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Abstract

Learning visual representation of high quality is essential
for image classification. Recently, a series of contrastive
representation learning methods have achieved preeminent
success. Particularly, SupCon [18] outperformed the domi-
nant methods based on cross-entropy loss in representation
learning. However, we notice that there could be potential
ethical risks in supervised contrastive learning. In this paper,
we for the first time analyze unfairness caused by supervised
contrastive learning and propose a new Fair Supervised Con-
trastive Loss (FSCL) for fair visual representation learning.
Inheriting the philosophy of supervised contrastive learning,
it encourages representation of the same class to be closer
to each other than that of different classes, while ensuring
fairness by penalizing the inclusion of sensitive attribute
information in representation. In addition, we introduce a
group-wise normalization to diminish the disparities of intra-
group compactness and inter-class separability between de-
mographic groups that arouse unfair classification. Through
extensive experiments on CelebA and UTK Face, we validate
that the proposed method significantly outperforms SupCon
and existing state-of-the-art methods in terms of the trade-off
between top-1 accuracy and fairness. Moreover, our method
is robust to the intensity of data bias and effectively works
in incomplete supervised settings. Our code is available at
https://github.com/sungho-CoolG/FSCL.

1. Introduction

Learning powerful visual representation is important for

reliable performance in image classification. For a long time,

most work has relied on cross-entropy loss to learn the rep-

resentation due to its strong performance [4, 11, 34, 41].

Meanwhile, recent studies based on contrastive learning

have been bringing a new paradigm for representation learn-

ing [2, 10, 12, 36, 40]. They effectively learn visual represen-

tation by drawing positive pairs and pushing away negative
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ones in the high-dimensional space. Despite being origi-

nally introduced for unsupervised learning, the contrastive

learning strategy proves to be effective in various vision

fields [14, 22, 23]. Particularly, SupCon [18] achieves better

top-1 accuracy than the state-of-the-art methods based on

the cross-entropy loss on ImageNet [32] by simply grafting

the contrastive loss to the supervised representation learning.

In this paper, we point out that the contrastive loss may

pose potential ethical risks. Despite exhibiting strong perfor-

mance, it has been underexplored in consideration of fairness

which means that the outputs from a model should not be

discriminatory in terms of sensitive attributes, such as ethnic-

ity, gender, and age. It is a crucial ethical topic and should

be diagnosed in order for the model to be leveraged in the

real world [5, 26]. To this end, we analyze the representative

contrastive learning model (SupCon) from two major per-

spectives causing unfairness and propose a new contrastive

loss to address both of them.

Learning sensitive attribute information is one of the prin-

cipal causes of unfairness [3, 13, 25, 35]. It incurs unfair

classification by inducing a classifier to determine a deci-

sion boundary based on undesirable grounds (i.e., sensitive

attributes) [19, 28]. From this point of view, we demonstrate

that learning sensitive attribute information leads to the de-

crease of SupCon loss on the biased dataset, although the

desired behavior is to exclusively learn target class informa-

tion. Consequently, a model learns both kinds of information

to minimize the loss, which eventually aggravates unfairness.

To solve the problem, we propose a Fair Supervised Con-

trastive Loss (FSCL) which prevents encoder networks from

learning sensitive attribute information. Basically, it inherits

the spirit of supervised contrastive learning that encourages

an anchor to be more similar to samples of the same class

(i.e., positive samples) than those of other classes (i.e., neg-

ative samples). Simultaneously, we limit negative samples

to only those having the same sensitive attribute with the

anchor among them. In this way, we ensure that learning sen-

sitive attribute information no longer helps the contrastive

learning. Rather, it hinders optimizing the loss by increasing

the similarity between the anchor and negative samples.
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On top of that, we analyze SupCon in terms of data imbal-

ance between demographic groups, which is another causal

factor of unfairness [31]. Concretely, we identify that the im-

balanced number of anchors and positive samples between

the demographic groups encourages the SupCon loss to put

more weight on majority groups. As a result, samples from

the majority groups generally have higher similarity to the

other samples within the same group and lower similarity to

samples having different target classes compared to those

from the minority groups. We call the former intra-group

compactness and the latter inter-class separability. Since

their disparities between the groups result in imbalanced

classification performances [9,43,45], we introduce a group-

wise normalization that reduces the gaps by balancing the

loss based on the cardinality of anchors and positive samples

between the groups. In the experiments, we demonstrate

that it further improves fairness with little damage to the

classification performance.

