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Abstract

We propose a method to detect model misspecifications in nonlinear causal additive and
potentially heteroscedastic noise models. We aim to identify predictor variables for which we
can infer the causal effect even in cases of such misspecification. We develop a general framework
based on knowledge of the multivariate observational data distribution and we then propose an
algorithm for finite sample data, discuss its asymptotic properties, and illustrate its performance
on simulated and real data.

1 Introduction

Nonlinear additive noise models and their heteroscedastic extensions are a popular modelling frame-
work for causal discovery and inference. They allow to infer the true causal connections and effects
from the multivariate distribution when the nonparametric model is correct; see, e.g., Hoyer et al.
(2008); Peters et al. (2014) or, for heteroscedastic models, Strobl and Lasko (2023); Immer et al.
(2023). However, the conclusions can be misleading if the additive noise model is misspecified, es-
pecially in the presence of hidden confounding variables. In this paper, we define the term “causal
well-specification” of additive noise models, discuss its relevance, and finally present a corresponding
estimation technique for observational data.

The concept of well-specification for regression functionals in parametric regression was in-
troduced by Buja et al. (2019). A regression functional is well-specified for a conditional target
distribution if it only depends on the conditional distribution but is invariant to shifts in the pre-
dictors’ distribution. This relates to the work by Peters et al. (2016) and, hence, gives the notion of
well-specification a causal interpretation. Buja et al. suggest a set of reweighting diagnostics to as-
sess well-specification of regression functions. For the linear model, an explicit test with asymptotic
level as well as precise per-covariate interpretation for certain models is presented by Schultheiss
et al. (2023).

If there is no functional assumption for the additive noise model, one must rely on flexible
nonparametric regression techniques that approximate the conditional mean. Considering well-
specification of the conditional mean is of little use. It is by definition a property of the conditional
distribution only. Hence, it is, upon existence, well-specified for arbitrary data generating mecha-
nisms.

Thus, different concepts are needed to infer whether the estimated effects in an assumed additive
noise model are causal. One of our contributions is the definition of causal well-specification and
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presenting its interpretation. Apart from global causal well-specification, we also define a local, i.e.,
per predictor version that is to be considered when the overall model does not satisfy the desired
properties. This local viewpoint is of particular interest in the presence of hidden confounding,
intermittent variables, or non-additive error. We propose a methodology to assess causal well-
specification from observational data by relying on and exploiting conditional independence. Based
on this, we derive an algorithm for finite sample data and prove its consistency. From a practical
viewpoint, our estimated set of well-specified predictors (i.e., covariables) can be viewed as the one
where the data is compatible (i.e., does not falsify) with the corresponding local structure of the
model and its (partial) causal interpretation.

Almost no work exists on local goodness of fit or well-specification of nonlinear causal models,
where local well-specification has a causal interpretation. The latter is the main goal of the present
paper. The closest but weakly related work is by Maeda and Shimizu (2021) which discusses hidden
variables in causal additive noise models. They present a causal graph detection algorithm based
on unconditional independence tests. This typically leads to a causal graph estimate where some
of the edges remain undirected. By considering conditional independence, additional edges could
be directed - at least with a conditional independence oracle which is at the basis of our approach.

2 Causal well-specification in population

We consider first the population case in which we know the joint distribution of random variables,
e.g. conditional expectations and conditional independence between random variables can be per-
fectly assessed. This section is a stand-alone and can be used in connection with other estimation
algorithms than the ones presented in Sections 3 and 6.1.

Let Z = (Z1, . . . , Zq)
⊤ ∈ Rq be a random vector whose entries Zj follow a structural causal

model (SCM) with a structure represented by a directed acyclic graph (DAG), i.e.,

C : Zj ← fj
(
ZPA(j), Ej

)
∀j ∈ {1, . . . , q}. (1)

Here, PA(j) denotes j’s parents according to the DAG and Ej is some noise which is jointly inde-
pendent over j. Thus, the variables Z fulfil the global Markov property.

We are interested in the situation where one variable with index in {1, . . . , q} is the target,
some of the variables are observed (potential) predictors and the rest are unobserved (potential)
predictors. Let Y , M and N be the indices representing these subsets and define

Y := ZY , X := ZM ∈ Rp, H := ZN , XPA(Y ) := ZM∩PA(Y ) and HPA(Y ) := ZN∩PA(Y ).

Note that for notational simplicity, we can absorb EY to be an additional variable in HPA(Y ).
Therefore, HPA(Y ) always has dimensionality of at least one assuming Y is not deterministic in X.
For a realisation z of Z, we use the same naming convention, e.g., the realisation of X is then x.

2.1 Global well-specification

The additive noise model (ANM) for Y has the following structure

Y ← fXY (X) + E , where X ⊥ E . (2)

We call the ANM causally well-specified if

HPA(Y ) ⊥ X and Y ← fXY

(
XPA(Y )

)
+ fHY

(
HPA(Y )

)
. (3)
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The first condition corresponds to no hidden confounding or mediation. It ensures

Y |X = x
d
= Y |do(X← x),

where
d
= states that two random variables have the same distribution. Assuming faithfulness, it

also implies DE(Y ) ∩M = ∅, where DE(j) denotes j’s descendants according to the DAG since
faithfulness ensures ZDE(Y ) ̸⊥ EY ∈ HPA(Y ). The parametrization in the second condition in (3) is
not unique as constants could be moved between the two summands. We let the second have mean
0 such that E[Y |X] = fXY

(
XPA(Y )

)
. The condition then ensures that in the counterfactual, where

we can change X without changing any other unobserved noise term, the outcome is exactly shifted
by the difference in conditional expectation. Thus, we fully understand the effect of changing X.
Using the notation from (Peters et al., 2017, Chapter 6.4) and denoting point masses at y by δy,
this can be formalized as

P
C|Z=z;do(X←x′)
Y = δy′ where y′ = y + E

[
Y |X = x′

]
− E[Y |X = x].

The conditions additionally imply the following global null hypothesis that we aim to check
first.

H0 : E ⊥ X, where E = Y − E[Y |X]. (4)

The conditions in (3) are not necessary to fulfill (4). A prime example is with jointly Gaussian Z:
then, H0 holds regardless of the first condition in (3) while the second condition is always fulfilled
since multivariate Gaussianity implies linear additive causal effects. However, except for Gaussian
Z or some other pathological data generating distributions, (4) is a useful proxy for (3), i.e., it
allows to check whether E[Y |X] represents a true causal effect.

To test H0, any valid test for independence of X and E can be used.

2.2 Local well-specification

If the conditions (3) are partially violated it might still be possible to correctly understand the
causal effect for some of the predictors XU where U ⊆ {1, . . . , p}. We say the effect of XU is
causally well-specified in the ANM if the following hold.

(A1) The covariates in XU are not in the Markov boundary of any variable in HPA(Y ), i.e.,
HPA(Y ) ⊥ XU |X−U (see below).

(A2) Y ← fXUY

(
XU ,XPA(Y )\U

)
+ fHY

(
HPA(Y ),XPA(Y )\U

)
, i.e., the causal effect is additively

separable into all terms that include XU only with observed X and all terms that include H
without XU .

Here, we define the Markov boundary of a hidden variable only with respect to the measured
covariates, e.g., in the structure H1 → H2 → X1, X1 would still count as part of the boundary
of H1 since it is the nearest measured descendant. Especially, if ∃k ∈ M ∩ DE(Y ), all Xj where
j ∈ PA(Y ) are, up to faithfulness, in the Markov boundary of EY ∈ HPA(Y ) since they have a
common child with respect to the measured covariates. Thus, sets containing measured parents do
not fulfill (A1). Violations of faithfulness are irrelevant for (A1): if there are effects from HPA(Y )

to XU or vice-versa that cancel out each other, we receive the same implications as if there were
no such effects unless (B1) is violated; see below. Note that (A2) does not exclude the possibility
that the first summand is zero, which is the case for U ∩ PA(Y ) = ∅.
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(A1) ensures that

Y |XU = xU ,X−U = x−U
d
= Y |do(XU ← xU ),X−U = x−U

whenever both are defined. This follows from the second rule of do-calculus (Pearl, 2012). After
removing edges out of XU and conditioning on X−U , dependence between Y and XU could only
be induced by common unmeasured parents - a contradiction to (A1). Combined with (A2), we
get two implications under an additional technical assumption

(B1) Let {A,B,C} be a partition of {1, . . . , q} in model (1). Then,

ZA ⊥ ZB|ZC =⇒ ZA|ZB = zB,ZC = zC
d
= ZA|ZB = z′B,ZC = zC ∀zB, z′B, zC .

This means that there are no unobservable dependencies on null sets of the observational dis-
tribution which is natural to assume except for pathological data. In general, independence only
implies the latter equality for almost all zB, z

′
B, zC .

