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Abstract

Transformers have demonstrated exceptional in-context learning capabilities, yet the theoretical
understanding of the underlying mechanisms remains limited. A recent work [15] identified a
“rich” in-context mechanism known as induction head, contrasting with “lazy” n-gram models that
overlook long-range dependencies. In this work, we provide dynamics analysis of how transformers
learn from lazy to rich mechanism. Specifically, we study the training dynamics on a synthetic
mixed target, composed of a 4-gram and an in-context 2-gram component. This controlled setting
allows us to precisely characterize the entire training process and uncover an abrupt transition from
lazy (4-gram) to rich (induction head) mechanisms as training progresses. The theoretical insights
are validated experimentally in both synthetic and real-world settings.

1. Introduction

Transformer, introduced by Vaswani et al. [30], have achieved remarkable success across various
domains, including natural language processing, computer vision, and scientific computing. An
emergent observation is that transformers, trained on trillions of tokens, can perform (few-shot)
in-context learning (ICL), which makes prediction based on the contextual information without
needing model retraining [8]. This ICL ability is widely regarded as crucial for enabling large
language models (LLMs) to solve reasoning tasks, representing a key step toward more advanced Al

To understand how transformers implement ICL, Elhage et al. [15] and Olsson et al. [20]
identified a simple yet powerful mechanism known as induction head. Specifically, given an input
sequence [---ab---a]l, an induction head predicts b as the next token by leveraging the prior
occurrence of the pattern ab in the context, effectively modeling an in-context bi-gram. In contrast,
traditional n-gram model [25] (with a small n) utilizes only a limited number of recent tokens to
predict the next token, which is context-independent and inevitably overlooks long-range dependence.
Based on the extent of context utilization, we categorize n-gram model as a “lazy” mechanism,
whereas the induction head represents a more “rich’ mechanism.

The pioneering works by Elhage et al. [15] and Olsson et al. [20] demonstrated that transformers
undergo an abrupt phase transition to learning induction heads. A recent empirical study on synthetic
datasets replicate this behavior, further showing that 2-gram is always learned prior to induction
heads [7]. However, a rigorous theoretical analysis of this learning progression is still lacking.
Closing this gap forms our research objective: Understand how transformers transition from relying
on n-gram patterns to employing the induction head mechanism as training progresses.

(Our contributions). Dynamics analysis: how learning undergoes a sharp transition from
n-gram to induction head. We study the learning dynamics of a two-layer transformer without
FFNs for a mixed target, composed of a 4-gram and an in-context 2-gram component. This toy
setting allows us to capture the entire training process precisely. Specifically, we show that learning
progresses through four phases: partial learning of the 4-gram, plateau of induction head learning,
emergence of the induction head, and final convergence, showcasing a sharp transition from 4-gram
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to induction head. Our analysis identifies two key drivers of the transition: 1) time-scale separation
due to low- and high-order parameter dependencies in self-attention, and 2) speed differences caused
by the relative proportions of the two components in the mixed target. Additionally, in our analysis,
we introduce a novel Lyapunov function that exploits the unique structure of self-attention, which
may be of independent interest.

Finally, we conduct a series of experiments, ranging from simple toy models to real-world natural
language training tasks, to validate our theoretical insights.

2. Preliminaries

Notations. We use sm(-) to denote the softmax function. We use standard big-O notations O, €2, ©
to hide absolute positive constants, and use @, Q, O to further hide logarithmic constants.
Sequence modeling. Given a sequence of tokens (z1, z9,x3,...) with each token lying in
R, let X1 = (21, 2,...,21) € R>E. Given A = (a1,---a,) € R™*", we denote (as)gzi =
(@, -+ ,aj). We consider the next-token prediction task: predict 271 using Xp, = (x1,x2,...,21).
In a n-gram model [25], the conditional probability of predicting the next token is given by
p(xr+1|1X1) = p(@r4+1]|XL—n+2:1), meaning that the prediction depends only on the most recent
n — 1 tokens. In practice, the value of n is typically small (e.g., 2, 3, or 4), as the computational
cost of n-gram models grows exponentially with n. However, n-gram models with small n cannot
capture long-range interactions, leading to inferior performance in sequence modeling.
Self-attention in Transformers is designed to more efficiently capture long-range dependencies
in sequence modeling [30]. Let SA represent the H-head self-attention operation. Specifically, when
applied to a sequence Z = (z1,--- , z1) € RP*E, SA operates it asSA(Z) = Wo Zthl SAM(z),

where SA(h)(Z) = (W‘(/h) Z) softmax(<Wéh)Z, WI(JL)Z>+R(’1)), where W ), Wl(?), W‘(/h) corre-

h
Q
spond to the query, key, value matrices of the h-th head, respectively. softmax represents taking
softmax normalization across columns. <Wé2h)X , Wl({h )X > is called the dot-product (DP) structure.

Furthermore, R(") = (RZ(ZL)) € REXL denotes the additive relative positional encoding matrix, which

satisfies RZ(Z) = —oo if 7 < j for the next-token prediction task.

Relative positional encoding (RPE). Throughout this paper, we focus on the Alibi RPE [21],
where R%L’h)exhibit a Toeplitz structure, i.e.,RZ(;f’h): o(i — j;pM) for i, j € [L]. Here, p(*")’s
(z—1), ifz>1

otherwise
Alibi only for simplicity and our results can be extended to other additive RPEs, such as [11, 22].

Vanilla Induction Heads. The original induction head [15, 20] is regarded as one of the key
mechanisms to implement ICL and reasoning. This induction head suggests that two-layer multi-head
transformers without FFNs can execute a simple in-context algorithm to predict the next token b

are learnable parameters and ¢(+; p) has the form: ¢(z;p) = {:];o . We adopt the

from a context [---ab---a] through retrieval, copying, and pasting, based on in-context bi-gram
pairs. We define the vanilla induction ?ee;d IHy : U LeNHRdXL — R? as follows:

IHy(X 1) = (@ina, 1)) I

2(Xp) =Y wesm((zf Wz, 1), -, - )]

Specifically, IH; retrieves in-conteXt information of arbitrary length. It retrieves previous tokens
Ts—1’s that are similar to the current token x;, based on a dot-product similarity, and then copies
and pastes x5_1’s subsequent token x; as the current prediction zy;. Note that the magnitude of
matrix W* controls the sparsity of retrieval, since increasing ||WW*|| causes the softmax output to
concentrate as a delta measure over the preceding tokens.
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3. The Transition from Lazy to Rich Mechanisms in Learning Dynamics

3.1. Setups
3.1.1. MIXED TARGET FUNCTION

Mixed target function. Let the input sequence be X = (z1,--- ,27) € R™%. Our mixed target
function f* contains both a 4-gram corilponent f(*54 an(; an in—contextT2— gram component fIT-b:
o o * * 2
P00 = (1,00, 1 fi (X)) € R, @

where a* > 0 represents the relative weight between the two components: fg, (X) and f, (X).
Here, fé4 represents a 4-gram component and f|T_|2 is given by the vanilla induction head (1) to
represent a type of in-context 2-gram information: r—1

f6,(X) =29, fif,(X):= T sm((wa*le,_l)f;21>y_s.

Note that fé4 denotes a “simplest” 4-gram targégtf%vhere the next token is predicted according to
the conditional probability p(z|X) = p(z|zr,xr—1,21—2) = {z =21 _2}.