To validate the effectiveness of our method, we per-

form facial attribute classification on CelebA [24] and UTK

Face [44] datasets. In various scenarios, the proposed method

significantly ameliorates fairness over SupCon and outper-

forms the state-of-the-art methods in terms of the trade-off

between classification accuracy and fairness. Besides, our

method is robust to the intensity of data bias and effectively

improves fairness even in incompletely supervised settings

(e.g., without target class labels or with only a few sensitive

attribute labels). Furthermore, we show the extensibility of

our method to general bias mitigation through experiments

on Dogs and Cats dataset [16].

Main contributions. Our main contributions are sum-

marized as follows. 1) We analyze the causes of unfairness

in contrastive learning and propose a Fair Supervised Con-

trastive Loss that improves fairness by penalizing the in-

clusion of sensitive attribute information in representation.

2) We introduce a group-wise normalization, which mitigates

the group-wise disparities of intra-group compactness and

inter-class separability that exacerbate unfairness of repre-

sentation. 3) Through extensive experiments, we validate that

our method learns fair representation under various environ-

ments. It achieves the best trade-off performances between

top-1 accuracy and fairness on CelebA and UTK Face.

2. Related Work

2.1. Fair Representation Learning

Several studies [19, 30, 39, 42] tried to learn fair repre-

sentation through adversarial training. They adversarially

train the encoder network and the classification head for

sensitive attributes so that the encoder network is agnostic

to sensitive attribute information. [30] learned fair represen-

tation by reversing gradients of classification loss for sensi-

tive attributes through gradient reversal layer (GRL). [19]

further minimized the mutual information between repre-

sentation and sensitive attribute labels to eliminate their cor-

relations. [39, 42] designed structures in which the outputs

from the classification head for target classes are fed into

that for sensitive attributes. The latter head removes bias for

sensitive attributes in the intermediate outputs through GRL.

Disentangled representation learning [3,29,33] is another

mainstream for fair representation learning. [33] enforced

two types of representation respectively for target classes

and sensitive attributes to be orthogonal to each other by

maximizing the entropy of the opposite information in each

representation. [3] leveraged the disentanglement loss [20]

to separate the representation space into sensitive latents

and non-sensitive latents without target class labels. Both

methods improved fairness by discarding representation con-

taining sensitive attribute information in downstream classi-

fication. Moreover, [29] pointed out the shortcoming of [3]

that information related to both target and sensitive attributes

is contained in sensitive latents and discarded. They intro-

duced an additional subspace for the intersected information.

Recently, [15] made a fresh attempt to improve fairness

without compromising performance through fair knowledge

distillation. Based on MMD [7], they encourage the feature

distribution of the student model conditioned by sensitive

attributes to get close to that of the teacher model averaged

over the sensitive attributes. With an oversampling strategy,

they ameliorate both classification accuracy and fairness on

the balanced test set. Meanwhile, [31] proposed a pertur-

bation method which decorrelates the target and sensitive

attributes in the latent space of a pre-trained GAN. Then,

they generate a balanced dataset with it and utilized the

dataset for a fair training of a classification network.

2.2. Contrastive Representation Learning

Contrastive learning [2, 10, 27, 36, 40] has become a dom-

inant approach to learning visual representation in a self-

supervised manner. Without class labels, they learned out-

standing representation by pulling samples from the same

image together and pushing away those from different im-

ages. [27, 36, 40] indicated that the number of negative sam-

ples is important for contrastive learning and introduced

memory banks to increase it without exploding GPU mem-

ory consumption. To solve the inconsistency problem be-

tween the updated encoder networks and outdated memory

bank, [10] utilized a dynamic memory queue as a memory

bank and updated it with a slowly moving momentum en-

coder. Furthermore, [2] proposed a simple architecture for

contrastive learning (i.e., SimCLR) that outperforms previous

methods without the memory bank and specialized architec-

tures. Based on it, [18] proposed a supervised version of

contrastive loss (i.e., SupCon). Unlike the previous methods,

they set all samples having the same class with an anchor to

positive samples and pull them to the anchor.
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3. Method
In this section, we first analyze the causes of unfairness

in supervised contrastive learning, and then describe the

proposed method to solve them. Our method is based on a

simple framework for contrastive learning similar to previous

works [2, 18]. We note that our key contributions lie in not

introducing a specific framework but designing a new general

loss for learning fair and informative representation.

