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Abstract. In this paper, we present neural models for graphs that do
not rely on backpropagation for training. This makes learning more bio-
logically plausible and amenable to parallel implementations. The base
component of our architecture is a generalization of Gated Linear Net-
works which allows the adoption of multiple graph convolutions. Every
neuron is a set of graph convolution filters (weight vectors) and a gating
mechanism that selects the weight vector to use for processing based
on the node and its topological context. We focus on a message-passing
aggregation scheme where the gating mechanism is embedded directly
into the graph convolution. We compare the effectiveness of different
definitions of node contexts (depending on input or hidden features) and
of gating functions (based on hyper-planes or on prototypes). We evalu-
ate the proposed convolutions on several node classification benchmark
datasets. The experimental results show that our backpropagation-free
graph convolutions are competitive with backpropagation-based counter-
parts. Moreover, we present a theoretical result on the expressiveness of
the proposed models.

Keywords: Graph Convolutional Networks · Graph Neural Network · Deep
Learning · Structured Data · Machine Learning on Graphs

1 Introduction

In the last years, several definitions of neural architectures capable to deal with
data in structured form, such as graphs, have been presented [1, 2]. The vast
majority of graph neural networks in literature are based on the idea of message
passing, in which the representation of a node at layer l (or time t if the network
is recurrent) is defined as a transformation of the label of the same node and of
its neighbors at layer l − 1 (t− 1).

While many works focused on defining alternative architectures, at the best
of author’s knowledge all of them rely on backpropagation to learn the networks’
weights. Backpropagation is a powerful and effective method to train deep neural
networks (NNs), that has been successfully applied almost ubiquitously in recent
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years. When the amount of available data is not huge, however, the standard
approach of training a non-linear NN with backpropagation may quickly lead to
overfit the training data. This is in clear contrast to how humans learn, since
we do not require nearly the amount of training data modern NNs do to learn
how to generalize. Moreover, the backpropagation mechanism is not biologically
plausible [3, 4], suggesting that the brain may use different learning algorithms.

Recently, some alternative definitions of multilayer neural networks that do not
rely on backpropagation for their training [4, 5] have been proposed. They define
local learning rules where each neuron, given its inputs, is trained independently
from the rest of the network exploiting a global error signal. This approach
allows these networks to: (i) be more biologically plausible (i.e. from the current
knowledge about the functioning of animal neurons, it seems implausible for
a neuron to have access to the connections in a brain area responsible for a
subsequent processing step); (ii) be more sample efficient/simplify the overall
training procedure, since each neuron solves an independent (possibly convex)
problem;

The aim of this paper is to explore a contamination between these two cutting-
edge research fields, studying how to define neural networks for graph processing
that do not rely on backpropagation for their training.

Our exploration is based on the recently proposed Gated Linear Networks
(GLN) [5], a family of backpropagation-free neural networks that have been
developed for online learning and that have shown promising results. The main
characteristic of such networks is that, contrarily to the mainstream approach,
the non-linearity is achieved via a gating mechanism instead of element-wise
non-linear functions. More specifically, each neuron receives a context vector as
additional input, that is used to select one weight vector in a pre-defined set. The
only non-linearity lies in such gating mechanism. In fact, once the weight vector
is selected, each neuron behaves linearly. The resulting network is a piece-wise
linear model (similarly to ReLU networks). While the gating mechanism is not
trained, each neuron learns to predict (by modifying the weights) a binary output,
and can be trained independently from the rest of the network. In the case of
multi-class classification, a one-vs-all approach is exploited.

In order to define neural networks capable of processing graph data, we
explore a generalization of the above mechanism based on the approach adopted
by many graph convolutional networks, in which the network architecture reflects
the structure of the input graph, and node representations are refined at each
layer according to the local graph topology via an aggregation operation over
neighboring nodes. We also provide a theoretical result on the incremental
expressiveness of our models.

The properties inherited from GLNs ensure that our models are (at least
in principle) as expressive as their backpropagation-based counterparts, with a
significantly easier training phase. Nonetheless, several choices have to be made,
such as which neighbor aggregation mechanism to adopt, how to define the
contexts on graphs, and how to define the gating mechanism in an efficient way
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on graphs for limiting the number of parameters of the network while obtaining
good predictive performances.

