
Debiased Contrastive Learning of Unsupervised Sentence Representations

Anonymous ACL submission

Abstract

Recently, contrastive learning has shown ef-001
fectiveness in fine-tuning pre-trained language002
models (PLM) to derive sentence representa-003
tions, which pulls augmented positive examples004
together to improve the alignment while push-005
ing apart irrelevant negatives for the uniformity006
of the whole representation space. However,007
previous works mostly sample negatives from008
the batch or training data at random. It may009
cause sampling bias that improper negatives010
(e.g., false negatives and anisotropy represen-011
tations) will be learned by sentence represen-012
tations, and hurt the uniformity of the repre-013
sentation space. To solve it, we present a new014
framework DCLR to alleviate the influence of015
sampling bias. In DCLR, we design an instance016
weighting method to punish false negatives and017
generate noise-based negatives to guarantee the018
uniformity of the representation space. Exper-019
iments on 7 semantic textual similarity tasks020
show that our approach is more effective than021
competitive baselines. Our codes and data will022
be released to reproduce all the experiments.023

1 Introduction024

As a fundamental task in the natural language pro-025

cessing (NLP) field, unsupervised sentence repre-026

sentation learning (Kiros et al., 2015; Hill et al.,027

2016) aims to derive high-quality sentence rep-028

resentations that can benefit various downstream029

tasks, especially for low-resourced domains or com-030

putationally expensive tasks, e.g., zero-shot text031

semantic match (Qiao et al., 2016), large-scale se-032

mantic similarity comparison (Agirre et al., 2015),033

and document retrieval (Le and Mikolov, 2014).034

As a widely used semantic representation ap-035

proach, pre-trained language models (PLMs) (De-036

vlin et al., 2019) have achieved remarkable perfor-037

mance on various NLP tasks. However, several038

studies have found that the original sentence rep-039

resentations derived by PLMs are not uniformly040

distributed with respect to directions, but instead oc-041
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Figure 1: The distribution of cosine similarity of a ran-
dom input sentence and 255 in-batch negatives. It is
evaluated by the SimCSE model (Gao et al., 2021). We
can see that half of the negatives have higher similarities
with the input.

cupy a narrow cone in the vector space (Ethayarajh, 042

2019), which largely limits their expressiveness. To 043

address this issue, contrastive learning (Chen et al., 044

2020) has been adopted to refine PLM-derived sen- 045

tence representations. It pulls semantically close 046

neighbors together to improve the alignment, while 047

pushing apart non-neighbors for the uniformity of 048

the whole representation space. In the learning 049

process, both positive and negative examples are 050

involved in contrast with the original sentence. For 051

positive examples, previous works apply data aug- 052

mentation strategies (Yan et al., 2021) on the origi- 053

nal sentence to generate highly similar variations. 054

While, negative examples are commonly randomly 055

sampled from the batch or training data (e.g., in- 056

batch negatives (Gao et al., 2021)), due to the lack 057

of ground-truth negatives. 058

Although such a negative sampling way is sim- 059

ple and convenient, it may cause sampling bias 060

and affects the sentence representation learning. 061

First, the sampled negatives are likely to be false 062

negatives that are indeed semantically close to the 063

original sentence. As shown in Figure 1, given a 064

random input sentence, about half of in-batch neg- 065

atives have a cosine similarity above 0.7 with the 066

original sentence based on the SimCSE model (Gao 067

et al., 2021). It may hurt the semantics of the sen- 068
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tence representations by simply pushing apart sam-069