3.1. Preliminaries

3.1.1 Overall flow

Assume that we have randomly sampled N data pairs in

a batch, {xk, yk, sk}k=1...N . Here, xk ∈ X , yk ∈ Y , and

sk ∈ S respectively denote an input image, its target class

label out of Ny classes, and its sensitive attribute label out of

Ns classes. Following the prior works [2, 10], we randomly

crop each image xk to generate two independent patches (i.e.,

views), x̂2k−1, x̂2k ∈ X̂ , resulting in a multi-view batch,

{x̂l, ŷl, ŝl}l=1...2N , where ŷ2k−1 = ŷ2k and ŝ2k−1 = ŝ2k
for k ∈ [1, N ]. An encoder network F(·) maps the image

patches into representation H = {hl}l=1...2N , then a projec-

tion network G(·) in turn maps hl into another representation

Z = {zl}l=1...2N for contrastive learning. The encoding net-

works (i.e., F and G) are jointly optimized with contrastive

objectives and this process is called representation learning.

After the representation learning process, we freeze the

encoder network and throw away the projection network. The

frozen encoder network produces representation hk from the

input image xk instead of the cropped views. Taking the

representation as input, a classifier is trained to predict the

target class label yk using the cross-entropy loss.

3.1.2 Self-supervised and supervised contrastive losses

Both self-supervised and supervised contrastive loss enforce

an anchor to be more similar to positive samples than nega-

tive samples. The major difference is the way positive and

negative samples are defined. In the self-supervised ver-

sion [2], for an anchor x̂i, the other view from the same

image is defined as the positive sample. Meanwhile, in the

supervised version [18], all patches sharing the same target

class labels with the anchor x̂i are assigned to positive sam-

ples, i.e., X̂p(i) = {x̂p ∈ X̂|ŷp = ŷi, x̂p �= x̂i}. In both

settings, patches that are neither positive samples nor the

anchor are set to negative samples, i.e., X̂n(i) = {x̂n ∈
X̂|x̂n /∈ X̂p(i), x̂n �= x̂i}.

In the latent space of zl, the self-supervised loss maxi-

mizes the log-softmax of the similarity between zi and zp for

the similarity between zi and representation of all the other

samples, X̂a(i) = X̂p(i)∪X̂n(i). The supervised loss calcu-

lates the normalized summation of the multiple log-softmax

for all zp and maximizes it. The self-supervised contrastive

loss (LSS) and supervised contrastive loss (LSup) are for-

mulated as follows.

LSS = −
∑

zi∈Z

log
φp∑

za∈Za(i)
φa

, (1)

LSup = −
∑

zi∈Z

1

|Zp(i)|
∑

zp∈Zp(i)

log
φp∑

za∈Za(i)
φa

, (2)

where φx denotes exp(zi · zx/τ), x ∈ {a, p}. τ is a tem-

perature parameter, which is set to lower than 1 for sharper

distribution of the softmax scores. |Zp(i)| is the number of

positive samples for an anchor zi. In LSup, the cardinality

of positive samples varies from anchor to anchor and the

factor 1
|Zp(i)| normalizes it. The multiple positive samples

and normalization factor ensure that LSup achieves better

classification performances than LSS .

3.2. Unfairness in Supervised Contrastive Loss

3.2.1 Learning of sensitive attribute information

As revealed in the literature [3, 25, 35], learning sensitive

attribute information is one of the key factors causing unfair

classification. Therefore, to analyze the unfairness of LSup,

we start by exploring whether the loss encourages encoder

networks to learn the malignant information.

Specifically, we define learning of sensitive attribute infor-

mation as increasing I(Z;S) = EP (z,s) log
P (z,s)

P (z)P (s) [3,19],

which is mutual information between Z and S. Subsequently,

we suppose two random points, tl and tm, in training time,

where I(Z;S) is higher at tm than at tl (Assumption 1). In

addition, to simplify a wide variety of and complicated data

bias, we defined an ideally biased dataset, {X̃ , Ỹ , S̃}, where

each target attribute is correlated with one different sensitive

attribute in equal intensity. We provide further details on it

in Appendix. Then we demonstrate that LSup will lead the

encoding networks to learn sensitive attribute information

by proving the theorem below.

Theorem 1 Given X̃ , Ỹ , and S̃, for all tl, tm, V tl > V tm .

Here, V tl and V tm denote the values of LSup at tl and tm,

respectively. Theorem 1 represents that the value of LSup

is always larger at tl than at tm. In other words, LSup is

inversely proportional to the I(Z;S). Therefore, it results in

the following Corollary. Due to the space limit, we provide

the mathematical proof in Appendix.

Corollary 1 Learning sensitive attribute information de-

creases Lsup, given X̃ , Ỹ , and S̃.

