
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VLMGINEER: VISION LANGUAGE MODELS AS
ROBOTIC TOOLSMITHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool design and use reflect the ability to understand and manipulate the physical
world through creativity, planning, and foresight. As such, it is often regarded as
a measurable indicator of cognitive intelligence across biological species. While
much of today’s research on robotics intelligence focuses on generating better
control strategies, inventing smarter tools offers a complementary form of physical
intelligence: moving the problem-solving onus into the tool’s geometry so that
control becomes simpler. This motivates us to ask: can today’s foundation models
offer useful priors to automatically invent—and effectively wield—such tools?
We present VLMgineer, the first fully automatic framework designs tools and
actions from scratch by harnessing the creativity of Vision–Language Models
(VLMs) together with evolutionary search. We evaluate VLMgineer on a diverse
benchmark of everyday manipulation scenarios that demand creative tool design
and use. Across this suite, VLMgineer consistently discovers tools and policies that
solve tasks more effectively and innovatively, transforming challenging robotics
problems into straightforward executions. It also consistently outperforms VLM-
generated designs from human specifications and existing human-crafted tools for
everyday tasks. We further demonstrate that VLMgineer’s automatically designed
tools and action policies transfer seamlessly to real-world task execution on a
physical robot. To facilitate future research on automated tool invention, we will
release our benchmark and code. Project Website: vlmgineer.github.io.

1 INTRODUCTION

Humans exhibit a remarkable ability to design and utilize tools, fundamentally extending their
capabilities to accomplish tasks otherwise beyond their reach through creativity, planning, and
foresight. This capacity for tool creation and usage represents one of our most distinctive cognitive
adaptations, and therefore is widely regarded as a marker of cognitive complexity. Achieving
comparable versatility in robots demands a coupled approach: the shape of a tool and the motions
that wield it should be co-designed — each constraining and enabling the other. Much of today’s
robotics research concentrates on enabling complex robot motions that use simple standard tools (Shi
et al., 2023; Qi et al., 2024; Car et al., 2024; Shaw et al., 2024; Chen et al., 2024). In this work, we
pursue an alternative form of physical intelligence: inventing smarter tools that simplify downstream
control — thereby shifting the primary problem-solving burden from devising control strategies to
designing the tool’s geometry.

State-of-the-art vision–language models (VLMs) possess vast and impressive common-sense rea-
soning and creative abilities, alongside extraordinary capabilities in code generation, visual compre-
hension, and in-context learning. When combined with evolutionary search methods, VLMs have
successfully crafted human-level reward functions for reinforcement learning (Yu et al., 2023; Ma
et al., 2023), 3D graphics (Huang et al., 2024), articulations of in-the-wild objects (Le et al., 2024),
intricate 3D sculptural designs (Goldberg et al., 2024), and developing advanced algorithms to solve
mathematics and science problems (Romera-Paredes et al., 2024; Aglietti et al., 2024; Novikov et al.,
2025).

In the wake of these results, we ask: can today’s VLMs also guide the design of innovative and
action-efficient physical tools for robots? We introduce VLMGINEER, an autonomous framework
that leverages VLMs to jointly evolve both tool design and manipulation strategies for robots. Our

1

https://vlmgineer.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

“The cupcake is too far away
🤔

” “Now I have the cupcake
😊

”

VLMgineer

Tool Design

Robot Action

Figure 1: Given a manipulation task that lies outside the robot’s capabilities, VLMGINEER first
prompts a vision language model to generate a tool and action. We then employ evolutionary search in
simulation to refine the tool’s geometry and synthesize the corresponding robot motion plan. Finally,
the robot, equipped with the automatically designed tool, successfully completes the task.

method demonstrates unprecedented efficacy in developing specialized tools for diverse manipulation
tasks, through an evolutionary search process guided by VLM-generated tool geometries and action
plans. VLMGINEER is the first fully automatic framework for designing tools and actions from
scratch: compared to prior more limited investigations of tool design, that largely consider parameter
optimization for a manually designed parametric template, VLMGINEER works off-the-shelf for new
tasks without human-in-the-loop steps such as task-specific templates, prompts, or examples. To
facilitate future research and benchmarking, we also introduce ROBOTOOLBENCH, a comprehensive
simulation suite comprising 12 diverse robotic tool-use manipulation tasks specifically designed to
evaluate tool design and policy optimization methods.