pled negatives. Second, due to the anisotropy prob-070

lem (Ethayarajh, 2019), the sampled negatives are071

from the narrow representation cone spanned by072

PLMs, which cannot fully reflect the overall se-073

mantics of the representation space. Hence, it is074

sub-optimal for learning the uniformity objective075

of sentence representations.076

To address the above issues, we propose a debi-077

ased contrastive learning framework for unsuper-078

vised sentence representation learning. The core079

idea is to improve the random negative sampling080

strategy for alleviating the sampling bias prob-081

lem. First, in our framework, we design an in-082

stance weighting method to punish the sampled083

false negatives during training. We incorporate a084

complementary model to evaluate the similarity085

score between each negative and the original sen-086

tence, and assign lower weight for negatives with087

a higher similarity score. In this way, we can de-088

tect semantically-close false negatives and further089

reduce their influence. Second, we randomly initial-090

ize new negatives based on random Gaussian noise091

to simulate sampling within the whole semantic092

space, and devise a gradient-based algorithm to op-093

timize the noise-based negatives towards the most094

nonuniform points. By learning to contrast with the095

nonuniform noise-based negatives, we can extend096

the occupied space of sentence representations and097

improve the uniformity of the representation space.098

To this end, we propose DCLR, a general frame-099

work towards Debiased Contrastive Learning of100

unsupervised sentence Representations. In our101

approach, we first initialize the noise-based neg-102

atives from a Gaussian distribution, and leverage a103

gradient-based algorithm to update the new nega-104

tives by considering the uniformity of the represen-105

tation space. Then, we adopt the complementary106

model to produce the weights for the new negatives107

and randomly sampled negatives, where the false108

negatives will be punished. Finally, we augment109

the positive examples via dropout (Gao et al., 2021)110

and combine it with the negatives for contrastive111

learning. We demonstrate that our DCLR outper-112

forms competitive baselines on semantic textual113

similarity (STS) tasks using BERT (Devlin et al.,114

2019) and RoBERTa (Liu et al., 2019).115

Our contributions are summarized as follows:116

(1) To our knowledge, our approach is the first117

attempt to reduce the sampling bias in contrastive118

learning of unsupervised sentence representations.119

(2) We propose DCLR, a debiased contrastive 120

learning framework that utilizes an instance weight- 121

ing method to punish false negatives and generates 122

noise-based negatives to guarantee the uniformity 123

of the whole representation space. 124

(3) Experimental results on seven semantic tex- 125

tual similarity tasks show the effectiveness of our 126

framework. 127

2 Related Work 128

Sentence Representation Learning Learning sen- 129

tence representations (Kiros et al., 2015; Hill et al., 130

2016) is to generate universal sentence representa- 131

tions for downstream tasks. Previous works can be 132

categorized into supervised (Conneau et al., 2017; 133

Cer et al., 2018) and unsupervised approaches (Hill 134

et al., 2016; Li et al., 2020). Supervised approaches 135

rely on annotated datasets (e.g., NLI (Bowman 136

et al., 2015; Williams et al., 2018)) to train the 137

sentence encoder (Cer et al., 2018; Reimers and 138

Gurevych, 2019). Unsupervised ones consider 139

deriving sentence representations without labeled 140

datasets. As a simple but effective approach, pool- 141

ing word2vec embeddings (Mikolov et al., 2013) 142

has been widely used. Recently, to leverage the 143

strong potential of PLMs (Devlin et al., 2019), sev- 144

eral works propose to alleviate the anisotropy prob- 145

lem (Ethayarajh, 2019; Li et al., 2020) of PLMs 146

via special strategies, e.g., flow-based approach (Li 147

et al., 2020) and whitening method (Huang et al., 148

2021). Besides, recent works (Wu et al., 2020; Gao 149

et al., 2021) adopt contrastive learning to refine the 150

representations of PLMs. 151

Contrastive Learning Contrastive learning has 152

been popular in the computer vision area with solid 153

performance (Hadsell et al., 2006; He et al., 2020). 154

Usually, it requires data augmentation strategies 155

e.g., random cropping and image rotation (Chen 156

et al., 2020; Yan et al., 2021) to produce a set of 157

semantically related positive examples for learn- 158

ing, and randomly samples negatives from the 159

batch or whole dataset. For sentence representation 160

learning, contrastive learning can achieve a bet- 161

ter alignment-uniformity balance. Several works 162

adopt back translation (Fang and Xie, 2020), token 163

shuffle (Yan et al., 2021) and dropout (Gao et al., 164

2021) to augment positive examples for sentence 165

representation learning. However, the quality of the 166

randomly sampled negatives is usually neglected. 167

Virtual Adversarial Training Virtual adversarial 168
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training (VAT) (Miyato et al., 2019; Kurakin et al.,169