Theorem 1. Assume the model (1) with (B1). Let XU be a set of covariates fulfilling (A1) and
(A2), then

P
C|Z=z;do(XU←x′

U ,X−U←x−U)
Y = δy′ where y′ = y + E

[
Y |XU = x′U ,X−U = x−U

]
− E[Y |X = x]

for (XU = x′U ,X−U = x−U ) in the support of the observational distribution. Further, H0,U holds,
where

H0,U : E ⊥ XU |X−U , with E = Y − E[Y |X]. (5)

The first means that in the counterfactual, where we can change XU without changing X−U ,
EY , or Ek ∀k ̸∈ M , the effect on Y is fully determined by the shift in conditional expectation.
Thus, we understand the causal effect of this theoretical intervention. Note that with (A1) and
(B1), not changing X−U and Ek ∀k ̸∈ M is equivalent to not changing X−U and H, i.e., all
other variables apart from XU and Y remain unchanged; see also the proof in Appendix A.1. More
generally, including cases where (XU = x′U ,X−U = x−U ) is outside the support of the observational
distribution, one could replace

E
[
Y |XU = x′U ,X−U = x−U

]
by E

[
Y |do

(
XU ← x′U

)
,X−U = x−U

]
which are equivalent if both are defined as discussed above. However, this is not estimable outside
the data support.

We note that the implication of (A1) would be of practical interest on its own. However, as we
do not know of any useful proxy for it that can be calculated by the observational distribution, we
always consider the combination of (A1) and (A2) as the object of interest.

The local null hypothesisH0,U that can be checked by the observational distribution alone serves
as a proxy for (A1) and (A2). Again, a multivariate Gaussian distribution is an example where (5)
holds true regardless of (A1). However, for other data generating distributions, we consider (5) to
be a good proxy to see whether (A1) and (A2) might hold.

In general, (5) does not imply that the ANM (2) with only XU as predictors is causally well-
specified. Therefore, this set cannot be found by looping over all subsets of X and testing (4).
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X1 X2 Y

H

X2 H Y

X1

Figure 1: Left: Structure with a hidden confounder. Right: Structure with a hidden mediator.

Consider Figure 1. In the left structure, W = {2} if (A2) holds for X2. But, X2 → Y is not a
causally well-specified ANM unless faithfulness is violated, i.e. X2 ⊥ H. Similarly, on the right, it
holds W = {1} if (A2) holds for X1. Note also that there is an unobserved causal path (Maeda and
Shimizu, 2021) from X1 to Y . Nevertheless, the edge is detectable when considering conditional
independence criteria.

Of most interest is the set
W := arg max

U :H0,U is true
|U |. (6)

As {1, . . . p} \W defines a Markov boundary of E , uniqueness of W is equivalent to uniqueness
of the Markov boundary. This is implied if the so-called intersection property holds (Pearl, 1988,
Chapter 3).

(B2)
E ⊥ XA|XB,XC and E ⊥ XB|XA,XC =⇒ E ⊥ XA,XB|XC

for any partition A,B,C of {1, . . . , p}.

This is guaranteed if X has full support with respect to the product of the domains of the
individual Xj . Necessary, strictly weaker conditions are discussed by Peters (2015). One estimation
strategy would be to consider the individual hypothesis

H0,j : E ⊥ Xj |X−j , where E = Y − E[Y |X]

W̃ = {j : H0,j is true}.
(7)

We can relate this to the Markov boundary.

Theorem 2. Let W be as in (6) and W̃ as in (7). Then, W ⊆ W̃ . If the intersection property
(B2) holds, W = W̃ .

We emphasize that the characterizations in this Section 2 provide the fundamental basis to
define the concepts of global and local causal well-specification. This then enables the construction
of algorithms that aim to estimate causal well-specification based on finite sample observational
data, as discussed next.

3 Estimating the set of well-specified predictor variables

We subsequently focus on a specific method to assess conditional dependence. Of course, different
estimators could be used as well. The intuition of how conditional independence relates to causal
well-specification stays the same.
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Throughout this section, we assume that we have n i.i.d. observations x =
(
x1, . . . ,xn

)⊤ ∈
Rn×p and y =

(
y1, . . . , yn

)⊤ ∈ Rn of X and Y respectively. Also, define the unobserved ϵi =
yi − E[Y |X = xi].

3.1 Making use of FOCI (Feature Ordering by Conditional Independence

One estimation strategy would be to test the hypotheses in (7) for all j. Conditional independence
testing is a hard problem on its own; here, it is even more challenging as we need to rely on
estimated residuals rather than the error terms directly. Instead, we use FOCI (Feature Ordering
by Conditional Independence) by Azadkia and Chatterjee (2021). This method estimates a Markov
blanket of a target variable with high probability for large enough sample size. Thus, it can find

a superset of the Markov boundary of E , say, Ŝ, such that
(
{1, . . . , p} \ Ŝ

)
⊆ W . Still, we need

to deal with the harder version of applying FOCI to the estimated residuals ϵ̂ instead of the true,
unobserved errors ϵ.

The global null hypothesis in (4) is easier to infer with unconditional independence tests than
the conditional analog in (5), even when using estimated residuals as discussed in Pfister et al.
(2018). We use this global test as well in our proposed algorithms below.

In general, we require some sort of consistency for our regression estimates and our discussion
allows any reasonable choice of regression (machine learning) techniques. While as in the population
case rejections of the null hypothesis could only be due to hidden confounding or additively non-
separable functions, one must always consider insufficient explicative power of the applied regression
(machine learning) method as a further reason in the finite sample case.

We consider two different algorithms.

Algorithm 1 In-sample FOCI

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, and function g(·)
Output estimated set of variables for which null hypothesis (5) is rejected Ŝ

1: Get an estimate f̂(X) for E[Y |X] using a certain regressor
2: Estimate the residuals as ϵ̂ = y − f̂(x)
3: Apply FOCI (Azadkia and Chatterjee, 2021) to the data (g(ϵ̂),x) to get the set Ŝ

Algorithm 2 Sample splitting FOCI

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, and function g(·)
Output estimated set of variables for which null hypothesis (5) is rejected Ŝ

1: Split the data uniformly at random into two disjoint parts of sizes ⌊n/2⌋ and ⌈n/2⌉, say,(
x(1),y(1)

)
and

(
x(2),y(2)

)
2: Get an estimate f̂(X) for E[Y |X] using a certain regressor on the data

(
x(1),y(1)

)
3: Estimate the residuals as ϵ̂(2) = y(2) − f̂

(
x(2)

)
4: Apply FOCI (Azadkia and Chatterjee, 2021) to the data

(
g
(
ϵ̂(2)
)
,x(2)

)
to get the set Ŝ

For notational simplicity, we call the data that is input to FOCI (ϵ̂,x) in our theoretical
derivations regardless of the applied algorithm, i.e., we omit the superscript in the splitting case.
The advantage of Algorithm 2 is that the residuals estimated on the hold-out split are still i.i.d.
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which simplifies things, at least analytically. Furthermore, the sample splitting idea enables further
favourable algorithms to be presented in Section 3.3.

For power purposes, it can be advantageous to consider a certain non-monotonic transformation
g(E) as input to FOCI. In particular, we suggest the absolute value function. For this, we provide
a precise result for symmetric data below. Although exact symmetry is hardly the case except for
toy examples, the intuition is that the dependence of E on X can be mainly in the second moment,
i.e., the scale. Hence, the absolute value transform is then beneficial. For our general results, we
assume that g(·) is an l-Lipschitz function whose level sets have Lebesgue measure 0.

Use the definitions (2.1) and (11.1) in (Azadkia and Chatterjee, 2021) for T (·) and Q(·). FOCI
greedily increases the set of predictors to maximize Q.

Proposition 1. Let U ⊆ {1, . . . , p}. If E|XU has a continuous and symmetric (around 0) distri-
bution, it holds

T (|E|,XU ) = 4T (E ,XU ) and Q(|E|,XU ) = 4Q(E ,XU ).

These larger population values can improve the algorithm’s performance.

3.2 Asymptotic results

We generally make the following assumptions for applying FOCI to an estimated ϵ̂.

(B3) |ϵ̂i − ϵi| = Op(1)

(B4) E is a continuous random variable.

(B5) ∄U ⊆ {1, . . . , p} such that XU ̸⊥ E|X−U but XU ⊥ g(E)|X−U .

The probability in (B3) is with respect to both the regression estimate and the new data point i.
The assumption is slightly different depending on which algorithm is applied. Apart from invoking
(B4) for the proofs, we provide a simple example in Section 3.2.1 to show that discrete distributions
can lead to inconsistency.

The main proof ingredient for adapting the results to our setting is showing that for random
indices i and l the probability that the estimated residuals imply a different relative ordering than
the true residuals approaches 0.

With sample splitting, we obtain a consistency result analogous to Azadkia and Chatterjee
(2021).

Theorem 3. Suppose that the regularity assumptions (A1’) and (A2’) (Azadkia and Chatterjee,
2021) for the data (g(E),X) hold as well as conditions (B2) - (B5). Let Ŝ be the output of Algorithm
2. There are positive real numbers L1, L2 and L3 that do not depend on the sample size such that

P
(
Ŝ ⊇ {1, . . . , p} \W

)
≥ 1− L1p

L2 exp(−L3n).

Without sample splitting, (g(ϵ̂),xU ) are not independent copies. Therefore, the bounded dif-
ference inequality (McDiarmid et al., 1989) which is applied to obtain the exponential probability
decay cannot be used. Nevertheless, convergence in probability is still true.

Theorem 4. Assume the conditions of Theorem 3. Let Ŝ be the output of Algorithm 1. Then,

lim
n→∞

P
(
Ŝ ⊇ {1, . . . , p} \W

)
= 1.
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This result is derived by a simple application of the Markov inequality instead of the bounded
difference inequality. As the (g(ϵ̂),xU ) become decreasingly dependent from another with increasing
sample size, we conjecture that the true convergence rate could be similar to the one for sample
splitting.

