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Abstract

Recently, contrastive learning has shown ef-
fectiveness in fine-tuning pre-trained language
models (PLM) to derive sentence representa-
tions, which pulls augmented positive examples
together to improve the alignment while push-
ing apart irrelevant negatives for the uniformity
of the whole representation space. However,
previous works mostly sample negatives from
the batch or training data at random. It may
cause sampling bias that improper negatives
(e.g., false negatives and anisotropy represen-
tations) will be learned by sentence represen-
tations, and hurt the uniformity of the repre-
sentation space. To solve it, we present a new
framework DCLR to alleviate the influence of
sampling bias. In DCLR, we design an instance
weighting method to punish false negatives and
generate noise-based negatives to guarantee the
uniformity of the representation space. Exper-
iments on 7 semantic textual similarity tasks
show that our approach is more effective than
competitive baselines. Our codes and data will
be released to reproduce all the experiments.

1 Introduction

As a fundamental task in the natural language pro-
cessing (NLP) field, unsupervised sentence repre-
sentation learning (Kiros et al., 2015; Hill et al.,
2016) aims to derive high-quality sentence rep-
resentations that can benefit various downstream
tasks, especially for low-resourced domains or com-
putationally expensive tasks, e.g., zero-shot text
semantic match (Qiao et al., 2016), large-scale se-
mantic similarity comparison (Agirre et al., 2015),
and document retrieval (Le and Mikolov, 2014).
As a widely used semantic representation ap-
proach, pre-trained language models (PLMs) (De-
vlin et al., 2019) have achieved remarkable perfor-
mance on various NLP tasks. However, several
studies have found that the original sentence rep-
resentations derived by PLMs are not uniformly
distributed with respect to directions, but instead oc-
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Figure 1: The distribution of cosine similarity of a ran-
dom input sentence and 255 in-batch negatives. It is
evaluated by the SimCSE model (Gao et al., 2021). We
can see that half of the negatives have higher similarities
with the input.

cupy a narrow cone in the vector space (Ethayarajh,
2019), which largely limits their expressiveness. To
address this issue, contrastive learning (Chen et al.,
2020) has been adopted to refine PLM-derived sen-
tence representations. It pulls semantically close
neighbors together to improve the alignment, while
pushing apart non-neighbors for the uniformity of
the whole representation space. In the learning
process, both positive and negative examples are
involved in contrast with the original sentence. For
positive examples, previous works apply data aug-
mentation strategies (Yan et al., 2021) on the origi-
nal sentence to generate highly similar variations.
While, negative examples are commonly randomly
sampled from the batch or training data (e.g., in-
batch negatives (Gao et al., 2021)), due to the lack
of ground-truth negatives.

Although such a negative sampling way is sim-
ple and convenient, it may cause sampling bias
and affects the sentence representation learning.
First, the sampled negatives are likely to be false
negatives that are indeed semantically close to the
original sentence. As shown in Figure 1, given a
random input sentence, about half of in-batch neg-
atives have a cosine similarity above 0.7 with the
original sentence based on the SimCSE model (Gao
et al., 2021). It may hurt the semantics of the sen-



tence representations by simply pushing apart sam-
pled negatives. Second, due to the anisotropy prob-
lem (Ethayarajh, 2019), the sampled negatives are
from the narrow representation cone spanned by
PLMs, which cannot fully reflect the overall se-
mantics of the representation space. Hence, it is
sub-optimal for learning the uniformity objective
of sentence representations.

To address the above issues, we propose a debi-
ased contrastive learning framework for unsuper-
vised sentence representation learning. The core
idea is to improve the random negative sampling
strategy for alleviating the sampling bias prob-
lem. First, in our framework, we design an in-
stance weighting method to punish the sampled
false negatives during training. We incorporate a
complementary model to evaluate the similarity
score between each negative and the original sen-
tence, and assign lower weight for negatives with
a higher similarity score. In this way, we can de-
tect semantically-close false negatives and further
reduce their influence. Second, we randomly initial-
ize new negatives based on random Gaussian noise
to simulate sampling within the whole semantic
space, and devise a gradient-based algorithm to op-
timize the noise-based negatives towards the most
nonuniform points. By learning to contrast with the
nonuniform noise-based negatives, we can extend
the occupied space of sentence representations and
improve the uniformity of the representation space.