Remark 1 (The reason for considering 4-gram.) Our target includes a 4-gram component rather
than simpler 2- or 3-gram components. Note that the induction head includes the 2-gram mechanism.
Hence we focus on the more challenging 4-gram target to avoid trivializing the learning process.
3.1.2. TWO-LAYER MULTI-HEAD TRANSFORMER WITH REPARAMETERIZATION

Two-layer multi-head transformer w/o FFNs. We consider a simple two-layer multi-head trans-
former TF, where the first layer contains a single head SAMY and the second layer contain two
heads SA(2’1), SAZ2)_Given an input sequence X = (x1,---,21) € R it s first embedded as
X© = (XT 07) € R?*L. The model then processes the sequence as follows:
xW = x© 4 sAtD(xOy  TR(X) = SAGD(XM) 4+ SAGD (x 1),
Reparameterization. Despite the simplification, the transformer above is still too complicated
for dynamics analysis. To overcome this challenge, we adopt the reparametrization trick used in

previous works [10, 16, 28]. We reparameterize the model as follows, (see Appendix C.1 for details):
* First layer. This layer consists of a single attention head without DP. The only trainable parameter

is p(:1) | which governs the RPE component.
* Second layer. This layer contains two heads and five trainable parameters. The first head without

DP is responsible to fit fé using parameters p(21) wg/z ) , while the second head without RPE is

responsible to fit fi, with parameters wg 2), wg{ ), w? 2)

The set of all six tralnable parameters across both laygrs is denoted by 6.
3.1.3. GRADIENT FLOW ON SQUARE LOSS
We consider the Gaussian input and square loss, both of which are commonly used in analyzing
transformer dynamics and ICL [3, 16, 32]. The loss is defined as:

1 *
L0)=5Ex x| [TF-1(X50) = F(X) 3] 3
To characterize the learning of G4 and IH;, we introduce two partial losses: Lg,(8) =
LBy (TF_11(X;0) — f1(X))?, Liny(0) = 1Ex (TF_12(X;0) — f3(X))?, corresponding to the
two dimensions in TF_1 (X;0) — f*(X) € R?, respectively. It follows that £(0) = Lg, (6)+ Ly, ().

Gradient flow (GF). We analyze the GF for minimizing the objective (3):

di(tt) = —VL((t)), starting with 6(0) = (Ginit, - - - » Tinit) | “)

where 0 < oy < 1 is sufficiently small. Note that ojpi, 7 0 prevents V.L(6(0)) = 0.
Layerwise training paradigm. We consider a layerwise training paradigm in which, during
each stage, only one layer is trained by GF. Specifically,
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« Training Stage I: In this phase, only the parameter in the first layer, i.e., p("!), is trained.

* Training Stage II: In this phase,the first layer parameter pt1) keeps fixed and only parameters in
the second layer are trained: w$/271)7 wg’z) ,p&h, wg’Q), wg,z)‘
This type of layerwise training has been widely used to study the training dynamics of neural
networks, including FFN networks [6, 24, 31] and transformers [10, 19, 28].
Lemma 2 (Training Stage I) For the Training Stage I, lim p(t) = 4oo0.
According to (5), this lemma implies that, at the end o?;frammg Stage I, the first layer captures
the preceding token x;_; for each token zg, i.e., ys = xs_1. This property is crucial for transformers

to implement induction heads. The proof of Lemma 2 is deferred to Appendix C.2.
3.2. Training Stage I1: Transition from 4-gram to Induction Head

In this section, we analyze the dynamics in Training Stage II. We start from the following lemma:

Lemma 3 (Parameter balance) In Training Stage I, it holds that \w (t) |2 = |w (t) 2.

Lemma 3 is similar to the balance result for homogeneous networks [12], and its proof can
(2,2)

be found at the start of Appendix C.3. By this lemma, we can define Wyp' = wWQ = WK.
Additionally, Lemma 2 ensures that p(1:1) = 400 holds during Stage II. For simplicity, we denote
w (2,1) (22) —_ .21 _ (’)C Iv. th d

V= Wy, Wy ,D:=Dp yWKQ = W onsequently, the training dynamics are

reduced to four parameters 0 = (wy,, wy,, p, w KQ)

where we still denote the set of parameters as € without introducing ambiguity. It is important
to note that the problem remains highly non-convex due to the joint optimization of both inner
parameters (p, wg ) and outer parameters (wy; , wy,) in the two heads. At this training stage, GF
has a unique fixed point wy, = %;*, wy, = H%’ p = +00, wig = w*, which corresponds to
a global minimizer of the objective (3).

- Total loss £(8(1)) . Partal loss £a,(0(0)). £, (0(1)) N ” Four parameters
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Figure 1: Visualization of the dynamical behavior of Training Stage II with total loss, partial loss, and the
parameter evolution. Here, o* = 1, w* = 0.49, 0,4 = 0.01, L = 40. The is clearly shown
that transformer learns the 4-gram component first and then, starts to learn the induction head
mechanism. Notably, the entire dynamics unfold in four distinct phases, consistent with our
theoretical results (Theorem 4). For more experimental details, we refer to Appendix B.1.

0.

0.

As shown in Figure 1, a learning transition from the 4-gram mechanism to the induction head
mechanism does occur. Moreover, the learning process exhibits four-phase dynamics. The next theo-
rem provides a precise characterization of the four phases, which proof is provided in Appendix C.3.
Theorem 4 (Learning transition and 4-phase dynamics) Let o* = Q(1) and w* = O(1), and
we consider the regime of small initialization (0 < oiniy < 1) and long input sequences (L > 1).
Then we have the following results:

* Phase I (partial learning). In this phase, most of the 4-gram component in the mixed target is
learned, while a considerable number of induction head component have not yet been learned.
Specifically, let Ty = O(1), then we have the following estimates:

L, (0(T1)) < 0.01- L, (6(0)), Lin, (0(T1)) = 0.99 - Lin, (6(0)).
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* Phase II (plateau) + Phase III (emergence). In these two phases, the learning of the induction
head first gets stuck in a plateau for I11 time, then is learned suddenly. Specifically, denoted by an
observation time T, = ©(L), we have the following tight estimate of the duration:

T = inf {t > T, L, (0(1)) < 0.99 - Ly, (Q(To))} e ((a* +1)2L1og(1/oimit) /w*2) ;
Tirr := inf {t > Ty Lo, (0(£)) < 0.01- Ly, (O(To))} e ((a* +1)2Llog(1/oimit) /w*2> .

During these phases, the parameter wi g (for learning w* in |Hy) increases exponentially:

w*?t
Wi Q(t) = Oinit Xp (9 ((1—}-a*)2L)> , t<Tqn1.
* Phase IV (convergence). In this phase, the loss converges toward zero. Specifically, the following

convergence rates hold for all t > Ty :

ta,00) =0 (1) entom) =0 (e (-0 (T1557))).

and L(0(t)) = Lg,(0(t)) + Lin, (0(2)).

By this theorem, the 4-gram mechanism is first learned, taking time 77. Then, the learning of
the induction head mechanism enters a plateau, taking time 771, followed by a sudden emergence of
learning, taking time 711 — 777. Finally, the loss for both components converges to zero.

The clear learning transition. When any one of L, o*, 1/0oinit, 1 /w™ is sufficiently large, Phase
II lasts for 711 > 1. During this phase, the 4-gram component has been learned well but the induction
head component remains underdeveloped, demonstrating a distinct learning transition. Moreover,
Theorem 4 and its proof reveal two key factors that drive this transition:

* Time-scale separation due to high- and low-order parameter dependence in self attention.
The learning of DP and RPE components differ in their parameter dependencies. DP component
exhibits a quadratic dependence on the parameter wg, while RPE component shows linear
dependence on the parameter p. With small initialization oi,j; << 1, a clear time-scale separation
emerges: [Wig| ~ wrg < 1 (DP, slow dynamics) and |p| ~ 1 (RPE, fast dynamics). Conse-
quently, the induction head (fitted by DP) is learned much slower than the 4-gram component
(fitted by RPE). This time-scale separation accounts for the term log(1/€iyit) in the plateau 77y.

* Speed difference due to component proportions in the mixed target. The 4-gram target compo-
nent and the induction-head component have differing proportions in the mixed target. A simple
calculation shows: Lg,(0) ~ a*?/(1+ a*)?; If w* = O(1), then L, (0) ~ 1/[(1 + a*)?L).
Notably, Ly, (0) is significantly smaller than Lg, (0). This proportion disparity accounts for the
(14 a*)2L term in the plateau time Tir.

