance, one might think that rectified diffusion (phased) is similar to the phased consistency
model and related trajectory distillation methods . However, they differ in scope and application
scenarios. From a technical perspective, although the learning objective for both is to compute the
solution point for each segment, the construction of their inputs differs. For the phased consistency
model, the sampled points still lie on the original PF-ODE trajectory, whereas in rectified diffusion
(phased), the sampled points are constructed based on the properties of the first-order approximate
ODE path as discussed above. In terms of application scenarios, the phased consistency model
is limited by the constraints of the consistency model itself; to achieve deterministic multi-step
inference, it typically requires training a separate model for each multi-step scenario. In contrast,
rectified diffusion (phased) can theoretically enable deterministic inference for any number of steps
(greater than a preset number of steps).

2.4 RECTIFIED DIFFUSION FACILITATES THE CONSISTENCY DISTILLATION

Previous work (Liu et al., 2023) proposes applying naive distillation after rectification to enhance
one-step generation ability. This is because, after rectification, the model cannot achieve a perfect
first-order path due to issues like optimization, model capacity, and ODE path intersections. As a
result, rectified flow-based methods still do not perform as well as the most advanced distillation
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(a) Diffusion models (b) Consistency models (c) Rectified diffusion (Ours)

Figure 5: ODE trajectory and prediction comparison of consistency models and reftified diffusion.
Since it’s hard to visually tell whether a curved ODE path satisfies first-order property,we apply
straight lines for more clear demonstration. The yellow line shows the ODE trajectories, while the
blue line shows the predictions.
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Figure 6: Effectiveness of Classifier-Free Guidance. The CFG values are 1, 1.2, 1.5, 2.0 respectively.
By default, we adopt CFG value 1.5 for both rectified diffusion and rectified flow. Proper CFG values
can significantly improve the performance even in one-step generation.

methods at low-step regime (e.g., 1-step generation). Following it, we also utilize distillation to fur-
ther improve the model’s performance at low-step regime after rectified diffusion. Instead of using
naive distillation, we employ the more advanced distillation technique–consistency distillation (Song
et al., 2023), which eliminates the need to regenerate large numbers of samples. Moreover, we found
that after rectification, where the ODE path is close to the first-order approximate ODE path, con-
sistency distillation leads to significantly faster training and better performance. This is because the
training objective of a first-order approximate ODE path imposes a stronger constraint than self-
consistency. In Fig. 5, we illustrate the differences between the diffusion model, consistency model,
and rectified diffusion. The consistency model only adjusts the direction of the model’s predictions
without altering the ODE path itself, while rectified diffusion enforces a change in the ODE path.

3 EMPIRICAL VALIDATION

3.1 VALIDATION SETUP

To thoroughly compare our approach with rectified flow-based methods, we organize the comparison
into three levels:

1) Rectification comparison: InstaFlow (Liu et al., 2023) proposes initializing a v-prediction-
based flow-matching model using Stable Diffusion v1-5 (Rombach et al., 2022a), followed by
further training with their rectified flow method, which we refer to as Rectified Flow. To com-
pare with this, we apply the rectified diffusion method to continue training Stable Diffusion v1-5,
referred to as Rectified Diffusion. This comparison aims to demonstrate the faster training speed
and superior performance of our proposed rectified diffusion approach.

2) Distillation comparison: In the InstaFlow paper, the authors suggest using a standard distilla-
tion technique to improve the model’s performance in a one-step scenario, which we refer to
as Rectified Flow (Distill). Similarly, we apply a distillation strategy to enhance performance
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at low-step regimes, specifically using consistency distillation to boost training efficiency. This
approach is termed Rectified Diffusion (CD).

3) Phased ODE segmentation: PeRFlow (Yan et al., 2024) introduces the concept of segmenting
the ODE and presents experimental results on both SD and SDXL (Podell et al., 2023), termed
PeRFlow and PeRFlow-XL, respectively. We extend this idea by proposing a method for phasing
the ODE to enforce first-order property within each sub-phase, which we call Rectified Diffusion
(Phased) and Rectified Diffusion-XL (Phased).

Across all three of these comparative experiments, our methods demonstrate significantly superior
performance.

Table 1: Performance comparison on validation set of COCO-2017.