To this end, we propose DCLR, a general frame-
work towards Debiased Contrastive Learning of
unsupervised sentence Representations. In our
approach, we first initialize the noise-based neg-
atives from a Gaussian distribution, and leverage a
gradient-based algorithm to update the new nega-
tives by considering the uniformity of the represen-
tation space. Then, we adopt the complementary
model to produce the weights for the new negatives
and randomly sampled negatives, where the false
negatives will be punished. Finally, we augment
the positive examples via dropout (Gao et al., 2021)
and combine it with the negatives for contrastive
learning. We demonstrate that our DCLR outper-
forms competitive baselines on semantic textual
similarity (STS) tasks using BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019).

Our contributions are summarized as follows:

(1) To our knowledge, our approach is the first
attempt to reduce the sampling bias in contrastive
learning of unsupervised sentence representations.

(2) We propose DCLR, a debiased contrastive
learning framework that utilizes an instance weight-
ing method to punish false negatives and generates
noise-based negatives to guarantee the uniformity
of the whole representation space.

(3) Experimental results on seven semantic tex-
tual similarity tasks show the effectiveness of our
framework.

2 Related Work

Sentence Representation Learning Learning sen-
tence representations (Kiros et al., 2015; Hill et al.,
2016) is to generate universal sentence representa-
tions for downstream tasks. Previous works can be
categorized into supervised (Conneau et al., 2017;
Cer et al., 2018) and unsupervised approaches (Hill
etal., 2016; Li et al., 2020). Supervised approaches
rely on annotated datasets (e.g., NLI (Bowman
et al., 2015; Williams et al., 2018)) to train the
sentence encoder (Cer et al., 2018; Reimers and
Gurevych, 2019). Unsupervised ones consider
deriving sentence representations without labeled
datasets. As a simple but effective approach, pool-
ing word2vec embeddings (Mikolov et al., 2013)
has been widely used. Recently, to leverage the
strong potential of PLMs (Devlin et al., 2019), sev-
eral works propose to alleviate the anisotropy prob-
lem (Ethayarajh, 2019; Li et al., 2020) of PLMs
via special strategies, e.g., flow-based approach (Li
et al., 2020) and whitening method (Huang et al.,
2021). Besides, recent works (Wu et al., 2020; Gao
et al., 2021) adopt contrastive learning to refine the
representations of PLMs.

Contrastive Learning Contrastive learning has
been popular in the computer vision area with solid
performance (Hadsell et al., 2006; He et al., 2020).
Usually, it requires data augmentation strategies
e.g., random cropping and image rotation (Chen
et al., 2020; Yan et al., 2021) to produce a set of
semantically related positive examples for learn-
ing, and randomly samples negatives from the
batch or whole dataset. For sentence representation
learning, contrastive learning can achieve a bet-
ter alignment-uniformity balance. Several works
adopt back translation (Fang and Xie, 2020), token
shuffle (Yan et al., 2021) and dropout (Gao et al.,
2021) to augment positive examples for sentence
representation learning. However, the quality of the
randomly sampled negatives is usually neglected.

Virtual Adversarial Training Virtual adversarial



training (VAT) (Miyato et al., 2019; Kurakin et al.,
2017) perturbs a given input with learnable noise to
maximize the divergence of the model’s prediction
with the original input, then utilizes the perturbed
examples to improve the generalization (Miyato
et al., 2017; Madry et al., 2018). A class of VAT
methods can be formulated into solving a min-max
problem, which can be achieved by multiple pro-
jected gradient ascent steps (Qin et al., 2019). In
the NLP field, several works apply adversarial per-
turbations in the embedding layer, and report its
effectiveness on text classification (Miyato et al.,
2017), machine translation (Sun et al., 2020), and
NLU (Jiang et al., 2020) tasks.

3 Preliminary

This work seeks to make use of unlabeled cor-
pus for learning effective sentence representations
that can be directly utilized for downstream tasks,
e.g., semantic textual similarity task (Agirre et al.,
2015). Given a set of input sentences X =
{z1,29,...,zy}, our goal is to learn a represen-
tation h; € R for each sentence x; in an unsu-
pervised manner. For simplicity, we denote this
process with a parameterized function h; = f(x;).
In this work, we mainly focus on using BERT-
based PLMs (Devlin et al., 2019; Liu et al., 2019)
to generate sentence representations. Following
existing works (Li et al., 2020; Yan et al., 2021),
we fine-tune the PLMs on the unlabeled corpus via
our proposed unsupervised learning method. For
each sentence x;, we encode it by the fine-tuned
PLMs and take the representation of the [CLS]
token from the last layer as its representation h;.

