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ABSTRACT

Partial differential equations (PDEs) are used to describe a variety of physical
phenomena. Often these equations do not have analytical solutions and numerical
approximations are used instead. One of the common methods to solve PDEs is
the finite element method. Computing derivative information of the solution with
respect to the input parameters is important in many tasks in scientific comput-
ing. We extend JAX automatic differentiation library with an interface to Fire-
drake finite element library. High-level symbolic representation of PDEs allows
bypassing differentiating through low-level possibly many iterations of the under-
lying nonlinear solvers. Differentiating through Firedrake solvers is done using
tangent-linear and adjoint equations. This enables the efficient composition of fi-
nite element solvers with arbitrary differentiable programs. The code is available
at github.com/IvanYashchuk/jax-firedrake.

1 INTRODUCTION

There is a growing interest in differentiable physical simulators and including them as components
in machine learning systems. Recent work in this field includes either implementing physical sim-
ulators from scratch in popular deep learning frameworks (Holl et al., 2020) or developing new
software specifically for physical simulations (Hu et al., 2019). In the case of simulators consisting
of the partial differential equation (PDE) solving differentiating through all the operations of the
PDE solver is not scalable and heavy memory-bound. For PDEs, explicit expressions are available
for deriving efficient functions needed for automatic differentiation (AD). In this work, we integrate
Firedrake PDE library with JAX AD library. As a result, it is possible to compose Firedrake models
with arbitrary programs that JAX can differentiate.

2 BACKGROUND

The variational formulation also known as weak formulation allows finding the solution to problems
modeled with PDEs using an integral form. Having the integral form gives simpler equations to
solve using linear algebra methods over a vector space of infinite dimension or functional space.
In finite element methods (FEM), the variational formulation of the problem is transformed into a
system of nonlinear equations for unknown finite element function coefficients that can be solved
numerically.

Let a system of PDEs that describe the physics of the problem of interest be written as
F (u,m) = 0, (1)

where u is the solution and m represents parameters that affect the solution. The solution u can be
written as an implicit function u(m) of the parameters m, then we can formulate its derivative du

dm .
In this work we consider the non-linear systems of PDEs that are discretized using the finite element
method.

Let J(u,m) be a functional of interest, it represents any quantity that depends on u and m. Then
the problem is computing the derivatives dJ(u(m),m)

dm . It can be done using finite difference methods,
tangent-linear or adjoint approaches.
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The tangent-linear system is the same idea as the forward mode of automatic differentiation, while
the adjoint approach corresponds to the reverse mode automatic differentiation. In (Farrell et al.,
2013), authors describe the techniques that can be used to derive possibly time-dependant tangent-
linear and adjoint models. Having the solution to the tangent-linear system we can evaluate the
gradient of any functional. However, in many applications the functional is fixed and the goal is
to calculate the derivative with respect to any parameter the chosen functional depends on. In this
situation, the better approach is to use the adjoint equations for derivative computation. Higher-order
derivatives can be derived by composing tangent-linear and adjoint models (Maddison et al., 2019).

Firedrake library Firedrake is an automated system for the solution of partial differential equa-
tions using the finite element method. It uses the UFL language to express variational problems
(Rathgeber et al., 2016; Alnaes et al., 2014). Then this high-level problem representation is com-
piled into low-level C code for assembling vectors and matrices for the nonlinear solver. Nonlinear
and linear solvers are based on PETSc library (Balay et al., 2019). UFL representation of the resid-
ual equation makes it straightforward to generate both tangent-linear and adjoint equations using
built-in automatic differentiation. However, pure UFL implementation of derivative calculation is
restricted only to one variational problem. Time-dependent problems are solved as a sequence of
variational problems and to differentiate through this sequence program execution should be traced.
Two libraries interface directly with Firedrake for automated derivative computation: dolfin-adjoint
(Mitusch et al., 2019) and tlm adjoint (Maddison et al., 2019). So it is not necessary to use dolfin-
adjoint and relying only on UFL for adjoint and tangent-linear derivation is possible if the Firedrake
model is a single variational problem or time-stepping is implemented in JAX. However, we chose
to depend on dolfin-adjoint library here as it also makes possible to calculate shape derivatives for
domain optimization and boundary conditions derivatives.

3 AUTOMATICALLY DIFFERENTIATING PDE SOLVERS IN JAX

JAX is a numerical computing library that includes forward and reverse mode automatic differen-
tiation. JAX uses terminology and concepts from differential geometry, namely pushforward map
for the forward mode AD and pullback map for the reverse mode AD. These maps can also be de-
scribed in terms of the Jacobian: The pushforward is Jacobian-vector product (JVP), and pullback
is Jacobian-transpose-vector product, or vector-Jacobian product (VJP).

