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ABSTRACT

Parkinson’s disease (PD) is a common neurodegenerative disorder that severely di-
minishes patients’ quality of life. Its global prevalence has increased markedly in
recent decades. Current diagnostic workflows are complex and heavily reliant on
neurologists’ expertise, often resulting in delays in early detection and missed op-
portunities for timely intervention. To address these issues, we propose an end-to-
end automated diagnostic method for PD, termed PD-Diag-Net, which performs
risk assessment and auxiliary diagnosis directly from raw MRI scans. This frame-
work first introduces an MRI Pre-processing Module (MRI-Processor) to miti-
gate inter-subject and inter-scanner variability by flexibly integrating established
medical imaging preprocessing tools. It then incorporates two forms of clinical
prior knowledge: (1) Brain-Region-Relevance-Prior (Relevance-Prior), which
specifies brain regions strongly associated with PD; and (2) Brain-Region-Aging-
Prior (Aging-Prior), which reflects the accelerated aging typically observed in
PD-associated regions. Building on these priors, we design two dedicated mod-
ules: the Relevance-Prior Guided Feature Aggregation Module (Aggregator),
which guides the model to focus on PD-associated regions at the inter-subject
level, and the Age-Prior Guided Diagnosis Module (Diagnoser), which leverages
brain age gaps as auxiliary constraints at the intra-subject level to enhance di-
agnostic accuracy and clinical interpretability. Furthermore, we collected external
test data from our collaborating hospital. Experimental results show that PD-Diag-
Net achieves 86% accuracy on external tests and over 96% accuracy in early-stage
diagnosis, outperforming existing advanced methods by more than 20%.

1 INTRODUCTION

Background. Parkinson’s disease (PD) is a common neurodegenerative disorder, and its global
prevalence has increased dramatically in recent decades, with the number of patients rising from
approximately 2.5 million in 1990 to 6.3 million in 2016, and projected to surpass 12 million by 2040
(Bloem et al., 2021; Dorsey et al., 2018; Rocca, 2018). PD progresses slowly yet is highly disabling,
with common symptoms including sleep disturbances, olfactory dysfunction, autonomic nervous
system abnormalities, emotional and cognitive impairment, speech and swallowing difficulties, as
well as chronic fatigue and pain, all of which severely affect patients’ quality of life.

Motivation. PD currently has no cure, but early detection and timely pharmacological intervention
can significantly slow disease progression and alleviate motor symptoms. However, the current diag-
nostic workflow poorly suited to achieve this goal, which can be briefly summarized as follows (see
Appendix D for the full diagnostic flowchart): (1) Neurologists conduct a preliminary assessment
based on the patient’s medical history and hallmark motor symptoms (e.g., bradykinesia, rigidity).
(2) For suspected cases, magnetic resonance imaging (MRI) is used to exclude confounding condi-
tions (e.g., stroke, brain tumors) that may present with similar symptoms, followed by PD confirma-
tion. This highly expertise-dependent diagnostic process has clear drawbacks: (1) For clinicians, it
increases workload, lacks objective imaging biomarkers, and limits diagnostic consistency. (2) For
patients, it requires them to seek care from top-tier medical centers, increasing their financial burden
and potentially causing delays that result in missed opportunities for the optimal treatment window.
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Figure 1: (a) Brain-Region-Relevance-Prior (Relevance-Prior). The human brain can be functionally par-
cellated into distinct regions. In this study, we employ the Harvard–Oxford Atlas (Jenkinson et al., 2012) to
divide the brain into 48 regions (see Appendix E). Based on clinical prior knowledge, these regions are catego-
rized as strongly-associated (red), potentially-associated (yellow), or non-associated (green) with Parkinson’s
disease (PD), and are assigned weights of 1, 10−2, and 10−3, respectively. This prior guides the model in cap-
turing inter-subject level features. (b) Brain-Region-Aging-Prior (Aging-Prior). The human brain undergoes
progressive decline with aging. For PD patients, however, strongly-associated regions show accelerated aging,
leading to a larger brain age compared to chronological age. In contrast, non-PD individuals (including healthy
controls and other neurological disorders) show no such accelerated decline in PD-strongly-associated regions,
resulting in smaller brain age gaps. This prior helps characterize intra-subject level differences.

Therefore, we are committed to developing a method for PD risk assessment directly from MRI
scans. It is designed to enable individuals to leverage raw MRI from regular health checkups for
self-screening, early risk detection, and timely medical consultation. At the same time, it provides
clinicians with an objective and interpretable decision-support tool to reduce workload, improve
consistency, and complement existing diagnostic workflows.

Technical Challenge. To achieve this goal, we analyzed real-world data, including public
datasets and raw MRI scans we collected from clinical settings, and identified two key challenges:
(Challenge-A) Substantial variability in brain morphology, size, and signal characteristics across
individuals, along with differences in MRI scanners and acquisition protocols, results in highly het-
erogeneous data distributions that limit model generalization. (Challenge-B) The whole-brain
MRI differences between PD patients and healthy individuals are not clearly distinguishable, mak-
ing it challenging even for experienced neurologists to diagnose PD based solely on MRI (which
explains why MRI is primarily used to rule out other conditions rather than confirm PD). In paral-
lel, we reviewed existing approaches and found that most studies (Islam et al., 2024; Alrawis et al.,
2025) are evaluated only on narrowly defined, heavily preprocessed datasets, lacking adaptability to
the complexities of real-world practice and thus limiting their practical applicability. These findings
underscore the urgent need for new algorithms to address these challenges.

Solution. In this paper, we propose an end-to-end PD Diagnosis Network (PD-Diag-Net, please see
Fig. 2 for the detailed flowchart), which leverages mature medical imaging toolkits and incorporates
clinical prior knowledge to enable automated and interpretable PD prediction.