4 Approach

Our proposed framework DCLR is to reduce the
influence of sampling bias in contrastive learning
paradigm for sentence representation learning. In
this framework, we devise a noise-based negatives
generation strategy to reduce the bias caused by the
anisotropy PLM-derived representations, and an in-
stance weighting method to reduce the bias caused
by false negatives. Concretely, we initialize new
negatives based on a Gaussian distribution and it-
eratively update these negatives by non-uniformity
maximization. Then, we utilize a complementary
model to produce weights for all negatives (i.e., ran-
domly sampled and the noise-based ones). Finally,
we combine the weighted negatives and augmented
positive examples for contrastive learning. The

overview of our DCLR is presented in Figure 2.

4.1 Generating Noise-based Negatives

We aim to generate new negatives beyond the im-
mediate sentence representation space, to alleviate
the bias derived from the anisotropy problem of
PLMs (Ethayarajh, 2019). For each input sentence
x;, we first initialize k£ noise vectors from a Gaus-
sian distribution as the negative representations:

{h1,ha, - h} ~ N(0,02), (1)

where o is the standard variance. Since these vec-
tors are randomly initialized, they are uniformly
distributed within the whole semantic space. By
learning to contrast with these new negatives, it is
beneficial for the uniformity of sentence represen-
tations.

To further improve the quality of the new nega-
tives, we consider iteratively updating the negatives
to capture the non-uniformity points within the
whole semantic space. Inspired by VAT (Miyato
et al., 2017; Zhu et al., 2020), we design a non-
uniformity loss maximization objective to produce
gradients for improving the negatives. The non-
uniformity loss is denoted as the contrastive loss
between the new negatives {h} and the positive
representations of the original sentence (h;, h;") as:

€Sim(hi 7hj—)/7'u

R - eSim(ng,hy) /Ty
Zhje{h} esim( )/ T

Lu(hi, b, {h}) = —log )

where 7, is a temperature hyper-parameter and
T+

R iRallNIRS
Based on it, for each negative h; € {h}, we opti-
mize it as

sim(h;, h;") is the cosine similarity

hj =T(hj + Bg(h;)/lg(hj)ll2),  3)
g(hy) = i, Lo (hi, b {h}), “4)

where [ is the learning rate, || - ||2 is the L2-norm.
g(h ;) denotes the gradient of ﬁj by maximizing the
non-uniformity loss between the positive represen-
tations and the noise-based negatives. In this way,
the noise-based negatives will be optimized into
more non-uniform points of the whole semantic
space. By learning to contrast with these negatives,
the uniformity of the representation space can be
improved, which is essential for effective sentence

representations.
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Figure 2: The overview of the DCLR framework with noise-based negatives and the instance weighting strategy.
We show the case that a false negative is punished by assigning the weight 0.

4.2 Contrastive Learning with Instance
Weighting

Despite the above noise-based negatives, we also
follow existing works (Yan et al., 2021; Gao et al.,
2021) that adopt other in-batch representations as
negatives {ﬁ_} However, as discussed before, the
sampled negatives may contain examples that have
similar semantics with the positive example (i.e.,
false negatives). To alleviate this problem, we pro-
pose an instance weighting method to punish the
false negatives. Since we cannot obtain the true
labels or semantic similarities, we utilize a com-
plementary model to produce the weights for each
negative. In this paper, we adopt the state-of-the-art
SimCSE (Gao et al., 2021) as the complementary
model. ! Given a negative representation 2~ from
{h~} or {h} and the representation of the original
sentence h;, we utilize the complementary model
to produce the weight as

Oa SimC(hi7 h’_) > ¢

: _ (5)
1,simg(hi, h™) < ¢

ap— =
where ¢ is a hyper-parameter of the instance
weighting threshold, and sim¢c(h;, h™) is the co-
sine similarity score evaluated by the complemen-
tary model. In this way, the negatives that have
higher semantic similarity with the representations
of the original sentence will be regarded as a false
negative and will be punished by assigning the
weight 0. Based on the weights, we optimize
the sentence representations with a debiased cross-
entropy contrastive learning loss function as

esim(hi,hj)/T

L=—log o))

(6)

'For convenience, we utilize SIimCSE on BERT-base and
RoBERTa-base model as the complementary model.