Method Res. Time (↓) # Steps # Param. FID (↓) CLIP (↑)

SDv1-5+DPMSolver (Upper-Bound) (Lu et al., 2022) 512 0.88s 25 0.9B 20.1 0.318

Rectified Flow (Liu et al., 2023) 512 0.88s 25 0.9B 21.65 0.315
Rectified Flow (Liu et al., 2023) 512 0.09s 1 0.9B 47.91 0.272
Rectified Flow (Liu et al., 2023) 512 0.13s 2 0.9B 31.35 0.296
Rectified Diffusion (Ours) 512 0.88s 25 0.9B 21.28 0.316
Rectified Diffusion (Ours) 512 0.09s 1 0.9B 27.26 0.295
Rectified Diffusion (Ours) 512 0.13s 2 0.9B 22.98 0.309

Rectified Flow (Distill) (Liu et al., 2023) 512 0.09s 1 0.9B 23.72 0.302
Rectified Flow (Distill) (Liu et al., 2023) 512 0.13s 2 0.9B 73.49 0.261
Rectified Flow (Distill) (Liu et al., 2023) 512 0.21s 4 0.9B 103.48 0.245
Rectified Diffusion (CD) (Ours) 512 0.09s 1 0.9B 22.83 0.305
Rectified Diffusion (CD) (Ours) 512 0.13s 2 0.9B 21.66 0.312
Rectified Diffusion (CD) (Ours) 512 0.21s 4 0.9B 21.43 0.314

PeRFlow (Yan et al., 2024) 512 0.21s 4 0.9B 22.97 0.294
Rectified Diffusion (Phased) (Ours) 512 0.21s 4 0.9B 20.64 0.311

PeRFlow-SDXL (Yan et al., 2024) 1024 0.71s 4 3B 27.06 0.335
Rectified Diffusion-SDXL (Phased) (Ours) 1024 0.71s 4 3B 25.81 0.341
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Figure 7: Human preference metrics comparison.

3.2 COMPARISON

Training cost. Following the setup from the InstaFlow paper, we first use Stable Diffusion v1-5 and
DPM-Solver (Lu et al., 2022) to generate 1.6 million images. Since InstaFlow does not specify the
prompts used, we generate images using a randomly sampled set of 1.6 million prompts. During the
training of Rectified Diffusion, we used a batch size of 128 for a total of 200,000 iterations, resulting
in a total of 128× 200, 000 = 25, 600, 000 samples processed. In comparison, InstaFlow processed
64×70, 000+1024×25, 000 = 30, 080, 000 samples. Thus, our total training cost is lower than that
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of InstaFlow. Additionally, InstaFlow’s total training time was 75.2 A100 GPU days, whereas our
method required approximately 20 A800 GPU days. Typically, the training efficiency of an A800 is
about 80% of that of an A100. We attribute this significant reduction in training time to not using the
LPIPS Loss (Zhang et al., 2018), which generally improves FID but incurs substantial memory and
computational costs during the latent diffusion decoding process. For the second-stage distillation,
we employ consistency distillation training with a batch size of 512 for 10,000 iterations, consuming
a total of 4.6 A800 GPU days. In contrast, the distillation process described in the InstaFlow paper
takes 110 A100 GPU days. Our training cost is approximately 3% of the GPU days of InstaFlow’s
distillation process.

Training speed. We monitor the performance of Rectified Diffusion in terms of FID and CLIP
score at different stages of training. It was observed from Fig. 2 that our method achieve superior
one-step performance compared to Rectified Flow after just 20,000 iterations, with further signifi-
cant improvements as training continued. At this stage, the number of samples processed was only
about 8% of the samples processed by Rectified Flow. This efficiency is largely because Rectified
Diffusion does not require converting the original epsilon prediction diffusion model, which fol-
lows the DDPM form, into a v-prediction flow-matching model—a process that incurs significant
computational cost.

Qualitative comparison. We present a comparison of the images generated by Rectified Diffusion
and Rectified Flow across various scenarios in Fig. 8 and Fig. 9. First, we can observe that the
Rectified Flow model performs poorly at low step counts, producing only very blurry images in
fewer than eight steps. Additionally, we notice that the images generated by PeRFlow are blurry
and fail to reflect the content of the text. Moreover, the results generated by Rectified Flow (Distill)
remain relatively blurry and lack the ability for multi-step refinement, which limits its applicability.
Rectified Diffusion shows clearly superiority in these settings.

Quantitative comparison. We calculate the FID (Heusel et al., 2017) and CLIP scores (Radford
et al., 2021) for different models on the COCO-2017 validation set (Lin et al., 2014) and the 30k
subset of the COCO-2014 validation set (Lin et al., 2014), respectively. As shown in Table 1 and
Table 3, our model consistently outperforms the methods based on rectified flow across both met-
rics, different scenarios, and various steps. It also achieves performance comparable to advanced
distillation and GAN training methods.