To address Challenge-A, we design an MRI Pre-processing Module (MRI-Processor, see Ap-
pendix F) that employs Highly Accurate Deep Brain Extraction Tool (HD-BET) (Isensee et al.,
2019) and Advanced Normalization Tools (ANTs) (Avants et al., 2009) to perform skull stripping
(removing skull and non-brain tissues), bias field correction, and nonlinear registration (standard-
izing brain size and alignment) on raw T1-weighted MRI. These steps greatly reduce the adverse
effects of data inconsistency and provide a solid foundation for robust, generalizable modeling.

In response to Challenge-B, we incorporate two forms of clinical prior knowledge, enabling the
model to better capture differences between PD patients and other subjects (healthy controls and in-
dividuals with neurological disorders) from individual-level MRI data. (1) Brain-Region-Relevance-
Prior (Relevance-Prior, see Fig. 1 left): The human brain can be functionally parcellated into mul-
tiple regions, and this prior defines each region’s relevance to PD. Building on this knowledge, we
propose the Relevance-Prior Guided Feature Aggregation Module (Aggregator, see Fig. 3 left) at
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Figure 2: Flowchart of the Parkinson’s Disease Diagnosis Network (PD-Diag-Net), consists of 3 modules:
MRI Pre-processing Module (MRI-Processor, see Appendix F), Relevance-Prior Guided Feature Aggregation
Module (Aggregator, see Fig. 3, left), and Age-Prior Guided Diagnosis Module (Diagnoser, see Fig. 3, right).

the inter-subject level (i.e., across individuals), which applies brain-region-wise average pooling to
focus on PD-associated regions’ features, thereby improving both the model’s discriminative ca-
pability and interpretability. (2) Brain-Region-Aging-Prior (Aging-Prior, see Fig. 1 right): PD
patients typically exhibit accelerated aging in PD-associated brain regions, meaning the brain age of
these regions is often considerably higher than the subject’s chronological age, whereas other sub-
jects generally show minimal or no such gap. Based on this observation, we develop the Aging-Prior
Guided Parkinson’s Disease Diagnosis Module (Diagnoser, see Fig. 3 right) at the intra-subject level
(i.e., within a single brain), which incorporates the brain age gap as an auxiliary signal to constrain
classification logits, further enhancing diagnostic accuracy and clinical interpretability.

Contribution. (1) We propose the end-to-end PD-Diag-Net, consisting of three core modules (MRI-
Processor, Aggregator, Diagnoser) and designed to handle raw MRI data from diverse sources and
acquisition protocols, laying a solid technical foundation for early PD screening and intervention.
(2) We systematically integrate two types of brain-region-related clinical prior knowledge into the
model design, offering insights for automated imaging-based diagnosis of other neurological disor-
ders. (3) To comprehensively evaluate the model’s real-world performance, we trained it on publicly
available PD datasets and further conducted external test using a self-collected dataset (to be publicly
released). Results show that our model achieves over 86% accuracy, substantially outperforming ex-
isting methods. Moreover, in a dedicated evaluation on early-stage PD cases, the model attains 96%
accuracy, highlighting its strong potential for early detection.

2 RELATED WORK

Currently, AI-assisted diagnosis of PD can be approached from two perspectives. On the one hand,
there is the behavioral perspective based on clinical symptoms. Clinicians typically rely on ob-
servable symptoms to determine whether a subject has PD. Accordingly, most existing AI-assisted
methods are designed to quantify such behaviors from the clinician’s standpoint. For instance, (Tal-
itckii et al., 2022; Aouraghe et al., 2023; Wang et al., 2024) analyze handwriting patterns, (Thies
et al., 2025; Xu et al., 2025; Favaro et al., 2024) evaluate speech characteristics, and (Navita et al.,
2025; Tang et al., 2024; Zhang et al., 2024) assess gait dynamics. However, these approaches are
effective only when symptoms are already evident, meaning the disease has progressed to a
relatively advanced stage, which limits their utility for early detection and intervention.

On the other hand, there is the imaging perspective. To the best of our knowledge, research on MRI-
based PD diagnosis remains limited. Existing studies (Dentamaro et al., 2024; Alrawis et al., 2025;
Erdaş & Sümer, 2023; Islam et al., 2024) directly apply classical computer vision models to this do-
main, typically focusing on performance within narrowly defined and heavily preprocessed datasets.
Such models are difficult to deploy in real-world clinical settings, suffer from poor interpretability,
and rarely release their code, further restricting reproducibility and clinical impact.

3 METHODOLOGY

3.1 OVERVIEW

Our proposed Parkinson’s Disease Diagnosis Network (PD-Diag-Net) comprises three modules:
MRI Pre-processing Module (MRI-Processor), Relevance-Prior Guided Feature Aggregation Mod-
ule (Aggregator), and Aging-Prior Guided Parkinson’s Disease Diagnosis Module (Diagnoser).
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MRI-Processor (see Appendix F) integrates advanced MRI processing tools to standardize raw T1-
weighted MRI scans, ensuring data quality and consistency while minimizing adverse effects caused
by differences in scanner hardware and individual brain anatomy. It consists of three key steps: (1)
Employ the HD-BET (Isensee et al., 2019) to automatically remove the skull and non-brain tissues,
isolating the brain parenchyma and facilitating subsequent analysis. (2) Apply the Nonparametric
Nonuniform intensity Normalization (N4) algorithm in ANTs (Avants et al., 2009) to correct bias
fields, reducing intensity artifacts caused by magnetic field inhomogeneities during MRI acquisition
and improving overall intensity uniformity. (3) Use the Symmetric Normalization (SyN) algorithm
in ANTs to nonlinearly register individual MRI scans to the Montreal Neurological Institute (MNI)
standard template, enabling consistent cross-subject comparison and group-level analysis.