Yh-efhpulh-y Q- X €

where 7 is a temperature hyper-parameter. In our
framework, we follow SimCSE (Gao et al., 2021)
that utilizes dropout to augment positive examples
hj. Actually, it can be changed according to vari-
ous positive augmentation strategies, which will be
discussed in Section 6.1.

4.3 Overview and Discussion

In this part, we present the overview and discus-
sions of our DCLR approach.

4.3.1 Overview of DCLR

Our framework DCLR contains two important
phases. In the first phase, we generate noise-based
negatives as the expansion of the negative set. Con-
cretely, we first initialize a set of new negatives via
a random Gaussian noise. Then, we incorporate a
gradient-based algorithm to adjust the noise-based
negatives by maximizing the non-uniform objec-
tive. After ¢ iterations, we can obtain the noise-
based negatives that reflect the most nonuniform
points within the whole semantic space. In the
second phase, we adopt a complementary model
(i.e., SImCSE) to compute the semantic similarity
between each negative and the representation of the
original sentence, and produce the weights using
Eq. 5. Finally, we augment the positive examples
via dropout and utilize the negatives with corre-
sponding weights for contrastive learning using
Eq. 6.

4.3.2 Discussion

As mentioned above, our approach aims to reduce
the sampling bias about the negatives, and is agnos-
tic to various positive data augmentation methods
(e.g., token cutoff and dropout). Compared with
traditional contrastive learning methods (Yan et al.,
2021; Gao et al., 2021), our proposed DCLR ex-
pands the negative set by introducing noise-based



negatives {h}, and adds a weight term a,— to pun-
ish false negatives. Since the noise-based nega-
tives are initialized from a Gaussian distribution
do not correspond to real sentences, they are high-
confident negatives to broaden and smooth the rep-
resentation space. By learning to contrast with
them, the learning of the contrastive objective will
not be limited by the anisotropy representations
derived from PLMs. As a result, the sentence rep-
resentations can generalize into broader semantic
space, and the uniformity of the representation se-
mantic space can be improved. Besides, our in-
stance weighting method also alleviates the false
negative problem caused by the randomly sampling
strategy. With the help of a complementary model,
the false negatives that have similar semantics as
the original sentence will be detected and punished.

5 Experiment - Main Results

5.1 Experiment Setup

Following previous works (Kim et al., 2021; Gao
etal., 2021), we conduct experiments on 7 standard
STS tasks. For all these tasks, we use the SentEval
toolkit (Conneau and Kiela, 2018) for evaluation.

Semantic Textual Similarity Task We evaluate on
7 STS tasks: STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017) and SICK-Relatedness (Marelli et al.,
2014). These datasets contain pairs of two sen-
tences, whose similarity scores are labeled from 0
to 5. The relevance between gold annotations and
the scores predicted by sentence representations is
measured in the Spearman correlation. Following
the suggestions from previous works (Gao et al.,
2021; Reimers and Gurevych, 2019), we directly
compute the cosine similarity between sentence
embeddings for all STS tasks.

Baseline Methods We compare DCLR with com-
petitive unsupervised sentence representation learn-
ing methods, consisting of non-BERT and BERT-
based methods:

(1) GloVe (Pennington et al., 2014) averages
GloVe embeddings of words as the representation.

(2) USE (Cer et al., 2018) utilizes Transformer
model and learns the objective of reconstructing
the surrounding sentences within a passage.

(3) CLS, Mean and First-Last AVG (Devlin
et al., 2019) adopt the [CLS] embedding, mean
pooling of token representations, average repre-
sentations of the first and last layers as sentence

representations, respectively.

(4) Flow (Li et al., 2020) applies mean pooling
on the layer representations and maps the outputs
to the Gaussian space as sentence representations.

(5) Whitening (Su et al., 2021) uses the whiten-
ing operation to refine representations and reduce
dimensionality.

(6) Contrastive (BT) (Fang and Xie, 2020) uses
contrastive learning with back-translation as data
augmentation to enhance sentence representations.

(7) ConSERT (Yan et al., 2021) explores var-
ious text augmentation strategies for contrastive
learning on sentence representation learning.

(8) SG-OPT (Kim et al., 2021) proposes a con-
trastive learning method with a self-guidance mech-
anism for improving BERT sentence embeddings.

(9) SimCSE (Gao et al., 2021) proposes a sim-
ple contrastive learning framework that utilizes
dropout as perturbation for data augmentation.