In conclusion, both learning the target attribute and sensi-

tive attribute information reduce LSup. Since the encoding

networks do not have the intrinsic ability to distinguish them,

they will learn both kinds of information to optimize LSup,

which eventually aggravates unfairness.
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Figure 1. The concept of fair supervised contrastive loss (FSCL). It increases the similarity between an anchor and samples of the same

target class (IG-SIM and SG-SIM). On the contrary, it decreases the similarity between the anchor and samples having different target

classes and the same sensitive attribute, e.g., gender, (TG-SIM). Here TSG-SIM is not directly affected by the loss.

3.2.2 Data imbalance between demographic groups

In addition to discovering the malignant information learn-

ing, we explore another cause of unfairness with respect to

the imbalanced number of data between data groups. Con-

cretely, we define a data group as a bundle of data having

common target classes and sensitive attributes. Based on the

group definition, we reformulate LSup as follows.

LSup = −
∑

∀j,k

∑

zi∈Zj,k

1

|Zp(i)|
∑

∀k

∑

zp∈Zk
p (i)

log
φp∑

za∈Za(i)
φa

,
(3)

where Zj,k = {zi ∈ Z|ŷi = j, ŝi = k} and Zk
p (i) =

{zp ∈ Zp(i)|ŝp = k} for j ∈ [1, Ny], and k ∈ [1, Ns]. We

note that Eq. 2 and 3 are mathematically identical, but the

latter reveals that the imbalanced number of anchors between

Zj,k and that of positive samples between Zk
p (i) are not

normalized by the existing factor 1/|Zp(i)|. It results in the

loss putting more weight on the majority groups, and thus

the loss encourages the majority groups to have better intra-

group compactness and inter-class separability compared

to the minority groups. Consequently, as indicated in [9,

43, 45], their disparities between the groups incur unfair

classification performances.

3.3. Fair Supervised Contrastive Loss

To resolve the problem of learning sensitive attribute

information (Sec. 3.2.1), we propose a Fair Supervised Con-

trastive Loss (FSCL) which explicitly penalizes that the en-

coding networks learn the unwanted information. For brief

and clear explanations, we define the following similarities

in consideration of the relationship between an anchor and

the other samples.

• IG-SIM (Intra-Group Similarity) is the similarity be-

tween an anchor and samples within the same group,

which have the same target class and the same sensitive

attribute with the anchor. The sample set is defined as

Zig(i) = {zig ∈ Zp(i)|ŝig = ŝi, ŷig = ŷi}.

• SG-SIM (Sensitive Inter-Group Similarity) is the sim-

ilarity between an anchor and samples that belong to

groups with the same target class and different sensitive

attributes with the anchor. The sample set is defined as

Zsg(i) = {zsg ∈ Zp(i)|ŝsg �= ŝi, ŷsg = ŷi}.

• TG-SIM (Target Inter-Group Similarity) is the simi-

larity between an anchor and samples that belong to

groups with different target classes and the same sensi-

tive attribute with the anchor. The sample set is defined

as Ztg(i) = {ztg ∈ Zn(i)|ŝtg = ŝi, ŷtg �= ŷi})

• TSG-SIM (Target & Sensitive Inter-Group Similarity)

is the similarity between an anchor and samples that

belong to groups with different target classes and dif-
ferent sensitive attributes with the anchor. The sample

set is defined as i.e., Ztsg(i) = {ztsg ∈ Zn(i)|ŝtsg �=
ŝi, ŷtsg �= ŷi}.

Our key idea is to define the negative sample set as the

samples with the same sensitive attributes and different target

classes with the anchor (i.e., Ztg). Based on this, we design

FSCL that encourages IG-SIM and SG-SIM to be higher

than TG-SIM, as illustrated in Figure 1. It is formulated as

follows.
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FSCL = −
∑

zi∈Z

1

|Zp(i)|
∑

zp∈Zp(i)

log
φp∑

ztg∈Ztg(i)
φtg

,

(4)

where Zp(i) = Zig(i) ∪ Zsg(i) and φtg = exp(zi · ztg/τ).
On a case-by-case basis, we explain how our FSCL ad-

dresses the problem of learning unwanted information. In

a case of zp ∈ Zig(i), the positive samples and negative

samples (i.e., Ztg(i)) all have the same sensitive attributes

with the anchor. Therefore, the encoding networks no longer

consider the sensitive attribute information to be a valuable

feature for contrasting an anchor with the negative samples

more than with the positive samples.