Human preference metrics. To more comprehensively evaluate the model performance, we
compare the outputs using human preference models. We follow the testing setup of Diffusion-
DPO (Wallace et al., 2024), generating images with 500 unique prompts from the Pick-a-
pic (Kirstain et al., 2023) validation set for comparison. We used the Laion-Aesthetic Predic-
tor (Schuhmann, 2022), Pickscore (Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and ImageRe-
ward (Xu et al., 2024a) to score the generated results from each model individually and calculate the
win rate of each model across these metrics. Our results, shown in Fig 7, consistently outperform
the results of rectified flow-based models.

CFG-influence. We show the performance comparison of FID and CLIP Score between Rectified
Flow and Rectified Diffusion under different step counts and CFG values in Fig. 6. We observe
that Rectified Diffusion consistently outperforms Rectified Flow, especially in the low-step regime.
Additionally, we find that CFG has a significant impact on both Rectified Diffusion and Rectified
Flow; even in the 1-step generation scenario, using an appropriate CFG value can still significantly
enhance performance. The CFG values are 1, 1.2, 1.5, 2.0 respectively.

4 CONCLUSION

In conclusion, we rethink and investigate the essence of rectified flow. We demonstrate that retrain-
ing with pre-collected noise-image pairs is the most important factor. Building on this insight, we
propose Rectified Diffusion, extending its scope to general diffusion forms. We identify that it is
not straightness but first-order property is the essential training target of Rectified Diffusion. Ad-
ditionally, by incorporating consistency distillation and introducing Rectified Diffusion (Phased),
we further enhance training efficiency and model performance, offering a streamlined approach to
efficient high-fidelity visual generation. Vast validation demonstrates the advancements of Rectified
Diffusion.
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I RELATED WORKS

Diffusion models. Diffusion models have steadily become the foundational models in image syn-
thesis (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022). Extensive research has been con-
ducted to explore their underlying principles (Lipman et al., 2022; Chen & Lipman, 2023; Song
et al., 2020b; Kingma et al., 2021; Chen et al., 2023; 2024; Guo et al., 2025; Yuan et al., 2023)
and to expand or enhance the design space of these models (Song et al., 2020a; Karras et al., 2022;
Kingma et al., 2021). Additionally, several works have focused on innovating the model architec-
ture (Dhariwal & Nichol, 2021; Peebles & Xie, 2023), while others have scaled up diffusion models
for text-conditioned image synthesis and various real-world applications (Shi et al., 2024; Rombach
et al., 2022b; Podell et al., 2023; Wang et al., 2024e;c;f;d). Moreover, efforts to accelerate sampling
have been pursued at both the scheduler level (Karras et al., 2022; Lu et al., 2022; Song et al., 2020a)
and the training level (Meng et al., 2023; Song et al., 2023; Zhou et al., 2024b;a). The former typi-
cally involves refining the approximation of the PF-ODE (Lu et al., 2022; Song et al., 2020a), while
the latter focuses on distillation techniques (Meng et al., 2023; Salimans & Ho, 2022; Song et al.,
2023; Wang et al., 2024b;c;a; Mao et al., 2024; Geng et al., 2024) or initializing diffusion weights
for GAN training (Sauer et al., 2023c; Lin et al., 2024; Xu et al., 2024b).

Rectified flow. Lipman et al. (2022) proposes the flow matching based on continuous normaliz-
ing flows, providing a different and unified perspective to understand diffusion models. Liu et al.
(2022) proposes the method rectified flow, setting up important baseline for diffusion acceleration
and providing a solid theoretical analysis. It proposes rectification to straighten the ODE path of
flow-matching based diffusion models. In the proof, Liu et al. (2022) show that the rectification
allows for non-decreasing straightness of ODE. Liu et al. (2023) scale up the idea of rectified flow
into large text-to-image generations, achieving one-step generation without introducing GAN. Yan
et al. (2024) and Yang et al. (2024) propose to split the ODE path into multi-phase following the In-
staFlow (Liu et al., 2023). Lee et al. (2024) analysises that one-time rectification is generally enough
to achieve pure straightness and proposes better optimization strategy for enhanced performance of
rectified flows.
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Stochastic interpolants. Stochastic Interpolants (Albergo et al., 2023; Albergo & Vanden-Eijnden,
2022) unifies flow-based and diffusion-based methods by extending the framework of continuous-
time normalizing flow with continuous-time stochastic processes that bridge arbitrary probability
densities in finite time, enabling flexible, noise-adjustable deterministic and stochastic generation
while linking to score-based diffusion and Schrodinger bridges.