3.2.1 Discrete E

For our results, we invoked assumption (B4), i.e., the error term is a continuous random variable.
A simple toy example shows that a discrete random variable might invalidate the asymptotic
guarantees. Use the definition (2.1) in Azadkia and Chatterjee (2021) for T (·), i.e., T (E , X) = 0 if
and only if E and X are independent. Let Tn(·) be its suggested sample estimate.

Proposition 2. Let X be a bounded, continuous random variable and E a centered random
variable that is uniformly distributed over a discrete set of size k > 1 independent from X such
that T (E , X) = 0. Let Y ← Xβ + E for some β ̸= 0. Apply linear least squares regression, which
fulfils (B3), to n i.i.d. copies (y,x) to get the estimates ϵ̂. It holds

E[Tn(ϵ̂,x)]
n→∞→ 1

k2
> 0.

3.3 Practical algorithm

Although we can consistently find a Markov blanket (but not necessarily the minimal one) using
Algorithms 1 or 2 as the sample size grows, there are several drawbacks to that. First, there
is no protection against including superfluous variables into Ŝ and typically this happens with
non-negligible probability. Second, for low sample sizes, Ŝ can miss out on some variables.

To partially remedy these issues, we incorporate ideas from multisplitting (Meinshausen et al.,
2009) and stability selection (Meinshausen and Bühlmann, 2010). We apply Algorithm 2 repeatedly
with several random data partitions. Inspired by Shah and Samworth (2013) who suggest using
“complementary pairs”, i.e., both halves of every split, we let each halve be used once for estimating
the conditional mean and once for independence testing.

As unconditional independence is easier to assess than conditional independence, we first test
for H0 as in (4). For this, we apply the test by Pfister et al. (2018) and we combine the p-values
over the different splits as suggested by Meinshausen et al. (2009). Only if the global model is
rejected, the individual covariates are inspected.

If we cannot trust the overall model, we only consider the effects of variables that are selected
substantially less than others by the FOCI algorithm to be causally well-specified. We split the
variables into two groups: those that are selected by FOCI below average over the splits and the
others. For the latter group, we reject H0,j . Each variable from the first group we compare to
the least selected variable from the second group with some proportion test such as Fisher’s exact
test. The variables that show significant differences are added to the estimated well-specified set
Ŵ . Notably, there is no exact interpretation of the significance level used for these tests, but the
intuition that a lower significance level leads to fewer false positives in the set Ŵ remains true. In
contrast, a lower significance level for the preceding test of the global model leads to the methods
becoming more liberal.

The intuition behind splitting at the mean is the following. For large enough sample size, the
necessary variables are selected by FOCI in almost every split, see Theorem 3, while the variables
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with causally well-specified effect could be selected with some probability much lower than 1. The
mean separates the two groups and there is a significant difference in the selection fraction of the
two groups. For a low sample size, the behaviour of FOCI is more random. However, as long as

no variables stand out, we do not add any to Ŵ , i.e., if H0,j is not true, the probability P
(
j ∈ Ŵ

)
is moderately low. However, it is lower bounded by the type II error of the global test. This
is fundamental to our idea. If the sample size is such that the global test, i.e., unconditional
independence testing, does not work well yet, the local analysis is also not of much use.

We summarize the procedure in Algorithm 3.

Algorithm 3 Variable selection with multiple splits

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, function g(·), number of repetitions B, and significance
levels α and α̃.

Output estimated set of variables with causally well-specified effect Ŵ

1: nj = 0 ∀j = 1, . . . , p
2: for b = 1 to B do
3: Split the data uniformly at random into two disjoint parts of sizes ⌊n/2⌋ and ⌈n/2⌉, say,(

x(1),y(1)
)
and

(
x(2),y(2)

)
4: Get an estimate f̂(X) for E[Y |X] using a certain regressor on the data

(
x(1),y(1)

)
5: Estimate the residuals as ϵ̂(2) = y(2) − f̂

(
x(2)

)
6: Apply the HSIC test to the data

(
ϵ̂(2),x(2)

)
to get the p-value pb.

7: Apply FOCI (Azadkia and Chatterjee, 2021) to the data
(
g
(
ϵ̂(2)
)
,x(2)

)
to get the set Ŝb

8: Swap the roles of
(
x(1),y(1)

)
and

(
x(2),y(2)

)
and repeat the previous steps to get pB+b and

ŜB+b

9: Combine the p-values p1, . . . p2B (Meinshausen et al., 2009) and get the model p-value p0.
10: if p0 > α then
11: Ŵ = {1, . . . , p}
12: else
13: Ŵ = ∅
14: for j = 1 to p do
15: nj =

∑2B
b=1 j ∈ Ŝb

16: n̄ =
∑p

j=1 nj/p

17: nmin = minnj
j:nj≥n̄

18: for j = 1 to p do
19: if nj < n̄ and proportion.test

(
nj , n

min, 2B
)
≤ α̃ then

20: Ŵ = Ŵ ∪ j

9



4 Simulation example

We evaluate the method on a simple SCM represented by the DAG in Figure 2. We let the causal
effects be non-monotonic functions of the form

f(Xj) = α1|Xj |β1sign(Xj) + α2|Xj |β2 ,

where the parameters are randomly sampled and differ for every simulation run. The causal effect
on Y is additive in the parents. We standardize and normalize the effects. The additive error terms
are either normal, uniform, or Laplace with variance 1 for the root nodes and 1/4 for the others.
The different distributions are randomly assigned to the different nodes; two of each.

We consider all possible subsets of size 3 as observed predictors. Denote this observed subset
by M . For M = {1, 2, 3} and M = {1, 3, 5} the additive noise model is causally well-specified.

X1

X2 X3

Y X4

X5

Figure 2: DAG representing the SCM in the simulation

We consider 100 different random setups for sample sizes 102 to 105. For each, we consider all
possible M . To get Ŵ we apply Algorithm 3 with B = 25 splits and the absolute value function
as g(·).

For the regression, we apply eXtreme Gradient Boosting implemented in the R-package xgboost
(Chen et al., 2021). We use the respective left-out split of the data for early stopping when fitting
the regression functions. This is a slight violation of our theoretical algorithm where the residuals
are perfectly independent. We use the authors’ implementation of FOCI (Azadkia et al., 2021) and
dHSIC (Pfister and Peters, 2019).

For the predictor sets where global causal well-specification does not hold true, we consider the

false positive rate (FPR) P̂
(
j ∈ Ŵ |j ̸∈W

)
and the true positive rate (TPR) P̂

(
j ∈ Ŵ |j ∈W

)
for

adding predictors to the set Ŵ . Here, P̂(·) denotes the empirical probability over our simulation
runs. We fix α = 0.05 and consider varying values of α̃. The resulting rates are on the left in Figure
3.

For n = 102, a low FPR is not attainable because the p-values for (4) are not reliably small
enough, and Algorithm 3 often terminates before considering the individual covariates. However,
even for this low sample size, we get a performance that is clearly better than random guessing.
For large sample sizes, the FPR becomes very low which is in agreement with Theorem 3. The
lack of power is mainly due to the subsets of predictors with |W | > 1. FOCI chooses superfluous
covariates with non-vanishing probability for every sample size. Hence, the two covariates with
causally well-specified effects may be selected with a frequency that differs a lot between the two.
If one then appears to be more similar to the covariate with not well-specified effect, our algorithm
misses out on this such that Ŵ ⊂W .

For comparison, we also show the results if we instead only consider a single random split where
50% of the data is used to estimate the residuals and the other 50% to assess independence. If H0
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Figure 3: The results are based on 100 simulation runs. On the left: False positive rate versus true
positive rate obtained with Algorithm 3 for varying α̃ and α = 0.05. The crosses correspond to
α̃ = 0.01. The other symbols describe the performance of Algorithm 2. In the middle: empirical
cumulative distribution function of the p-values obtained with HSIC. We compare the raw p-values
from each split (lines only) to the cumulated p-value per simulation run (lines with dots). On the
right: the same for the models fulfilling H0.

is rejected we apply Algorithm 2 (using the same splits) and choose Ŵ to be the complement of
the set chosen by FOCI. Except for n = 102, this lies below the curve for multiple splits, i.e., there
is an α̃ that is better in terms of both FPR and TPR. Further, our default choice α̃ = 0.01 is more
conservative. For large enough sample size, using α̃ = 0.01 leads to more power than considering
a single split. Hence, even though the problem is hard in general, aggregating information over
multiple random splits of the same dataset can lead to a performance boost.

We also evaluate the testing of H0 (4). For this, we show the empirical cumulative distribution
function of the obtained p-values in the middle of Figure 3. We consider the p-value aggregated
over the splits as well as the individual p-values considering single splits. For the largest sample
sizes, the distribution of both is visibly not distinguishable from a point mass at 0. We omit this
in the plot for the sake of overview. For n = 102 and n = 103, aggregating the p-values over
splits helps to reject the global model for most possible significance levels. The acceptance rate
for the global model poses a lower bound to the attainable FPR for every subsequent per-covariate
analysis. For n = 102 and α = 0.05, this rate is around 0.56 for single splits and reduced to roughly
0.33 by aggregating. This confirms the usefulness of the multisplitting idea.