In summary, we make the following contributions:

• VLMGINEER, a novel evolutionary optimization framework that automatically discovers
innovative tools to solve robotics task more efficiently.

• ROBOTOOLBENCH, a comprehensive simulation benchmark consisting of 12 robotic tool-use
tasks designed explicitly for evaluating robotic tool and policy designs.

Our fully autonomous approach not only outperforms designs generated with human specifi-
cations and human-crafted everyday tools, but also produces tools and actions in simulation
that seamlessly transfer to real-world task execution. When evaluated on ROBOTOOLBENCH,
VLMGINEER achieves an average normalized improvement of 64.7% over VLM-generated designs
from human language specifications and outperforms existing human-crafted tools by an average
normalized improvement of 24.3%. Our results serve to validate both the physical design intelligence
enshrined in VLMs pre-trained on web-scale data, demonstrate amplification of VLM physical
creativity via evolutionary search beyond prompting, and present the promise of more adaptable and
capable robotics systems that can ingeniously create and use tools.

2 RELATED WORK

Task-specific computational agent and tool design. Previous research has extensively investigated
methods for optimizing robot morphology, end-effectors, and tool designs for robot manipulation
through various computational approaches, ranging from model-based optimization (Allen et al.,
2022), reinforcement learning (RL) (Li et al., 2021), data-driven generative models (Wu et al., 2019;
Ha et al., 2020; Xu et al., 2024), and differentiable simulation (Li et al., 2023). Others have explored
robot design for locomotion using evolutionary algorithms (Jelisavcic et al., 2019; Hejna III et al.,
2021; Walker & Hauser, 2021; Sims, 2023; Dong et al., 2023a;b), stochastic optimization (Exarchos
et al., 2022), and graph search (Zhao et al., 2020). However, these existing approaches typically
require manual task-specific pre-definition of a handful of optimization parameters, rely on fixed
trajectories or pre-defined control policies, and tend to suffer from low sample efficiency. Prior
efforts like Khan et al. (2025) have demonstrated that VLMs can generate functional tool designs,
often resembling existing objects found in online databases. In contrast, our core novelty lies in
the finding that evolutionary search can elicit physical creativity from VLMs significantly beyond
single-shot prompting. This process allows our system to discover nonstandard, highly performant
geometries that are not merely retrieved but iteratively optimized for specific tasks. As demonstrated
quantitatively in Fig. 7 and Table 1, our evolutionary approach yields tools that are significantly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

more effective than those from the initial VLM-generated population, confirming that the iterative
refinement is crucial for grounding the design in physical performance. We also introduce a VLM-
driven approach that simultaneously optimizes both tool design and manipulation policies, enabling
generalization across diverse manipulation tasks without requiring manual parameter specifications.

Robot learning for tool-based tasks. To learn effective tool usage, some have employed learned or
simulated dynamics models for tool manipulation optimization (Xie et al., 2019; Allen et al., 2020;
Girdhar et al., 2020; Lin et al., 2022a;b). Another prevalent approach involves learning tool and
object affordances — understanding the functions of objects and tool-object interactions (Fang et al.,
2020; Qin et al., 2020; Brawer et al., 2020; Xu et al., 2021a; Noguchi et al., 2021; Shi et al., 2023).
Recently, large language models have been leveraged to employ creative tool use (Xu et al., 2023).
While such methods typically assume that suitable tools already exist in the environment, we instead
address the more practical scenario where a general-purpose robot must concurrently optimize both
the tool’s design and its manipulation strategies.

Joint optimization of morphology and control. Jointly addressing tool design and control problems
has often involved formulating nonlinear programs to solve task and motion planning (TAMP) given
predefined design parameter space, which are particularly effective for sequential manipulation
over extended horizons (Toussaint et al., 2018; 2021). However, given our objective to deploy
VLMGINEER in any arbitrary environment without manual specification of design parameters, we
rely on the underestimated physical creativity of VLMs. Approaches using RL (Wang et al., 2023a;b;
Luck et al., 2020; Yuan et al., 2021), gradient-based optimization (Spielberg et al., 2019), Bayesian
optimization, evolutionary algorithms (Cheney et al., 2018; Mertan & Cheney, 2024; Ringel et al.,
2025), or a combination of them (Liao et al., 2019; Schaff et al., 2019; Ha, 2019; Bhatia et al.,
2021; Pathak et al., 2019) have been proposed for joint morphology and control learning for robot
locomotion tasks, in particular with soft or modular robots. Studies on joint robot or tool and policy
design through RL (Chen et al., 2020; Liu et al., 2023), differentiable simulation (Xu et al., 2021b),
and model-based optimization (Kawaharazuka et al., 2020) have also demonstrated effectiveness in
tool manipulation. However, since these methods still all require manual specifications of the design
space, they require significant human efforts to scale beyond a few tasks.