Noise coupling. In addition to rectified flow, which constructs pairwise relationships between data
and noise using pretrained diffusion models, there are several other methods that reduce the variance
of noise-sample pairings by measuring the distance between noise and samples. For instance, OT-
CFM (Tong et al., 2023) and Multisample Flow Matching (Pooladian et al., 2023) propose building
a pairing probability matrix by computing the optimal transport relationship between samples and
noise within a batch. Similarly, Fast-ODE (Lee et al., 2023) suggests training a variational encoder
to model a data-dependent noise distribution during training. Although these techniques have been
validated within the context of flow models, our analysis in this paper suggests that they are broadly
applicable to the general framework of diffusion models. Additionally, SFT (Xu et al., 2023) and
SCT (Xu et al., 2023) numerically solve the variance-reduced score function of the data distribution,
significantly lowering the training variance in both diffusion models and consistency models.

II PROOF FOR FIRST-ORDER APPROXIMATE ODE PATH

Theorem 1 For the general diffusion form xt = αtx0 + σtϵ, there exists an exact ODE solution
form as follows:

xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵθ(xtλ , tλ)dλ, (7)

where λt = ln αt

σt
and tλ is the inverse function of λt. The first-order approximate ODE path satisfies

xt =
αt

αs
xs − αtϵθ(xs, s)

∫ λt

λs

e−λdλ =
αt

αs
xs − αtϵθ(xs, s)(

αs

σs
− αt

σt
) . (8)

We show the equivalence between Equation 7 and Equation 8 for arbitrary t and s, which holds true
if and only if ϵθ(xt, t) is constant.

Proof 1 If ϵθ(xt, t) is constant, then the Equation 7 and Equation 8 are equivalent.

Assumption: Let ϵθ(xs, s) = ϵ0 be a constant.

Substituting ϵ0 into the Equation 7:

xt =
αt

αs
xs − αtϵ0

∫ λt

λs

e−λdλ (9)

Calculating the integral: ∫ λt

λs

e−λdλ = e−λs − e−λt =
σs

αs
− σt

αt
(10)

Substituting the result:

xt =
αt

αs
xs − αtϵ0

(
σs

αs
− σt

αt

)
(11)

Comparing with the equation: The results match, thus proving equivalence.

If Equation 7 and Equation 8 are equivalent, then ϵθ(xt, t) must be constant.

Assumption: Assume the two are equivalent:

−αt

∫ λt

λs

e−λϵθ(xtλ , tλ)dλ = −αtϵθ(xs, s)

∫ λt

λs

e−λdλ (12)

2
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Removing the constant factor:∫ λt

λs

e−λϵθ(xtλ , tλ)dλ = ϵθ(xs, s)

∫ λt

λs

e−λdλ (13)

Differentiating with respect to t with Newton-Leibniz theorem:

d

dt

(∫ λt

λs

e−λϵθ(xtλ , tλ)dλ

)
= e−λtϵθ(xtλ , tλ)

dλt

dt
(14)

Comparing both sides:

e−λtϵθ(xtλ , tλ)
dλt

dt
= ϵθ(xs, s)e

−λt
dλt

dt
(15)

As indicated by previous work (Kingma et al., 2021), SNR(t) =
α2

t

σ2
t

is the monotonically decreasing

function. Therefore, we have λt = ln αt

σt
= 1

2 lnSNR(t) is a monotonically decreasing function.
Therefore dλt

dt
< 0. Since dλt

dt ̸= 0 and e−λt > 0, we can cancel terms, leading to:

ϵθ(xtλ , tλ) = ϵθ(xs, s),∀tλ ∈ [s, t]. (16)

This shows that for any t, ϵθ(xt, t) must be constant, proving the “if and only if” statement.

III LIMITATION

At low-step regime, the performance of methods based on rectification still lags behind state-of-
the-art methods based on distillation (Zhou et al., 2024b) or GAN training (Yin et al., 2024b; Sauer
et al., 2023c). Additional distillation steps are needed to improve low-step performance, which is
also stated in InstaFlow (Liu et al., 2023).

IV WHY PERFECT COUPLING LEADS TO FIRST-ORDER APPROXIMATE ODE
PATH?