Proof idea. We highlight that our fine-grained analysis of entire learning process is guided by
two key observations: 1) the dynamics of the two heads can be decoupled; 2) there exist a distinct
transition point in the dynamics of each head, as shown in Figure 1 (right). These insights lead us
to divide the analysis of each head into two phases: a monotonic phase and a convergence phase.
Particularly, for the convergence phase, we introduce a novel Lyapunov function that leverages the
unique dynamical structure of self-attention. This Lyapunov function may be of independent interest
and offers potential for studying broader issues in self-attention dynamics.

Further experiments. We conduct additional experiments to validate our theoretical insights
into the training dynamics and learning transition across a wider range of scenarios. These includes
using data distribution (Figure 3) and optimization algorithms (Figure 4) in high-dimensional settings,
as well as training real-world transformers on natural language datasets (Figure 2).

5
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Appendix A. Related Works

Empirical observations of induction head. The induction head mechanism was first identified

by Elhage et al. [15] in studying how two-layer transformers perform language modeling. Subse-
quently, Olsson et al. [20] conducted a more systematic investigation, revealing two key findings:
1) induction head emerges abruptly during training, and 2) induction head plays a critical role
in the development of in-context learning capabilities. To obtain a fine-grained understanding of
how induction head emerges during training, recent studies have developed several synthetic set-
tings [7, 14, 23]. Particularly, Bietti et al. [7] successfully reproduced the fast learning of (global)
bigrams and the slower development of induction head. Despite these efforts, a comprehensive
theoretical understanding of how the induction head operates in two-layer transformers and how it is
learned during training remains elusive.

Training dynamics of transformers. To gain insights into the dynamics of training trans-
formers, several studies have analyzed simplified transformers on toy tasks. These tasks include
learning distinct/common tokens [28], leaning balance/inblanced features [16], linear regression
task [2, 33], multi-task linear regression [9], binary classification [17], transformer with diagonal
weights [1], learning causal structure [19], sparse token selection task [32], and learning n-gram
Markov chain [10]. Additionally, studies such as those by Ataee Tarzanagh et al. [4], Tarzanagh et al.
[26] and Vasudeva et al. [29] have analyzed scenarios where transformers converge to max-margin
solutions. Furthermore, Thrampoulidis [27] has examined the implicit bias of next-token prediction.
Among these works, the most closely related to ours are Nichani et al. [19] and Chen et al. [10],
which proved that two-layer transformers can converge to induction head solutions. In this work, we
explore a setting where the target is a mixture of 4-gram and induction head. We show that two-layer
transformers can effectively converge to this mixed target and provide a precise description of the
learning process associated with each component. Importantly, we are able to capture the abrupt
transition from learning 4-gram patterns to mastering the induction head mechanism—a critical
phase in the learning of induction heads, as highlighted in the seminal works [15, 20].

Now we discuss the relationship between our work and two closely related studies [7, 14].

Comparison with Bietti et al. [7].

Study objective: While Bietti et al. [7] examines the transition from 2-gram to induction head,
our work focuses on the transition from 4-gram to induction head.

study methods: Bietti et al. [7] conducts extensive experiments supported by partial theoretical
properties but does not fully characterize the training dynamics theoretically. In contrast, our study
provides a precise theoretical analysis of the entire training process in a toy model, uncovering
the sharp transition from 4-gram to induction head.

Main insights: Bietti et al. [7] emphasizes the the role of weight matrices as associative memories
and the impact of data distributional properties. Our analysis, on the other hand, identifies two
primary drivers of the transition: (1) the time-scale separation due to low- and high-order parameter
dependencies in self-attention; (2) the speed differences caused by the relative proportions of the two
components in the mixed target.

Comparison with Edelman et al. [14]. Edelman et al. [14] focuses on the transition from uni-
gram to bi-gram mechanisms in Markov Chain data. In contrast, our study investigates the transition
from 4-gram to in-context 2-gram mechanisms (induction head). Additionally, we theoretically
identify two primary drivers of the transition: (1) the time-scale separation due to low- and high-order
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parameter dependencies in self-attention; (2) the speed differences caused by the relative proportions
of the two components in the mixed target.

Appendix B. Experiments

1. Standard transformers on real-world natural language dataset.

Setup. We train a two-layer two-head standard transformer with Alibi RPE (without any
simplification) on the wikitext-2 dataset, a natural language dataset [18]. The transformer has an
embedding dimension D = 128 and FFN width W = 512. For this dataset, the input dimension is
d = 33278. We use a context length L = 200 and batch size B = 32. The parameters are initialized
with the scale 0.01. The model is trained for 1,500 epochs on 1 H100, using cross-entropy loss and
SGD with learning rate 0.1, and the initialization scale is 0.01. It is important to note that both
layers are trained simultaneously. The results are presented in Figure 2.

loss parameter norms ||p||, ||(Wx, Wo)||
10 0.5
300
81 0.4 250
6 —03 200 =
= =
4 0.2 150 =
2 0.1 100
0 r r r traenay : : : : : 50
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
epochs epochs

Figure 2: The loss and parameters for the experiment training a two-layer two-head standard
transformer (without any simplification) on the wikitext-2 dataset [18]. Here, ||p|| and
(W, Wq)|| denote the Frobenius norms of all positional encoding parameters and all
Wi, W¢ parameters across layers and heads, respectively, The results show that: the
loss exhibits a clear plateau; position encoding p’s are learned first; and the dot-product
structure W, W are learned slowly at the beginning, resembling an exponential increase;
additionally, as W, W are learned, the loss escapes that plateau. These findings closely
resemble the behavior observed in our toy model (Figure 1). This experiment provides
further support for our theoretical insights regarding the time-scale separation between
the learning of positional encoding and the dot-product structure.

2. Discrete token distribution in toy setting.
Setup. We modified the Gaussian input distribution used in the setup for Figure 1 to a boolean

input distribution, where each input token, where each input token x; 2 Unif ({£1}) fori € [L],
All other experimental setups remain the same as in the setup for Figure 1. The training dynamics of
Stage (ii) are presented in Figure 3. We can see clearly that the dynamical behavior of the learning
process is nearly the same as the one observed for Gaussian inputs in Figure 1.

10
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Partial loss L¢,(0(t)), Lm,(0(t))

0.12 0.0025

Total loss L(6(t)) Four parameters

0.020 2.0
Phase | 0.10 | 0.0020 — p (for Gs)
0015 Phase Il —~ 0.08 i = wy, (for G,)
= F0.0015 == .

oo Phase Il S S — Wk (for IHp))
A Phase IV \{ F0.0010 = . wy, (for |H2)

0.04 B A -
0.005 7 I 0.0005 05 D

0.02 ’ /
0.000 , . . - 0.00 + " " " " 0.0000 0.0 . " . .

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
iterations iterations iterations

Figure 3: Visualization of the total loss, partial loss, and the parameter dynamics, for the experiment
on discrete token distribution (Boolean, X ~ Unif({+1}%)) in our toy setting with
o = 1,w* = 049, 01,3 = 0.01, L = 40. The figure clearly shows that transformer
learns the 4-gram component first and then, starts to learn the induction head mechanism.
Notably, the entire dynamics exhibit four phases. These results are extremely similar to
that observed with Gaussian inputs, as shown in Figure 1.

3. Adam in high-dimensional toy setting.

Setup. We modified the setup for Figure 1 to employ a high-dimensional model (D = 100).
Specifically, the target is w* = 0.491p /D, the dot-produce parameters are Wy, Wg € RP, initial-
ized such that | Wi || r, [[Wq| F = 0init. Additionally, for the Adam optimizer, we use learning rate
5e-4. All other experimental setups remain the same as in the setup for Figure 1.

The training dynamics are depicted in Figure 4, where, for comparison, results using GD are
also presented. In both scenarios, the learning process begins with the 4-gram pattern, followed by
a gradual learning phase of the induction head mechanism. Notably, within the given number of
iterations, GD remains stuck in the plateau, whereas Adam successfully escapes that plateau.