Recent work has explored LLM-aided evolutionary search for robot design in conjunction with
RL-based policy optimization in locomotion (Qiu et al., 2024; Song et al., 2025), demonstrating the
potential of using LLMs to unlock more performant robot design. Unlike prior work, our work targets
open-world VLM-guided design of both tools and actions for manipulation without human-in-the-
loop parameter specification. VLMGINEER leverages the surprising physical creativity of VLMs
to automatically create design solutions using evolutionary search. It can easily be scaled to a
wide range of tasks, and it is much more efficient in terms of samples, time, and compute than prior
RL-based methods.

3 BACKGROUND

Evolutionary Methods. Evolutionary algorithms (Langdon & Poli, 2013; Doncieux et al., 2015)
have a long-standing history in solving optimization problems, inspired by principles of biological
evolution and natural selection. They are particularly effective in black-box optimization with vast
optimization spaces, such as open-ended design. At their core, these methods maintain a population
of candidate solutions, which iteratively evolve through carefully designed mutation and crossover
operators. Each iteration evaluates individuals against a fitness function, selecting those with
higher fitness while discarding or replacing less successful candidates. To balance exploitation and
exploration, crossover combines promising solutions into offspring, and mutation introduces novel
variations. Evolutionary algorithms have proven effective across diverse domains such as program
synthesis, symbolic regression, algorithm discovery, and even robot design. Nevertheless, their
reliance on handcrafted mutation and crossover operators remains a significant limitation—such
operators are challenging to design and often inadequately capture essential domain-specific insights.

Large model-guided evolution. To improve the scalability, performance, and automation of evolu-
tionary algorithms, recent work has integrated large models into the evolutionary process, automating
mutation and crossover operations. Leveraging the extensive world knowledge and inductive biases
inherent in large models allows for more efficient evolution of candidate solutions and also eliminates
the necessity of manually defining allowed mutation operations. Moreover, some approaches exploit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PyBullet

Tool Designs

action = np.array([
 [0.5, 0.0, ...],
 [0.75, 0.0, ...],
 [0.75, 0.0, ...],
 [0.65, 0.0, ...],
 ...
])

Candidate
Sampling

Simulation
Evaluation

Evolved
Sampling

Action Designs

Environment Setup

 class Env(BaseEnv):
 def __init__(self, **kwargs):
 self.reset_qpos = ...
 self.objPos = ...
 self.objOri = ...

Task Description

System Instructions

VLMgineer

VLM
Design Agent

 "The cube is out of the robot's reach, can you
 design a tool to help?

Figure 2: VLMGINEER takes unmodified environment source code, environment image, environmen-
tal description, and task description as context to zero-shot generate tool and action designs from
a VLM. It then iteratively refines its tool and action designs through a loop of candidate sampling,
simulation-based evaluation, and evolution improvement.

the rich semantic understanding of large models to provide nuanced, semantic feedback beyond sim-
ple numerical fitness scores. Specific implementations of these principles in evolutionary algorithms
vary according to the domain. For instance, Ma et al. (2023) employs large language models (LLMs)
to guide evolutionary reward design in reinforcement learning. Eureka generates a population of
candidate reward functions directly from raw environment code, evaluates RL agents trained with
these rewards using a task-specific fitness function, and selects the best-performing candidates.

Although it omits explicit crossover, Eureka employs LLM-guided in-context reward mutation by
proposing an improved reward function from an existing one based on textual feedback. Drawing
inspiration from these successes, we investigate whether vision–language models (VLMs) can
similarly offer valuable inductive biases to guide the evolutionary design of robotic tools and actions.