2017) perturbs a given input with learnable noise to170

maximize the divergence of the model’s prediction171

with the original input, then utilizes the perturbed172

examples to improve the generalization (Miyato173

et al., 2017; Madry et al., 2018). A class of VAT174

methods can be formulated into solving a min-max175

problem, which can be achieved by multiple pro-176

jected gradient ascent steps (Qin et al., 2019). In177

the NLP field, several works apply adversarial per-178

turbations in the embedding layer, and report its179

effectiveness on text classification (Miyato et al.,180

2017), machine translation (Sun et al., 2020), and181

NLU (Jiang et al., 2020) tasks.182

3 Preliminary183

This work seeks to make use of unlabeled cor-184

pus for learning effective sentence representations185

that can be directly utilized for downstream tasks,186

e.g., semantic textual similarity task (Agirre et al.,187

2015). Given a set of input sentences X =188

{x1, x2, . . . , xn}, our goal is to learn a represen-189

tation hi ∈ Rd for each sentence xi in an unsu-190

pervised manner. For simplicity, we denote this191

process with a parameterized function hi = f(xi).192

In this work, we mainly focus on using BERT-193

based PLMs (Devlin et al., 2019; Liu et al., 2019)194

to generate sentence representations. Following195

existing works (Li et al., 2020; Yan et al., 2021),196

we fine-tune the PLMs on the unlabeled corpus via197

our proposed unsupervised learning method. For198

each sentence xi, we encode it by the fine-tuned199

PLMs and take the representation of the [CLS]200

token from the last layer as its representation hi.201

4 Approach202

Our proposed framework DCLR is to reduce the203

influence of sampling bias in contrastive learning204

paradigm for sentence representation learning. In205

this framework, we devise a noise-based negatives206

generation strategy to reduce the bias caused by the207

anisotropy PLM-derived representations, and an in-208

stance weighting method to reduce the bias caused209

by false negatives. Concretely, we initialize new210

negatives based on a Gaussian distribution and it-211

eratively update these negatives by non-uniformity212

maximization. Then, we utilize a complementary213

model to produce weights for all negatives (i.e., ran-214

domly sampled and the noise-based ones). Finally,215

we combine the weighted negatives and augmented216

positive examples for contrastive learning. The217

overview of our DCLR is presented in Figure 2. 218

4.1 Generating Noise-based Negatives 219

We aim to generate new negatives beyond the im- 220

mediate sentence representation space, to alleviate 221

the bias derived from the anisotropy problem of 222

PLMs (Ethayarajh, 2019). For each input sentence 223

xi, we first initialize k noise vectors from a Gaus- 224

sian distribution as the negative representations: 225

226

{ĥ1, ĥ2, · · · , ĥk} ∼ N (0, σ2), (1) 227

where σ is the standard variance. Since these vec- 228

tors are randomly initialized, they are uniformly 229

distributed within the whole semantic space. By 230

learning to contrast with these new negatives, it is 231

beneficial for the uniformity of sentence represen- 232

tations. 233

To further improve the quality of the new nega- 234

tives, we consider iteratively updating the negatives 235

to capture the non-uniformity points within the 236

whole semantic space. Inspired by VAT (Miyato 237

et al., 2017; Zhu et al., 2020), we design a non- 238

uniformity loss maximization objective to produce 239

gradients for improving the negatives. The non- 240

uniformity loss is denoted as the contrastive loss 241

between the new negatives {ĥ} and the positive 242

representations of the original sentence (hi, h+i ) as: 243

244

LU (hi, h
+
i , {ĥ}) = − log

esim(hi,h
+
i )/τu∑

ĥj∈{ĥ} e
sim(hi,ĥi)/τu

, (2) 245

where τu is a temperature hyper-parameter and 246

sim(hi, h
+
i ) is the cosine similarity h⊤

i h+
i

||hi||·||h+
i || . 247

Based on it, for each negative ĥj ∈ {ĥ}, we opti- 248

mize it as 249

ĥj = Π(ĥj + βg(ĥj)/||g(ĥj)||2), (3) 250

g(ĥj) = ▽ĥj
LU (hi, h

+
i , {ĥ}), (4) 251

where β is the learning rate, || · ||2 is the L2-norm. 252

g(ĥj) denotes the gradient of ĥj by maximizing the 253

non-uniformity loss between the positive represen- 254

tations and the noise-based negatives. In this way, 255

the noise-based negatives will be optimized into 256

more non-uniform points of the whole semantic 257

space. By learning to contrast with these negatives, 258

the uniformity of the representation space can be 259

improved, which is essential for effective sentence 260

representations. 261

3



“Two dogs are running.”