We also consider the distribution of the p-values for the two subsets of predictors that yield
causally well-specified models. This is shown on the right side of Figure 3. We see that the raw
p-values are too liberal. By construction, this effect is enhanced by aggregation over the splits.
For increasing sample size, there are two competing effects. The regression approximation becomes
better leading to less dependent residuals. But, the tests become more powerful in detecting
spurious dependence. As the HSIC implementation cannot handle 5 · 104 samples, we only test
with 104 samples per split. Hence, the p-values for n = 105 are likely more liberal theoretically. In
summary, we see that testing for (4) is already difficult per se. However, one can also see it the
other way around: if the regression is unable to render the residuals independent one should not
trust the obtained function even if there was a true underlying ANM.
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In this example, fitting only additive functions with no interactions between the measured
covariates leads to the same conclusion given perfect regression fit and independence tests. Hence,
if one restricts the analysis to additive functions due to pre-knowledge or just by assumption the
problem could become easier. When applying GAM regression as implemented in mgcv (Wood,
2011), the results for the causally not well-specified predictor sets remain qualitatively similar. The
p-values for the models fulfilling H0 are still visibly clearly not uniformly distributed. But, they
become less liberal. This is as finding the true conditional mean and hence the true independent
residuals becomes easier. For n = 105 the distribution of the raw p-values is sufficiently close to
uniform such that the aggregated p-values are even super-uniform. Again, this needs to be taken
with a grain of salt as not all samples can be used for testing independence.

5 Real data analysis

We consider the K562 dataset provided by Replogle et al. (2022). We follow the preprocessing in
the benchmark of Chevalley et al. (2022). Then, the dataset contains 162,751 measurements of the
activity of 622 genes: 10,691 of the measurements are taken in a purely observational environment
while the remaining are obtained under various interventions. For each gene, there exists an
environment where it has been intervened on by a knock down using CRISPRi (Larson et al.,
2013), i.e., its activity is reduced. As our method is designed for i.i.d. data, we only consider the
observational environment henceforth. With the interventions, some sanity checks of our findings
are possible as discussed below.

We make a pre-selection of the measured covariates before applying our method. There are 28
genes that are active, i.e., greater than 0, in each measurement in the observational sample. We
restrict our analysis to these and call them X1 to X28 for simplicity. Within these 28, we estimate
Markov blankets using FOCI. For each of the 28 genes, two estimates are implied: all the genes
selected by FOCI when this covariate is the target as well as all the genes for which this covariate is
in the output of FOCI. As target, say Y , we choose the one with the highest agreement between the
two estimated sets in terms of intersection size relative to the size of the union. For the target Y ,
we then consider the intersection of the Markov blankets mentioned above (where Y is the target
or appears in the output of FOCI). This results in three predictors, X10, X12, X15.

With the selected target and predictors we run Algorithm 3 with B = 25 splits using xgboost

for regression. There is a strong indication against the global null hypothesis (4) with a p-value of
roughly 10−27. Hence, we proceed to the per-covariate analysis. Covariate X15 is in Ŝb 41 out of
50 times while as for the others it is only 22 (X10) and 19 (X12). Hence, the effects of the latter
appear to be causally well-specified and we get the set Ŵ = {X10, X15} when running Algorithm
3 with our suggested default of α̃ = 0.01.

To assess the success of our method, we now consider the available interventional data. Com-
paring the distribution of Xk when the activity of Xj is reduced by an external intervention to its
observational distribution, gives an assessment of whether there is a causal effect from Xj to Xk.
We do this using a Mann-Whitney U test. Intervening on any of the three predictor covariates
appears to highly influence the activity of Y with p-values of the order 10−4, 10−13, and 10−6. In
the reverse direction, intervening on Y does not have strong influence on X10 (p ≈ 0.1) and X12

(p ≈ 0.5) but onX15 (p ≈ 4∗10−5). Thus, there appears to be some cyclic effect between Y andX15.
Hence, it is less appropriate to consider its regression effect to be causally well-specified whereas
our estimated well-specification for X10, X12 on Y is compatible with the validation analysis based
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on interventional data.
Finally, we can also compare how well our regression model trained on the observational data

performs on data from the different interventional environments. We do this comparison in terms
of absolute bias relative to Y ’s mean activity in the observational sample, i.e.,

RBXj→Y =

∣∣∣∑i∈Dj
yi − f̂(xi)

∣∣∣/|Dj |∑
i∈DO

yi/|DO|
, (8)

where Dj denotes the data points where Xj is knocked down, DO the observational data, and f̂(·) is
trained on DO. This suggests that generalization to the environment where a knock down is applied
to X15 works the least with a relative bias (8) of about 12% while in the other environments it
is roughly 5% or 8% respectively. It must be noted that most data points in the knocked down
environments are outside the support of the observational training data such that f̂(X) can also be a
poor approximation for causal effects, see also the discussion regarding out-of-support interventions
in Section 2.2. Hence, this analysis of the regression performance in other environments, although
in line with our other results, shall be viewed with some caution. The analysis for this target

Target Y Predictor Xj Mann-Whitney U test Splits Proportion test Relative bias

X5

X2 2.3e-18 14 1.2e-02 1.3e-01
X3 4.9e-31 26 – 2.1e-02
X4 1.2e-69 19 1.1e-01 3e-02
X12 3.5e-01 28 – 4.3e-02

X6
X11 7.7e-01 17 2.3e-05 1e-01
X24 2.4e-09 38 – 1.5e-01

X7

X8 3.3e-02 28 – 1e-01
X9 1.4e-16 10 2e-04 8.3e-02
X14 1.2e-79 30 – 9.7e-02
X22 1.6e-35 11 4.6e-04 4.1e-02

X9

X7 5.4e-01 14 2.2e-03 1.8e-02
X11 1.2e-14 30 – 1.8e-02
X22 2.3e-06 29 – 2.4e-02

X15
X11 2.3e-02 12 4.9e-07 1.1e-01
X16 1.6e-06 37 – 1.2e-01

X16

X10 1e-01 22 7.7e-05 4.7e-02
X12 4.7e-01 19 6.3e-06 7.7e-02
X15 3.8e-05 41 – 1.2e-01

Table 1: Application to the K562 dataset with varying targets and predictor sets. The third column
is the p-value of the Mann-Whitney U test comparing the observational distribution of the predictor
to its distribution when knocking down the target. The fourth and fifth column report the output
of Algorithm 3, i.e., the number of splits where FOCI selects this predictor, nj , and the p-value of
the proportion test if nj < n̄ (the significant findings with small p-value correspond to the variables
which are causally well-specified; no p-value indicates that nj ≥ n̄ and the variable is not causally
well-specified). The last column reports the relative bias RBXj→Y (8) when using the model fit on
observational data to predict the target in the dataset where the predictor is knocked down.
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variable corresponds to the last row-box in Table 1.
Of course, other genes could be viewed as target Y . When estimating a Markov blanket as

described above for different variables, the interventional environments often indicate the existence
of cyclicity between the target and all its potential causes. Then, our method is of little help as the
different predictors cannot be grouped into different classes. In Table 1, we summarize the results
for all possible targets with multiple predictors where at least one predictor appears to be neither
a descendant of the target nor in a cyclic relation using a threshold of 0.01 for the Mann-Whitney
U test. In 4 out of 6 cases, the ranking implied by our method in terms of number of splits where
a predictor is selected by FOCI is in agreement with the ranking implied by the Mann-Whitney
U test, and Ŵ using α̃ = 0.01 is exactly as implied by the interventional data. Of the remaining
two cases, the method is once conservative Ŵ = ∅ (for Y = X5) and once the interventional data
suggest that there are false positives in Ŵ (for Y = X7). Y = X16 is the case discussed in more
detail above.

6 Location-scale noise models

A simple extension of model (2), that has recently gained some attention, is the heteroskedastic
noise model also referred to as location-scale noise model (LSNM)

Y ← fXY (X) + gXY (X)E where X ⊥ E .

with some nonnegative function gXY (·) (Strobl and Lasko, 2023; Xu et al., 2022; Immer et al.,
2023).

In analogy to (3), we call the LSNM causally well-specified if

HPA(Y ) ⊥ X and Y ← fXY

(
XPA(Y )

)
+ gXY

(
XPA(Y )

)
fHY

(
HPA(Y )

)
. (9)

We choose the parametrization such that E
[
fHY

(
HPA(Y )

)]
= 0 and E

[
fHY

(
HPA(Y )

)2]
= 1. As

before, the first condition implies Y |X = x
d
= Y |do(X← x). With the second, one can find the

independent noise term such that one can understand the counterfactual of changing the predictors.

P
C|Z=z;do(X←x′)
Y = δy′ where

y′ = (y − E[Y |X = x])
√

Var(Y |X = x′)/Var(Y |X = x) + E
[
Y |X = x′

]
.

To check (9), we have the natural proxy

H0 : E ⊥ X, where E =
Y − E[Y |X]√
Var(Y |X)

(10)

since under (9) we have that E = fHY

(
HPA(Y )

)
and hence H0 in (10) holds.