4 METHOD

Algorithm 1 VLMGINEER: Evolutionary Tool
and Action Co-Design with VLMs
Require: Environment code E , image render I , task

description dtask, fitness function F , initial prompt
PROMPT, Vision-Language Model VLM

1: Hyperparameters: Number of evolution cycles n,
population size K, top-k selection threshold

2: for n iterations do do
3: // Sample K designs
4: D1, D2, ..., DK ∼ VLM(E , I, dtask, PROMPT)
5: // Evaluate design candidates
6: s1 = F(D1), · · · , sK = F(DK)
7: // Selection
8: Select top-k designs {Dj1 , ..., Djk} with high-

est sj
9: // Evolution

10: PROMPT : = PROMPT :
EVOLUTION PROMPT({Dj1 , ..., Djk})

11: end for
12: return Final design D∗ = argmaxD F(D) across

all iterations

VLMGINEER builds upon previous Large
Model-guided evolution methodologies to per-
form tool-action co-design. Specifically,
VLMGINEER consists of three algorithmic com-
ponents: (1) We prompt the VLM to generate a
diverse population of potential candidate tool-
action samples given raw environment code, task
description, and system instructions as context.
(2) We evaluate each of the design samples via
task fitness functions and retain those with the
top-k rewards. (3) We iteratively prompt the
VLM to produce novel tool-sample offspring
via guided tool mutation and crossover, pro-
gressively improving tool and action designs.
This overall VLMGINEER algorithm is summa-
rized in Algorithm 1. Please refer to Appendix
A.4 for the full prompts.

Joint tool and action candidate sampling.
While previous approaches of large model-
guided evolutionary robot design (Qiu et al.,
2024; Song et al., 2025) typically optimize robot

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ElevatePlateDislodgeCubeBringCube CleanTable

GatherSpheres MoveBallLiftBoxHighObject

OneBook ScoreGoal SnatchCookie TurkeyLegs

Figure 3: VLMGINEER produces innovative tool designs and their corresponding actions across 12
diverse tasks in ROBOTOOLBENCH that are challenging to perform using a general-purpose robot
arm and gripper.

morphology alone, relegating action or control
optimization to a subsequent evaluation stage. Our approach prompts the VLM to simultaneously
generate paired tool designs and corresponding action strategies in a single inference step. Our key
insight behind joint tool-action sampling is that it allows for a tighter coupling between tools and
their associated actions. Rather than sequentially optimizing the tool geometry first and then actions
afterward, simultaneous optimization leverages the VLM’s inductive biases to smoothly navigate
the joint tool–action design space towards the Pareto frontier. Concretely, within each evolution
cycle, VLMGINEER prompts the VLM to propose n distinct tool designs along with m candidate
action plans per tool, resulting in n×m total tool-action pairs. This corresponds to a kind of crude
VLM-guided policy optimization, which merely selects the best among the m generated action
plans. Compared to policy optimization via RL (Ma et al., 2023; Song et al., 2025; Qiu et al., 2024),
our action sampling approach, albeit simple, significantly accelerates iteration cycles and reduces
computational overhead by exploiting the insight that appropriately designed tools inherently simplify
and enhance action plans. We also empirically observed this strategy to outperform other forms of
feedback, such as videos or object-centric signals, whose low accuracies tend to degrade performance
and limit meaningful improvement.

Specification of crossover and mutation. A critical part of how VLMGINEER enables effective
tool design evolution is the utilization of inductive in-context crossover and mutation. We define
inductive in-context crossover and mutation as the process of prompting VLMs to introduce random,
free-form tool mutations and crossovers, conditioned on previous elite tool candidates, and guided
by the model’s learned inductive biases for producing better task-solving tools. We use the prompt
below to perform inductive in-context crossover and mutation: "Your design decision is part of a
genetic algorithm for tool creation, where each new design is produced either by mutation—changing
exactly one aspect (e.g., adjusting a component’s dimension or adding/removing a component)—or
by crossover, combining elements from two existing designs. All resulting mutations and crossovers
should plausibly enhance task success while preserving design diversity."