We experimentally evaluate our backpropagation-free graph convolutional
neural architectures on commonly adopted node classification benchmarks, and
verify their competitive performance. This work paves the way to novel neural
approaches for graph learning.

2 Background

In this section, we introduce the background notation and knowledge on which
our model hinges.

2.1 Graph Neural Networks

A learning problem on a graph can be formulated as learning a function that
maps nodes to labels. The underlying graph structure is given as G = (V,E,L),
where V = {v1, . . . , vn} is the set of nodes, E ⊆ V × V is the set of edges
connecting the nodes, and L : V → Rs is a function associating a vector of
attributes to each node. With N (v) we denote the set of nodes adjacent to v, i.e.
N (v) = {u | (v, u) ∈ E}. To simplify the notation, we define for a fixed a graph
G the matrix X = [L(v1), . . . ,L(vn)]⊺

Given a graph G, our training set is composed by the target information
associated to some of the graph nodes, i.e., {(v, y) | v ∈ W, y ∈ Y} with W ⊂ V .
For the sake of simplicity, in our presentation we will only consider binary values
Y ∈ {0, 1}.

A Graph Neural Network (GNN) is a neural model that exploits the structure
of the graph and the information embedded in feature vectors of each node in
order to learn a representation hv ∈ Rm for each vertex v ∈ V . In many GNN
models, the computation of hv can be divided in two main steps: aggregate and
combine. We can define aggregation and combination by using two functions, A
and C, respectively: hv = C(L(v),A({L(u) : u ∈ N (v)})).
The choice of aggregation function A and combination function C defines the
type of Graph Convolution (GC) adopted by the GNN. In [6], the first model
that uses graph convolutions is introduced. In the last few years, several different
GCs have been proposed [7–13].

In this work, we build on top of two widely adopted graph convolutions. The
first one is the GCN [7]

H(i) = F
(
D̃− 1

2 (I+A)D̃− 1
2 H(i−1)W(i)

)
, i > 1 (1)

where A denotes the standard adjacency matrix of the graph G and D̃ a diagonal
degree matrix with the diagonal elements defined as d̃ii = 1 +

∑
j aij . Further,

H(i) ∈ Rn×mi is a matrix containing the representation h
(i)
v of all nodes in the

graph (one per row) at layer i, W(i) ∈ Rmi−1×mi denotes the matrix of the layer’s
parameters, and F is the element-wise (usually, nonlinear) activation function.
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The second graph convolution we consider is a slight variation of the first
model and commonly referred to as GraphConv [2]:

h(i)
v = F(h(i−1)

v W
(i)
1 +

∑
u∈N (v)

h(i−1)
u W

(i)
2 ),

where W
(i)
1 ,W

(i)
2 ∈ Rmi−1×mi (with m0 = s, the input dimensionality) are the

network parameters.

2.2 Backpropagation-free neural networks

In this paper we exploit recently defined neurons that can be trained locally and
independently instead of exploiting backpropagation. We consider the recently
proposed Gated Linear Networks [14] (GLNs) where the local optimization
problem obtained for each neuron, adopting an appropriate loss, is convex.
Moreover, it has been shown that GLNs can represent any function that represent
a probability arbitrarily well [15].

The main differences of GLNs compared to MLPs are the following: first,
each neuron in a GLN is a Gated Geometric Mixer. Geometric mixing [16] is
an ensemble technique that assigns a weight to each weak predictor in input.
In GLNs, every unit produces in output its prediction for the target. Given an
input vector of probabilities p = [p1, . . . , pn]

⊤, geometric mixing is defined as:
σ
(
w⊤σ−1(p)

)
, where σ(x) = 1

1+e−x is the sigmoid function, σ−1(x) = logit(x) =
log(x)−log(1−x) is the logit function (that is the inverse of the sigmoid function),
and both of them are applied element-wise.

To achieve non-linearity, specifically piecewise-linearity, GLNs employ a gating
mechanism in each neuron. Each neuron divides its input space in regions. A
geometric mixing (that is a linear model) is associated to each region. The
association from examples to regions is carried by a region assignment function c.
GLNs assume that for each example we have a vectorial representation available,
x ∈ Rd(x)

, and a vector representing side-information (or context), i.e. z ∈ Rd(z)

.
The c function is defined depending on side-information associated to each input
(in case no side-information is available, it is possible to set z = x). Each neuron
in a GLN solves a convex problem, and is trained independently to predict the
target.