For a diffusion model trained with the form xt = αtx0 + σtϵ (Kingma et al., 2021). The score sθ
will converge to the expectation value of all the possible conditional scores ∇xt logP(xt|x0) which
is determined by data x0 and noise ϵ (∇xt logP(xt|x0) = −xt−αtx0

σ2
t

) due to the noise ϵ and data
x0 is randomly paired (Song et al., 2020b). That is

sθ(xt, t) = EP(x0|xt)[∇xt
logP(xt|x0)]. (17)

The expectation score value on the same PF-ODE but different timesteps will converge to different
values and directions (Song et al., 2020b). Therefore, on the PF-ODE, the score sθ(xt, t) will
change along the time axis. Since ϵ = −σtsθ , it means that the epsilon prediction will change
along the time axis, which is not comprised with our theorem 1. It is not a first-order approximate
ODE path.

However, if we achieve perfect noise data coupling and satisfy the no-intersection condition, xt will
be sampled with a single noise and data pair. Without optimization errors, we will have

sθ(xt, t) = ∇xt
logP(xt | x0) = −xt − αtx0

σ2
t

= − ϵ

σt
, (18)

Since ϵθ = −σtsθ , therefore the epsilon prediction on the PF-ODE should always be the ϵ. Return
to our Theorem 1, that is to say, we achieve the first-order approximate ODE path.
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V VALIDATION

V.1 EMPIRICAL EVIDENCE FOR THE SUPERIORITY OF RECTIFIED DIFFUSION.

Rectified Diffusion outperforms Rectified Flow with significantly smaller training costs. As
highlighted in Fig. 2, where we show the performance change as the training iterations. Our one-step
performance significantly outperforms the one-step performance of the official weight of Rectified
Flow (Liu et al., 2023) within only 20, 000 iterations with batch size 128. The overall number of
trained images at this iteration is only 8% of the number of trained images in Rectified Flow. Even
after the full training of 200, 000 iterations, considering that our batch size adopted is only 128
which is significantly smaller than the batch size adopted in previous work, we still use less trained
images than the official weight of Rectified Flow method.

Rectified Diffusion significantly outperforms Rectified Flow in the few-step setting. The perfor-
mance in the few-step setting is the most important criterion to judge the effectiveness of rectification
on the ODE (since we aim to achieve efficient sampling and improve the performance in few-step
sampling). Rectified Diffusion significantly outperforms Rectified Flow in this setting. Specifically,
on COCO-5K. Rectified Flow achieves one-step FID 47.91, and two-step FID 31.35. Instead, Recti-
fied Diffusion achieves one-step FID 27.26 (significantly outperforms the two-step FID of Rectified
Flow), and two-step FID 22.98 (approaching the 25-step FID of Rectified Flow 21.65). The is strong
evidence that Rectified Diffusion is better than Rectified Flow.

Rectified Diffusion has better performance upper bound than Rectified Flow. It should be
noted that Rectified Diffusion and Rectified Flow are all trained with generated data from pretrained
diffusion models. Specifically, in the default setting, they both use 25-step DPMSolver with Stable
Diffusion v1-5 to generate noise-data pairs. Therefore, the performance of 25-step DPMSolver with
the teacher diffusion model works as the performance upper-bound. The 25-step Rectified Diffusion
achieves better performance than 25-step Rectified Flow on both FID and CLIP SCORE. Therefore,
Rectified Diffusion has better performance upper bound than Rectified Flow. Additionally, please
note that the 25-step performance of Rectified Diffusion and that of Rectified Flow are already very
close to the 25-step DPMSolver with the teacher diffusion model. Therefore, we can not achieve a
very large improvement.

Rectified Diffusion (Phased) consistently surpasses the baseline PeRFlow (Yan et al., 2024).
We extend Rectified Diffusion into the phased setting, and our performance still consistently outper-
forms the previous phased rectified flow-based method.

Rectified Diffusion (CD) surpasses the baseline Rectified Flow (Distill) with only 3% GPU
days for training. The distillation process described in the InstaFlow (Liu et al., 2023) takes 110
A100 GPU days. Our training cost is approximately 3% of the GPU days of InstaFlow’s distillation
process. Moreover, the results generated by Rectified Flow (Distill) remain relatively blurry and
lack the ability for multi-step refinement, which limits its applicability. Instead, Rectified Diffusion
(CD) not only achieves better one-step performance but also supports multistep refinement to further
improve the performance.

V.2 MORE VALIDATION ON ADDITIONAL DATASETS.

We additionally evaluate model performance on the Laion (Schuhmann, 2022) and CC3M (Chang-
pinyo et al., 2021) subsets. Following the test setting of COCO-2017, we adopt the 5k subset for
evaluation. Our experimental results as shown in Table 2 show that Rectified Diffusion consistently
outperforms Rectified Flow, consistent with our original evaluation on the COCO dataset. This
provides strong evidence of the superiority of Rectified Diffusion.