Tool representation format. Selecting an appropriate representation for tools—balancing abstrac-
tion, design flexibility, and manufacturability—is critical for effective optimization. Prior works
have represented objects and tools as meshes (Nair et al., 2020), CAD (Thomas et al., 2018), or
blocks (Goldberg et al., 2024). These representations, however, either introduce excessive complexity
and optimization challenges or lack sufficient expressiveness. Inspired by prior work (Le et al., 2024),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of rewards for the Franka Gripper, 3 Human Prompt experiments, and our
proposed method across 12 tasks. Darker bars indicate the average reward over five runs, while paler
bars indicate the best reward.

we represent tools in Unified Robot Description Format (URDF). The structured, modular nature of
URDF, analogous to code blocks, aligns seamlessly with vision–language models’ (VLMs) strengths
in code understanding and generation. Concretely, we prompt the VLM to generate URDF-defined
tool designs as modular blocks that can be directly integrated into a designated end-effector link of
the robot model.

Action representation format. Building on recent work that leverages VLMs for action gener-
ation (Di Palo & Johns, 2024; Yin et al., 2025), we prompt the model to explicitly output action
sequences in the form of an N × 7 array, where N denotes the number of waypoints. Each row
encodes a 6-DoF pose for the robot end-effector, along with a gripper open/close command. In this
work, we intentionally use discrete waypoints to show that smarter tools could reduce the need for
sophisticated policies. When needed, however, our framework is feasible for dynamic or force-based
actions (e.g. force vector or wrench estimate for force-based reasoning) and can warm-start expressive
closed-loop policies.

5 ROBOT TOOL DESIGN BENCHMARK

We propose a comprehensive simulation benchmark ROBOTOOLBENCH designed explicitly for
evaluating robotic tool and policy design. ROBOTOOLBENCH comprises 12 object manipulation tasks
designed to be challenging for the conventional robot morphology to complete. These task environ-
ments are visualized in Fig. 3. For several tasks (BringCube, CleanTable, GatherSpheres,
ScoreGoal), we took inspiration from the subset of RLBench (James et al., 2020) tasks that
involve tool use — note, however, that we expect that automated tool design will replace and
improve the original tools from RLBench. Several other tasks (HighObject, ElevatePlate)
are inspired by prior works in computational co-design (Liu et al., 2023) that study task-specific
design parameter optimization as discussed in Sec 2. Still more task environments are inspired by
everyday home scenarios (LiftBox, MoveBall, OneBook, SnatchCookie, TurkeyLegs).
Finally, DislodgeCube is inspired by a tool design behavior previously observed in the Caledonian
crow (Jacobs et al., 2016), which used tools to retrieve objects in confined spaces. We adopt the
Franka Panda robot arm as the standard morphology to attach tools to, and implement our environ-
ments using PyBullet (Ellenberger, 2018–2019). For more details of the each task, please refer to
Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 EVALUATION

Our experiments are designed to provide a comprehensive analysis of VLMGINEER’s capabilities.
We aim to answer the following questions:

• Q1: Can VLMGINEER effectively discover innovative tools and the actions to use them across a
diverse set of manipulation tasks?

• Q2: How does VLMGINEER’s autonomous co-design compare to tool designs specified to a VLM
by human users with different expertise?

• Q3: How important is the evolutionary framework to VLMGINEER’s performance?
• Q4: Can the co-designed tools and actions be successfully transferred from simulation to solve

tasks in the real world?

For additional ablation experiments on different VLMs, see Appendix A.10.

6.1 PERFORMANCE ON ROBOTOOLBENCH

Baselines. To showcase VLMGINEER’s ability to generate creative and effective tools and usage
actions, we compare our method with the following baselines: (1) Franka Gripper: We evaluate the
performance of the vanilla Franka Panda two-finger gripper without additional tools on ROBOTOOL-
BENCH to highlight the inherent limitations of the robot’s default morphology; these tasks are after
all explicitly designed to be very hard or impossible to perform without the right tools. We derive
the no-tool action policy by prompting the VLM to follow an action-sampling procedure analogous
to our proposed method, minus the use of any tools. (2) Human Prompts: For these baselines, we
ask humans to specify a tool design to the VLM in natural language, following which it attempts to
generate that tool and several action plans, as in our method. There is no evolutionary search. We
evaluate on humans with varying expertise: "Robotics expert" (a graduate student researching robot
learning), "LLM expert" (a graduate student researching LLMs), and "Layperson" (an undergraduate
student with no relevant research experience). The procedure on the case study is in Appendix A.1.
(3) RLBench Tools: We evaluate four original tools from the tasks we adapted from RLBench, which
are often natural everyday tools for the tasks considered. While RLBench tools are existing tools for
everyday tasks, they might not have been explicitly optimized for maximum task success. However,
as illustrated in Fig. 5, they represent sensible and common designs used in practice, making them
practical and meaningful benchmarks.