For the sake of simplicity, we omit bias terms in the following formulations.
Given a neuron j at the i-th layer, its output is defined as:

h
(i)
j,(x,z) = σ

(
σ−1

(
h
(i−1)
(x,z)

)⊤
w

(i)
j,(z)

)
, i > 1 (2)

with h
(0)
(x,z) = σ(x). The vector w

(i)
j,(z) ∈ Rmi−1 stores the weights associated to

the region activated by the context z for the corresponding neuron. Let us discuss
this weight vector in more detail and the gating mechanism that defines how a
specific set of weights is selected.
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Given an example (x, z), we can select the weights of a single neuron j at the
i-th layer as:

w
(i)
j,(z) =

(
Θ

(i)
j c

(i)
j,(z)

)
(3)

where Θ
(i)
j ∈ Rmi−1×k, k is the number of regions (we assume for simplicity

that each neuron in the network considers the same number of regions), and
c
(i)
j,(z) ∈ Rk. Notice that the main characteristic of a Gated Linear Neuron is that,

instead of having a single weight vector, each GL neuron depends on a matrix of
parameters Θ

(i)
j .

The original paper [14] proposes to implement the gating in the c functions
with an halfspace-gating mechanism. Given a vector z ∈ Rd(z)

, and a hyperplane
with parameters ai ∈ Rd(z)

and bi ∈ R, let us define a context function c̃i :

Rd(z) → {0, 1} as:

c̃i(z) =

{
1 if a⊤i z > bi

0 otherwise

that divides Rd(z)

in two half-spaces, according to the hyperplane a⊤i z = bi. We
can compose log2(k) (assuming k to be a power of 2) context functions of the
same kind, obtaining an higher-order context function c̃ : Rd(z) → {0, 1}log2(k),
c̃ = [c̃1, . . . , c̃k]

⊤. We can then easily define a function f mapping from {0, 1}log2(k)

to {0, . . . , k − 1} ⊂ N, obtaining the function ĉ : Rd(z) → {0, . . . , k − 1}, ĉ =
f ◦ c̃ = f(c̃(z)). We can exploit the one-hot encoding of the output of such
function and re-define it as c : Rd(z) → {0, 1}k, c = one_hot(ĉ).

Given a layer i, each neuron j computes a different function c
(i)
j : Rd(z) →

{0, 1}k. For the j-th neuron at the i-th layer, the output of the context function
applied to z is thus the (one-hot) vector c

(i)
j,(z).

2.3 Layer-wise formulation

Exploiting the definition of a single Gated Linear Neuron in the previous section,
we can define a whole GLN layer. This formulation will be exploited in the
remainder of the paper. The output for the i-th layer in a GLN (with mi neurons)
for a sample (x, z) is defined as:

h
(i)
(x,z) = σ

(
σ−1

(
h
(i−1)
(x,z)

)⊤
W

(i)
(z)

)
, i > 1 (4)

where
W

(i)
(z) = [w

(i)
1,(z), . . . ,w

(i)
mi,(z)

], (5)

and W
(i)
(z) ∈ Rmi−1×mi .

Several layers can then be stacked. For a binary classification problem, the last
layer will comprise a single neuron, i.e. for a network with l layers we have W

(l)
(z) =

w
(l)
1,(z) , W(l)

(z) ∈ Rml−1×1. The resulting model is, by construction, piecewise-linear.



6 L. Pasa et al.

Specifically, given a context z, the model is (up to a final activation function)
linear and can be written as y(x,z) = σ

(
x⊤W

(1)
(z) . . .W

(l−1)
(z) W

(l)
(z)

)
= σ

(
x⊤w(z)

)
,

with a weight vector w(z) ∈ Rd(x)

.

3 Back-Propagation Free Graph Convolutions

In this section, we define our proposed model, which generalize GLNs to graph-
structured data. In particular, we show how to embed the GLN idea into graph
convolutions to build models based on the message-passing paradigm.