In the other case of zp ∈ Zsg(i), the positive samples

have different sensitive attributes from the anchor and neg-

ative samples (i.e., Ztg(i)). If the encoding networks learn

the sensitive attribute information, the similarity between

the positive samples and the anchor (i.e., φp) will decrease

and the similarity between the negative samples and it (i.e.,
φtg) will increase, which is contrary to the objective of the

loss. As a result, minimizing the loss inhibits learning the

unwanted information in this case.

3.4. Group-wise Normalization

As aforementioned in Sec. 3.2.2, the imbalanced num-

ber of anchors and positive samples between data groups

causes the group-wise disparities in terms of intra-group

compactness and inter-class separability. To alleviate the un-

fairness brought by the disparities, we introduce group-wise

normalization as follows.

FSCL+ = −
∑

∀j,k

1

|Zj,k|
∑

zi∈Zj,k

∑

∀k

1∣∣Zk
p (i)

∣∣

∑

zp∈Zk
p (i)

log
φp∑

ztg∈Ztg(i)
φtg

,
(5)

where 1/|Zj,k| and 1/|Zk
p (i)| are the group-wise normal-

ization factors. Different from the existing factor in LSup

(i.e., 1/|Zp(i)|), they normalize the cardinality of anchors

and positive samples within each group. On an experimen-

tal basis, we demonstrate that the proposed normalization

mitigates the group-wise imbalances in terms of intra-group

compactness and inter-class separability.

4. Experiment
4.1. Datasets

CelebA [24] contains about 200k facial images with 40

binary attribute annotations. We set male (m) and young
(y) to sensitive attributes and select target attributes hav-

ing the highest Pearson correlation with the sensitive at-

tributes [1, 37]. Amongst, we manually excluded the ex-

tremely correlated attributes for reliable evaluation. For

heavy-makeup as example, there are only 22 males with

heavy-makeup in test set. As a result, we exploit three sin-

gle target attributes: attractiveness (a), bignose (b), and

bags-under-eyes (e) as well as two pairs of target attributes:

{bignose, bags-under-eyes} and {attractiveness, mouth-
slightly-open (o)}.

UTK Face [44] consists of about 20k facial images with

three kinds of annotations: gender, age, and ethnicity. To

evaluate fairness in varied levels of data imbalance, we de-

sign several imbalanced versions for the training set. Note

that the standard protocol on data splits is not provided in

this dataset. Concretely, we set age and ethnicity to the sen-

sitive attributes and gender to the target attribute. Age and

ethnicity are reformed to binary attributes based on whether

age is under 35 or not and ethnicity is Caucasian or not,

respectively. A sensitive group (e.g., Caucasian) has male

data α times as much as female data and the other sensitive

group has the opposite gender ratio. α is set to 2, 3, and 4

to simulate varying bias levels. Unlike the training set, we

organize completely balanced validation and test sets for a

fair evaluation.

Dogs and Cats [16] has 38,500 dog or cat images. In ad-

dition to the original species labels (dog or cat), LNL [19]

further annotated color labels (bright or dark). We set color
to the sensitive attribute and species to the target attribute.

We compose a color biased training set that contains 5 times

more black cats than white cats, while 5 times more white

dogs than black dogs. For a fair evaluation, we compose the

test set to be completely balanced. Note that we utilize this

dataset to examine the extensibility of the proposed method

to general bias mitigation (i.e., color) beyond its fairness.

We provide more details on the datasets in Appendix.

4.2. Fairness Metrics

A variety of fairness notions are exploited to measure

fairness in classification tasks (e.g., demographic parity [21],

equal opportunity, and equalized odds [8]). Demographic

parity means that the proportion of positive outcomes in each

sensitive group should be equal. Although it may be used

as reliable metrics in situations where equality of outcome

has to be guaranteed, there is a drawback in that a classifier

should deliberately misclassify some labels to satisfy it if the

proportion of positive outcomes is not equal in the ground

truth (GT) [6, 8]. Equal opportunity solves this issue by pur-

suing the equal true positive rate (TPR) between sensitive

groups. However, it does not address unfairness in negative

outcomes. In many real-world applications such as facial

attribute classification, fairness of positive and negative out-

comes is equivalently important. Therefore, equalized odds,

which demands both the equal TPR and false positive rate

(FPR), are the most suitable to measure fairness in our ex-

periments. Following the definition in [8], we measure the

degree of equalized odds (EO) in various settings (e.g., mul-
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Method
T=a / S=m T=a / S=y T=b / S=m T=b / S=y T=e / S=m T=e / S=y T=a & o / S=m T=e & b / S=m T=a / S=m & y

EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

CE [11] 27.8 79.6 16.8 79.8 17.6 84.0 14.7 84.5 15.0 83.9 12.7 83.8 30.0 73.9 12.9 72.6 31.3 79.5

GRL [30] 24.9 77.2 14.7 74.6 14.0 82.5 10.0 83.3 6.7 81.9 5.9 82.3 17.8 73.1 9.4 71.4 22.9 78.6

LNL [19] 21.8 79.9 13.7 74.3 10.7 82.3 6.8 82.3 5.0 81.6 3.3 80.3 16.7 72.9 7.4 70.8 20.7 77.7

FD-VAE [29] 15.1 76.9 14.8 77.5 11.2 81.6 6.7 81.7 5.7 82.6 6.2 84.0 18.2 73.4 8.2 70.2 19.9 78.0

MFD [15] 7.4 78.0 14.9 80.0 7.3 78.0 5.4 78.0 8.7 79.0 5.2 78.0 8.7 74.0 9.0 70.0 19.4 76.1

SupCon [18] 30.5 80.5 21.7 80.1 20.7 84.6 16.9 84.4 20.8 84.3 10.8 84.0 22.8 74.0 12.5 72.7 24.4 81.7

FSCL 11.5 79.1 13.0 79.1 7.0 82.1 6.4 83.8 3.8 82.7 1.8 82.0 8.1 74.1 6.8 71.1 19.9 79.4

FSCL+ 6.5 79.1 12.4 79.1 4.7 82.9 4.8 84.1 3.0 83.4 1.6 83.5 3.6 74.8 2.5 70.8 17.0 77.2

Table 1. Classification results on CelebA. We measure classification accuracy (ACC.) and equalized odds (EO) in various scenarios. Here a,

b, e, o, m, and y respectively denote attractiveness, bignose, bags-under-eyes, mouth-slightly-open, male, and young. On the other hand, T

and S represent target and sensitive attributes, respectively. All the results are the averaged scores over three independent runs. The standard

deviations are provided in Appendix.

tiple classes or sensitive attributes) as follows.

∑

∀y,c,{s0,s1}⊂S

|Ps0(C = c |Y = y)− Ps1(C = c |Y = y)| ,

(6)

where
∑

is the averaged sum. y ∈ Y and c ∈ C are target

labels and outputs from a classifier, respectively, and {s0, s1}
is a two-element subset of sensitive attribute groups S.

4.3. Implementation Details

For contrastive learning, we utilize ResNet-18 [11] for the

encoder network F and a MLP with two hidden layers for the

projection network G. The dimensions of latent spaces are

set to 256 and 128, respectively. We augment two cropped

patches per image following the augmentation strategy in

[2] and resize them to 128×128. We set the temperature

parameter τ to 0.1 based on the analysis in [18]. We train

the encoding networks for 100 epochs in the representation

learning stage, and subsequently train the classifier, which

is a MLP with one hidden layer, for 10 epochs using the

cross-entropy loss. For the experiments with multiple target

or sensitive attributes, we combine multiple binary attribute

labels into a multi-class label. All comparative models share

the same structures of the encoder network and classifier

as ours for a fair comparison. The results reported in this

paper are averaged over three independent runs. More details

for the augmentation strategy, structure of networks, and

experiment settings are provided in Appendix.

4.4. Classification Results on CelebA

Table 1 shows the classification results on CelebA. For

diverse combinations of target and sensitive attributes, we

measure classification performances and fairness with top-1

accuracy and equalized odds (EO), respectively. In all the ex-

periments, Cross-Entropy (CE) [11] and SupCon [18] record

excellent top-1 accuracy but suffer from severe unfairness.

Notably, the proposed methods (FSCL and FSCL+) signif-

icantly improve EO over them while preserving the com-

petitive performances. Particularly, the comparison between

Method Adversarial Training [30] EO (↓) Acc. (↑)

SupCon [18]
� 30.5±1.3 80.5±0.7

� 21.0±0.5 76.6±0.3

FSCL+
� 6.5±0.4 79.1±0.1

� 9.0±0.5 79.2±0.1

Table 2. Effect of adversarial training in contrastive learning on
CelebA dataset. We utilize GRL [30] for the adversarial training.

Here attractiveness and male are set to the target class and

sensitive attribute, respectively.

FSCL (blue) and FSCL+ (red) shows that the group-wise nor-

malization brings about better fairness while well preserving

the performance or even improving it. Furthermore, we com-

pare ours with various state-of-the-art approaches for fair-

ness such as adversarial training (GRL [30] and LNL [19]),

disentangled representation learning (FD-VAE [29]), and fair

distillation (MFD [15]). FSCL+ substantially outperforms

all the state-of-the-art methods in terms of the trade-off be-

tween top-1 accuracy and EO in all the settings. For a clearer

comparison of the trade-off performances, we also provide

the experimental results in figure form in Appendix.