In case of model misspecification, we can consider the per-covariate causal well-specification.
Condition (A1) remains the same for the LSNM, (A2) can be replaced by a weaker version for this
more flexible causal model:

(A2’) Y ← fXUY

(
XU ,XPA(Y )\U

)
+ gXUY

(
XU ,XPA(Y )\U

)
fHY

(
HPA(Y ),XPA(Y )\U

)
, i.e., with ad-

dition and multiplication of measured functions, one can separate a term that does not include
XU .
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Again, these assumptions imply a counterfactual statement and a testable proxy.

Theorem 5. Assume the model (1) with (B1). Let XU be a set of covariates fulfilling (A1) and
(A2’), then

P
C|Z=z;do(XU←x′

U ,X−U←X−U)
Y = δy′ where

y′ =(y − E[Y |X = x])
√
Var
(
Y |XU = x′U ,X−U = X−U

)
/Var(Y |X = x)+

E
[
Y |XU = x′U ,X−U = X−U

]
for (XU = x′U ,X−U = x−U ) in the support of the observational distribution. Further, H0,U holds,
where

H0,j : E ⊥ XU |X−U , with E =
Y − E[Y |X]√
Var(Y |X)

. (11)

By constructing a counterfactual such that the regression residual E remains unchanged, the
effect on Y can be assessed in terms of the conditional mean and the conditional variance. As
in Section 2.2 one could alternatively use do-statements for (XU = x′U ,X−U = x−U ) outside the
support of the observational distribution.

6.1 Asymptotic results

To fit location-scale noise models, a simple approach is to estimate both E[Y |X] and E
[
Y 2|X

]
. If

both these quantities are known, one can recover E .
We consider variations of Algorithms 2 and 3 where we get estimates f̂1(X) for f1(X) := E[Y |X]

and f̂2(X) for f2(X) := E
[
Y 2|X

]
using certain regressors on the data (x,y); see the notation in

Section 3. Then, we estimate the residuals

ϵi =
yi − f1(xi)√
f2(xi)− f2

1 (xi)
by ϵ̂i =

yi − f̂1(xi)√
f̂2(xi)− f̂2

1 (xi)
.

Especially for low sample sizes, it can happen that f̂2(xi) ≤ f̂2
1 (xi) for some i. To make the method

operational in such cases, we suggest defining ϵ̂i by a large quantity in absolute value with the same
sign as yi − f̂1(xi). For our asymptotic results, it could even be replaced by arbitrary values. To
establish guarantees for FOCI, we make the following assumptions

(B6)
∣∣∣f1(xi)− f̂1(xi)

∣∣∣ = Op(1).
(B7)

∣∣∣f2(xi)− f̂2(xi)
∣∣∣ = Op(1).

(B8) P
(
f2(xi)− f2

1 (xi) > 0
)
= 1.

In Assumptions (B6) and (B7) the probability is over both, the function estimates and the new
data point. Assumption (B8) implies that Y is almost surely not deterministic in X.

Theorem 6. Suppose that the regularity assumptions (A1’) and (A2’) (Azadkia and Chatterjee,
2021) for the data (g(E),X) hold as well as conditions (B2) and (B4) - (B8). Let Ŝ be the output
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of Algorithm 2 modified to normalize the residuals for the heteroscedastic noise model. There are
positive real numbers L1, L2 and L3 that do not depend on the sample size such that

P
(
Ŝ ⊇ {1, . . . , p} \W

)
≥ 1− L1p

L2 exp(−L3n).

If instead Ŝ is the output of Algorithm 1 adjusted to normalize the residuals, it holds

lim
n→∞

P
(
Ŝ ⊇ {1, . . . , p} \W

)
= 1.

The key step to adapt the results to the heteroskedastic case is seeing that (B6) - (B8) imply

|ϵ̂i − ϵi| = Op(1).

Then, all the results from the homoskedastic case carry over. Any other regression algorithm
tailor-made for location-scale noise models could be applied as well if it ensures this condition.

Although we receive similar asymptotic guarantees for location-scale noise models under rather
weak assumptions, they are harder to deal with for finite samples. As all conditional dependence
between Y and any Xj that is due to location or scale is regressed out, the residing dependence can
be very weak. Hence, the population Conditional Dependence Coefficient (Azadkia and Chatterjee,
2021) is low requiring an even larger sample size. Also, the absolute value transform appears to be
less appropriate after regressing away the scale information. Hence, we apply no transform in the
simulation example.

6.2 Simulation example

We consider a simple example with two observed predictors and one hidden confounder as shown
in Figure 4. We let

Y ← gX2Y (X2)H

such that (A2’) holds for X2. The causal effect is sinusoidal from H to X1, linear from X1 to X2

and there is an additive Gaussian error term on each.

X1 X2 Y

H

Figure 4: DAG representing the SCM in the simulation fitting LSNM

For each sample size from 102 to 105, we run 200 repetitions of the same data generating
mechanism. We fit both moments with xgboost and use the identity function for g(·). Otherwise,
we proceed as in Section 4.

In Figure 5 we show the same performance metrics as in Figure 3. We see that our method
can handle this toy example quite well. For 105 samples, the performance with α̃ = 0.01 is almost
perfect, i.e., 196 times the output is Ŵ = {2} and 4 times Ŵ = ∅. There are no false positives in
Ŵ .
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Figure 5: The results are based on 200 simulation runs. On the left: False positive rate versus true
positive rate obtained with Algorithm 3 adjusted to LSNM for varying α̃ and α = 0.05. The crosses
correspond to α̃ = 0.01. The other symbols describe the performance of Algorithm 2 adjusted to
LSNM. In the middle: empirical cumulative distribution function of the p-values obtained with
HSIC. We compare the raw p-values from each split (lines only) to the cumulated p-value per
simulation run (lines with dots). On the right: average misposition (12) of the estimated residuals
with respect to the true residuals.

The global test works well already for 102 samples. After aggregation over the different splits,
H0 in (10) is rejected in every simulation run at α = 0.05. This can be facilitated by the fact that
the fits are not good for this sample size such that there is more dependence on x for ϵ̂ than for
the true ϵ.

Finally, we compare how well the ordering of ϵ̂ matches that of ϵ. For each run, we calculate
the average misposition defined as

AMP =
1

n2

n∑
i=1

∣∣∣∣∣
n∑

l=1

1{ϵl<ϵi} − 1{ϵ̂l<ϵ̂i}

∣∣∣∣∣. (12)

We show the according box plots on the right side of Figure 5. As desired, this quantity approaches
0 for increasing sample size. For simplicity, we calculate this quantity only on a single split per
simulation run.

7 Conclusion

In this paper, we introduce the notion of causal well-specification for additive noise models or their
extension to heteroskedastic errors. Our viewpoint of local, i.e., for a subset of the covariates,
causal well-specification, for which conditional independence between predictor and residual can
serve as a proxy, provides a new option instead of rejecting entire models.

We present an algorithm to estimate our quantities of interest from finite data and provide some
asymptotic guarantees. We demonstrate its application on simulation setups. This reveals some
difficulties but also shows how considering multiple data splits can help even in hard cases.

Finally, we also apply our methodology and algorithm to regression problems extracted from a
large-scale genomic dataset. While in many cases, causal well-specification appears to be not even
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approximately fulfilled, we find multiple examples where our estimate of well-specification is in line
with an approximate validation from various gene knock down perturbations.

We want to emphasize that our formulation and analysis of what information conditional in-
dependence provides, which we present in Section 2, can also be used as stand-alone and other
regression or machine learning methods for regression and assessing conditional dependence can be
used.
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A Proofs

A.1 Proof of Theorem 1

Recall
Y := E[Y |X] + E

Due to (A2), we have

E[Y |X] = fXUY

(
XU ,XPA(Y )\U

)
+ E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]

such that

E = fHY

(
HPA(Y ),XPA(Y )\U

)
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]
.

Using (A1), XU ⊥ HPA(Y )|X−U , and trivially, XU ⊥ X−U |X−U . It follows

E
[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]
= E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X−U

]
⊥ XU |X−U and

fHY

(
HPA(Y ),XPA(Y )\j

)
⊥ XU |X−U such that E ⊥ XU |X−U .

Consider the counterfactual intervention. As X−U remains unchanged, the second summand in
(A2) could only change if HPA(Y ) changes. This could happen through some directed path from
XU to HPA(Y ) that is not blocked by X−U . By (A1), if such an effect from XU to HPA(Y ) exists, it
is constant for almost all xU . With (B1), we can extend this argument to all attainable xU . Hence,
changing XU from xU to x′U while keeping X−U fixed, cannot affect HPA(Y ) such that the second
summand remains constant. For the first summand, we can directly plug in the counterfactual
values of X

In the conditional expectation given above only the first summand can change as the second
is a function of only X−U . As the altered summand is the same for both Y and E[Y |X], the new
value y′ must exactly represent this change in conditional mean.

A.2 Proof of Theorem 2

Consider first the ⊆-statement. This means that H0,j in (7) must hold ∀j ∈W . Let S = {1, . . . , p}\
W . Then, we want that

E ⊥ XW |XS =⇒ E ⊥ Xj |X−j .

This can be rewritten as

E ⊥ XW\j , Xj |XS =⇒ E ⊥ Xj |XS ,XW\j .

This is the weak union property in Chapter 3 of Pearl (1988) and hence holds for any random
variables.

For W = W̃ , we additionally need that H0,j cannot hold for any j ∈ S. By minimality of S

E ̸⊥ Xj ,XW |XS\j .