Implementation Details We implement our model
based on Huggingface’s transformers (Wolf et al.,
2020). We start from pre-trained checkpoints of
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019). Following SimCSE (Gao et al., 2021), we
use 1,000,000 sentences randomly sampled from
Wikipedia as the training corpus. During training,
we train our models for 3 epoch with temperature
7 = 0.05 using an Adam optimizer (Kingma and
Ba, 2015). For BERT-base and RoBERTa-base,
the batch size is 256 and the learning rate is 3e-
5. For BERT-large and RoBERTa-large, the batch
size is 128 and learning rate is le-5. For each
batch, we generate 1 x batch_size noise-based
negatives as the common negatives of all instance
in it, and the standard variance is 1. We update the
noise-based negatives four times, and the learning
rate is le-3. The instance weighting threshold ¢
is set as 0.9. We keep the default dropout layer in
PLMs. We evaluate the model every 150 steps on
the development set of STS-B and keep the best
checkpoint for evaluation on test sets.

5.2 Main Results

To verify the effectiveness of our framework
on PLMs, we selected BERT-base, BERT-large,
RoBERTa-base, and RoBERTa-large as the base
model. Table 1 shows the results of different meth-
ods on 7 STS tasks.

Based on the results, we can find that the non-
BERT methods mostly outperform native PLM rep-
resentation based baselines (i.e., CLS, Mean and



[ Models [ STS12 STSI3 STSI4 STSI5 STSI6  STS-B_ SICK-R | Avg.

Non-BERT GloVe (avg.)' 55.14  70.66 5973 6825 63.66 58.02  53.76 | 61.32
USE' 6449 6780 6461 7683  73.18 7492  76.69 | 71.22

CLST 2154 3211 2128 3789 4424 2030 4242 | 31.40

Mean' 30.87 59.89  47.73 6029  63.73 4729 5822 | 52.57

First-Last AVGY. | 39.70 5938  49.67 66.03 66.19 5387  62.06 | 56.70

BERT-base +ow? 5840 67.10 60.85  75.16 7122  68.66 6447 | 66.55
+whitening 5783 66.90 6090 7508 7131 6824  63.73 | 66.28

+Contrastive(BT)! | 5426  64.03 5428  68.19 6750 6327 6691 | 62.63

+ConSERT 64.64 7849  69.07 7972 7595 7397 6731 | 7274

+SG-OPT' 66.84  80.13 7123 81.56 77.17 7723  68.16 | 74.62

+SimCSE 66.89 8191  72.80  79.04 7891 7633  69.06 | 74.99

+DCLR (Ours) 6834 8340 7486 81.63 7938 7891 7170 | 76.89

CLST 2744 3076 2259 2998 4274 2675 4344 | 31.96

Mean' 27.67 5579 4449 5167 6188  47.00  53.85 | 4891

First-Last AVG 5773 61.17 61.18  68.07 7025 5959 6034 | 62.62

BERT-large +low' 62.82 7124 6539 7898 7323 7272 63.77 | 70.07
+whitening 6434 7460  69.64 7468 7590  72.48 60.8 | 70.35

+Contrastive(BT)! | 52.04  62.59 5425  71.07 6671 6384  66.53 | 62.43

+ConSERT 70.69 8296  74.13 8278  76.66 7753 7037 | 76.45

+SG-OPT' 67.02 7942 7038 81.72 7635 76.16 7020 | 74.46

+SimCSE 67.73  83.67 74.65 8294 7759 7847  72.81 | 76.84

+DCLR (Ours) 69.01 8370 7583 81.99 7945 80.01 7512 | 77.87

CLST 1667 4557 3036  55.08 5698 4541 61.89 | 44.57

Mean' 32.11 5633 4522 6134 6198 5453 6203 | 53.36

First-Last AVG 40.88 5874 4907 6563 6148 5855  61.63 | 56.57

RoBERTa-base | hitening? 4699 6324 5723 7136 6899 6136 6291 | 61.73
+Contrastive(BT)! | 6234  78.60  68.65 7931 7749  79.93 7197 | 74.04