4.5. Adversarial Training in Contrastive Learning

Intuitively, to mitigate the unfairness of SupCon, one may

imagine simply combining adversarial training with it. In

Table 2, we demonstrate the effect of adversarial training by

applying GRL [30] to SupCon and FSCL+ in the represen-

tation learning. For SupCon, while improving fairness to an

extent, it largely damages the classification performance. In

addition, FSCL+ achieves much better EO and top-1 accu-

racy than SupCon combined with GRL. This indicates that

the simple graft of adversarial training to contrastive learn-

ing does not sufficiently improve fairness and designing a

new method seamlessly integrated into contrastive learning

is more effective. We do not see further improvements in EO

when applying GRL to FSCL+.
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Method Ramaswamy et al. [31] EO (↓) Acc. (↑)

Cross-Entropy [11]
� 27.8±0.2 79.6±0.5

� 24.1±0.5 79.6±0.2

FSCL+
� 6.5±0.4 79.1±0.1

� 4.2±0.4 79.6±0.1

Table 3. Compatibility with fair data augmentation [31] on
CelebA dataset. We set attractiveness and male to the target class

and sensitive attribute, respectively.
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Figure 2. Effectiveness of group-wise normalization. The group-

wise normalization (i.e., FSCL+) significantly mitigates the group-

wise disparities in terms of intra-group and inter-class similarities.

4.6. Compatibility with Fair Data Augmentation

We incorporate our method with Ramaswamy et al. [31],

one of the state-of-the-art pre-processing methods for fair

classification. It generates a de-biased dataset through a Pro-

gressive GAN [17] and augments the original dataset with

the generated one. In Table 3, we report the performances of

the baseline (i.e., Cross-Entropy) and FSCL+ trained on the

original/augmented dataset. The results show that FSCL+
outperforms Ramaswamy et al. (2nd row) in terms of both

EO and top-1 accuracy. Besides, the fairness of ours is fur-

ther enhanced when adopting the fair data augmentation,

which indicates its compatibility.

4.7. Effectiveness of Group-wise Normalization

To analyze the effectiveness of the group-wise normaliza-

tion, we compare intra-group compactness and inter-class

separability between FSCL and FSCL+. To this end, we first

divide the test set into 8 groups with respect to one target

class, attractiveness, and two sensitive attributes, male and

young, and then calculate them as follows. The former is

measured by averaging the similarities between represen-

tation within a group (i.e., intra-group similarity) and the

latter is measured by averaging the similarity between rep-

resentation in a group and representation having different

class labels with it (i.e., inter-class similarity). For easier

comparison, the values are normalized to sum to unity, as

shown in Figure 2. The plots demonstrate that the group-

wise normalization significantly diminishes the group-wise

disparities. In specific, FSCL has the standard deviations of

0.084 and 0.031 in intra-group and inter-class similarities,

(a) SupCon (b) FSCL+

Target: a=0
Sensitive: m=0

Target: a=0
Sensitive: m=1

Target: a=1
Sensitive: m=0

Target: a=1
Sensitive: m=1

Figure 3. Qualitative comparison using t-SNE visualizations.
It is clearly shown that FSCL+ (b) learns representation more

independent of the sensitive attribute than SupCon (a).

respectively, while FSCL+ has lower standard deviations of

0.038 and 0.024.

4.8. Qualitative Analysis with t-SNE Visualization

In Figure 3, we provide t-SNE plots [38] of representation

from SupCon and FSCL+ on CelebA dataset. The representa-

tion is divided into 4 groups in terms of the target class (i.e.,
attractiveness) and sensitive attribute (i.e., male), which are

visualized in different colors. In SupCon, the representation

is divided by both the target class and sensitive attribute, sug-

gesting that the encoding networks learn information for the

sensitive attribute as well as the target class. Consequently,

the representation of minority groups (i.e., green and orange

colors) is more similar to the representation of the counter-

part class than that of majority groups (i.e., blue and pink

colors). In contrast, in FSCL+, the representation is divided

by only the target class, that is, it is more agnostic to the sen-

sitive attribute. Accordingly, majority groups can no longer

have more privileges than minority groups, which explains

why our loss can achieve fairer performance than SupCon
in image classification. Details of experimental settings are

provided in Appendix.