B.1. Experimental details for Figure 1

In line with our theoretical setting, we examine a simplified two-layer transformer, as described in
Alibi RPE. Specifically, the first layer only contains RPE and the second layer consists of two heads:
one uses only RPE and the other employs only dot-product structure. The target function is specified
by (2) with o* = 1, w* = 0.49, oinit = 0.01, L = 40, and the distribution of each token is Gaussian,
Le., T; o (0,1) for i € [L]. Training is conducted by minimizing the squared loss (3) using online
SGD with learning rate 0.1 and batch size B = 1, 000. Following our theoretical analysis, the two
layers are trained sequentially:

* Training Stage I: only the first layer is trained for 100,000 iterations;

* Training Stage II: Subsequently, only the second layer undergoes training for another 100,000
iterations.

The dynamical behavior of the Training Stage II is visualized in Figure 1.
Compute resources. Real-world experiments on wikitext-2 are conducted on 1 A100 GPU,
while other synthetic experiments are conducted on CPU.

11
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Partial loss for the experiment comparing GD v.s. Adam optimizer in high-dimensional
settings (D = 100). In this setting, a larger D increases the difficulty of the transition
from the lazy regime (learning 4-gram) to the rich regime (learning induction head). The
results indicate that: (1) GD learns the 4-gram component first but becomes stuck in a
plateau when learning induction head; (2) Adam, while eventually transitioning from the
lazy regime (learning 4-gram) to the rich regime (learning induction head), experiences
a challenging transition characterized by multiple plateaus during learning induction

heads. This finding closely resembles the dynamics for GD.

Appendix C. Proofs in Section 3

C.1. Reparameterization

Despite the simplification, the transformer above is still too complicated for dynamics analysis. To
overcome this challenge, we adopt the reparametrization trick used in previous works [10, 16, 28].
Specifically, to express vanilla induction head, the first layer does not require DP, and the second
layer does not require RPE. Moreover, to express the 4-gram component fé4, we only need an
additional head without DP in the second layer. Therefore, we can reparameterize the model as

follows:

« The first layer. This layer has only one trainable parameter p(*!). In the unique head SA(I’I),

DP is removed by setting Wg’l) W(1 - 0, and we let W(1 D - <O 0).

10

sequence of this layer given by X(1) = X(©) 4 SALD (x(0)) = <x1, o ’xL),

s—1
Ys = Z T+ S <(
T=1

—pID(s—1-v

Y, YL

).

The output

where

&)

for s € [L], where p1Y used in RPE, is the unique trainable parameter in this layer.

* The second layer. This layer has 5 trainable parameters: w

(2,1)

2,2
) w%/ )ap(271)7

(2,2)
wi',

(2,2)
W

for parametrizing the two heads. The first head SAZY without DP is responsible to fit fé4,
while the second head SA??) without RPE is responsible to fit fﬁ_,z. Specifically, Wb —

12
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(2,1) (2,2)
Wz((m) =0, W‘(/Q’l) - (8 w() > ,p22) = O,W‘(/2’2) = (w‘a 8) Then the second

layer processes X @) and outputs the last token:

L—2 L—2 T
TF(X:0)= (D wiVyeme 3o wiPagp) | (©)
s=2 s=2

o= sm (( . p(2’1)(L —1— U))f;;)yzs , Ps = Sm ((wagQ)wng)xyfl)f:_zZ)V:S )

(2,1)

where y; is given by Eq. (5). pE1), Wy, (2.2) 1)(22)

are trainable parameters in SAZY while wg™ Wi

are trainable parameters in SAZ2),

The set of all six trainable parameters across both layers is denoted by 6.

C.2. Optimization Dynamics in Training Stage 1

In this subsection we focus on training the first layer of Transformer model to capture the token
ahead. For simplicity, we introduce some notations:

- 2,1 2,2 2,2 2,2
p::p(Ll)’ Z’)::Z)(271)7 g:: /LUE/ ), h:: wg/ )7 wK e ,u)( )7 U)Q = w(Q )’

and denote the initialization of each parameter as 5(0), p(0), g(0), wg(0), wx (0), h(0) respectively.
We initialize p(0), wx(0),wg(0) = 0 while the other parameters are all initialized at ojy;¢. In
this training stage, we only train p. And our goal, the proof of Lemma 2 can be deduced from which,
is to prove:
li p(t) = .
i PO = oo

In this stage, the s-th output token of the first layer is represented as

T
s—1 £ ~ s—1 T 3
(x7)2Z7 softmax (( —p(s—1-— T))T:1>
and the target function and output of transformer are as follows

F1(X) e
H%(ms)f:; softmax<(:va*2$s—1)s:2> ,

L-1
9(0) ((xT)f__llsoftmax ((—p(s — 1~ T))f__ll)T> softmax ((—p(0)(L — 1 - s))ggg)T
fo(X) = =2 L
h(O)(xs)f_—;softmax<(wK(0)wQ(0)xL  (2,)32} softmax ((—p(s — 1 — 7))3)) T ) )

<g<o>;_2 SEoE (i softmax((—p(s — 1= )i71)) x> |
h(0) g 20.55 s

13
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Since we only focus on p and the other parameters remain the initialization value, the loss
function can be simplified as

04*2 2 L-1 2
LO)= E P — softmax ( (—p(s — 1 —t))5=] z2
(9) X~N(0,1)L (14 a*)? L- 2 ; <szz7-.:|_1 (( p( ))t_l)tT>
29(0) o L-1 2 * K
t1 5 Ha*softmaX(( p(O)(L -1 s))SZQ)S:L_le_Q + C(w*, o*,w(0), h(0))

where the second term C(w*, o*, w(0), h(0)) is a constant depends on w*, o*, w(0) and h(0),
produced by calculating the error of the second head, i.e., loss of induction head, while the first term
is 4-gram loss.

We first define several functions that will be useful for calculation in this stage and the second
one:

Function 1. This function is purely defined for the calculation of %’. Denoted by ¢(p) :=

2
L2 (L1 els-1-7) dg
> (ZS_TH sz ) - Wefirstprove g5 < 0.

L2 (L1 j(s—1-7) 2
=3 ( > )
Zk 0€

7=1 \s=7+1

fs_(l_e_p)
T7=1 \s=7+1 1—e ple=1)

L=2 / L-1 517 \ 2

_ (1 _ P2 e?
2% L-1 efﬁ(sfl) 2
_ pT e

1 e Ze Z_H 1 — e—B(s—1)

2
— p 2pT
1 € Z ( eps 1) _1)
s=17+1

Then we take its derivative of p

2
dg - -
2(1 — —p 2pT
a3 )
2

L—-1 1
(1—e Z 2re?P ( 2 D) 1>
L—1 L—-1 =
1 —(s —1)ePls=1)
1_6 22621’7'( p(s— )(Z p(s—
N eP(s=1) — 1 el (eP(s=1) — 1)2
L—1 L-1  _3 _5 (s
Lo eh) Y o 1 R ) O Ve
eﬁ( ) 1 eﬁ(s_l) -1 (615(5_1) — 1)2
s=71+1 s=71+1
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dq ’s last factor can be formed as

(r—(r=1)e?) (eﬁ(s_l) —1) —(s— 1)eP(s—1)
eji(s—l) _ 1)2
_(T—l— 1—s)t5 P —(r =1t 2 — 7+ TTfl
- ep(s—1) — 1)2

wheret = e P > 1. Since s > 7 + 1, dp <0.
Function II. For simplicity, we define M (p) and its derivative m(p):

1 — efp(sz)

L-1 L-3
- —p(L—1—5)) = ps=-_¢ 7
SZ:; exp(—p( 5)) SZ:; exp—ps = ————

e ? — (L —2)e P2 4 (L —3)e Pl
m(p) := ) sexp(—ps) = ( ) = ep)z( ) -

S

N
|
w

Il
—

Function 11I. The third function is derivative of softmax. By straightfoward calculation, we
obtain:

() ’

isoftmaux;
d

p (p)?

t=L—l-s deT OeXp( )

Through the quantities and their properties above, we obtain the dynamic of p

& g(0)? %) 2a*g(0)  m(p)
it~ (L—2)217 (14 a*)(L —2) M(p)?
2a%g(0) 5

Z0+a)(L-2)°
which implies:

lim p(t) = +oo.

t—+o00

C.3. Optimization Dynamics in Training Stage II

In this training stage, the first layer is already capable of capturing the token ahead i.e. ys = z5_1.
And we train the parameters wy, , wy,, p, Wk in the second layer.
We start from proving the parameter balance lemma:

2 2
Lemma 5 (Restate of Lemma 3) [n Training Stage I1, it holds that wg 2) (t) = wg’g) (t).