Positive 
Augmentation

“Two dogs are walking.”

“A kid is on a skateboard.”Randomly 
Sampled 
Negatives

Instance Weighting

Gaussian Distribution
Non-Uniformity 
Maximization

Noise-based Negatives
Input:

Pull Together Push Apart

NegativePositive

PLM-
Encoder

0.0

1.0 1.0 1.0

Figure 2: The overview of the DCLR framework with noise-based negatives and the instance weighting strategy.
We show the case that a false negative is punished by assigning the weight 0.

4.2 Contrastive Learning with Instance262

Weighting263

Despite the above noise-based negatives, we also264

follow existing works (Yan et al., 2021; Gao et al.,265

2021) that adopt other in-batch representations as266

negatives {h̃−}. However, as discussed before, the267

sampled negatives may contain examples that have268

similar semantics with the positive example (i.e.,269

false negatives). To alleviate this problem, we pro-270

pose an instance weighting method to punish the271

false negatives. Since we cannot obtain the true272

labels or semantic similarities, we utilize a com-273

plementary model to produce the weights for each274

negative. In this paper, we adopt the state-of-the-art275

SimCSE (Gao et al., 2021) as the complementary276

model. 1 Given a negative representation h− from277

{h̃−} or {ĥ} and the representation of the original278

sentence hi, we utilize the complementary model279

to produce the weight as280

αh− =

{
0, simC(hi, h

−) ≥ ϕ

1, simC(hi, h
−) < ϕ

(5)281

where ϕ is a hyper-parameter of the instance282

weighting threshold, and simC(hi, h
−) is the co-283

sine similarity score evaluated by the complemen-284

tary model. In this way, the negatives that have285

higher semantic similarity with the representations286

of the original sentence will be regarded as a false287

negative and will be punished by assigning the288

weight 0. Based on the weights, we optimize289

the sentence representations with a debiased cross-290

entropy contrastive learning loss function as291

L = − log
esim(hi,h

+
i )/τ∑

h−∈{ĥ}∪{h̃−} αh− × esim(hi,h−)/τ
,

(6)292

1For convenience, we utilize SimCSE on BERT-base and
RoBERTa-base model as the complementary model.

where τ is a temperature hyper-parameter. In our 293

framework, we follow SimCSE (Gao et al., 2021) 294

that utilizes dropout to augment positive examples 295

h+i . Actually, it can be changed according to vari- 296

ous positive augmentation strategies, which will be 297

discussed in Section 6.1. 298

4.3 Overview and Discussion 299

In this part, we present the overview and discus- 300

sions of our DCLR approach. 301

4.3.1 Overview of DCLR 302

Our framework DCLR contains two important 303

phases. In the first phase, we generate noise-based 304

negatives as the expansion of the negative set. Con- 305

cretely, we first initialize a set of new negatives via 306

a random Gaussian noise. Then, we incorporate a 307

gradient-based algorithm to adjust the noise-based 308

negatives by maximizing the non-uniform objec- 309

tive. After t iterations, we can obtain the noise- 310

based negatives that reflect the most nonuniform 311

points within the whole semantic space. In the 312

second phase, we adopt a complementary model 313

(i.e., SimCSE) to compute the semantic similarity 314

between each negative and the representation of the 315

original sentence, and produce the weights using 316

Eq. 5. Finally, we augment the positive examples 317

via dropout and utilize the negatives with corre- 318

sponding weights for contrastive learning using 319

Eq. 6. 320

4.3.2 Discussion 321

As mentioned above, our approach aims to reduce 322

the sampling bias about the negatives, and is agnos- 323

tic to various positive data augmentation methods 324

(e.g., token cutoff and dropout). Compared with 325

traditional contrastive learning methods (Yan et al., 326

2021; Gao et al., 2021), our proposed DCLR ex- 327

pands the negative set by introducing noise-based 328
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negatives {ĥ}, and adds a weight term αh− to pun-329