Aggregator (see Fig. 3 left) incorporates Relevance-Prior to guide the model’s focus toward brain
regions strongly associated with PD, further mitigating adverse effects of irrelevant or noisy infor-
mation. It consists of four main steps: (1) Use the 3D DenseNet (Ruiz et al., 2020) to perform
early-stage dense encoding on MRI scans registered to the standard space, generating whole-brain
feature representations. (2) Perform brain-region-wise average pooling based on the raw MRI and
Harvard–Oxford Atlas (Jenkinson et al., 2012) to generate region-level features. (3) Incorporate
clinically informed prior weights to emphasize features from brain regions highly relevant to PD,
and perform a weighted aggregation of these region-level features. (4) Reshape the aggregated rep-
resentation to match the spatial dimensions of the dense encoding, and fuse it with the dense feature.

Diagnoser (see Fig. 3 right) leverages the Aging-Prior knowledge to constrain diagnostic outcomes
and improve prediction accuracy. This module consists of two parallel branches and three sequen-
tial steps: (1) Branch-1 encodes the fusion feature representation and performs classification to
determine whether the subject has PD. (2) Branch-2 utilizes an identical network architecture (with
independently trained parameters) to encode the same fusion feature representation and predict the
age of PD-associated brain regions. (3) Compute the brain age of PD-associated regions and com-
pare it with the chronological age; a larger age gap suggests a higher likelihood of PD, and this
measure serves as an auxiliary constraint to refine diagnostic predictions.

3.2 CLINICAL PRIOR KNOWLEDGE ABOUT PARKINSON’S DISEASE

Brain-Region-Relevance-Prior (Relevance-Prior, see Fig. 1 left). The human brain can be di-
vided into multiple regions based on functional characteristics, and in this study, we adopt the
Harvard–Oxford Atlas (Jenkinson et al., 2012) for standardized brain parcellation. PD is a neu-
rodegenerative disorder whose pathological changes are not uniformly distributed across the en-
tire brain; instead, pronounced abnormalities primarily appear in specific regions responsible for
motor control, executive function, and emotional regulation. Drawing on clinical expertise and
previous research findings (Gao & Wu, 2016; Burciu & Vaillancourt, 2018), we categorize the as-
sociation between each brain region and PD into three levels: strongly-associated, non-associated,
and potentially-associated. Based on this clinically informed prior knowledge, we assign differen-
tiated weights to each brain region and incorporate these weights into the feature modeling pro-
cess to emphasize PD-relevant patterns, suppress irrelevant signals, and ultimately improve both
diagnostic accuracy and model interpretability. We define the atlas as Mraw ∈ RD×H×W , where
each voxel is assigned an integer label from 0 to R, corresponding to one of R brain regions, i.e.,
Mraw[i, j, k] ∈ {0, 1, 2, · · · , R}, D,H,W represent the depth, height, and width of the atlas. The
prior weights derived from clinical expertise are denoted as Θ ∈ RR, where each element Θ[r]
indicates the clinical relevance of the r-th brain region.

Brain-Region-Aging-Prior (Aging-Prior, see Fig. 1 right). As humans age, the entire brain un-
dergoes a general aging process. However, clinical experience and previous studies (Sarasso et al.,
2021; Liu et al., 2020) have shown that patients with PD exhibit significantly accelerated aging in
certain PD-associated brain regions, meaning that the brain age of these regions is often substan-
tially higher than the subject’s chronological age. Based on this prior knowledge, we calculate the
age gap between the predicted brain age of PD-associated regions and the subject’s chronological
age; a larger age gap indicates a higher likelihood of PD. We then incorporate this brain age gap
as a diagnostic constraint to help the model more accurately distinguish PD patients from healthy
controls or individuals with other neurological conditions, thereby improving diagnostic accuracy
and clinical interpretability. Define the predicted brain age of PD-associated regions as Âpd, and the
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Figure 3: In Aggregator (left), the pre-processed MRI is first passed through a 3D DenseNet to extract dense
features. The MRI and the brain region atlas are then used to perform brain-region-wise average pooling, fol-
lowed by weighted aggregation to compute the mean and variance of PD-associated regions. The aggregated
features are subsequently upsampled to match the dimensions of the dense features and fused together. In Di-
agnoser (right), the fused features are fed into both Branch-1 and Branch-2: Branch-1 outputs the prediction
logits for PD, while Branch-2 estimates the age gap between PD-associated regions and the subject’s chrono-
logical age. This age gap is then used to constrain the prediction logits, yielding the final classification.

known chronological age as Achrono, the age gap ∆ can be formulated as:

∆ = Âpd −Achrono. (1)

3.3 MRI PRE-PROCESSING MODULE

Due to variations in resolution, contrast, and signal-to-noise ratio across MRI scanners, as well
as substantial inter-subject differences in brain size, shape, and anatomical structure, we propose
MRI-Processor to standardize all raw T1-weighted MRI scans through a three-step pre-processing
pipeline to enhance the robustness of downstream modeling and improve cross-subject comparabil-
ity: (1) Brain extraction: Remove the skull and non-brain tissues to isolate the brain parenchyma,
reducing irrelevant background noise; (2) Bias field correction: Correct intensity inhomogeneities
caused by magnetic field non-uniformities, improving overall image intensity uniformity and com-
parability; and (3) Nonlinear registration: Align each MRI scan to the standard MNI template to
reduce anatomical variability between subjects and facilitate cross-subject analysis and model gen-
eralization. This entire workflow was implemented using mature open-source toolkits. As different
tools excel at specific tasks, we adopt the following combination to balance computational effi-
ciency and output quality: HD-BET (Isensee et al., 2019) for brain extraction, the N4 algorithm in
ANTs (Avants et al., 2009) for bias field correction, and the SyN algorithm in ANTs (Avants et al.,
2009) for nonlinear registration. Define the raw MRI image as Xraw ∈ RD×H×W , the workflow is:

Xproc = FSyN (FN4
(FBET (Xraw))) , (2)

where Xproc ∈ RD×H×W denotes the processed MRI data; FBET, FN4 , and FSyN denote the opera-
tion of brain extraction, bias field correction and nonlinear registration to the MNI space.