Given a function f : Rn → Rm, the Jacobian matrix of f evaluated at an input point x ∈ Rn,
denoted ∂f(x), is often thought of as a matrix of partial derivatives of size m × n. Alternatively,
∂f(x) represents a linear map, which maps the tangent space of the domain of f at the point x to
the tangent space of the codomain of f at the point f(x):

∂f(x) : Rn → Rm.
This map is called the pushforward map of f at x. Given input point x ∈ Rn and a tangent vector
v ∈ Rn, we get back an output tangent vector in Rm. This mapping, from (x, v) pairs to output
tangent vectors, is called the Jacobian-vector product, and written as

(x, v) 7→ ∂f(x)v.

The pullback map of f at x is
∂f(x)∗ : Rm → Rn.

The Jacobian-transpose-vector product is then

(x, v) 7→ ∂f(x)∗v.

Referring back to the tangent-linear model in the context of PDEs, there Jacobian-vector product
corresponds to

(m, v) 7→ du

dm
v := u̇v ∈ Rm, (2)

where u̇v is the solution to the following tangent-linear equation with right hand side defined as the
derivative of F (u,m) with respect to m in the direction v ∈ Rn:

∂F (u,m)

∂u
u̇v = −∂F (u,m)

∂m
· v. (3)
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Note that compared to the standard tangent-linear equations the unknown in the equation 3 is not
the full solution Jacobian matrix but its multiplication with a vector, making the problem easier to
solve.

Jacobian-transpose-vector product function is defined as

(m, v) 7→ du

dm

∗
v := −∂F (u,m)

∂m

∗
· λv ∈ Rn,

where λv is the solution to the following adjoint equation with right hand side given by the cotangent
vector v ∈ Rm:

∂F (u,m)

∂u

∗
λv = v. (4)

Compared to the standard adjoint equations here we do not need any information about the functional
and it is AD’s system responsibility to compose VJPs for reverse pass and supply cotangent vectors.

Internally, JAX functions are called Primitives and for each Primitive Jacobian-vector products
(JVP), vector-Jacobian products (VJP), batching and just-in-time compilation rules are imple-
mented. To make JAX work with external functions we need to implement new Primitives together
with functions that define vector-Jacobian and Jacobian-vector products.

We have implemented a new Primitive function for the Firedrake solver that transforms inputs and
outputs to appropriate data types and registers associated JVP and VJP functions that solve tangent-
linear and adjoint equations respectively.

4 NUMERICAL EXAMPLES

For demonstrating the implementation we consider the Poisson equation as the forward model prob-
lem. Let Ω ⊂ Rn, n ∈ {1, 2, 3} be an open, bounded domain and consider the following problem:

−∇ · (κ∇u) = f in Ω,

u = 0 on ∂Ω,
(5)

where u : Ω→ R is the unknown temperature, κ ∈ R is the thermal conductivity, f : Ω→ R is the
source term (f(x) > 0 corresponds to heating and f(x) < 0 corresponds to cooling).

The variational form of the equation 5: Find u ∈ H1
0 (Ω) such that

(κ∇u,∇v)L2(Ω) − (f, v)L2(Ω) = 0, for all v ∈ H1
0 (Ω), (6)

where H1
0 (Ω) is the space of functions vanishing on ∂Ω with square integrable derivatives.

(· , ·)L2(Ω) denotes the L2-inner product.

Optimal control of the Poisson equation We solve the standard problem in PDE-constrained op-
timization: the optimal control of the Poisson equation. Physically, this problem can be interpreted
as finding the best heating or cooling of a surface to achieve a desired temperature profile. The
problem is to minimize the following functional

min
f
J(f) :=

1

2

∫
Ω

(u− ud)2 dx+
γ

2

∫
Ω

f2 ds, (7)

where u is the solution to the Poisson equation 6, ud is the desired temperature profile, f is the
unknown control function, γ is the regularization parameter. Additionally, f is constrained to bounds
a, b such that a ≤ f ≤ b.
The unknown function f is discretized in a finite element space such that values of f at each cell of
the mesh are the optimization parameters. As the mesh is refined the number of parameters in the
optimization problem increases.

For our example we take the desired temperature to be ud = 1
2π2

1
1+4γπ4 sin(πx) sin(πy), γ = 10−6,

and f is bounded between 0 and 0.8. L-BFGS-B optimizer from SciPy library (Virtanen et al., 2020)
is used with the gradient values calculated by JAX. Convergence is achieved after 38 iterations with
gradient norm tolerance 10−10.
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# parameters # iterations ‖κopt − κtrue‖ ‖uopt − utrue‖
FEM 981 31 1.356112e-1 2.711260e-4
NN 47 89 5.362389e-2 1.999892e-4

Table 1: Performance comparison between FEM and NN representation of the coefficient.