15
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Proof Notice that
2 2
d (w(2’2) (t)—w(2’2) (t)> —p3? oL —i—wg’m oL

2dt K - Y 2,2 2.2
2dt awé) ) aw% )
o (22), (22) oL 2.2), (22) oL _
=T W Wk PYSECEINEE) T Wi Wg 9 (1022, =0.
(wQ w'? ) (wQ w'? )

Thus, we have:

2 2 2 2
wy? (1) —wi?” () = wi P (0) — wig?(0) = 0.

For simplicity, we still use the following notations:
pi=p1, gi=wy, W:iI=wgQ, h:i=wy.

and notations for initialization p(0), g(0), w(0), 2(0). Then the target function and output of Trans-

former can be formed as follows

J7(X) = 1+a* (xS)SL 2lsoftmax<(w T[T 1)L 1) ’
-
L-1 L-1
Ts—1)g_g softmax( (—p(L —1—s)),
g < [0 @ ((=n( Nrary

-
h- (xs)L 1softmax<(w2mLxS_1)8L;2l)

And the loss function is expressed as:

1
LO)== E * TF(x;0)|
)= 2Xmm[nfu @l
™ 2
( ~Tr-2—g (msfl)sL;;SOftmaX((_P(L_1_5))5L;21) ) 1
1 1 -1 %2 E=iNT L1 5 LT\ ?
+ iEX (HOC*(xS)S 2softmax( (w xLxSil)s:2 ) h-(xs)=5 SOftmaX( (wrpze—1),_, ) :

The total loss can naturally be divided into two parts:

ﬁ(@) = £G4 (9) + £||-|2 (9),
where

Lg,(0) = La,(p, 9)

1 ar L-1 L-1 N 2
1_’_79%—2 — g (Ts-1)5=9 Softmax((—p(L —1- 5))5:2) )7

2 X

16
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Ly, (0) = Lin, (w, )

1 ( : (mS)SL;;SOftmaX( (w*zwstfl):zl )T —h- (xs)fggzsoftmax( (waLxsfl)f;; )T)Q] .

:—]E _—
2 X\ 1+~

Notably, the dynamics of (p, ¢) and (w, h) are decoupled, which allows us to analyze them

separately.
Additionally, we denote the optimal values of the parameters as:
a* 1
* * * o a* W = ]
p +oo7 g 1 + a* ) w w Y 1 + a*

For the initialization scale and the sequence length, we consider the case:
Oinit = O(l) <1, L= Q(l/oinit) > 1.

C.3.1. DYNAMICS OF THE PARAMETERS FOR 4-GRAM

First, we define two useful auxiliary functions:

1 — efp(L72)
M(p) == Tl _ep

e ? — (L —2)e P2 4 (L —3)e Pl
m(p) = (1 _ efp)2 ’

Then, a straightforward calculation, combined with Lemma 7 and Lemma 8, yields the explicit
formulation of Lg, (¢) and the GF dynamics of p and g:

1 o \? 1 ,M(2p) ag 1
00 =3 (7)) + 37 0P T ra W @

dp 0L _ 9Lg, _ m(p) [ 2m(2p) o, M(2p) o’y }

i op o MEE mp) 7 M) i
dg 9L  0Lg, ~ o& 1 M(2p)
it~ ag 99 l1+arMp) ‘M@

Equivalently, the dynamics can be written as:

dp _ m(p)g ( . M(2p) m(2p)>,

dt ~ M(p)? M(p) T m)
dg 1 (. M(2p)
m‘M@< QM@)

Notice that at the initialization, it holds that ?i—f lt=0 > 0 and % lt=o0 > 0. Then we first define a

hitting time:

TV :=inf{t > 0:g(t) > g*}.

17
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Noticing g(0) = oinit < ¢* and the continuity, 77 > 0.

Our subsequent proof can be divided into two phases: a monotonic phase ¢ < TY, and a stable
convergence phase t > T7.

Part I. Analysis for the monotonic phase ¢ < 77.

dp mp)g (. M@2p)  m2p)\ mpyg (., 1+e?E2  m(2p)
dt_M(W( M (p) gm(p)>_M(p)2< L+er +gm(p)>’

dg _ 1 < . M<2p>) IO R T
i~ Mp)\?! TMp) ) M) \T T i e )
It is easy to see that p, g are monotonically increasing for ¢ < T}. We can choose sufficiently large

L=Q(1/p(0)) = Q(1/0init)

such that:
(L —3)e= 3P0 o=(L=5P(1) < 0.0001, Vp > oinit.
Then we can calculate the following three terms in the dynamics:

m(p) eP (1 — (L — 2)6*7’@73) + (L - 3)e*p(L72)) e P(1+&i(p)

M? (p) B 1 — e—P(L—2) - 1+ 52(29)
1 _ 1 — ¢—P(L—2) _ 1+ &(p)
M (p) l—eP l—eP’
m(2p) eP (1= (L — 2)e=2(L=3) 4 (I — 3)e~22(L=2))

m(p)  (L+e?)? (1~ (L—2)e Pt + (L - 3)erl2)

e P(1+&(p)
(1+e7?)*(1+&(p)’

where the error functions satisfy:

€1(p)], -+, &5 (p)| < 0.0001, ¥t > T7.

Then the dynamics satisfy:

dp _ e Pg(L+&(p) ( e e (14 G(0) )

it 1+&(p) 1+eP (1+eP)2(1 + &(1))
dg 1+&0) [, 14erl?
dt 1—eP g g 14+e¢eP )

When g < %%’ we have

d£ —P _ 2P
dg§2(e e )g.

18
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By define T 1/2 = inf{t > 0:g(t) > g*/2} and p := p(Tf/2), we have

lg*2 —g(0)2 + e — 1 4 In(eP® — 1)

In(e? —1) <
n(ef —1) < 4

then p p < O(+/p(0)), from which we infer that p barely increases when ¢ < T

@) 1/2°
9
or 0 <t <17,

dg 1 g

2> *

dt = 1—er0) [g 1+ e—p(O)]

* —p(0)) —g* —»(0) B —
g=g(1+e ) + [9(0) g (1+e )} eXP<162p<o>>

SO

* e—P(0)) _
Ty <(1—e ) <Z*((1(1++ e—P(g)) _9(5))> = 0 (2p(0))

For T7,, <t < T7,let py := p(T7),

/2

dg __9

1+a* 14+e—P
1.01 o
<

g
d —
L <1.01e” P(1—eP)yg (1 + 1+e P (e P)?)