3.4 RELEVANCE-PRIOR GUIDED FEATURE AGGREGATION MODULE

Aggregator incorporates Relevance-Prior knowledge by introducing a brain-region-wise average
pooling operation followed by region-weighted feature aggregation, enabling the model to empha-
size features in PD-associated regions while suppressing irrelevant signals from unrelated areas.
This design enhances both discriminative performance and clinical interpretability by explicitly in-
tegrating prior knowledge into the feature modeling process. The pipeline includes four steps:

(1) We first employ 3D CNN to extract dense features from the pre-processed MRI images, and then
resample the atlas to match the spatial resolution of these features. We formulate the step as:

Xdense = Fcnn-1 (Xproc) , Mproc = Fonehot (Mraw) , (3)

where Fcnn-1, Fonehot denote the operation of 3D convolution and one-hot encoding of atlas labels;
Xdense ∈ RC×D

4 ×H
4 ×W

4 , Mproc ∈ RR×D×H×W denote the dense feature and one-hot encoded atlas.
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(2) Next, we perform brain-region-wise average pooling to aggregate processed MRI into region-
level representations, which can be formulated as:

Xpool[r] =

∑
(d,h,w)∈Ωr

Xproc[d, h, w]

|Ωr|
, (4)

where Xpool ∈ RR×1×1×1 denotes the pooling feature; Ωr is the voxel set belonging to region r.

(3) Then, we introduce the clinical relevance weights Θ to compute the weighted mean (Xmean ∈
R1×1×1) and standard deviation (Xstd ∈ R1×1×1) of the PD-associated brain regions, which are
then concatenated to form the aggregated feature (Xagg ∈ R2×1×1). We formulate the step as:

Xagg =
[
Xmean, Xstd

]
=

[∑R
r=1 Θ[r] ·Xpool[r]∑R

r=1 Θ[r]
,

√√√√∑R
r=1 Θ[r] ·

(
Xpool[r]−Xmean

)2∑R
r=1 Θ[r]

]
. (5)

(4) Subsequently, we upsample the aggragated feature to match the spatial dimensions of dense
feature and fuse them. The process can be formulated as:

Xup = Fupsample (Xagg) , Xfuse = Xup +Xdense, (6)

where Xup ∈ RC×D
4 ×H

4 ×W
4 , Xfuse ∈ RC×D

4 ×H
4 ×W

4 denotes the upsampled and fusion feature;
Fupsample denotes the operation of upsampling.

3.5 AGING-PRIOR GUIDED PARKINSON’S DISEASE DIAGNOSIS MODULE

Diagnoser integrates Aging-Prior knowledge with a two-branch design. Branch-1 performs two-way
classification (PD / Others) based on the fusion features produced by Aggregator. Branch-2 predicts
the brain age of PD-associated regions and computes the age gap with the subject’s chronological
age. This age-gap-signal is then additively fused into the classification logits to impose an explicit
prior-guided constraint, thereby improving discriminative performance and clinical interpretability.
The procedure comprises three steps:

(1) Branch-1 first uses the 3D CNN to encode the fusion feature, followed by a classification head
to perform prediction, which can be formulated as:

z = (zpd, zot) = Fcls (Fcnn-2 (Xfuse)) , (7)

where Fcnn-2, Fcls denote the operation of 3D convolution, classification; z denots the logits.

(2) Branch-2 uses the same architecture as Branch-1 but with independently trained parameters to
encode the fusion feature, followed by a regression head to predict the brain age of PD-associated
regions, which can be formulated as:

Âpd = Freg (Fcnn-3 (Xfuse)) , (8)

where Fcnn-3 and Freg denote the operation of 3D convolution and regression.

(3) Since the ground-truth brain age of PD-associated regions for PD patients is unavailable, we
cannot directly compute a regression loss for this branch. To address this issue, we design an aux-
iliary loss that leverages prior constraints on the age gap to indirectly optimize Branch-2 and guide
its parameter updates. We formulate this process as:

Lage = 1(y=pd)max(0, ζ −∆) + 1(y ̸=pd)max(0,∆− τ), (9)

where y denotes the ground-truth class label; 1(condition) is the indicator function, equal to 1 if the
condition is true and 0 otherwise; ζ and τ are hyperparameters representing the minimum acceptable
age gap for PD samples and the maximum acceptable age gap for non-PD samples, respectively. In
simple understanding, the loss encourages the model to increase the age gap of PD samples to
at least ζ while keeping the age gap of non-PD samples below τ . The term [1(y=pd)max(0, ζ −
∆)] enforces that PD samples should have an age gap no smaller than ζ, if ∆ ≥ ζ, this penalty is 0,
otherwise, the loss increases proportionally to (ζ −∆). Similarly, [1(y ̸=pd)max(0,∆− τ)] enforces
that non-PD samples should have an age gap no greater than τ , if ∆ ≤ τ , this term is 0, otherwise,
the loss increases proportionally to (∆− τ).