ish false negatives. Since the noise-based nega-330

tives are initialized from a Gaussian distribution331

do not correspond to real sentences, they are high-332

confident negatives to broaden and smooth the rep-333

resentation space. By learning to contrast with334

them, the learning of the contrastive objective will335

not be limited by the anisotropy representations336

derived from PLMs. As a result, the sentence rep-337

resentations can generalize into broader semantic338

space, and the uniformity of the representation se-339

mantic space can be improved. Besides, our in-340

stance weighting method also alleviates the false341

negative problem caused by the randomly sampling342

strategy. With the help of a complementary model,343

the false negatives that have similar semantics as344

the original sentence will be detected and punished.345

5 Experiment - Main Results346

5.1 Experiment Setup347

Following previous works (Kim et al., 2021; Gao348

et al., 2021), we conduct experiments on 7 standard349

STS tasks. For all these tasks, we use the SentEval350

toolkit (Conneau and Kiela, 2018) for evaluation.351

Semantic Textual Similarity Task We evaluate on352

7 STS tasks: STS 2012–2016 (Agirre et al., 2012,353

2013, 2014, 2015, 2016), STS Benchmark (Cer354

et al., 2017) and SICK-Relatedness (Marelli et al.,355

2014). These datasets contain pairs of two sen-356

tences, whose similarity scores are labeled from 0357

to 5. The relevance between gold annotations and358

the scores predicted by sentence representations is359

measured in the Spearman correlation. Following360

the suggestions from previous works (Gao et al.,361

2021; Reimers and Gurevych, 2019), we directly362

compute the cosine similarity between sentence363

embeddings for all STS tasks.364

Baseline Methods We compare DCLR with com-365

petitive unsupervised sentence representation learn-366

ing methods, consisting of non-BERT and BERT-367

based methods:368

(1) GloVe (Pennington et al., 2014) averages369

GloVe embeddings of words as the representation.370

(2) USE (Cer et al., 2018) utilizes Transformer371

model and learns the objective of reconstructing372

the surrounding sentences within a passage.373

(3) CLS, Mean and First-Last AVG (Devlin374

et al., 2019) adopt the [CLS] embedding, mean375

pooling of token representations, average repre-376

sentations of the first and last layers as sentence377

representations, respectively. 378

(4) Flow (Li et al., 2020) applies mean pooling 379

on the layer representations and maps the outputs 380

to the Gaussian space as sentence representations. 381

(5) Whitening (Su et al., 2021) uses the whiten- 382

ing operation to refine representations and reduce 383

dimensionality. 384

(6) Contrastive (BT) (Fang and Xie, 2020) uses 385

contrastive learning with back-translation as data 386

augmentation to enhance sentence representations. 387

(7) ConSERT (Yan et al., 2021) explores var- 388

ious text augmentation strategies for contrastive 389

learning on sentence representation learning. 390

(8) SG-OPT (Kim et al., 2021) proposes a con- 391

trastive learning method with a self-guidance mech- 392

anism for improving BERT sentence embeddings. 393

(9) SimCSE (Gao et al., 2021) proposes a sim- 394

ple contrastive learning framework that utilizes 395

dropout as perturbation for data augmentation. 396

Implementation Details We implement our model 397

based on Huggingface’s transformers (Wolf et al., 398

2020). We start from pre-trained checkpoints of 399

BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 400

2019). Following SimCSE (Gao et al., 2021), we 401

use 1,000,000 sentences randomly sampled from 402

Wikipedia as the training corpus. During training, 403

we train our models for 3 epoch with temperature 404

τ = 0.05 using an Adam optimizer (Kingma and 405