The core concept behind several definitions of Graph Neural Networks is the
aggregation function used to obtain information about the local graph structure
surrounding a graph node. The simplest aggregation mechanism involves just
the summation over the representations of neighbouring nodes. For this simple
mechanism, we obtain the following definition for a single layer in a Gated Linear
Graph Neural Network:

h
(i)
(v,z) = σ

(
σ−1

(
h
(i−1)
(v,z)

)⊤
W

(i,1)
(z) +

 ∑
(u,z′)∈Nv

σ−1
(
h
(i−1)
(u,z′)

)⊤
W

(i,2)
(z)

 ,

for i ≥ 1, and h
(0)
v,z = σ(L(v)). The weights W

(i,2)
(z) ,W

(i,1)
(z) , andW

(i)
(z) are defined

as per eq. (5) and can be obtained by a backpropagation-free training. This model
can be considered as a modification of GraphConv proposed in [2] in which gated
geometric mixing has been applied. For this reason we refer to this model also
as Backpropagation Free - GraphConv (BF-GraphConv). Similarly to common
formulations of graph neural networks, we can express the hidden representation
for all the nodes in the graph as a single matrix. We obtain the following form
of BF-GraphConv: H(i)

(z) = σ−1
(
H

(i−1)
(z)

)
W

(i,1)
(z) +Aσ−1

(
H

(i−1)
(z)

)
W

(i,2)
(z) , where

H
(i)
(z) ∈ Rn×mi and H

(0)
(z) = σ(X). BF-GraphConv can therefore be regarded as a

piecewise linear GNN depending on the context information z of the neurons.
Following common definitions of Graph Neural Networks, we can resort to any

message passing mechanism and define the Gated Linear counterpart. For instance,
we can also consider the GCN presented in eq. (1) which leads to the following BF-
GCN: H(i)

(z) = σ
(
D̃− 1

2 (I+A)D̃− 1
2 σ−1

(
H

(i−1)
(z)

)
W

(i)
(z)

)
. The resulting model

can be regarded as a piecewise linear GCN. In particular, after l layers, the output
H

(l)
(z) for the context z can be written as H

(l)
(z) = σ

(
(D̃− 1

2 (I+A)D̃− 1
2 )lXw(z)

)
,

i.e., the BF-GCN model with l layers is a generalization of the simple graph
convolutional network (SGC) introduced in [17] and further investigated in [18],
where the vetor of weights w(z) changes based on the input context. Notice
that the main differences between the Gated Linear Graph Neural Networks
and commonly adopted GNN formulations are the local training and the gating
mechanism.
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3.1 Incremental expressivity of GLNs

The usage of a region assignment function c for the side information z ∈ Rdz is
equivalent to a partitioning P(c) of the space Rdz into k disjoint regions. We
can therefore compare different GLNs based on the corresponding partitioning of
Rdz . If a partitioning P(c1) is a refinement of a second partitioning P(c2), we
intuitively expect that the GLN corresponding to the refined partitioning P(c1)
is more expressive. In the following, we will show this intuition for the two gated
linear networks BF-GCN and BF-GraphConv.

Theorem 1. Consider two Gated Linear GNNs (either BF-GCN or BF-GraphConv)
with gated geometric mixing based on two region assignment functions c1 and c2.
We assume that the partitioning P(c1) is a refinement of the partitioning P(c2).
Then, the Gated Linear GNN based on c1 is more expressive than the GNN based
on c2.

Proof. We will only consider the BF-GCN model. For simplicity, we will also
assume that X = x ∈ Rn×1, i.e., that the dimension of the input variable is s = 1
and, thus, that we have real-valued weights w(z) ∈ R. Now, let H(c) denote the set

of all possible functions H(c) =
{
y(z) = σ((D̃− 1

2 (I+A)D̃− 1
2 )l xw(z)) | w(z) ∈ R

}
generated by a BF-GCN network with a region assignment function c. Let
R ∈ P(c2) be one of the regions in the partitioning given by the function c2.
As P(c1) is a refinement of P(c2) we can decompose R as R = R1 ∪ · · · ∪ Rr

with Ri ∈ P(c1) for i ∈ {1, . . . , r}. Now, if in H(c1) we impose that wzi = wzj

if zi ∈ Ri and zj ∈ Rj for i, j ∈ {1, . . . , r}, then every z ∈ R obtains the same
weight wz. Thus, we see that every function in H(c2) can be formulated as a
function in H(c1). On the other hand, if we can choose wzi

≠ wzj
freely for

zi ∈ Ri and zj ∈ Rj we can enforce y(z1) ̸= y(z2) for zi, zj ∈ R (excluding
exceptional cases in which (D̃− 1

2 (I+A)D̃− 1
2 )lx vanishes on domains linked to

Ri and Rj). Therefore, the set H(c1) is, in general, strictly larger than H(c2).