Coefficient field inversion with neural network representation Representing the model param-
eters at each point in space quickly leads to a large number of model parameters. The neural network
can be used as an approximation to the spatially varying coefficients characterized by the weights
of the neural network. The optimization problem is then posed in the space of network-parameters
rather than at each cell of the computational grid. In the task of topology optimization, it was shown
that neural network representation of the solution to the optimization problem helps to find a better
design in many cases (Hoyer et al., 2019). In (Berg & Nyström, 2017), the authors studied neural
network representation stability for inverse problems.

In this example, we demonstrate the use of neural nets to parameterize inputs of Firedrake solver
and demonstrate the differentiability of the pipeline. The problem is to minimize the following
functional

min
κ
J(κ) :=

1

2

∫
Ω

(u− um)2 dx+
γ

2

∫
Ω

|∇κ|2 dx, (8)

where u is the solution to the Poisson equation 6, um is the noisy temperature measurement, κ is the
unknown material coefficient field, γ is the regularization parameter.

Here, for the simplicity, we choose feed-forward neural network with single hidden layer with 10
neurons and tanh activation function. We set up synthetic measurements temperature data with
spatially varying coefficient κ = 1 + x + y and adding small noise to the true temperature state.
L-BFGS-B optimizer is used with gradient norm tolerance 10−6. Number of iterations and L2-
norm of the difference between the optimal solution and the true one are summarized in Table 1. In
this problem, finite element representation overfits to the noise present in the measurements while
neural network representation can recover material coefficient function closer to the true function
and visually seems to be unaffected by the noise (Figure 1).

5 CONCLUSIONS

We describe an extension to JAX that allows a seamless inclusion of PDE solvers written in Firedrake
into arbitrary JAX differentiable programs, including, but not limited to, deep learning models,
Bayesian probabilistic models. Ongoing work targets further integration of Firedrake code with JAX
allowing just-in-time compilation and GPU computing and better interoperability of JAX parallelism
with Firedrake’s MPI parallelism.

Noisy temperature field Inverted κ, FEM Inverted κ, NN

Figure 1: Conductivity field inversion from noisy measurements using FEM and NN representations
of optimization parameters.
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A DERIVATIONS OF TANGENT-LINEAR AND ADJOINT EQUATIONS

Begin with the non-linear system of equations given by equation 1. Then, taking the total derivative
of the above equation with respect to the parameter m gives

d

dm
F (u,m) =

∂F (u,m)

∂u

du

dm
+
∂F (u,m)

∂m

dm

dm
= 0 (9)

and re-arranging gives the tangent-linear equation associated with the PDE equation 1

∂F (u,m)

∂u

du

dm
= −∂F (u,m)

∂m
. (10)

The tangent equation is always linear.

Consider a functional J(u,m). Let Ĵ(m) := J(u(m),m) be a pure function of m. Applying the
chain rules gives the expression for the gradient

d

dm
Ĵ(m) =

∂J(u,m)

∂u

du

dm
+
∂J(u,m)

∂m
. (11)

Having the solution to the tangent-linear equation 10 we can evaluate the gradient of any functional
Ĵ . However, in many applications the functional is fixed and the goal is to calculate the derivative
with respect to any parameter the chosen functional depends on. In this case, the alternative is the
adjoint approach.

Suppose the tangent-linear system is invertible. Then rewrite the solution to the equation 10 as

du

dm
= −

(
∂F (u,m)

∂u

)−1
∂F (u,m)

∂m
(12)

and substitute du
dm into the expression for the gradient of Ĵ :

dĴ(m)

dm
= −∂J(u,m)

∂u

(
∂F (u,m)

∂u

)−1
∂F (u,m)

∂m
+
∂J(u,m)

∂m
. (13)

Take the adjoint of the above equation:

dĴ(m)

dm

∗

= −∂F (u,m)

∂m

∗(
∂F (u,m)

∂u

)−∗
∂J(u,m)

∂u

∗
+
∂J(u,m)

∂m

∗
. (14)

Now define the new variable as

λ =

(
∂F (u,m)

∂u

)−∗
∂J(u,m)

∂u

∗
. (15)

This new variable is called the adjoint variable and it is the solution of the adjoint equation:

∂F (u,m)

∂u

∗
λ =

∂J(u,m)

∂u

∗
. (16)

The adjoint equation is always linear.
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