Ba, 2015). For BERT-base and RoBERTa-base, 406

the batch size is 256 and the learning rate is 3e- 407

5. For BERT-large and RoBERTa-large, the batch 408

size is 128 and learning rate is 1e-5. For each 409

batch, we generate 1 × batch_size noise-based 410

negatives as the common negatives of all instance 411

in it, and the standard variance is 1. We update the 412

noise-based negatives four times, and the learning 413

rate is 1e-3. The instance weighting threshold ϕ 414

is set as 0.9. We keep the default dropout layer in 415

PLMs. We evaluate the model every 150 steps on 416

the development set of STS-B and keep the best 417

checkpoint for evaluation on test sets. 418

5.2 Main Results 419

To verify the effectiveness of our framework 420

on PLMs, we selected BERT-base, BERT-large, 421

RoBERTa-base, and RoBERTa-large as the base 422

model. Table 1 shows the results of different meth- 423

ods on 7 STS tasks. 424

Based on the results, we can find that the non- 425

BERT methods mostly outperform native PLM rep- 426

resentation based baselines (i.e., CLS, Mean and 427
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Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Non-BERT GloVe (avg.)† 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
USE† 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

BERT-base

CLS† 21.54 32.11 21.28 37.89 44.24 20.30 42.42 31.40
Mean† 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
First-Last AVG‡. 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
+flow‡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+whitening‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+Contrastive(BT)† 54.26 64.03 54.28 68.19 67.50 63.27 66.91 62.63
+ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
+SG-OPT† 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
+SimCSE 66.89 81.91 72.80 79.04 78.91 76.33 69.06 74.99
+DCLR (Ours) 68.34 83.40 74.86 81.63 79.38 78.91 71.70 76.89

BERT-large

CLS† 27.44 30.76 22.59 29.98 42.74 26.75 43.44 31.96
Mean† 27.67 55.79 44.49 51.67 61.88 47.00 53.85 48.91
First-Last AVG 57.73 61.17 61.18 68.07 70.25 59.59 60.34 62.62
+flow† 62.82 71.24 65.39 78.98 73.23 72.72 63.77 70.07
+whitening 64.34 74.60 69.64 74.68 75.90 72.48 60.8 70.35
+Contrastive(BT)† 52.04 62.59 54.25 71.07 66.71 63.84 66.53 62.43
+ConSERT 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
+SG-OPT† 67.02 79.42 70.38 81.72 76.35 76.16 70.20 74.46
+SimCSE 67.73 83.67 74.65 82.94 77.59 78.47 72.81 76.84
+DCLR (Ours) 69.01 83.70 75.83 81.99 79.45 80.01 75.12 77.87

RoBERTa-base

CLS† 16.67 45.57 30.36 55.08 56.98 45.41 61.89 44.57
Mean† 32.11 56.33 45.22 61.34 61.98 54.53 62.03 53.36
First-Last AVG‡ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
+whitening‡ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
+Contrastive(BT)† 62.34 78.60 68.65 79.31 77.49 79.93 71.97 74.04
+SG-OPT† 62.57 78.96 69.24 79.99 77.17 77.60 68.42 73.42
+SimCSE 68.84 82.00 73.26 81.93 80.27 80.04 68.44 76.40
+DCLR (Ours) 68.43 82.75 74.49 82.82 80.99 80.41 69.51 77.06

RoBERTa-large

CLS† 19.25 22.97 14.93 33.41 38.01 12.52 40.63 25.96
Mean† 33.63 57.22 45.67 63.00 61.18 47.07 58.38 52.31
First-Last AVG 58.91 58.62 61.44 69.05 65.23 59.38 58.84 61.64
+whitening 64.17 73.92 71.06 76.40 74.87 71.68 58.49 70.08
+Contrastive(BT)† 57.60 72.14 62.25 71.49 71.75 77.05 67.83 68.59
+SG-OPT† 64.29 76.36 68.48 80.10 76.60 78.14 67.97 73.13
+SimCSE 70.26 82.97 75.04 84.38 81.24 81.33 70.26 77.93
+DCLR (Ours) 70.89 83.24 76.41 84.21 81.02 81.76 72.38 78.56

Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation). The best performance and the
second-best performance methods are denoted in bold and underlined fonts respectively. †: results from Kim et al.
(2021); ‡: results from Gao et al. (2021); all other results are reproduced or reevaluated by ourselves.