VI MORE DISCUSSION

VI.1 MOTIVATION AND CONTRIBUTIONS

The motivation for rectified diffusion is to investigate and rethink the most essential part of rectified
flow (Liu et al., 2022). The investigation allows us to extend the scope of rectification, which was

4



Published as a conference paper at ICLR 2025

Table 2: Performance comparison on Laion and CC3M subsets.

Subset Step Metric Rectified Diffusion Rectified Flow

Laion 8 CLIP Score 26.36 25.49
FID 23.52 24.73

4 CLIP Score 25.80 24.65
FID 24.70 27.27

2 CLIP Score 25.15 23.38
FID 26.14 35.09

1 CLIP Score 23.30 20.12
FID 30.14 52.86

CC3M 8 CLIP Score 28.33 27.65
FID 28.10 29.07

4 CLIP Score 28.08 27.37
FID 29.97 31.54

2 CLIP Score 27.68 26.27
FID 31.56 37.72

1 CLIP Score 26.30 24.63
FID 34.28 49.06

originally proposed and believed only suitable for rectified flow (using the form xt = (1− t)x0+ tϵ
, to general diffusion models.

In particular, InstaFlow (Liu et al., 2023), an important follow-up work to rectified flow that extends
it to text-to-image tasks and serves as a key baseline in our paper, uses the Stable Diffusion (Which
is an ϵ-prediction neural network follows DDPM diffusion form) for initialization. However, in
InstaFlow, the model is first converted into a v-prediction flow-matching model before undergoing
retraining of paired noise-sample This process introduces a gap between the pretrained model and
the retrained model supporting efficient sampling.

The conversion that converts the pretrained diffusion models (can be forms of DDPM, Sub-VP,
VE (Song et al., 2020b)) has become a common practice in the important following works (Liu
et al., 2022; Yan et al., 2024; Lee et al., 2024).

To our knowledge, we are the first to point out that this conversion is unimportant and show
that straightness is not the essential training target. Any ODE (even curved) can achieve one-
step sampling as long as it satisfies the requirement of first-order approximate property.

Therefore, our main contribution is to rethink and break the incomplete understanding from previ-
ous research. Additionally, we make our method as simple, straightforward, and accessible as pos-
sible to most diffusion-related researchers. Essentially, rectified diffusion does not need to change
anything of pretrained diffusion models for sampling acceleration (including networks, preconds,
training/inference code, noise scheduler, etc.). The only difference as highlighted in our paper is
to replace the noise and data in standard diffusion training with paired noise (collected) and data
(generated).

With this simple design, we still achieve significant improvement compared to the previous best-
performing rectified flow-based methods (with even smaller training costs) and comparable perfor-
mance to previous best-performing distillation or GAN-based acceleration methods. We believe
this discovery can inspire related research and broaden the understanding of diffusion models in the
community.

VI.2 CLARIFICATION ON THE DIFFERENCE BETWEEN RECTIFIED DIFFUSION AND
CONSISTENCY DISTILLATION.

The crucial difference between rectification (aims to achieve first-order approximate ODE path) and
distillation (aims to directly predict the solution point of PF-ODE ) is that rectification will change
the ODE trajectory but distillation does not. We provided a visualization explanation in Fig. 5.
Since it’s hard to intuitively determine whether a curved ODE path satisfies first-order property,
we represent the first-order approximate ODE path with a straight line (It is not straight in most
cases). Consistency models change the prediction of original diffusion models but do not change the
ODE trajectory. This makes it only suitable for stochastic multistep sampling (If it uses diffusion
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samplers like DDIM (Song et al., 2020a), it will fall out from the ODE trajectory, causing the
further prediction to be degraded). Instead, rectification smoothens and rectifies the ODE trajectory
to make it the first-order approximate ODE path. Generally, after rectification, the diffusion model
is still a diffusion model (since its prediction direction still follows the derivative of its ODE as
shown in Fig. 5), but performs much better in the few-step setting. Instead, diffusion models after
consistency distillation will become consistency models, since its prediction direction is different
from the derivative of its PF-ODE.

VI.3 CLARIFICATION ON THE ADDITIONAL DISTILLATION PROCEDURE AFTER
RECTIFICATION.