+SG-OPT' 6257 7896 6924 7999  77.17 7760 6842 | 73.42

+SimCSE 68.84 82.00 7326 81.93 8027 80.04 6844 | 76.40

+DCLR (Ours) 68.43 8275 7449 8282 8099 8041  69.51 | 77.06

CLST 1925 2297 1493 3341 3801 1252  40.63 | 25.96

Mean' 33.63 5722 4567  63.00 61.18  47.07 5838 | 52.31

First-Last AVG 5891  58.62 6144  69.05 6523 5938  58.84 | 61.64

RoBERTa-large | +whitening 64.17 7392 7106 7640 7487  71.68 58.49 | 70.08
+Contrastive(BT)! | 57.60  72.14 6225 7149 7175 77.05  67.83 | 68.59

+SG-OPT' 6429 7636 6348  80.10 7660 78.14 6797 | 73.13

+SimCSE 7026  82.97 7504 8438 8124 8133 7026 | 77.93

+DCLR (Ours) 7089 8324 7641 8421 81.02 8176 7238 | 78.56

Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation). The best performance and the
second-best performance methods are denoted in bold and underlined fonts respectively. }: results from Kim et al.
(2021); 1: results from Gao et al. (2021); all other results are reproduced or reevaluated by ourselves.

First-Last AVG). The reason is that directly utiliz-
ing the PLM native representations is prone to the
anisotropy problem. Among non-BERT methods,
USE outperforms Glove. A potential reason is that
USE encodes the sentence using the Transformer
model, which is more effective than simply averag-
ing GloVe embeddings.

For other PLM-based approaches, first, we can
see that flow and whitening achieve similar results
and outperform the native representations based
PLMs by a margin. The reason is that the two
methods adopt special strategies to refine the repre-
sentations of PLMs. Second, approaches based on
contrastive learning mostly outperform other base-
lines. The reason is that contrastive learning can

enhance both the alignment between semantically
related positive pairs and the uniformity of the rep-
resentation space using negative samples, resulting
in better sentence representations. Furthermore,
SimCSE performs the best among all the baselines.
It indicates that dropout is a more effective positive
augmentation method than others since it rarely
hurts the semantics of the sentence.

Finally, DCLR performs better than all baselines
in most settings. Contrastive learning based base-
lines mostly utilize in-batch negatives to learn the
uniformity, but the randomly negative sampling
strategy may lead to sampling bias, such as false
negatives and anisotropy representations. Different
from these methods, our framework adopts an in-



Model STS-Avg.
BERT-base+Ours 76.89
w/o Noise-based Negatives 76.17
w/o Instance Weighting 75.78
BERT-base+Random Noise 75.22
BERT-base+Knowledge Distillation 75.05
BERT-base+Self Weighting 73.93

Table 2: Ablation and variation studies of our approach.
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Figure 3: Performance comparison using different posi-
tive augmentation strategies.
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stance weighting method for punishing false nega-
tives and a gradient-based algorithm for generating
noise-based negatives towards the most nonuni-
form points. In this way, the influence of false neg-
atives can be alleviated and our model can better
learn the uniformity. It finally reduces the sampling
bias and improves the model performance.

6 Experiment - Analysis and Extension

In this section, we continue to study the effective-
ness of our proposed DCLR.

6.1 Debiased Contrastive Learning on Other
Methods

Since our proposed DCLR is a general framework
for contrastive learning of unsupervised sentence
representations, it can be applied to other methods
for this task that have various positive data aug-
mentation strategies. Thus, in this part, we conduct
experiments to examine whether our framework
can bring improvements with the following positive
data augmentation strategies: (1) Token Shuffling
that randomly shuffles the order of the tokens in
the input sequences; (2) Feature/Token/Span Cut-
off (Yan et al., 2021) that randomly erase features/-
tokens/token spans in the input; (3) Dropout that is
similar to SimCSE (Gao et al., 2021). It is worth
noting that we only need to revise the negative sam-
pling strategies in existing methods with few lines
of code to implement our DCLR.

Uniformity loss

— Ours
-3.0 SimCSE

0 2000 4000 6000 8000 10000 12000
Training steps

Figure 4: The uniformity loss of DCLR and SimCSE
on the validation set of STS-B during training.

As shown in Figure 3, our DCLR can boost the
performance of all these methods, it demonstrates
the generality and effectiveness of our framework.
Furthermore, DCLR with Dropout outperforms all
other models. It indicates that dropout is a more ef-
fective approach to augment high-quality positives,
and is also more appropriate for our approach.