6
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Subsequently, we constrain the classification logits (z̃ = (z̃pd, z̃ot)) as follows:

ϕ(∆) = softplus(∆− τ)− softplus(τ −∆), z̃pd = zpd + α · ϕ(∆), z̃ot = zot − α · ϕ(∆), (10)

where softplus(x) = ln(1 + ex) is a smooth variant of the ReLU function, which maps inputs to
positive values while maintaining numerical stability; α is non-negative hyperparameter. The intu-
ition behind this formulation is that a larger age gap increases the PD logit while decreasing
the other condition logits, vice versa. We then compute the corrected classification loss as:

Lcls = CrossEntropy(z̃, y), (11)

where Lcls represents the corrected classification loss. The final loss function is:

L = Lage + Lcls (12)

4 EXPERIMENTS

Data. To better approximate real-world clinical applications, the data was divided into three parts:
Training and Normal Internal Test (Normal In. Test). We collected 489 raw T1-weighted MRI
scans from PPMI (Marek et al., 2011) and (Hirao et al., 2024; Redondo-Armenteros et al., 2025;
Mortazavi et al., 2025), comprising 232 PD cases and 257 cases from healthy controls and patients
with other neurological disorders. Five-fold cross-validation was performed. Normal External Test
(Normal Ex. Test). We collected 188 raw T1-weighted MRI scans of PD patients from a collabo-
rating hospital, supplemented with 200 cases of other neurological conditions from (Mueller et al.,
2005), (Rieck et al., 2024; Horta et al., 2023). Prodromal External Test (Prodromal Ex. Test). To
specifically evaluate sensitivity to early-stage PD, we extracted 33 prodromal PD cases from the 188
external PD scans, yielding an early-stage test set.

Evaluation Metric. To comprehensively evaluate the performance of our model, we adopt three
key metrics (Appendix G.1 shows more details): Accuracy (ACC) measures the overall proportion
of correct predictions and reflects general model performance; True Positive Rate (TPR, also known
as Sensitivity or Recall) quantifies the proportion of true patients correctly identified and thus reflects
the model’s ability to capture PD cases with fewer missed diagnoses; False Positive Rate (FPR) in-
dicates the proportion of others incorrectly classified as patients, reflecting the risk of misdiagnosis.

Comparison Methods. We compared our approach against several existing methods specifically
developed for PD diagnosis, including XAI (Dentamaro et al., 2024), FCN-PD (Alrawis et al., 2025),
FAA (Erdaş & Sümer, 2023), and SMOTE (Islam et al., 2024). In addition, we adapted a number
of representative models originally designed for general brain image analysis to the PD diagnostic
task, including M3T (Jang & Hwang, 2022), Swin UNETR (Tang et al., 2022), S3D (Wald et al.,
2025), 3DMAE (Chen et al., 2023), and AE-FLOW (Zhao et al., 2023).

Implementation. Our model was trained using the AdamW optimizer, configured with an initial
learning rate of 1 × 10−3 and a weight decay of 1 × 10−3. The learning rate schedule followed a
cosine annealing strategy. Several key hyperparameters were involved in training, including α = 1,
ζ = 9.5, and τ = 4.5. All experiments were conducted on a high-performance computing system
equipped with an NVIDIA RTX A100 GPU (48 GB memory). The training batch size was set to 4
to balance computational efficiency with optimization stability. The codes will be released publicly.

Comparison Results and Analysis. The comparison results with other advanced methods are sum-
marized in Tab. 1, we observe that: (1) Most methods, even simple ones, achieve good results on
internal data, indicating that when training and test distributions match, the task is relatively less
challenging. Therefore, internal test performance alone cannot fully reflect clinical applicability.
(2) In contrast, competing methods drop sharply in performance on external data, while only our
approach maintains accuracy above 86.1%, demonstrating strong robustness and generalizability
under distribution shifts across imaging centers, which is critical for real-world clinical deployment.
(3) On the specially curated prodromal PD test set, our method achieves 96.7% accuracy, exceeding
other approaches by more than 40%. This underscores the model’s ability to capture early PD-
specific imaging biomarkers and its strong potential for early screening applications. In addition,
for the prodromal external test, only the TPR is reported, as the outcomes for the “Others” class,
corresponding to the FPR, have already been presented in the normal external test.
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Method Param
Normal In. Test Normal Ex. Test Prodromal Ex. Test

ACC (↑) TPR (↑) FPR (↓) ACC (↑) TPR (↑) FPR (↓) TPR (↑)
XAI (Dentamaro et al., 2024) 69.8M 94.2 93.0 5.7 55.3 62.7 51.7 53.7
FCN-PD (Alrawis et al., 2025) 10.9M 91.7 92.5 8.4 56.0 53.2 41.4 48.5
FAA (Erdaş & Sümer, 2023) 7.3M 90.6 94.2 9.8 58.5 66.2 48.7 47.9
SMOTE (Islam et al., 2024) 12.5M 91.6 93.7 8.6 54.4 61.0 51.8 52.1
M3T (Jang & Hwang, 2022) 29.1M 95.5 99.0 4.9 61.7 59.5 36.2 56.4
Swin UNETR (Tang et al., 2022) 27.1M 96.6 97.5 3.5 58.5 63.4 46.1 53.5
S3D (Wald et al., 2025) 31.2M 95.5 96.6 4.6 59.9 61.2 41.3 52.1
3DMAE (Chen et al., 2023) 92.6M 96.2 98.5 4.0 64.2 66.0 37.5 50.0
AE-FLOW (Zhao et al., 2023) 97.6M 97.1 97.5 2.9 66.1 74.0 41.3 52.4

98.5 100 1.7 86.1 93.1 20.5 96.7
PD-Diag-Net (Ours) 89.5M

(+1.4) (+1.0) (+1.2) (+20.7) (+19.1) (+15.7) (+30.3)

Table 1: Comparison results (%). In. and Ex. denote Internal and External, respectively. ↓ indicates that lower
values are better, whereas ↑ indicates that higher values are better. ROC curves are shown in Appendix G.2.

w.o. Aging-Prior
w/ Aging-Prior
Ground Truth

Figure 4: Efficiency of Aging-Prior on the normal external test data.