To set up a fair comparison. The most direct reason why we adopted distillation to further improve
performance is to set up a fair comparison with InstaFlow (Liu et al., 2023). The difference is that
we adopt consistency distillation instead of the naive distillation strategy adopted in InstaFlow. We
achieve better 1-step performance than the distilled baseline in InstaFlow with only 3% GPU days
used by InstaFlow for distillation.

Rectification is a harder objective than distillation. The root reason is that first-order approximate
ODE path is a harder target than distillation. Intuitively speaking, since the first-order approximate
ODE path is a stronger constraint than self-consistency, it is harder to train and will face more
optimization issues. However, despite the difficulty of achieving perfect first-order approximate
ODE paths, after rectification, the ODE of our model will become generally closer to the first-order
approximate ODE path. It will reduce the difficulty of further distillation if we use the model that
has undergone rectification as the teacher model for distillation.

VI.4 CLARITY ON THE DIFFERENCE BETWEEN DPM-SOLVER AND RECTIFIED DIFFUSION

Following the proof of DPM-Solver-1 (Equation 3.6 and the subsequent equation on Page 5 of DPM-
Solver), which is equivalent to the DDIM sampler, we can approximate the ODE solution from time
t to s as follows:

xs =
αs

αt
xt − αsϵ(xt, t)

∫ λs

λt

e−λdλ+O((λs − λt)
2) . (19)

In DPM-Solver-1, higher-order error terms O((λs − λt)
2) are neglected during inference, which

becomes problematic when λs − λt is large. This is the primary reason why DPM-Solver-1
(DDIM) requires at least 50 steps for high-quality generation.

In contrast, our paper does not rely on such level approximations. Our primary goal is to rec-
tify the PF-ODE to ensure it satisfies first-order accuracy, which eliminates the high-order er-
ror terms through paired retraining (Rectification). This is the fundamental reason why Rectified
Diffusion can achieve 1-step generation. In comparison, DPM-Solver requires at least several
steps—typically over ten—for high-quality generation.

VII MORE RESULTS
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Table 3: Performance comparison on COCO-2014.

Method Res. Time (↓) # Steps # Param. FID (↓) CLIP (↑)

Autoregressive Models
DALL·E (Ramesh et al., 2021) 256 - - 12B 27.5 -
CogView2 (Ding et al., 2021) 256 - - 6B 24.0 -
Parti-750M (Yu et al., 2022) 256 - - 750M 10.71 -
Parti-3B (Yu et al., 2022) 256 6.4s - 3B 8.10 -
Parti-20B (Yu et al., 2022) 256 - - 20B 7.23 -
Make-A-Scene (Gafni et al., 2022) 256 25.0s - - 11.84 -

Masked Models
Muse (Chang et al., 2023) 256 1.3 24 3B 7.88 0.32

Diffusion Models
GLIDE (Nichol et al., 2021) 256 15.0s 250 5B 12.24 -
DALL·E 2 (Ramesh et al., 2022) 256 - 250+27 5.5B 10.39 -
LDM (Rombach et al., 2022a) 256 3.7s 250 1.45B 12.63 -
Imagen (Saharia et al., 2022) 256 9.1s - 3B 7.27 -
eDiff-I (Balaji et al., 2022) 256 32.0s 25+10 9B 6.95 -

Generative Adversarial Networks (GANs)
LAFITE (Zhou et al., 2022) 256 0.02s 1 75M 26.94 -
StyleGAN-T (Sauer et al., 2023a) 512 0.10s 1 1B 13.90 ∼0.293
GigaGAN (Kang et al., 2023) 512 0.13s 1 1B 9.09 -

Stable Diffusion (0.9 B) and its accelerated or distilled versions
GANs

UFOGen (Xu et al., 2024b) 512 0.09s 1 0.9B 12.78 -
DMD (CFG=3) (Yin et al., 2024a) 512 0.09s 1 0.9B 11.49 -
DMD (CFG=8) (Yin et al., 2024a) 512 0.09s 1 0.9B 14.98 0.320
SD-Turbo (Sauer et al., 2023c) 512 0.09s 1 0.9B 16.59 0.312

Distillation
BOOT (Gu et al., 2023) 512 0.09s 1 0.9B 48.20 0.26
Guided Distillation (Meng et al., 2023) 512 0.09s 1 0.9B 37.3 0.27
LCM (Luo et al., 2023) 512 0.09s 1 0.9B 37.3 0.27
Phased Consistency Model (Wang et al., 2024b) 512 0.09s 1 0.9B 17.91 0.296
Phased Consistency Model (Wang et al., 2024b) 512 0.21s 4 0.9B 11.70 -
SiD-LSG (κ = 4.5) 512 0.09s 1 0.9B 16.59 0.317
SiD-LSG (κ = 3) 512 0.09s 1 0.9B 13.21 0.314
SiD-LSG (κ = 2) 512 0.09s 1 0.9B 9.56 0.313
SiD-LSG (κ = 1.5) 512 0.09s 1 0.9B 8.71 0.302
SiD-LSG (κ = 4.5) 512 0.09s 1 0.9B 16.59 0.317