R

1.01 *\ 2
pr—p(0) < 10 (O‘) (1 +em),

(1+eP)
then

4 1+ o*

and we take o* > 1.
Since for T1/2 <t< T

8
dp _ 1 1
727 —p x *_ *
at = 2% Y <g 1+emg)’

we have

1+ar\?
Tf—t1<0<(62p1—1)< ~ ))

Hence, putting the two part of time together we have

1+a*>2

N

Y <O <p(0) + (e*Pr — 1) (

_0 <amit + (e —1) (1 * O‘*>2> _ o(1).
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Part IL. Analysis for the convergence phase ¢ > 77.
We will prove that, in this phase, (p, g) keep in a stable region, and the convergence occurs.
Recall the dynamics:

dp _ m(p)g < . lgerd2 m(2p)>

dt  M(p)? 1+e? g m(p)
dg 1 . l+e Pl
i Mip)\7 I 1rer )
Using contradiction, it is easy to verify that for all ¢ > T7,
dp(?
<o <2, P

which means g has entered a stable region (although it is possible that g is non-monotonic), while
p keeps increase. In fact, if T . := inf{t > 0 : g(t) = 2g*}, then %]Téq . < 0, which leads to a
g9

contradiction. If Tgp/dt =1inf{t > 0: d’;—g) = 0}, then
L+e P72 m(2p) dg
*
g —4g — +g =0, — <0,
( 1+e7? m(p) qdp/dt dt
0

df e e mp)\ e m(2p)
a\? "I 1w g m(p) | 1+eP g m(p) ’

where the last inequality leads to a contradiction.
Thus, p(t) > p(T}) > p(0) = Tinit holds in this phase. Therefore, the dynamics

dp_e—pg<1+sl<p>><*_ L+e P2 geP(1 4 &(1)) )

dt 1+ 6&(p) Tte?  (I+e?)?2(l+&(1)
dg _1+&@p) (. 1+ert?
dt 1—eP ( - gHe—p) ;
also satisfy
&1(p)], -+ & (p)] < 0.0001, V¢ > T7.

For simplicity, we consider the transform:

u:=-e?,
Then the dynamics of v and g can be written as:

e QSR (1ol )

< = o) T+u | (I+u)2(1+&(p)
dg_1+§3(1?)(*_ 1+“L_2)
at 1-wu 14w )
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Notice that this dynamics are controlled by high-order terms. Consequently, we construct a
variable to reflect the dynamics of high-order term:

v:=ug* + (9" — 9).

Then the dynamics of « and v satisfy:

du  (1+&(p)uPg (v—ul?g gu(1+&4(p))
) ( " )

. 1+&(p L+u (T4 u)?(+&(p)
dv _ (1+&(p)uPgg” (v —utg  gu(l+&(p) > 1+&(p) (v — ub2)
dt L+ &(p) Ltu (w2 (1+6(0p) 1 —u? '
Now we consider the Lyapunov function about u, v:
Glu,0) = 5
U, V) : 5 (u +v )
Then it is straightforward:
dG  du n dv
2dt  dt | dt
udg(1+ & (p)) <v —utg  gu(l+&(P) >
1+ &(p) 1+u (1+u)*(1+&(p))
_ (L+&(p))uPuggt (v —ut g gu(l + &4(p)) )
1+ &(p) T+u  (1+u)?(1+&(0p)
1+&(p) L—2
T2 (v—u""?g)v.
By [&1], - ,]&5] < 0.0001, we have the following estimate for the Lyapunov dynamics:
4G _1001g 5 1 0001g> .y _ 0.999°
fbhedededat- S 29995
2dt S 14w 1+u (1+ u2)
0.99999" , 5  100lg%" =~ 100lg%"
+u "V T Tk “fu I ey

0.999 , 1.001g ;_,
12t 11—zt 4

By ul=% = ¢ P(L=5 < 0.0001 and 0 < u < e P(T1), we further have:

dG < 10029| 3] 0.99¢> , 0.999gg* 5 , 1.005929*| 3 0.999

2dt = 1+u Q+uw2” 11w U T w2
0.99¢2 , 099g9g* , , 099 g 99" 3

_ _ ~ 24101 .
(1+u)2u 1+u 0 12" * 1+u+(1+U)2 ol

By using the following inequalities:

2g* 1 /1. * 1.01 ¢3¢*
9%g |u3v|<2< 98 99" 2.2 gg)u4>

(1+u)? 1.011+u 1.98 (14 u)?
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g | 3 1 /0.99 , 101 ¢
<- (=@ SO
TS5 <1.01( Fujot+ El

0.99 (14 u
1 1 2
- 1+ (1 —
T + 2( +u) < 5
we have
dG g¢ 4, 101 g , 101 g¢* 4 198,
— < —0.99—— _ .
dt T+a2” T3060+uw" "1 +ap” 5"

Sinceg*<g<2g*,u>0f0rt>Tg,and11fT2u < %forogugl,wehave:

1 gg*

1 g2u2 92 9*2 u2
<
4(1—|—u)3+2(1+u)3 (14+wu)? <2(1+u)+ )

- g? 1+1 3 g
S4u2Z\2 4) 41 +uw?

then
dG(u, ) 92 4 29
— < —0.22—F—ut— =
dt (1+u)2u 5"
0.99 o 1.98 g*>
<——Zpp 02 I g 2
67 " 5" 65 Cw0)
which implies:
1
G(u(t),v(t)) <

Hence,

which implies:

e PO = yu(t) =0 (\2) , Vt>TY =0(1);

g(t)_g*zg*“(t)_”(t)<0<f7/;>+O<\}z>:(9(\2)7 vt > T9 — O). ©)

Notably, these proofs capture the entire training dynamics of p, g, from ¢ = 0 to ¢t = 77, and
finally to ¢ — 4-o0, providing a fine-gained analysis for each phase.
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C.3.2. DYNAMICS OF THE PARAMETERS FOR INDUCTION HEAD

Recall the partial loss about the induction head:

1 L—1
Lin, (0) = §EX

1
((ms)ﬁz_;softmax( (w*Qa:Lxs_l)

T - L2\ T\’
T ) —h- (xs)fzfsoftmax( (waLms_l)SZZ ) ) ] .

s=2

Technical simplification. Unlike Lg, (#), the denominators of the softmax terms softmax( (w*Q:L" LTs—1) L=t )
2

5=2
and softmax( (w xLacs,l)SL:_;
a closed-form expression for Ly, (€). In [S], the authors consider a simplified transformer model,
which replaces softmax(z1, - , 2,) with 1 exp(z1,-- -, zr). This approximation is nearly tight
when z1,---, 21 ~ 0. Notice that 1) w?zxs_1 ~ 0 holds near the small initialization, i.e., for
w = opit < 1. In fact, our analysis shows that w = ojyj; is maintained over a long period. 2)
w* = O(1), which implies that w?xz, 1 ~ 0 for most input sequence. Thus, we adopt the

simplification used in [5], resulting in the following approximation of the loss function:

11 = 1= 2
(1 — 13 ; exp(w*2:£L:U571)$s _ hﬁ ; exp(waL$sl)$s> ] .

Then by a straightforward calculation with Lemma 7, we can derive its explicit formulation:

) in £in, (@) depend on the input tokens X, making it hard to derive

1
L (0) = SEx

(1—dw*t)~2 1 n2

h(1 = (w? +w*?)?) 72
21 +a)?(L—2) " 202

(1+a*)(L—-2)

Ly (60) = (1— 4wz - (10)

Furthermore, we can calculate GF dynamics as follows:

dw h 3 h? 3
= 1_ 2 *227*' 2 *22 _ 1_4 4\—= 43
dt (1+Oé*)(L—2)( (w +w )) 2 (w +w ) w I — ( w) 2 w-,
dh 1 2 2.2y — L h 4\ — 1

— = 1-— * — 1-4 .

i~ A ran@_g LW He)) e s sl dw

For simplicity, we denote:

w* i=w*, h*:= 1
14+ ao*

Part I. The trend and monotonicity of w, h.
For simplicity, we denote the tuning time point of A:

, dh(t)
Th :=infl{t>0:—==0p.
9 m{ > ar }

In this step, we will prove the following three claims regarding the trend and monotonicity of
w, h, which are essential for our subsequent analysis:

* (P1.1) h initially increases beyond h*, and then remains above this value.

* (P1.2) w keeps increasing but always stays below w*.
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* (P1.3) h increases before T, but decreases after TQh.

(P1.1) h initially increases beyond h*, and then remains above this value.
We will prove that initially, h increases beyond h*, and keeps growing beyond h*. Define

T .= inf{t > 0: h(t) > h*},

we will prove that h remains above h* thereafter.
For simplicity, we denote

)= (1-a")77, ¢(a) = (1-a?)
then the dynamics holds:
dh  h o o [P P(2w?)
TR A A G [h T +wrd) —|—w*2)] !
dw  2h%w ' o (2w?) ]

_ 2 *2y
@ T oz o) [h o(w? + w?)