Then, the intersection property implies

E ̸⊥ XW |Xj ,XS\j or E ̸⊥ Xj |XW ,XS\j .

The first cannot hold by the definition of W , so the second must hold. This means that H0,j is not
fulfilled, and W = W̃ is guaranteed.
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A.3 Proof of Proposition 1

We have T (·,XU ) = Q(·,XU )/S(·). As argued in (Azadkia and Chatterjee, 2021) the denominator
for unconditional independence tests is simply 1/6 for continuous random variables. If E is condi-
tionally continuously distributed, the same holds for its marginal distribution and thus also for the
distribution of |E|. Hence, it suffices to consider Q(·,XU ) and the statement for T (·,XU ) follows
directly. Let µ and ν be the law of E and |E|. Due to symmetry, it holds dν(t) = 2dµ(t) ∀t ≥ 0.

Q(|E|,XU ) =

∫ ∞
0

Var(P(|E| ≥ t|XU ))dν(t) =

∫ ∞
0

Var(2P(E ≥ t|XU ))2dµ(t)

= 8

∫ ∞
0

Var(P(E ≥ t|XU ))dµ(t)∫ 0

−∞
Var(P(E ≥ t|XU ))dµ(t) =

∫ 0

−∞
Var(P(E ≤ −t|XU ))dµ(t)

=

∫ 0

−∞
Var(1− P(E ≥ −t|XU ))dµ(t) =

∫ 0

−∞
Var(P(E ≥ −t|XU ))dµ(t)

t′←−t
=

∫ ∞
0

Var
(
P
(
E ≥ t′|XU

))
dµ
(
t′
)
such that

Q(E ,XU ) =

∫ ∞
−∞

Var(P(E ≥ t|XU ))dµ(t) = 2

∫ ∞
0

Var(P(E ≥ t|XU ))dµ(t).

The first line uses symmetry, and the second chain of equalities uses symmetry as well as continuity
to allow for a weak inequality in the complementary probability. Comparing the quantity on the
first line to that on the last line we see that the ratio between the numerator terms is 4.

A.4 Proof of Theorem 3

We build up the proof by some supporting Lemmata.

Lemma 1. Assume (B3) and (B4).

lim
n→∞

P([g(ϵi) > g(ϵl) ∩ g(ϵ̂i) ≤ g(ϵ̂l)] ∪ [g(ϵi) < g(ϵl) ∩ g(ϵ̂i) ≥ g(ϵ̂l)] ∪ [g(ϵi) = g(ϵl)]) = 0 ∀i ̸= l,

i.e., the probability that the estimates imply a different ordering between i and l approaches 0.

Define Qn(·) and Sn(·) as in Section 9 of Azadkia and Chatterjee (2021).

Lemma 2. Assume the conditions of Lemma 1. Let U be any non-empty subset of {1, . . . , p}.
Then,

lim
n→∞

E[|Qn(g(ϵ),xU )−Qn(g(ϵ̂),xU )|] = 0, lim
n→∞

E[|Sn(g(ϵ),xU )− Sn(g(ϵ̂),xU )|] = 0

lim
n→∞

E[|Sn(g(ϵ))− Sn(g(ϵ̂))|] = 0.

As in the sample splitting case (g(ϵ̂),xU ) are i.i.d. copies, one can apply Lemma 11.9 in Azadkia
and Chatterjee (2021) to those. This yields

P(|Qn(g(ϵ̂),xU )− E[Qn(g(ϵ̂),xU )]| ≥ t) ≤ K1 exp
(
−K2nt

2
)
, (13)

for some positive K1, K2. Therefore, we can draw similar conclusions as in their Lemma 14.2.
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Lemma 3. Let U be a subset of size u. Assume conditions (A1), which defines β, and (A2) from
Azadkia and Chatterjee (2021) for the data (g(E),XU ) as well as conditions (B3) - (B4). Then,
there exist positive K1, K2, and K3 that do not depend on the sample size such that in the sample
splitting case

P
(
|Qn(g(ϵ̂),xU )−Q(g(E),XU )| ≥ K1max

{
D1/3(n), n−min{−1/u,−1/2} log(n)u+β+1

}
+ t
)
≤

K2 exp
(
−K3nt

2
)

Under (B2) and (B5) any set U that is not a (weak) superset of {1, . . . , p} \ W cannot be
sufficient for g(E). Thus, it suffices to bound the probability of Ŝ not being sufficient, and then
Theorem 3 follows. This corresponds to Theorem 6.1 in Azadkia and Chatterjee (2021). The only
part of its proof that needs adaptation is Lemma 16.3. To proof an according result based on our
Lemma 3, we require

L1max
{
D(n), n−min{−1/K,−1/2} log(n)K+β+1

}
≤ δ

16
.

Here, we use their definition of δ, i.e., δ is the largest number such that for any insufficient subset
U ̸⊇ ({1, . . . , p} \W ), there exists j ̸∈ U that fulfils Q(g(E),XU∪j) ≥ Q(g(E),XU ) + δ. K is
the integer part of 1/δ + 2. As we consider fixed data generating mechanisms, δ > 0 holds by
construction. Hence, we do not mention it in the theorems explicitly. This inequality might require
larger sample size than in Azadkia and Chatterjee (2021) and larger L6 accordingly. Apart from
that, the proof follows from the same principles.

A.4.1 Proof of Lemma 1

The properties of g(·) imply that g(E) is a continuous random variable as well such that the proba-
bility of the last event has probability 0 regardless of the sample size. As i and l are interchangeable,
the first two events have the same probability and it suffices to analyse one. Let η > 0 be arbitrary.

P(g(ϵi) > g(ϵl) ∩ g(ϵ̂i) ≤ g(ϵ̂l)) =

P(g(ϵi) > g(ϵl) ∩ g(ϵ̂i) ≤ g(ϵ̂l) ∩ g(ϵi)− g(ϵl) ≤ η)+

P(g(ϵi) > g(ϵl) ∩ g(ϵ̂i) ≤ g(ϵ̂l) ∩ g(ϵi)− g(ϵl) > η) ≤
P(|g(ϵi)− g(ϵl)| ≤ η) + P(|g(ϵ̂i)− g(ϵi)|+ |g(ϵ̂l)− g(ϵl)| > η) ≤
P(|g(ϵi)− g(ϵl)| ≤ η) + P(max{|g(ϵ̂i)− g(ϵi)|, |g(ϵ̂l)− g(ϵl)|} > η/2) ≤
P(|g(ϵi)− g(ϵl)| ≤ η) + 2P(|g(ϵ̂i)− g(ϵi)| > η/2) ≤ P(|g(ϵi)− g(ϵl)| ≤ η) + 2P(|ϵ̂i − ϵi| > η/2l)

Let now η depend on n. For η → 0 the first term vanishes. If it approaches 0 slowly enough, the
second term vanishes as well assuming the regression is suitable. Thus, one can choose η such that
both terms vanish. Since the inequality holds for arbitrary η, the probability goes to 0, i.e.,

P([g(ϵl) ≤ g(ϵi) ∩ g(ϵ̂l) > g(ϵ̂i)] ∪ [g(ϵl) ≥ g(ϵi) ∩ g(ϵ̂l) < g(ϵ̂i)]) = O(1).

A.4.2 Proof of Lemma 2

Let Ri =
∑

g(ϵl) ≤ g(ϵi), Li =
∑

g(ϵl) ≥ g(ϵi), and R̂i, L̂i the according quantities estimated
with ϵ̂. Note that index M(i), i.e., the nearest neighbour of i with respect to xU , only depends on
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observed quantities. Hence, it is the same for the estimated quantity R̂M(i).

|Qn(g(ϵ),xU )−Qn(g(ϵ̂),xU )| =

∣∣∣∣∣ 1n2

n∑
i=1

min
{
Ri, RM(i)

}
−min

{
R̂i, R̂M(i)

}
+

L̂2
i − L2

i

n

∣∣∣∣∣ ≤∣∣∣∣∣ 1n2

n∑
i=1

min
{
Ri, RM(i)

}
−min

{
R̂i, R̂M(i)

}∣∣∣∣∣+
∣∣∣∣∣ 1n3

n∑
i=1

L̂2
i − L2

i

∣∣∣∣∣
|Sn(g(ϵ),xU )− Sn(g(ϵ̂),xU )| =

∣∣∣∣∣ 1n2

n∑
i=1

Ri − R̂i +min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣ ≤∣∣∣∣∣ 1n2

n∑
i=1

Ri − R̂i

∣∣∣∣∣+
∣∣∣∣∣ 1n2

n∑
i=1

min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣
|Sn(g(ϵ))− Sn(g(ϵ̂))| =

∣∣∣∣∣ 1n3

n∑
i=1

n
(
Li − L̂i

)
+ L̂2

i − L2
i

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n2

n∑
i=1

Li − L̂i

∣∣∣∣∣+
∣∣∣∣∣ 1n3

n∑
i=1

L̂2
i − L2

i

∣∣∣∣∣
Thus, there are four different terms to be controlled. If both ϵ and ϵ̂ have n distinct values, all
the terms that do not depend on the nearest neighbouring property amongst xU are trivially 0 for
every sample sizes. However, we can prove convergence without this assumption.