3.2 Context functions

The context function presented in Section 3 and exploited in (3) is based on
random half-space gating. That definition is suited for online learning, where the
training data distribution is not known beforehand. However, it is not data-driven
and may result in the necessity of defining a high number of context regions to
obtain a sufficiently non-linear model. Notice that the halfspace gating mechanism
depends on some hyperparameters: in addition to the number of regions k, one
has to choose the parameters of the distribution from which to sample the weights
corresponding to each hyperplane (e.g. mean and variance assuming they are
sampled from a normal distribution). Setting these hyperparameters may be
challenging, since results can be strongly affected by their choice.

In this section, we propose an alternative approach that can be exploited
in the batch learning scenario and that does not depend on any parameter
but the number of regions to consider. In particular, we propose to define a
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partition of the space based on a set of prototypes [19]. Each point in the
space is assigned to its closest prototype, obtaining a Voronoi tessellation. Note
that half-space gating generates a division of the context space that can be
represented as a planar straight-line graph (PSLG) instead. It is possible to show
that any PSLG coincides with the Voronoi diagram of some set S of points (i.e.
prototypes) [20]. Similarly to the half-space gating mechanism, the prototypes
are not learned. However, instead of randomly generating them, we propose to
sample at random among the training examples. This ensures that each prototype
will lie on the input data manifold. Moreover, as mentioned before, this approach
relieves us from many hyper-parameter choices.Let P

(i)
j ∈ R2m×mz be the matrix

of prototypes. We can formally define the context vector c
(i)
(z) ∈ {0, 1}ci as

c
(i)
j,(z) = one_hot(argmin(2_dist(P

(i)
j , z)), where 2_dist computes the 2-norm

distance between each row of P(i)
j and z is the context vector.

4 Experimental Results

We empirically validated the proposed backpropagation-free graph neural net-
works on four widely adopted datasets of node classification: Citeseer, Cora,
Pubmed and WikiCS [21].

We developed all the models involved in the comparison using PyTorch
Geometric [22]. As baseline models, we considered the GCN and the Graph-
Conv convolutions. For these models we exploit the implementation provided by
PyTorch Geometric.

Furthermore, we do not limit our exploration of backpropagation-free models,
and in particular the multilayer ones (BF-GCN and BF-GraphConv), to the
standard methodology that uses the input X as context, but we also assess the
effects of using each node’s inputs, i.e. the hidden representation computed at the
previous layer label (H) as a context for all gated neurons. For all the datasets,
we solve the resulting optimization problems with the Adam algorithm (a variant
of stochastic gradient descent with momentum and adaptive learning rate).We
used early stopping (with the patience set to 15 epochs) and model checkpoint,
monitoring the accuracy on the validation set. We set the maximum number of
epochs to 250. All the baseline experiments involved softmax activation function
applied to the last layer. The results were obtained by performing 5 runs for each
model. For our experiments, we adopted a machine equipped with: 2 x Intel(R)
Xeon(R) CPU E5-2630L v3, 192GB of RAM and a Nvidia Tesla V100.

4.1 Model selection

A key aspect to consider is the procedure adopted to select the hyper-parameters
(such as learning rate, regularization, network architecture, etc.). Many papers
report, for each dataset, the best performance (on the test set) obtained after
testing many hyper-parameter configurations. Thus, the results reported in
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literature for different graph convolutions are not always comparable one to each
other.

We recall that the contribution of this work to show that it is possible to match
the performance of different graph convolutional neural networks (and thus to
perform an effective representation learning) even not relying on backpropagation.

For these reasons, we decided to focus on two widely adopted graph convolu-
tions, and run all the experiments using the same fair model selection procedure,
where we select all the hyper-parameters of each method on the validation set.
The hyper-parameters of the model (number of hidden units, number of lay-
ers, learning rate, weight decay, and dropout only for backpropagation-based
models) were selected by using a limited grid search, where the explored sets of
values do change based on the considered dataset. Further details are reported in
Appendix A.