4.9. Robustness to Severity of Data Bias

In Figure 4, we present the trends of EO and top-1 accu-

racy according to the intensity shift of data imbalance (α) on

UTK Face dataset. It can be clearly noticed that our loss best

prevents the degradation of fairness caused by an increase in

α, achieving the fairest performance at all the intensities. In

the figure, as α increases, the EO gaps between ours and the

others become larger, which manifests the robustness of the

proposed methods against the severity of data bias. More-

over, at all the intensities, our loss successfully maintains

the top-1 accuracy, which is close to SupCon. Experimental

results on another sensitive attribute (i.e., age) draw similar

conclusions and are provided in Appendix.
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Figure 4. Classification results on UTK Face. We measure classi-

fication accuracy and equalized odds (EO) under different severity

levels of imbalance (α). We set gender and ethnicity to the target

class and sensitive attribute, respectively. Larger α indicates that

the training set is more imbalanced.

Method
Target:a / Sensitive:m Target:b / Sensitive:m
EO (↓) Acc. (↑) EO (↓) Acc. (↑)

SimCLR [2] 29.4±2.5 75.7±0.2 16.4±0.4 82.0±0.1

SimCLR [2] + GRL [30] 21.9±0.9 72.3±0.4 13.7±0.3 82.3±0.0

FSCL† 14.8±0.9 74.6±0.4 6.1±0.6 80.8±0.2

Table 4. Classification results on CelebA in the absence of target
class labels during representation learning. FSCL† is a modified

version of FSCL that does not use the target class labels.

4.10. Results in Incomplete Supervised Settings

We explore a more challenging problem setting, where

target class labels are unavailable during the representation

learning process. To this end, we introduce a modified ver-

sion of FSCL that does not exploit target class labels, which

is denoted by FSCL†. Similar to SimCLR [2], it uses only a

single positive sample that comes from the same image with

an anchor. As shown in Table 4, ours significantly improves

fairness at the acceptable cost of top-1 accuracy, compared

to SimCLR and SimCLR+GRL. Details of the modification

are provided in Appendix.

Moreover, we conduct experiments under another chal-

lenging environment where only a small portion of data have

sensitive attribute labels. One of our simple strategies to

handle this task is to generate pseudo-labels for applying

FSCL+ loss. Specifically, we train a classifier to predict sen-

sitive attribute labels only with the samples having sensitive

attribute labels, and then generate the pseudo labels of sensi-

tive attributes for the other samples. Another strategy is to

apply FSCL+ loss only to data with sensitive labels and Sup-
Con to the other data. Table 5 shows that FSCL+ effectively

ameliorates EO over SupCon even under the incomplete su-

pervision of sensitive attributes. Surprisingly, FSCL+ with

only 5% of labels is able to outperform SupCon+GRL using

all the labels.

4.11. Extensibility to General Bias Mitigation

To verify the efficacy of the proposed methods in a general

bias type, we conduct experiments on Dogs and Cats [16]

Method # of Sensitive Pseudo-labeling EO (↓) Acc. (↑)

SupCon [18] 0 - 30.5±1.3 80.5±0.7

SupCon [18] + GRL [30] 1 - 21.0±0.5 76.6±0.3

FSCL+

1 - 6.5±0.4 79.1±0.1

1/2
� 13.4±0.1 79.3±0.3

� 12.8±1.2 79.4±0.3

1/4
� 18.7±0.3 80.0±0.3

� 13.4±0.1 79.5±0.5

1/10
� 20.7±0.5 80.2±0.1

� 16.5±0.5 79.6±0.4

1/20
� 23.4±0.0 80.6±0.1

� 18.8±1.1 78.5±0.2

Table 5. Classification results on CelebA under incomplete su-
pervision of sensitive attribute labels. “# of Sensitive” denotes the

ratio of data having sensitive attribute labels. We set attractiveness
and male to the target class and sensitive attribute, respectively.

Figure 5. Classification results on Dogs and Cats. We set species
and color to the target and sensitive attributes, respectively.

with color bias. The results are shown in Figure 5, where

our models (FSCL and FSCL+) best eliminate the color bias,

which implies that they are generalizable to various types

of bias. Note that FSCL, FSCL+, and MFD show higher

top-1 accuracy than their baselines since fairness improves

the performance on the completely balanced test set.

5. Conclusion

In this paper, we addressed fairness in contrastive learn-

ing. We first analyzed the causative factors of unfairness in

the supervised contrastive loss. Then we proposed the fair

supervised contrastive loss and introduced the group-wise

normalization into the loss. Through extensive experiments,

we validated that our loss effectively improves fairness with

little degradation of the classification performance.
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