Rectification (⋆ ⋆ ⋆)
SDv1-5+DPMSolver (Upper-Bound) (Lu et al., 2022) 512 0.88s 25 0.9B 9.78 0.318

Rectified Flow (Liu et al., 2023) 512 0.88s 25 0.9B 11.34 0.313
Rectified Flow (Liu et al., 2023) 512 0.09s 1 0.9B 36.68 0.272
Rectified Flow (Liu et al., 2023) 512 0.13s 2 0.9B 20.01 0.296
Rectified Diffusion (Ours) 512 0.88s 25 0.9B 10.73 0.315
Rectified Diffusion (Ours) 512 0.09s 1 0.9B 16.88 0.293
Rectified Diffusion (Ours) 512 0.13s 2 0.9B 12.57 0.307

Rectified Flow (Distill) (Liu et al., 2023) 512 0.09s 1 0.9B 13.67 0.302
Rectified Flow (Distill) (Liu et al., 2023) 512 0.13s 2 0.9B 62.81 0.261
Rectified Diffusion (CD) (Ours) 512 0.09s 1 0.9B 12.54 0.303
Rectified Diffusion (CD) (Ours) 512 0.13s 2 0.9B 11.41 0.310

PeRFlow (Yan et al., 2024) 512 0.21s 4 0.9B 18.59 0.264
Rectified Diffusion (Phased) (Ours) 512 0.21s 4 0.9B 10.21 0.310

Stable Diffusion XL (3B) and its accelerated or distilled versions
GANs

SDXL-Turbo Sauer et al. (2023c) 512 0.15s 1 3B 24.57 0.337
SDXL-Turbo Sauer et al. (2023c) 512 0.34s 4 3B 23.19 0.334
SDXL-Lightning (Lin et al., 2024) 1024 0.35s 1 3B 23.92 0.316
SDXL-Lightning (Lin et al., 2024) 1024 0.71s 4 3B 24.56 0.323
DMDv2 (Yin et al., 2024b) 1024 0.35s 1 3B 19.01 0.336
DMDv2 (Yin et al., 2024b) 1024 0.71s 4 3B 19.32 0.332

Distillation
LCM (Luo et al., 2023) 1024 0.35s 1 3B 81.62 0.275
LCM (Luo et al., 2023) 1024 0.71s 4 3B 22.16 0.317
Phased Consistency Model (Wang et al., 2024b) 1024 0.35s 1 3B 25.31 0.318
Phased Consistency Model (Wang et al., 2024b) 1024 0.71s 4 3B 21.04 0.329

Rectification (⋆ ⋆ ⋆)
PeRFlow-XL (Yan et al., 2024) 1024 0.71s 4 3B 20.99 0.334
Rectified Diffusion-XL (Phased) (Ours) 1024 0.71s 4 3B 19.71 0.340

Results of Stable Diffusion XL-based models are tested with COCO-2014 10k following the evaluation setting of DMDv2 (Yin et al., 2024b).
Other results are tested with COCO-2014 30k following the karpathy split.
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Figure 8: Qualitative comparison.
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Figure 9: Qualitative comparison.
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PeRFlow-XL Rectified Diffusion-XL PeRFlow-XL Rectified Diffusion-XL

Prompt: “sill life photo of an apple.” Prompt: “A cat in a space suit walking on the moon.”

Prompt: “guinea pigs on a pirate ship.” Prompt: “a husky running on the beach.”

Prompt: “insanely detailed portrait,female model, insane face details, 
perfect eyes,dof, dslr extremely intricate, 8k, …” Prompt: “Photorealistic blonde girl in pyjama.”

Prompt: “best sneakers 1d539 abccb NIKEiD LeBron Soldier 12 
Designs | Sole Collector.”

Prompt: “ROCK & REPUBLIC 'Neil' Relaxed Straight Leg Jeans, 
Main, color, 490.”

Prompt: “Java Ruched Faux Solid Taffeta Curtain.” Prompt: “Chuck Taylor All Star Hi W.”

Figure 10: Qualitative comparison.
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