4.2 Discussion

The results obtained by the backpropagation-free graph neural networks, namely
BF-GCN, BF-GraphConv, are in general comparable and sometimes higher
than the ones of the baselines trained with backpropagation. We recall that
the backpropagation-free alternatives are significantly easier to train since they
optimize convex optimization problems (one for each neuron, that can be paral-
lelized), compared to the single but significantly more complex nonlinear problem
optimized by the baselines. In Table 1 we report the results obtained validating
all the hyper-parameters on the validation set. For each method and dataset we
report the average accuracy and the standard deviation over 5 runs. Let us start
discussing the GCN convolution mechanism, where the results of backpropagation-
based (GCN) and the proposed backpropagation-free (BF-GCN) models with
the two alternative context definitions, i.e. H and X are reported.

Moreover, for BF-GCN (as for the all backpropagation-free models) we exper-
imented with both the context function based on random half-space gating and
our proposal of defining the partition of the space based on a set of prototypes
(context function column in Table 1). In this case, the backpropagation-free mod-
els perform slightly better than the backpropagation counterpart in 2 datasets out
of four. In all the cases, the methods are less than one standard deviation apart.
We can conclude that, in this case, all the backpropagation-free models based on
GCN are capable of learning a representation that is comparably expressive to the
one of the backpropagation-based GCN. With this convolution mechanism there
is not a clear advantage of using either H or X as contexts. These results show
that the proposed backpropagation-free methods are pretty resilient and show
consistent performance even with significantly different choices of the context
space. Moreover, the results suggest that the prototype-based context function
allows to reach slightly better performance in terms of accuracy compared to
half-space gating.

Let us now consider the GraphConv convolution mechanism. In this case,
backpropagation-free models show slight but consistent accuracy improvements
on the Citeseer (up to 1.1%) and the Cora (up to 1.4%) datasets. On Pubmed,
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their results are at most 2.8% lower than the baseline GraphConv, while on
WikiCS all the backpropagation-free variants improve over GraphConv, showing
an accuracy improvement up to 5.5%. Notice that the differences in these last
two cases are greater than one standard deviation. We can notice that with
GraphConv, using H as context tends to provide slightly higher performances
compared to using X. Analyzing the accuracy, no clear advantages can be noticed
in using the prototypes-based context function instead of a half-space gating
mechanism.

We can conclude that the proposed backpropagation-free graph convolutions
are competitive with their backpropagation-based counterparts, while inheriting
all the advantages of backpropagation-free methods.

For what concerns the comparison between the two considered gating mech-
anisms (halfspace and prototype), we obtained no strong evidence in term of
accuracy in favour of using one approach over the other. However, the prototype
approach does have an advantage in reducing the number of hyperparameters. In
fact, it is not straightforward to define the half-space gating hyperparameters,
as random initialization of hyperplanes introduces a strong assumption on the
data distribution. In our experiments, we decided to keep the same parameters
used in [5] for the distribution from which the weights corresponding to each
hyperplane are sampled, since modifying them even slightly seemed to impact
the predictive performance. On the other hand, the proposed prototype-based
context function allows to initialize the gating mechanism in a data-driven way,
which turns out to be very simple since we can just uniformly sample them from
the training set. Finally, in terms of time complexity the BackPropagation-free
models present a huge advantage with respect to the standard GNN. Indeed, the
computation (both forward and backward step) of each neuron is independent
from all the others, thus it is possible to perform the computation of each unit
in parallel. Considering the Message-Passing GLNs, the layerwise construction of
the model allows all neurons in the same layer to be computed in parallel.