First-Last AVG). The reason is that directly utiliz-428

ing the PLM native representations is prone to the429

anisotropy problem. Among non-BERT methods,430

USE outperforms Glove. A potential reason is that431

USE encodes the sentence using the Transformer432

model, which is more effective than simply averag-433

ing GloVe embeddings.434

For other PLM-based approaches, first, we can435

see that flow and whitening achieve similar results436

and outperform the native representations based437

PLMs by a margin. The reason is that the two438

methods adopt special strategies to refine the repre-439

sentations of PLMs. Second, approaches based on440

contrastive learning mostly outperform other base-441

lines. The reason is that contrastive learning can442

enhance both the alignment between semantically 443

related positive pairs and the uniformity of the rep- 444

resentation space using negative samples, resulting 445

in better sentence representations. Furthermore, 446

SimCSE performs the best among all the baselines. 447

It indicates that dropout is a more effective positive 448

augmentation method than others since it rarely 449

hurts the semantics of the sentence. 450

Finally, DCLR performs better than all baselines 451

in most settings. Contrastive learning based base- 452

lines mostly utilize in-batch negatives to learn the 453

uniformity, but the randomly negative sampling 454

strategy may lead to sampling bias, such as false 455

negatives and anisotropy representations. Different 456

from these methods, our framework adopts an in- 457
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Model STS-Avg.
BERT-base+Ours 76.89
w/o Noise-based Negatives 76.17
w/o Instance Weighting 75.78
BERT-base+Random Noise 75.22
BERT-base+Knowledge Distillation 75.05
BERT-base+Self Weighting 73.93

Table 2: Ablation and variation studies of our approach.
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Figure 3: Performance comparison using different posi-
tive augmentation strategies.

stance weighting method for punishing false nega-458

tives and a gradient-based algorithm for generating459

noise-based negatives towards the most nonuni-460

form points. In this way, the influence of false neg-461

atives can be alleviated and our model can better462

learn the uniformity. It finally reduces the sampling463

bias and improves the model performance.464

6 Experiment - Analysis and Extension465

In this section, we continue to study the effective-466

ness of our proposed DCLR.467

6.1 Debiased Contrastive Learning on Other468

Methods469

Since our proposed DCLR is a general framework470

for contrastive learning of unsupervised sentence471

representations, it can be applied to other methods472

for this task that have various positive data aug-473

mentation strategies. Thus, in this part, we conduct474

experiments to examine whether our framework475

can bring improvements with the following positive476

data augmentation strategies: (1) Token Shuffling477

that randomly shuffles the order of the tokens in478

the input sequences; (2) Feature/Token/Span Cut-479

off (Yan et al., 2021) that randomly erase features/-480

tokens/token spans in the input; (3) Dropout that is481

similar to SimCSE (Gao et al., 2021). It is worth482

noting that we only need to revise the negative sam-483

pling strategies in existing methods with few lines484

of code to implement our DCLR.485
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Figure 4: The uniformity loss of DCLR and SimCSE
on the validation set of STS-B during training.

As shown in Figure 3, our DCLR can boost the 486

performance of all these methods, it demonstrates 487

the generality and effectiveness of our framework. 488

Furthermore, DCLR with Dropout outperforms all 489

other models. It indicates that dropout is a more ef- 490

fective approach to augment high-quality positives, 491

and is also more appropriate for our approach. 492

6.2 Ablation and Variation Study 493

Our proposed DCLR devises an instance weight- 494

ing method to punish false negatives and generates 495

noise-based negatives to improve the uniformity of 496

the whole representation space. To verify their ef- 497

fectiveness, we conduct an ablation study for each 498

of the two components on 7 STS tasks. As shown 499

in Table 2, removing each component would lead 500

to a performance drop. It indicates that the instance 501

weighting method and the noise-based negatives 502

are both important in our framework. Besides, re- 503

moving the instance weights results in a larger per- 504

formance drop. The reason may be that the false 505

negative problem in these tasks is more serious. 506

Random Noise, Knowledge Distillation, and Self 507

Instance Weighting are the variations of our frame- 508

work. (1) Random Noise directly generates noise- 509

based negatives without gradient-based optimiza- 510

tion; (2) Knowledge Distillation (Hinton et al., 511

2015) utilizes SimCSE as the teacher model to 512

distill knowledge into the student model during 513

training; (3) Self Instance Weighting adopts the 514

model itself as the complementary model. From 515

Table 2, we can see that these variations don’t per- 516

form as well as DCLR. The reason may be that 517

these approaches are not proper for this task. 518

6.3 Uniformity Analysis 519

Uniformity is an essential characteristic for sen- 520

tence representations, which describes how well 521

the representations are uniformly distributed. To 522
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Figure 5: Performance of our DCLR w.r.t. different
amounts of training data.