. d(2w?) »(2w?) . d(2w?) »(2w?)
Notice that P O < e R < w*, while P O > Wit W > w*.

We denote the first hitting time of h decreasing to h* as T}?*:
Th = inf {t >Th: h(t) < h*} .

If w(T}%) > w*, then at the first hitting time of w increasing to w*, %’ < 0, which leads to
a contradiction. If w(T,ﬁi) < w*, then %’T[g > 0, which also leads to a contradiction. Hence,

T}, = 400, which means that h always remains above h* for t > TJ.

(P1.2) w keeps increasing but always below w*.

We first prove that w always remains below w*. We denote the first hitting time of w increasing
to w* as ¢/, then it is not difficult to see %—"f |+ < 0, which leads to a contradiction.

Next we prove that w keeps increasing throughout. We define the following functions

1 _3
H = T o (1 — (w* + w*2)2> * (w? +w*?) — h(1 — 4w4)7% - 2u?
«
1 2 212\ 2 1H—3
Q=17 (1 @+ w??) * = (1-dwt)

If at some £, %’ reaches its zero point at the first time, then

dH

| =-rma- 4w*h)"2 - 2w(f) > 0,

t
which leads to a contradiction. Hence ¢ does not exist and w keeps increasing.
(P1.3) After the tuning point t > T%, h will be monotonically decreasing.
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The first sign-changing zero point of  is T2, then Q(T%) = 0. H(T{) > 0,

dQ
dt

1
= (= @)+ w?)) 7 - 2u(TR) - ! (TF)
T2h + «

- [(1 — ((T3)? +w™)?) 7 (w(T3)? + ) = (1~ 4w(TH)) - dw(T3)?) .

We can see that TQh is a sign-changing zero point only if

(1 — 4w(T§)*) - (w(T])? + w*?)

<1,
(1 = (w(T3)? + w*?)?) - dw(T3)?
1.e. we have:
o 3 — 4wt — /(4w** — 3)2 — 16w** _ w*
w(Th) > we := \/ \/(8w*2 ) > (11)

when w* = O(1).

Next we show that h keeps decreasing after Tzh. We denote the first zero point of % as t°, then
Q(t°) = 0. Since 42,0 > 0, we have %—?ho > (0 which leads to a contradiction. Hence ¢° does not
exist and h keeps decreasing after TQh.

Part I1. Estimation of T, T}, and the tight estimate of w(t) before T2

At the first stage,1 we prove that h grows first and w barely increases. If w < 0.0lw* and

1 (-wh)72

hS (1-0.014u*4)~ 2

B

dh -1 1 1 1
— > —— |h(1—0.01%*") "2 — 1—w)2
dt L—Q[( W) e
1 1— w)~z 1 1— w2 —t
=z " ( w>21* < ( w)21*h(o)eXp 1
L+ao* (1 - 0.014w*?)~z |1 +a" (1 -0.014w*) "2 (L —2)(1 - 0.01w**)2
(12)
For h increasing from h(0) to H%’ it takes
h wdy 2 1
' < (1-0.01w*")2(L —2)In -
1_ (w2
(1—0.014w*4)%
1
<2(L-2)(1 - 5w*“) = O(L). (13)
For 0 <t < T},
d 1
?Z: < m(l — 4w*4)_% . ’lU*2 - 4w.

Hence, it take O(L log(1/0oinit)) for w to reach 0.01w*, which allows sufficient time for A to reach

1
TTar beforehand.
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Therefore, there exists a small constant £(w(0), w*) only depends on w(0) and w* such that & is
dominated by 1 + (w(0), w*) times right hand side of (12), from which we deduce that (13) is a
tight estimation of T instead of an upper bound, i.e. 7' = ©(L).

We then give a bound for h(T%). By % =0,

h * (1 — 471)4)% = r(w
M)/ < = )

Moreover, r(w) is an decreasing function of w for w > w°, and w® is a function of w*, we have
h(TH)/h* < r(w®) := R(w*),
where w® is a function about w*, defined in Eq. (11). It is clear that
Rw*=0)=1, R(w*=0)=0.

Then using the continuity of R/(-) (in [0, 0.4]), there exists ¢ > 0 such that |R'(w*)| < 0.04
holds for all 0 < w* < ¢, which implies:

*

R(w*) = R(0) -|-/ R’(v)dv <14+0.04w*, 0<w*<ec.
0

ie., if w* = O(1), then R(w*) < 1 + 0.04w*. This implies:
h* < h(t) < (14 0.04375w*)h*, YVt > TP (14)

By some computation, we can prove that w°(w*) is an increasing function of w*, and is always
above %w*. Thus we obtain a lower bound of w® for the estimation of lower bound of T}

For the second stage, h barely changes and w starts to grow exponentially fast, and we use the
tight estimation of Tlu;z := inf {t >0:w(t) > %w*} to give a lower bound of T: 2h During this

stage,

dw 2w 3 3
— < 1— 2 *2\2\—35 | 2 *2_1_447
dt u+mV@—m[( (w” w77 - (w4 w™) = (1 - 4wt
2w 4,3 2
< 1 —4w* 2w,
(Trampz g1z
and w has upper bound
4uw*?(1 —4w*4)%
<w(0 t]. 15
w S wl )eXp< (1+o)(L—-2) (15)

Hence, the lower bound of time for w to reach %w* is

(14 a*)%(L —2) w*

4'[1}*2(1 _ 411}*4)% ln(Qw(O))’

h
1u}2*T1 =
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and lower bound for Tl%

14+ a*)?In(=&—
( ) (2w(og) —In <1— (1—w*4)%)
4w*?(1 — 4w**)2

(L —2)(1 + a*)? 1\ o ((1+a")2L 1
> 16w*2 8 <w(0)> =9 ( w8 (Uinit)) ' 1o

On the other hand, we estimate the lower bound of w. Let

172 = (L =2)

3

Clz)=(1—-2%)"2z,

then
3

C'(z) =3(1—22) 322+ (1—2%)"2>1, 0O<z<l,
C"(z) = 1523(1 — 22) "% + 62(1 —22) "% +32(1—22)"2 >0, 0<z<l1.

C'(x) is a monotonically increasing convex function on (0, 1) and C(x) > x.
Using conclusions above, before w? increases to w*? for some 5>0,

2y(w*)+B-1
C(w? + w*?)
> C((2y(w*) + Bw?)
> C(2y(w*) - w?) + C(Bw?) (Lemma 10)
> y(w*) - C(2w?) + Buw?  (C(az) > aC(x), fora > 1)

then we have
(C(w? + w*?) — y(w*) - C(2w?))

> 2w B w*2
T ()L -2) y(w) + B

and
Qﬁ 1 U)*Qt)
y(w*) + B (1 + a*)?(L — 2) '

w = w(0) exp <
Take 3 = 2, then

w*?t

(1+a")2(L -2

w = w(0) exp ( )> vt € [0, T7)5]- (17)

From the above inequality, (16) is not only an upper bound, but a tight estimation of 7 /2, ie.

1+ a*)%L 1
ij2=© ( w*? tos Tinit ) )

Part II. Dynamics after the critical point 7 /2

For simplicity, we consider:
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and denote v* := w*2, h* = T +a* . Then we focus on the dynamics of v and h.

Additionally, we introduce a few notations used in this part:

T 1

¢(x) == A= 22 P(x) = A—2)72

Then the dynamics of v and g are:

dv doh , .
Pl . (h o(v+wv )—hng(ZU)),
dh 1

i m(h*¢(v +0*) — h¢(2v)).

Step I1.1. A coarse estimate of the relationship between v and h.

It is easy to verify the monotonicity that d” > (0 and dh < 0 for ¢t > t5. Additionally, we have

Yw+v)  h glv+v)
o) T e

Then by Monotone convergence theorem, we obtain:

lim v=v*  lim h=~h"
t—+o00 t—+o00

Step 11.2. Convergence analysis by Lyapunov function.