5 Conclusions and Future Directions

In this paper, we explored a novel locally trainable graph convolutional operator
dubbed backpropagation-free graph convolutional network. The proposed GC is
inspired by Gated Linear Networks and extends them to be applied to graph-
structured data. It relies on a representation space of graph nodes that is shattered
into different subspaces according to the node context. Indeed, each neuron
that composes the GC operator is defined as a set of weight vectors. A gating
mechanism within each neuron selects the weight vector to use for processing
the input, based on its context. This mechanism allows training each neuron
independently, without using back-propagation, resulting in a set of convex
problems to solve. We analyzed the strengths and the weaknesses of two variants
of our approach exploiting the common message-passing based convolutions
(GCN and GraphConv). It is worth noticing that the proposed approach is not
limited to the considered graph operators but it can be applied to any graph
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Model gating context Citeseer Cora Pubmed WikiCS

GCN - - 76.6±1.0 87.5±0.9 88.5±0.3 81.6±0.7

GraphConv - - 75.1±1.6 87.1±0.5 88.9±0.4 76.8±1.3

BF-GCN

Halfspace
H

76.0±1.4 87.7±0.5 88.1±0.3 79.8±0.8
(2, 16, 2) (1, 16, 2) (1, 8, 2) (2, 6, 2)

X
76.3±1.8 88.0±0.5 88.1±0.4 80.7±0.7
(2, 24, 2) (2, 16, 2) (2, 4, 2) (2, 6, 8)

Proto
H

77.0±0.4 87.8±0.3 88.1±0.7 81.0±0.9
(2, 16, 4) (2, 8, 2) (2, 32, 4) (2, 4, 16)

X
76.9±2.0 88.0±0.4 88.0±0.6 80.4±0.8
(2, 8, 1) (2, 32, 2) (2, 8, 2) (2, 6, 16)

BF-GraphConv

Halfspace
H

76.5±0.9 88.0±1.0 86.8±0.9 80.6±0.4
(1, 32, 2) (2, 24, 2) (2, 2, 2) (4, 8, 2)

X
76.3±1.8 88.0±1.1 86.5±0.4 80.5±0.5
(2, 24, 2) (1, 16, 2) (2, 8, 4) (2, 6, 2)

Proto
H

76.2±1.2 88.5±1.3 86.1±0.2 81.4±0.8
(2, 8, 2) (2, 8, 1) (2, 32, 4) (2, 32, 2)

X
74.9±0.6 87.8±1.1 86.5±0.3 82.3±0.7
(2, 16, 2) (2, 8, 4) (2, 16, 4) (2, 8, 16)

Table 1: Accuracy comparison between the Back-propagation-free models and
standard models. The model selection is preformed considering the results ob-
tained on the validation set. Under each result we report the hyper-parameters
selected via validation process: (l, m, k) for the BF-GCN and BF-GraphConv
and (l,k)

convolution operator. We empirically assessed the performances of BF-GCN and
BG-GraphConv on four commonly adopted node classification benchmarks, and
verified their competitive performances. Moreover, we analyzed the behavior
of such models considering different options for shattering the context space
associated to graph nodes. In our implementation, we use layer-wise training via
Stochastic Gradient Descent (SDG), but many other methods can be exploited
to solve the resulting convex problem, making it suitable for online and continual
learning scenarios. Indeed, we plan to explore the application of the proposed
backpropagation-free graph neural networks to continuous learning tasks in the
near future.
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A Model Selection

In all experiments, we select all the hyper-parameters on the validation set using
the same fair model selection procedure. As for the model hyper-parameters
(number of hidden units, number of layers, learning rate, weight decay, and
dropout only for backpropagation-based models), their selection was based on a
limited grid search, in which the explored sets of values were altered based on
the dataset considered. We performed some preliminary tests in order to select
the set of values taken into account for each hyper-parameter. In Table 2, we
report the sets of hyper-parameter values used for the grid search. In order to
perform a fair comparison among the proposed models and the baselines, we use
the same hyper parameter grid for all the models. To ensure a fair comparison
between baseline and the proposed model that adopts a one-vs-rest approach,
for the baselines we also consider the model where the number of hidden is the
values reported in Table 2 multiplied by the number of classes of the considered
task. As evaluation measure to perform model selection, we used the average
accuracy computed on the validation set, while we report in Table 1 the average
accuracy on the test set.

hyper-parameter values

m 2, 4, 8, 16, 24, 32, 64

l 1, 2, 4, 6, 8

k 1, 2, 4, 8, 16

learning rate 0.1, 0.2, 0.01, 0.001

weight decay 0, 5−4, 5−3

drop out 0, 0.2, 0.5

Table 2: Sets of hyper-parameters values used for model selection via grid search.