E

[∣∣∣∣∣ 1n2

n∑
i=1

Ri − R̂i

∣∣∣∣∣
]
≤ E

[
1

n2

n∑
i=1

∣∣∣Ri − R̂i

∣∣∣] = E

[
1

n2

n∑
i=1

∣∣∣∣∣
n∑

l=1

1{g(ϵl)≤g(ϵi)} − 1{g(ϵ̂l)≤g(ϵ̂i)}

∣∣∣∣∣
]
=

E

 1

n2

n∑
i=1

∣∣∣∣∣∣
∑
l ̸=i

1{g(ϵl)≤g(ϵi)} − 1{g(ϵ̂l)≤g(ϵ̂i)}

∣∣∣∣∣∣
 ≤ 1

n2

n∑
i=1

∑
l ̸=i

E
[∣∣1{g(ϵl)≤g(ϵi)} − 1{g(ϵ̂l)≤g(ϵ̂i)}∣∣] =

n2 − n

n2
E
[∣∣1{g(ϵl)≤g(ϵi)} − 1{g(ϵ̂l)≤g(ϵ̂i)}∣∣] =

n2 − n

n2
P([g(ϵl) ≤ g(ϵi) ∩ g(ϵ̂l) > g(ϵ̂i)] ∪ [g(ϵl) ≥ g(ϵi) ∩ g(ϵ̂l) < g(ϵ̂i)])

n→∞→ 0

by Lemma 1. In the last two expressions, l ̸= i is assumed. The argument for the term with Li− L̂i

is identical.

E

[∣∣∣∣∣ 1n2

n∑
i=1

min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣ ≤ E

[
1

n2

n∑
i=1

∣∣∣R̂i −Ri

∣∣∣+ ∣∣∣R̂M(i) −RM(i)

∣∣∣]] =

E

 1

n2

n∑
i=1

∣∣∣R̂i −Ri

∣∣∣+ 1

n2

n∑
i=1

∑
l: M(l)=i

∣∣∣R̂i −Ri

∣∣∣
 = E

 1

n2

n∑
i=1

∣∣∣R̂i −Ri

∣∣∣
1 +

∑
l ̸=i

1M(l)=i

 =

1

n2

n∑
i=1

E

∣∣∣R̂i −Ri

∣∣∣
1 +

∑
l ̸=i

1M(l)=i

 =
1

n2

n∑
i=1

E

∣∣∣R̂i −Ri

∣∣∣E
1 +∑

l ̸=i

1M(l)=i|R̂i, Ri

 ≤
2 + C(p)

n2

n∑
i=1

E
[∣∣∣R̂i −Ri

∣∣∣] n→∞→ 0.

By Lemma 11.4 in Azadkia and Chatterjee (2021), there is a dimension dependent constant such
that no point can be the nearest neighbour of more than C(p) distinct points in Rp. If there are l
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such that xl,U = xi,U , M(l) is chosen uniformly at random from this set, and in expectation there

is one l such that M(l) = i. As this uniform draw is independent of Ri and R̂i, the upper bound
also applies to the conditional expectation and we can pull it out.

E

[∣∣∣∣∣ 1n3

n∑
i=1

L2
i − L̂2

i

∣∣∣∣∣
]
= E

[∣∣∣∣∣ 1n3

n∑
i=1

(
Li − L̂i

)(
Li + L̂i

)∣∣∣∣∣
]
≤ E

[∣∣∣∣∣ 2n2

n∑
i=1

Li − L̂i

∣∣∣∣∣
]

n→∞→ 0.

Thus, every term is under control which concludes the proof. As all the terms are at most of the
same order as the probability in Lemma 1, the bound on the convergence rate follows directly.

A.4.3 Proof of Lemma 3

By Lemma 2, there exists a rate, say, D(n) = O(1) such that

|E[Qn(g(ϵ̂),xU )]− E[Qn(g(ϵ),xU )]| = O(D(n)).

Then,

|Qn(g(ϵ̂),xU )−Q(g(E),XU )| ≤
|Qn(g(ϵ̂),xU )− E[Qn(g(ϵ̂),xU )]|+ |E[Qn(g(ϵ̂),xU )]− E[Qn(g(ϵ),xU )]|+
|E[Qn(g(ϵ),xU )−Q(g(E),XU )]| ≤

|Qn(g(ϵ̂),xU )− E[Qn(g(ϵ̂),xU )]|+K1max
{
D(n), n−min{−1/u,−1/2} log(n)u+β+1

}
,

using the rate derived in Lemma 14.2 of (Azadkia and Chatterjee, 2021). Therefore, with (13),

P
(
|Qn(g(ϵ̂),xU )−Q(g(E),XU )| ≥ K1max

{
D(n), n−min{−1/u,−1/2} log(n)u+β+1

}
+ t
)
≤

P(|Qn(g(ϵ̂),xU )− E[Qn(g(ϵ̂),xU )]| ≥ t) ≤ K2 exp
(
−K3nt

2
)
.

A.5 Proof of Theorem 4

Again, we only have to bound the probability of Ŝ not being sufficient.
Using Lemma 2 and the Markov inequality, we see

P(|Qn(g(ϵ̂),xU )−Qn(g(ϵ),xU )| ≥ t) ≤ K1D(n)

t
.

Hence, we get

P
(
|Qn(g(ϵ̂),xU )−Q(g(E),XU )| ≥ K1n

−min{−1/u,−1/2} log(n)u+β+1 + t
)
≤

P
(
|Qn(g(ϵ̂),xU )−Qn(g(ϵ),xU )|+ |Qn(g(ϵ),xU )−Q(g(E),XU )| ≥

K1n
−min{−1/u,−1/2} log(n)u+β+1 + t

)
≤

P
(
|Qn(g(ϵ̂),xU )−Qn(g(ϵ),xU )| ≥

t

2

)
+

P
(
|Qn(g(ϵ),xU )−Q(g(E),XU )| ≥ K1n

−min{−1/u,−1/2} log(n)u+β+1 +
t

2

)
≤
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K2(n)

t
+K3 exp

(
−K4nt

2
)
≤ K5max

{
D(n)

t
, exp

(
−K4nt

2
)}

,

where we used Lemma 14.2 in (Azadkia and Chatterjee, 2021) in the second to last inequality.
Finally, we can follow the proof idea of Lemma 16.3 in (Azadkia and Chatterjee, 2021) with the
given probability bound showing that the probability of Ŝ being insufficient goes to 0.

A.6 Proof of Proposition 2

For the least squares parameter, we have

β̂ =
x⊤y

x⊤x
= β +

x⊤ϵ

x⊤x
, P

(
β̂ = β

)
= P

(
x⊤ϵ = 0

)
= 0

since X is a continuous random variable. However, for large enough sample size, it holds (with
high probability)

i ∈ arg min
l
|ϵ̂i − ϵl| ∀i,

i.e., the estimated residuals scatter closely around the true value from the discrete set. There are
roughly n/k observations per possible value of E , and, due to the linear dependence, around each
value, the ordering of ϵ̂ corresponds to the ordering of x or is exactly inverted. Therefore,

R̂i mod
n

k
≈ R̂M(i) mod

n

k
and R̂M(i)|R̂i∼̇R̂i mod

n

k
+

n

k
Unif{0, . . . , k − 1}.

Since the ϵ̂i all have distinct values, it holds

n∑
i=1

L̂i =
n∑

i=1

i =
n2 + n

2
and

n∑
i=1

L̂2
i =

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
such that

Tn(ϵ̂,x) =
n
∑n

i=1min
{
R̂i, R̂M(i)

}
− n(n+ 1)(2n+ 1)

6
n3 + n2

2
− n(n+ 1)(2n+ 1)

6

.

We consider the only random term

E

[
n∑

i=1

min
{
R̂i, R̂M(i)

}]
= E

 n∑
R̂i=1

min
{
R̂i, R̂M(i)

} = E

 n∑
R̂i=1

min
{
R̂i, R̂M(i)

}
|R̂1, . . . , R̂n


=

n∑
R̂i=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂1, . . . , R̂n

]
=

n∑
R̂i=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i

]
.

The first equality holds as summing over all i is the same as summing over all ranks. As the problem
is permutation invariant, conditioning on all ranks does not change the expectation. Under the
conditioning, the ranks are deterministic and linearity of expectation applies. Finally, knowing

any rank apart from R̂i does not influence min
{
R̂i, R̂M(i)

}
. We analyse the expectation under

the approximate conditional distribution as given above. If R̂i ≤ n/k, min
{
R̂i, R̂M(i)

}
= R̂i. If
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n/k < R̂i ≤ 2n/k and the uniformly chosen number is 0, min
{
R̂i, R̂M(i)

}
= R̂i − n/k. This has

probability 1/k. Otherwise, min
{
R̂i, R̂M(i)

}
= R̂i. Analogously, if ln/k < R̂i ≤ (l+1)n/k for some

integer 0 ≤ l < k, i.e., l = max
{
r ∈ N0|r < R̂ik/n

}
, it holds under the approximate distribution

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i

]
= R̂i −

1

k

l∑
r=0

rn

k
= R̂i −

n

2k2
(
l2 + l

)
.