Ablation Study. In this study, we designed three key modules and conducted ablation studies to
evaluate their individual contributions. The results are summarized in Tab. 2: (1) Row 1 represents
training directly on raw MRI data. Compared with Row 5, the results clearly show that a unified

Processor Aggregator Diagnoser ACC
Xup Xdense Bra-1 Bra-2

✓ ✓ ✓ ✓ 72.4
✓ ✓ ✓ ✓ 70.8
✓ ✓ ✓ ✓ 81.5
✓ ✓ ✓ ✓ 77.2
✓ ✓ ✓ ✓ ✓ 86.1

Table 2: Ablation study (%) of different modules
on normal external test set. Bra is short for Branch.

pre-processing pipeline is essential, leading to an
improvement of approximately 14% in accuracy.
(2) Row 2 removes the Relevance-Prior and directly
trains on whole-brain features. Compared with
Row 5, the accuracy drops by about 25%, clearly
demonstrating the necessity and importance of in-
corporating the Relevance-Prior into the model. (3)
Row 3 uses only PD-associated brain regions while
discarding all others. Compared with Row 5, the
accuracy decreases slightly by about 5%, indicating
that non-PD-associated regions also contain valu-
able auxiliary information, and completely discard-
ing them results in a loss of discriminative power.
(4) Row 4 removes the Aging-Prior correction and instead applies a simple classification head.
Compared with Row 5, the accuracy drops substantially by about 9%, further highlighting the crit-
ical role of the Aging-Prior in improving the model’s ability to identify PD. To further validate the
Aging-Prior, we examined 50 normal external test samples with predicted probabilities near 0.5
when the prior was not applied. Incorporating the Aging-Prior significantly increased the decision
margin and substantially improved classification accuracy. The results are shown in Fig. 4.

Failure Case and Analysis. As shown in Fig. 5, we present the confusion matrix on the normal
external test set and illustrate three-view (axial, coronal, sagittal) brain maps corresponding to the
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Figure 5: Confusion matrix on the normal external test set with corresponding three-view brain maps. The
model achieves high accuracy in identifying PD, with most errors arising from other cases misclassified as PD.

2 1 0 1 2
0.5

0.0

0.5

1.0

1.5

2.0

PD
Other

Figure 6: t-SNE visualization of PD vs Others.

four outcomes. The results indicate that the model
performs well in identifying PD cases, with most er-
rors arising from misclassifying non-PD cases as PD,
reflecting a relatively high false positive rate. On the
one hand, we acknowledge this limitation as an im-
portant direction for future work. On the other hand,
in clinical practice, false positives are less critical
than false negatives, since our method serves as an
initial screening tool and subsequent physician evalu-
ation can correct such errors, mitigating their impact.

To further investigate this phenomenon, we extracted
and visualized PD-associated brain-region features
(Xup) of both PD patients and other cases from the
normal external test set (Fig. 6). The results reveal
that PD patients exhibit highly consistent feature dis-
tributions in these regions, i.e., once PD is present, the
corresponding brain-region features tend to converge,
making them easier to distinguish. In contrast, other cases show more scattered and heterogeneous
feature distributions, which explains why some of them are more prone to being misclassified as PD.

5 CONCLUSION AND FUTURE WORK

Conclusion. This paper presents an end-to-end diagnostic framework for PD, termed PD-Diag-Net.
To address the challenges of substantial inter-subject variability and heterogeneous data distribu-
tions in real clinical scenarios, the model first applies a unified pre-processing pipeline to all raw
MRI data. It then incorporates two types of clinical priors (Relevance-Prior, Aging-Prior) and de-
signs prior-guided feature aggregation and diagnosis modules, thereby significantly enhancing both
robustness and interpretability. Extensive experimental results demonstrate that PD-Diag-Net con-
sistently outperforms existing methods by a large margin on both normal and prodromal external
test sets, underscoring its strong potential for clinical application.

Future Work. On the technical side, the heterogeneous feature distributions of “healthy” and “other
neurological disorder” samples still lead to occasional misclassification as PD. Therefore, future
work will prioritize expanding multi-hospital multimodal datasets (e.g., MRI combined with clinical
scales and behavioral signals) to reduce data imbalance problem. In parallel, optimizing the model
architecture with advanced domain generalization and continual learning techniques to enhance ro-
bustness and generalization across diverse populations and imaging centers. On the clinical side, the
current framework primarily addresses binary PD diagnosis, whereas actual clinical practice requires
more fine-grained pathological reporting. Accordingly, future research will extend PD-Diag-Net to
disease staging analysis, enabling not only the detection of PD but also the characterization of dis-
ease stage, the identification of pathological changes in specific brain regions, and the generation
of personalized clinical recommendations. The ultimate goal is to develop a comprehensive intelli-
gent diagnostic system that supports early screening, disease monitoring, and intervention planning,
providing clinicians with more reliable, interpretable, and actionable assistance.
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6 REPRODUCIBILITY STATEMENT

Our method is fully reproducible. The model architecture is illustrated in Fig. 3, and the hyper-
parameters as well as training details (e.g., optimizer, learning rate, weight decay) are described in
Sec. 4. Fig. 10 in the Appendix presents the complete loss curves during training, while Tab. 3
reports the training time across the three stages. In addition, both the source code and the curated
dataset will be made publicly available in the future.
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A APPENDIX

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, we leveraged the assistance of large language models (LLMs). Specifically, LLMs
helped us polish and refine the language to better meet academic writing standards; during imple-
mentation, they assisted in checking and correcting code, thereby improving development efficiency
and reliability; and in the model design stage, LLMs provided recommendations on backbone archi-
tectures, which facilitated a more efficient exploration of suitable network designs. These supports
made our research process smoother and more effective.