validate the improvement of the uniformity of523

our framework, we compare the uniformity loss524

between DCLR and SimCSE. Following Sim-525

CSE (Gao et al., 2021), we utilize the following526

function to evaluate the uniformity:527

ℓuniform ≜ log E
xi,xj

i.i.d.∼ pdata

e−2∥f(xi)−f(xj)∥2 ,528

where pdata is the distribution of all sentence rep-529

resentations. As shown in Figure 4, the uniformity530

loss of DCLR is much lower than that of SimCSE531

in the almost whole training process. Furthermore,532

we can see that the uniformity loss of DCLR di-533

minishes faster than SimCSE as training goes, the534

reason may be that our DCLR samples noise-based535

negatives to learn the uniformity better.536

6.4 Performance under Few-shot Settings537

To validate the reliability and the robustness of538

DCLR under the data scarcity scenarios, we con-539

duct few-shot experiments. We train our model via540

different amounts of available training data from541

100% to the extremely small size (i.e., 0.3%). We542

report the results evaluated on STS-B and SICK-R.543

As shown in Figure 5, our approach achieves544

stable results under different proportions of the545

training data. Under the most extreme setting546

with 0.3% data proportion, the performance of our547

model drops by only 9 and 4 percent on STS-B548

and SICK-R, respectively. The results reveal the549

robustness and effectiveness of our approach under550

the data scarcity scenarios. Such characteristics are551

important in real-world application.552

6.5 Hyper-parameters Analysis553

For hyper-parameters analysis, we study the impact554

of instance weighting threshold ϕ and the propor-555

tion of noise-based negatives k. The ϕ is the thresh-556

old to punish false negatives, and k is the ratio of557
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71
72
73
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71
72
73
74
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76
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78
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(b) Negative Proportion k

Figure 6: Performance comparison w.r.t. ϕ and k.

the noise-based negatives to the batch size. Both 558

hyper-parameters are important in our framework. 559

Concretely, we evaluate our model with varying 560

values of ϕ and k on the STS-B and SICK-R tasks 561

using the BERT-base model. 562

Weighting threshold. Figure 6a shows the influ- 563

ence of the instance weighting threshold ϕ. For the 564

STS-B tasks, ϕ has a significant effect on the model 565

performance. Too large or too small ϕ may lead 566

to a performance drop. The reason is that a larger 567

threshold cannot achieve effective punishment and 568

a smaller one may cause misjudgment of true nega- 569

tives. In contrast, the SICK-R is insensitive to the 570

changes of ϕ. The reason may be that the problem 571

of false negatives is not serious in this task. 572

Negative proportion. As shown in Figure 6b, 573

our DCLR performs better when the number of 574

noise-based negatives is close to the batch size. Un- 575

der these circumstances, the noise-based negatives 576

are enough to learn the uniformity of the whole 577

semantic space but not hurt the alignment, so that 578

DCLR can perform well. 579

7 Conclusion 580

In this paper, we proposed DCLR, a debiased con- 581

trastive learning framework for unsupervised sen- 582

tence representation learning. Our core idea is to 583

alleviate the sampling bias caused by the random 584

negative sampling strategy. To achieve it, in our 585

framework, we incorporated an instance weighting 586

method to punish false negatives during training 587

and generated noise-based negatives to alleviate 588

the influence of anisotropy PLM-derived represen- 589

tation. Experimental results have shown that our ap- 590

proach outperforms several competitive baselines. 591

In the future, we will explore more effective 592

paradigms to reduce the bias in contrastive learning 593

of sentence representations. We will also consider 594

applying our approach to other representation learn- 595

ing tasks, such as graph representation learning. 596
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