This step aims to establish the convergence rate of v and h.

In fact, the dynamics of v, h can be approximately characterized by their linearized dynamics. In
contrast, the dynamics of p, g are controlled by high-order terms. Therefore, the proof for v and A is
significantly simpler than the corresponding proof for p and g. We only need to consider the simplest
Lyapunov function:

R 1 *\2 *\2
G(v,h) .—2<(v v)* 4+ (h h))
It is easy to verify that

(-8 (@ S

=4vh(v — v*) (K (v + v*) — (21/)) + (h— h*)(h*d)(v v*) — hip(2v))
=4vh(v — v*) (gb(v +v*)(h* — h) — h(¢(v + v*
+ (h = B) (" = ) (v + %) + A (v + v*

= — 40h?(v* = v)($(v +v") = $(2v)) —P(v + v )(h h*)2
+ dvhe(v + v*) (v — ™) (K" — h) + h(h — K*) (Y (v 4+ v*) — P (2v)).

V\_/

Let v* < 0.3 = O(1). Recalling (11) and (14), as well as the monotonicity about p and w, we
have:

’U*

T < v(t) <v*;  h* < h(t) < 1.02h*, V> TP
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Combining these estimates with the properties of ¢ and 1), we have the following straight-forward
estimates:

2
Bv+ ") — H(20) = () (0" —v) = (ff;;;fm@* T
Blv+ %) < B(20") < L
N 1
Yo +0*) = w10 > 1;
B +0%) = 90) =W ~1) = (e~ 1) < L' (" —)

Thus, we have the following estimate for the Lyapunov function:

dG(v,h)
(L—2)7dt
4
< T R R*2 (a2 _1*)2
< 1'02vh (v—0v%)*—=(h—h")
+ 4.080*h* (v — v*)(h* — h) + 1.3 - 1.020*h*(v* — v)(h — h*)
4

= 1702@*/1*2(@ —v*)%2 = (h — h*)? 4 5.410*h*(v* — v)(h — h*)

< — 3.920" 0 (0 — )2 — (h— h*)? + (9.61}*2h*2(v o)y z(h _ h*)2>
1

< —(3.92—9.6-0.3)v*h**(v — v*)? — 0.25(h — h*)? < —Zv*h*QG(v, h).

Consequently, we have the exponential bound for all ¢ > T}

*Lx2
G(o(t), h(t)) < G (v(T3), h(T)) exp <—4(”Lh_2)<t - T&)) , V> TR
This can imply:
w*2 __mh
(10~ w2 = (1) - e (-0 (08 )

=0 (h*2 exp <—Q (m») .Vt > T

(w(t) = w")? = (w(Tf) — w") exp (Q (M))

=0 (w*Qexp <—Q <m>>> , Yt > TR

Notably, these proofs capture the entire training dynamics of w, h, from t = 0 to t = T}, to
t= Tf‘;Q < T2h, and finally to ¢ — 400, providing a fine-gained analysis for each phase.

(18)
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C.4. Proof of Theorem 4

This theorem is a direct corollary of our analysis of the entire training dynamics in Appendix C.3.1
and C.3.2, leveraging the relationship between the parameters and the loss.

Proof of Phase I (partial learning).

By combining (7) and (9), it follows that: Lg,(6(0)) = ©(1). Moreover,

1
L, (0(t) =0 <t> , t>T7=0(1).
Thus, there exists a sufficiently large 71 = ©(1), such that:
Lg,(0(T1)) < 0.01Lg, (6(0)).
Recalling our proof in Appendix C.3.2, for ¢ < Tlh/2 = O(L), it holds that h(t) < Oinit +
Ot/(1+a*)L)),w(t) < omit + o(t/((1+ a*)L)). Additionally, since 71 = O(1) < O(L), it

follows that

w(TI) = O(Uinit + 1/L) < 204t K w*, h(TI) = O(Uinit + 1/L) < 204t K h*.

Substituting these estimates into (10), we obtain by Lipschitz continuity of £y, :
0L, ‘ 0L,

|Lin, (0(T1)) — Lin, (6(0))] < 20init <’ D oh >

< 207 <0 <(+1Q*)L> o ((1+1a*)L)>

1
< 0.01L44,(0(0)).

Thus,
Ly (0(T1)) > 0.99Lp, (6(0)).

Proof of Phase Il (plateau) + Phase 11l (emergence).
First, (15) and (17) ensures that w grows exponentially before ¢ < T1“;2:

w*2 4w*2(1 _ 4w*4)%
Oinit €XP <1+@*>2(L—2)t < w < Oinit €XP (1+@*)(L—2) t].

Thus, we have:

w*?t (1+a*)’L 1
o) =omeon (0 () ) <o (HE e (o))

Now we define the observation time T}, := TJ* = ©(L). Notably,

h(T,) = h*, w(T,) < 0.01w™.
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The exponential growth of w further implies:

1+ a*)’L 1
T, o= {t > 0: w(t) >0.01w*}:@<( +0*‘2) log <G )>
w init

Regarding the dynamics of h, by (14), we have |h(t) — h(T,)| < 0.02|h(T})|, Yt = To.

Now we incorporate these facts (0 < w(7,) < 0.01w*, 0 < w(T§y;) < 0.01w*, |h(T4%;) —
MT,)| < 0.02|h(T})|, h(T,) = h*) into the loss (10). By the Lipschitz continuity of Ljy,, it is
straightforward that

Ling (0(T§1)) > 0.99L(6(T:).

Thus, we have established the lower bound for 77;:

Tip == inf {t > T, : Li, (0(t)) < 0.99 - L, (6(Ty)) }

w 1+a*)?L 1
>To.01:Q<( w*2) log(a. t>)

Combining the loss (10) and our parameter estimates (18), we obtain:

= o () 2o (Ve (1)

This implies the upper bound for 7i1:

Tiar o= inf {¢ > T, : L3 (0(1)) < 0.01 - Ly, (0(T5)))
=T}, + O (0" + 1)*Llog(1/aini) /w*?) = O ((* + 1)*L1og(1 /o) /u"?)

Combining the fact 711 < 7711, the lower bound for 711, and the uppper bound for 7111, we obtain
the two-sided bounds for both 771 and 1111:

Tit, Tt = © ((a* +1)2L1og(1/oimit) /w*2> .

Proof of Phase IV (convergence).
By combining the loss (7), (10), and our parameter estimates (9), (18), it follows that:

ta0)=0(1). amem=0(ow (-0 (55 55))) >

Appendix D. Useful Inequalities
Lemma 6 (Corollary A.7 in Edelman et al. [13]) For any 0,60' € R%, we have

|softmax(#) — softmax(0")||1 < 2[|0 — |

Lemma7 [E exp(aXY)Z2=(1-a?)"Y%a<1.
X,Y.Z

[
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Proof [Proof of Lemma 7]

2 e Lo 1oo 1.9
exp(aXY)Z* | — exp(—iX - §Y - §Z ) dXdYdZ
T

Lemma 8 Let M(p) := L=e="®2 then it holds that

l—eP

2 M(2p)
2 M(p)?

Hsoftmax((—p(L -1- 5))5L;11) H

Definition 9 (weakly majorizes) A vector x € R" is said to weakly majorize another vectory €
R", denoted by x <, y, if the following conditions hold:

1. Ele T < Ele y forallk =1,2,...,n—1,
2. Z?:1 Lh = Z?:1 Yhi)

where x; and yp;) are the components of x and 'y, respectively, arranged in decreasing order.

Lemma 10 (Weighted Karamata Inequality) Ler f: R — R be a convex function, and let x =
(1,22, ...,2n) and 'y = (y1,Y2,...,Yn) be two vectors in R". If x weakly majorizes 'y (i.e.,
X <w Y), and wi,wa, . . ., wy are non-negative weights such that

n
E w; = 1,
i=1

then the following inequality holds:

=1 =1
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