C SUPPLEMENTED RELATED WORK

While our main discussion has focused on AI-based approaches for PD analysis, it is also essential
to contextualize PD within the broader neurological research landscape. Parkinson’s disease (PD)
is a progressive neurodegenerative disorder primarily driven by the degeneration of dopaminergic
neurons in the substantia nigra, manifesting in core motor symptoms such as bradykinesia, rigidity,
tremor, and postural instability (Bloem et al., 2021). In addition, PD encompasses a wide range
of non-motor symptoms—including cognitive decline, mood disorders, autonomic dysfunction, and
sleep disturbances—that often precede motor manifestations and profoundly affect patient quality
of life (Chaudhuri et al., 2006). Neuropathological studies identify α-synuclein aggregation and
Lewy body formation as central hallmarks, placing PD within the broader class of synucleinopathies
(Spillantini et al., 1997).

From the perspective of ongoing research, considerable effort has been devoted to identifying neu-
roimaging biomarkers and understanding spatiotemporal patterns of neurodegeneration. Structural
MRI studies have highlighted cortical and subcortical atrophy patterns that differentiate PD from
atypical parkinsonian syndromes (Uribe et al., 2018). Recent network-based approaches suggest
that PD pathology may originate from epicenters within specific brain regions and then spread along
large-scale brain networks, shaping heterogeneous clinical phenotypes (Zeighami et al., 2015). For
example, connectome-based and longitudinal imaging studies demonstrate that distinct MRI epi-
centers can differentiate spatiotemporal trajectories of neurodegeneration in PD, thereby providing
insight into disease heterogeneity and progression mechanisms (Duanmu et al., 2025).

Beyond structural imaging, multimodal studies integrate diffusion MRI, functional MRI, and molec-
ular imaging to probe microstructural degeneration, network dysfunction, and dopaminergic deficits
(Stoessl et al., 2011). These findings are increasingly leveraged to define prodromal PD, predict
disease conversion, and improve differential diagnosis relative to other neurodegenerative disorders
(Berg et al., 2015). Collectively, such neurological research provides the biological and clinical
foundation upon which AI-based methods can build more robust, interpretable, and clinically useful
models.

D FULL DIAGNOSTIC FLOWCHART OF PD

The current diagnostic workflow for Parkinson’s disease (PD) follows a stepwise process. First,
neurologists conduct an initial clinical assessment based on the patient’s medical history and hall-
mark motor symptoms, such as bradykinesia, resting tremor, and rigidity. For suspected cases, brain
MRI is performed to exclude alternative structural or neurological conditions (e.g., stroke, tumors,
hydrocephalus) that may mimic PD. Subsequently, the Movement Disorder Society (MDS) diag-
nostic criteria are applied. According to these criteria, the presence of any absolute exclusion factor
rules out PD, whereas supportive features (e.g., a clear response to dopaminergic therapy, olfactory
loss, characteristic imaging abnormalities) and red flags (e.g., rapid progression, early severe auto-
nomic dysfunction, frequent falls, vertical gaze palsy) are weighed against each other. Patients are
ultimately stratified into three categories: clinically established PD (≥ 2 supportive criteria, no red
flags), clinically probable PD (red flags ≤ supportive criteria, no absolute exclusion), or not PD (if
any absolute exclusion is present or red flags exceed supportive criteria). The flowchart is shown in
Fig. 7.
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Figure 7: Full diagnostic flowchart of PD.

E BRAIN REGIONS AND THEIR RELEVANCE WITH PD

In the main text, we generated 48 brain regions based on the Harvard–Oxford atlas (Jenkinson
et al., 2012) and classified their associations with PD according to the Relevance-Prior. A detailed
description is provided in Tab. 5.

F DETAILS OF MRI PRE-PROCESSING MODULE

The MRI-Processor includes three steps: (1) Employ the HD-BET (Isensee et al., 2019) to auto-
matically remove the skull and non-brain tissues, isolating the brain parenchyma and facilitating
subsequent analysis. (2) Apply the Nonparametric Nonuniform intensity Normalization (N4) al-
gorithm in ANTs (Avants et al., 2009) to correct bias fields, reducing intensity artifacts caused by
magnetic field inhomogeneities during MRI acquisition and improving overall intensity uniformity.
(3) Use the Symmetric Normalization (SyN) algorithm in ANTs to nonlinearly register individ-
ual MRI scans to the Montreal Neurological Institute (MNI) standard template, enabling consistent
cross-subject comparison and group-level analysis. The flowchart is shown in Fig. 8, and the pseudo
code is listed in Algorithm 1.
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Figure 8: Flowchart of MRI-Processor.

Algorithm 1 MRI-Processor Pipeline

Require: Raw MRI dataset, MNI template
Ensure: Preprocessed MRI aligned to MNI space

1: for each subject in raw dataset do
2: if preprocessed result exists then
3: continue
4: end if
5: Step 1: Skull stripping
6: Run HD-BET on raw MRI → brain-extracted image
7: Step 2: N4 bias correction
8: Apply N4 correction → bias-corrected image
9: Step 3: Registration

10: Register bias-corrected image to MNI template using ANTs (SyN)
11: Save warped image to output directory
12: Clean temporary files
13: end for

G SUPPLEMENTED EXPERIMENTS

G.1 DETAILS OF EVALUATION METRIC

In this study, four primary evaluation metrics were employed to comprehensively assess the classi-
fication performance of the model. Before introducing these metrics, we first clarify the following
basic concepts:
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• TP (True Positive): The number of positive samples (i.e., PD) correctly predicted as posi-
tive.

⇒ Reflects the model’s ability to correctly identify actual patients.
• TN (True Negative): The number of negative samples (i.e., Others) correctly predicted as

negative.
⇒ Reflects the model’s ability to correctly identify non-PD individuals.