For each possible value of l, there are n/k ranks such that ln/k < R̂i ≤ (l + 1)n/k. Therefore,

n∑
R̂i=1

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i

]
=

n∑
R̂i=1

R̂i −
n2

2k3

k−1∑
l=0

(
l2 + l

)
=

n2 + n

2
− n2

2k3

(
k(k − 1)(2k − 1)

6
+

k(k − 1)

2

)
=

n2 + n

2
− n2

6k3
(
k3 − k

)
Then,

E[Tn(ϵ̂,x)] ≈

n3 + n2

2
− n(n+ 1)(2n+ 1)

6
− n3

6k3
(
k3 − k

)
n3 + n2

2
− n(n+ 1)(2n+ 1)

6

n→∞→

1

6
− 1

6
+

1

6k2
1

6

=
1

k2

To make the proof complete the proof, we need to show that∣∣∣∣∣∣
n∑

R̂i=1

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i

]∣∣∣∣∣∣ = O(n2
)
.

We even control
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i

]∣∣∣.
For arbitrary conditioning events A, we have

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i

]∣∣∣ =
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

]
P(A)−

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c
]
P(Ac)

∣∣∣ ≤
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

]∣∣∣P(A)+

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c
]∣∣∣P(Ac) ≤
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n∑
R̂i=1

nP(A) +
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c
]∣∣∣ =

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c
]∣∣∣+ n2P(A).

Hence, we can ignore events with vanishing probability. Let v1, . . . , vk be the attainable values of
E and

nt =

n∑
i=1

1{ϵi=vt} ∼ Binom

(
n,

1

k

)
.

Define the event

A =

{
max

t
|nt − n/k| > n3/4 ∪ ∃i : i ̸∈ arg min

l
|ϵ̂i − ϵl|

}
.

By the Markov inequality and a union bound, this event has vanishing probability, so we must only
control

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i

]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c
]∣∣∣.

Under Ac, there are only O
(
n3/4

)
ranks R̂i for which ϵi ̸= vl+1 with l = max

{
r ∈ N0|r < R̂ik/n

}
is possible. Summing over these leads to another O

(
n2
)
term and can be ignored. Consider the R̂i

for which Ai := {ϵi = vl+1} holds. Assume without loss of generality that β̂ < β such that larger
xi leads to larger ϵ̂i. Let FX(·) be the cumulative distribution function of X. For given n1, . . . , nk,
we have

xi = F−1X

(
R̂i −

∑l
r=1 nr

nl+1

)
+Op

(
n−1/2

)
.

Thus, one can condition on xi being in a n−1/4 range around the theoretical quantile for any
n1, . . . , nk fulfilling Ai. Call this event, whose complementary event has vanishing probability, Bi.
It remains to control

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c, Ai, Bi

]
=

k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c, Ai, Bi, ϵM(i) = vr

]
P
(
ϵM(i) = vr|R̂i, A

c, Ai, Bi

)
=

k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c, Ai, Bi, ϵM(i) = vr

](
P
(
ϵM(i) = vr|R̂i

)
+ O(1)

)
=

k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c, Ai, Bi, ϵM(i) = vr

](1

k
+ O(1)

)
.
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If ϵM(i) > ϵi, it holds min
{
R̂i, R̂M(i)

}
= R̂i and we get the right contribution. If ϵM(i) = ϵi, the

conditional expectation is in
[
R̂i − 1, R̂i

]
, i.e., only a O(1) deviation. If vm+1 = ϵM(i) < ϵi

min
{
R̂i, R̂M(i)

}
= R̂M(i) =

m∑
r=1

nr +
∑

l:ϵl=vm+1

1{xl≤xM(i)}

=

m∑
r=1

nr +
∑

l:ϵl=vm+1

1{xl≤xi} + 1{xM(i)>xi}.

Under the given conditioning, this is

m∑
r=1

nr + nm+1

(
R̂i −

∑l
r=1 nr

nl+1
+ O(1)

)
+O(1) =

nm

k
+O

(
n3/4

)
+
(n
k
+O

(
n3/4

))R̂i − nl/k +O
(
n3/4

)
n/k +O

(
n3/4

) + O(n) =

nm

k
+
(
1 +O

(
n−1/4

))(
R̂i −

nl

k
+O

(
n3/4

))
+ O(n) =

nm

k
+ R̂i −

nl

k
+O

(
n3/4

)
+ O(n) =

R̂i −
n(l −m)

k
+ O(n).

In summary

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, A

c, Ai, Bi

]
= R̂i −

1

k

l−1∑
m=0

n(l −m)

k
+ O(n) = R̂i −

1

k

l∑
r=0

r

k
+ O(n)

Therefore, each term deviates with O(n) from the approximate expectation. Summing over O(n)
such deviations leads to O

(
n2
)
as desired.

A.7 Proof of Theorem 5

Due to (A2’), we have

E[Y |X] =fXUY

(
XU ,XPA(Y )\U

)
+ gXUY

(
XU ,XPA(Y )\U

)
E
[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]

Var(Y |X) =g2XUY

(
XU ,XPA(Y )\U

)(
E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]2)

E =
fHY

(
HPA(Y ),XPA(Y )\U

)
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]√

E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]2

As in Section A.1

fHY

(
HPA(Y ),XPA(Y )\j

)
⊥ XU |X−U and E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]
= ⊥ XU |X−U

accordingly E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
⊥ XU |X−U such that E ⊥ XU |X−U .
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(A1) together with (B1) implies that only terms involvingXU can be different for the counterfactual;
see Section A.1. In particular, E cannot change. Hence, Y changes from

y = E[Y |X = x] +
√

Var(Y |X = x)ϵ to

y′ = E
[
Y |XU = x′U ,X−U = x−U

]
+
√
Var
(
Y |XU = x′U ,X−U = x−U

)
ϵ

which is as stated in the theorem.

A.8 Proof of Theorem 6

We have the following supporting result.

Lemma 4. Suppose that (B6) - (B8) hold. Then

|ϵ̂i − ϵi| = Op(1)

With Lemma 4 we have replaced Assumption (B3) which is the only missing part to reconstruct
the asymptotic results as in Theorems 3 and 4.

A.8.1 Proof of Lemma 4

Let
V (xi) = f2(xi)− f2

1 (xi) and V̂ (xi) = f̂2(xi)− f̂2
1 (xi)

Note that

P
(

1

V (xi)
<∞

)
= P(V (xi) > 0) = 1 hence

1

V (xi)
= Op(1) likewise

1√
V (xi)

= Op(1).

Consider the difference∣∣∣V (xi)− V̂ (xi)
∣∣∣ = ∣∣∣f2(xi)− (f2(xi) + Op(1))− f2

1 (xi) + (f1(xi) + Op(1))
2
∣∣∣

≤ Op(1) + |f1(xi)|Op(1) = Op(1).

In the last equality we use E[f1(xi)] = E[yi] < ∞, otherwise regression would not be possible.
Hence,

lim
n→∞

P
(
V̂ (xi) ≤ 0

)
≤ lim

n→∞
P
(∣∣∣V (xi)− V̂ (xi)

∣∣∣ ≥ V (xi)
)
= lim

n→∞
P


∣∣∣V (xi)− V̂ (xi)

∣∣∣
V (xi)

≥ 1

 = 0.

Therefore, we will forthcoming condition on V̂ (xi) being positive which is asymptotically negligible.
We now compare the standard deviation and its estimate and consider the event that the difference
is either large or not defined. Fix some η > 0.

lim
n→∞

P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0

)
= lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) > 0

)
P
(
V̂ (xi) > 0

)
+
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P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) ≤ 0

)
P
(
V̂ (xi) ≤ 0

)
≤ lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) > 0

)
+ P

(
V̂ (xi) ≤ 0

)
= lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η|V̂ (xi) > 0

)
= lim

n→∞
P

∣∣∣∣∣∣ V (xi)− V̂ (xi)√
V (xi) +

√
V̂ (xi)

∣∣∣∣∣∣ ≥ η|V̂ (xi) > 0


≤ lim

n→∞
P

(∣∣∣∣∣V (xi)− V̂ (xi)√
V (xi)

∣∣∣∣∣ ≥ η|V̂ (xi) > 0

)
≤ lim

n→∞
P

(∣∣∣∣∣V (xi)− V̂ (xi)√
V (xi)

∣∣∣∣∣ ≥ η

)
/P
(
V̂ (xi) > 0

)
= 0.

Consider the residuals assuming a positive variance estimate.

|ϵ̂i − ϵi| =

∣∣∣∣∣∣yi − f̂i(xi)√
V̂ (xi)

− yi − fi(xi)√
V (xi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
(
yi − f̂i(xi)

)√
V (xi)− (yi − fi(xi))

√
V̂ (xi)√

V̂ (xi)
√
V (xi)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(
fi(xi)− f̂i(xi)

)√
V (xi) + (yi − fi(xi))

(√
V (xi)−

√
V̂ (xi)

)
√
V̂ (xi)

√
V (xi)

∣∣∣∣∣∣∣∣
≤ 1√

V̂ (xi)

(∣∣∣fi(xi)− f̂i(xi)
∣∣∣+ |ϵi|∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣).
Arguing similarly as before, we have

lim
n→∞

P
(
|ϵ̂i − ϵi| ≥ η ∪ V̂ (xi) < 0

)
= 0.

If we replace ϵ̂i by an arbitrary value in case of a non-positive variance estimate, it holds

lim
n→∞

P(|ϵ̂i − ϵi| ≥ η) = 0.
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