6.2 Ablation and Variation Study

Our proposed DCLR devises an instance weight-
ing method to punish false negatives and generates
noise-based negatives to improve the uniformity of
the whole representation space. To verify their ef-
fectiveness, we conduct an ablation study for each
of the two components on 7 STS tasks. As shown
in Table 2, removing each component would lead
to a performance drop. It indicates that the instance
weighting method and the noise-based negatives
are both important in our framework. Besides, re-
moving the instance weights results in a larger per-
formance drop. The reason may be that the false
negative problem in these tasks is more serious.
Random Noise, Knowledge Distillation, and Self
Instance Weighting are the variations of our frame-
work. (1) Random Noise directly generates noise-
based negatives without gradient-based optimiza-
tion; (2) Knowledge Distillation (Hinton et al.,
2015) utilizes SimCSE as the teacher model to
distill knowledge into the student model during
training; (3) Self Instance Weighting adopts the
model itself as the complementary model. From
Table 2, we can see that these variations don’t per-
form as well as DCLR. The reason may be that
these approaches are not proper for this task.

6.3 Uniformity Analysis

Uniformity is an essential characteristic for sen-
tence representations, which describes how well
the representations are uniformly distributed. To
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Figure 5: Performance of our DCLR w.r.t. different
amounts of training data.

validate the improvement of the uniformity of
our framework, we compare the uniformity loss
between DCLR and SimCSE. Following Sim-
CSE (Gao et al., 2021), we utilize the following
function to evaluate the uniformity:

CLuni form = log E 6—2Hf(fﬂz')—f(ﬂﬂj)||27

i.%.d.
ZiXj ~ Pdata

where pgq, 1 the distribution of all sentence rep-
resentations. As shown in Figure 4, the uniformity
loss of DCLR is much lower than that of SimCSE
in the almost whole training process. Furthermore,
we can see that the uniformity loss of DCLR di-
minishes faster than SimCSE as training goes, the
reason may be that our DCLR samples noise-based
negatives to learn the uniformity better.

6.4 Performance under Few-shot Settings

To validate the reliability and the robustness of
DCLR under the data scarcity scenarios, we con-
duct few-shot experiments. We train our model via
different amounts of available training data from
100% to the extremely small size (i.e., 0.3%). We
report the results evaluated on STS-B and SICK-R.

As shown in Figure 5, our approach achieves
stable results under different proportions of the
training data. Under the most extreme setting
with 0.3% data proportion, the performance of our
model drops by only 9 and 4 percent on STS-B
and SICK-R, respectively. The results reveal the
robustness and effectiveness of our approach under
the data scarcity scenarios. Such characteristics are
important in real-world application.

6.5 Hyper-parameters Analysis

For hyper-parameters analysis, we study the impact
of instance weighting threshold ¢ and the propor-
tion of noise-based negatives k. The ¢ is the thresh-
old to punish false negatives, and k is the ratio of

79 — STS-B
78 + SICK-R
77

76
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74
73
7
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Figure 6: Performance comparison w.r.t. ¢ and k.

the noise-based negatives to the batch size. Both
hyper-parameters are important in our framework.
Concretely, we evaluate our model with varying
values of ¢ and k on the STS-B and SICK-R tasks
using the BERT-base model.

Weighting threshold. Figure 6a shows the influ-
ence of the instance weighting threshold ¢. For the
STS-B tasks, ¢ has a significant effect on the model
performance. Too large or too small ¢ may lead
to a performance drop. The reason is that a larger
threshold cannot achieve effective punishment and
a smaller one may cause misjudgment of true nega-
tives. In contrast, the SICK-R is insensitive to the
changes of ¢. The reason may be that the problem
of false negatives is not serious in this task.

Negative proportion. As shown in Figure 6b,
our DCLR performs better when the number of
noise-based negatives is close to the batch size. Un-
der these circumstances, the noise-based negatives
are enough to learn the uniformity of the whole
semantic space but not hurt the alignment, so that
DCLR can perform well.

7 Conclusion

In this paper, we proposed DCLR, a debiased con-
trastive learning framework for unsupervised sen-
tence representation learning. Our core idea is to
alleviate the sampling bias caused by the random
negative sampling strategy. To achieve it, in our
framework, we incorporated an instance weighting
method to punish false negatives during training
and generated noise-based negatives to alleviate
the influence of anisotropy PLM-derived represen-
tation. Experimental results have shown that our ap-
proach outperforms several competitive baselines.
In the future, we will explore more effective
paradigms to reduce the bias in contrastive learning
of sentence representations. We will also consider
applying our approach to other representation learn-
ing tasks, such as graph representation learning.
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