• FP (False Positive): The number of negative samples incorrectly predicted as positive.
⇒ Represents non-PD individuals misdiagnosed as patients, potentially leading to

overtreatment or unnecessary examinations.
• FN (False Negative): The number of positive samples incorrectly predicted as negative.

⇒ Represents true patients who were missed, which poses higher clinical risks.

Based on these definitions, we adopted the following evaluation metrics:

1. Accuracy (ACC)

ACC =
TP + TN

TP + TN + FP + FN
(13)

Measures the overall proportion of correct predictions, reflecting the model’s general per-
formance.

2. True Positive Rate (TPR, Sensitivity / Recall)

TPR =
TP

TP + FN
(14)

Indicates the proportion of actual patients correctly identified. A higher value means a
lower miss rate.

3. False Positive Rate (FPR)

FPR =
FP

FP + TN
(15)

Indicates the proportion of healthy individuals incorrectly classified as patients. A lower
value reflects reduced misdiagnosis risk.

4. Area Under the ROC Curve (AUC) AUC refers to the area under the ROC curve, which
plots TPR against FPR across different thresholds. Its value ranges from 0.5 to 1.0, with
values closer to 1.0 indicating stronger ability to distinguish patients from healthy individ-
uals.

G.2 ROC CURVE

In the main text, we reported only ACC, TPR, and FPR in Tab. 1. Here, we additionally provide the
ROC curve and the corresponding AUC value of our method, as shown in Fig. 9.

Figure 9: ROC Curve of normal internal and external tests.
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Figure 10: Training loss of three stages.

G.3 TRAINING STRATEGY

Our framework consists of two branches and adopts a three-stage training strategy. Specifically, the
feature extractor for dense representations is denoted as CNN1, the network in branch 1 as CNN2,
and the network in branch 2 as CNN3. Stage 1: We jointly train CNN1 and CNN2 using data
that includes both PD and Others categories. The networks are optimized with the classification
loss in Eq. (7), and the learned parameters are saved. Stage 2: We fix CNN1 and train CNN3
using only healthy subjects from the Others group, under the assumption that their brain age in PD-
associated regions equals their chronological age. CNN3 is optimized with a regression loss, and
its parameters are saved. Stage 3: We load the parameters of CNN1, CNN2, and CNN3, and train
on data including both PD and Others. The outputs of CNN3 are used to calibrate the classification
logits, and the networks are fine-tuned with the final loss defined in Eq. (12). The loss trajectories
across the three stages are illustrated in Fig. 10.

G.4 TIME CONSUMING

All three stages were trained for 150 epochs on a single NVIDIA A100 GPU with a batch size of 4.
The training and testing times are summarized in Tab. 3.

Process Time (minutes)
Training Stage 1 62
Training Stage 2 65
Training Stage 3 88
Testing 0.2

Table 3: Training and testing times on a single NVIDIA A100 GPU (batch size = 4).

G.5 DIFFERENT BACKBONES.

In our study, feature extraction was performed using a 3D DenseNet. However, the choice of back-
bone is not particularly critical. We experimented with several advanced architectures and found
that the results did not differ substantially. Here we replaced DenseNet with three other backbones,
and the results on the normal external test set are summarized in Tab. 4.

Backbone ACC
S3D (Wald et al., 2025) 86.3
(Lee et al., 2022) 86.5
3DMAE (Chen et al., 2023) 85.7
DenseNet (Ruiz et al., 2020) 86.1

Table 4: Efficiency of different backbones on the normal external test set.
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Brain Region No. Brain Region Name Relevance with PD
1 Frontal Pole None
2 Insular Cortex Potentially
3 Superior Frontal Gyrus Strong
4 Middle Frontal Gyrus Strong
5 Inferior Frontal Gyrus, Triangular Part Potentially
6 Inferior Frontal Gyrus, Opercular Part Potentially
7 Precentral Gyrus Strong
8 Temporal Pole None
9 Superior Temporal Gyrus, Anterior Division None

10 Superior Temporal Gyrus, Posterior Division None
11 Middle Temporal Gyrus, Anterior Division None
12 Middle Temporal Gyrus, Posterior Division None
13 Temporooccipital Middle Temporal Gyrus None
14 Inferior Temporal Gyrus, Anterior Division None
15 Inferior Temporal Gyrus, Posterior Division None
16 Temporooccipital Inferior Temporal Gyrus None
17 Postcentral Gyrus Potentially
18 Superior Parietal Lobule Potentially
19 Supramarginal Gyrus, Anterior Division None
20 Supramarginal Gyrus, Posterior Division None
21 Angular Gyrus Potentially
22 Lateral Occipital Cortex, Superior Division None
23 Lateral Occipital Cortex, Inferior Division None
24 Intracalcarine Cortex None
25 Medial Frontal Cortex Potentially
26 Juxtapositional Lobule Cortex (SMA) Strong
27 Subcallosal Cortex None
28 Paracingulate Gyrus None
29 Anterior Cingulate Gyrus None
30 Posterior Cingulate Gyrus Potentially
31 Precuneous Cortex Potentially
32 Cuneal Cortex None
33 Orbitofrontal Cortex None
34 Parahippocampal Gyrus, Anterior Division None
35 Parahippocampal Gyrus, Posterior Division None
36 Lingual Gyrus None
37 Temporal Fusiform Cortex, Anterior Division None
38 Temporal Fusiform Cortex, Posterior Division None
39 Temporooccipital Fusiform Cortex None
40 Occipital Fusiform Gyrus None
41 Frontal Operculum Cortex None
42 Central Opercular Cortex None
43 Parietal Operculum Cortex None
44 Planum Polare None
45 Heschl’s Gyrus None
46 Planum Temporale None
47 Supracalcarine Cortex None
48 Occipital Pole None

Table 5: Brain regions and their relevance with PD.
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