Note that a key distinction between VLMGINEER and other studies in the Related Work section is
that the other studies all involve substantial manual parameter tuning or predefined parametric tool
designs, which are fundamentally different from VLMGINEER’s fully automated approach. Hence,
direct apples-to-apples comparisons would be challenging. In fact, VLMGINEER could serve as a
strong prior for these related works.

Evaluation Metrics. To assess the quality of a tool-action design after each execution, we define
the evaluation metric as Task Rewards, which is a set of pre-defined task reward functions R : S →
r ∈ [0, 1] that are unique to each task, where S is its environmental state and r is a normalized reward.
These rewards are designed to evaluate the progress made in the task by a certain tool-action pair.

Results. The results are summarized in Fig. 4. VLMGINEER works consistently well across tasks,
in terms of both average and best rewards. We dive into interesting individual method comparisons
now. As expected, the default Franka Panda two-finger gripper fails on the majority of these tasks.
What is perhaps more noteworthy is that VLMGINEER outperforms human-prompting. This
is true even for expert humans across all tasks and on both metrics (better peak performance and
also more reliable). While human prompts occasionally produced strong solutions, their results
were less consistent and efficient. In tasks like CleanTable and ScoreGoal, both approaches
reached similar peak rewards, but our method did so with significantly shorter paths. For further
analysis, Fig. 5 shows example designs from human-prompting and VLMGINEER. Human-designed
tools (left column) generally offer suitable forms for task completion; however, VLMGINEER
(right column) creates more specialized features that enhance performance. For instance, in task
ScoreGoal, our method produces long and bent shapes facilitating simpler, more efficient motions,
which the robot just need to move very little along one axis to hit the puck. On the other hand,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Human RLBench Ours

B
r
i
n
g
C
u
b
e

S
c
o
r
e
G
o
a
l

G
a
t
h
e
r
S
p
h
e
r
e
s

Figure 5: Qualitative comparison of human-designed, RLBench, and VLMGINEER tools on three
tasks: BringCube (top row), ScoreGoal (middle row), and GatherSpheres (bottom row).

the straight tool designed from human prompts would require more careful control of the puck. In
GatherSphere, our design includes a scoop with side protection and an overhead stripe structure,
effectively preventing spheres from bouncing away.

VLMGINEER tools also outperform the RLBench original tools. On the four RLBench-based
tasks, we evaluated the standard RLBench Tools (Fig. 5 middle column). As shown in Fig. 6, across
every task, VLMGINEER not only attains the highest possible reward but does so more reliably (on
average) than RLBench Tools. Qualitatively inspecting the tools further highlights the advantages of
our method. The RLBench tools, originally designed for similar but distinct tasks, often underperform
due to less optimized features. For example, in BringCube, the RLBench’s simple stick provides
insufficient lateral control, resulting in inconsistent cube manipulation. Our method’s cage-like
structure reliably locks and moves the cube closer, achieving significantly higher rewards.

6.2 EVALUATING THE ROLE OF EVOLUTIONARY SEARCH

To isolate the contribution of our evolutionary framework, we conducted an ablation study. Across
three trials for each of the three chosen ROBOTOOLBENCH tasks, we tested VLMGINEER’s standard
evolutionary process (4 iterations of 2000 samples) against a brute-force baseline that used VLM
sampling for 8000 evaluations, ensuring an identical sample budget for both methods. The results,
presented in Table 1, show a clear advantage for the evolutionary approach. On average, the
evolutionary search strategy outperformed the sampling baseline by a significant 119.2%

This quantitative advantage can be understood through the qualitative nature of the evolutionary
process. We consistently observed evolution making intuitive and effective enhancements to initial
designs. As illustrated in Fig. 7, for the GatherSpheres task, an open scoop was refined with
guardrails to prevent spillage. Similarly, for MoveBall, an open-ended pusher was augmented with
a hugging rim to improve control. This suggests that iterative refinement is a key mechanism that
allows VLMGINEER to discover robust and high-performing tool designs that are difficult to find
through simple sampling.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Performance comparison against stan-
dard RLBench tools. VLMGINEER consistently
outperforms the original, human-crafted tools
across four relevant tasks.

Before Evo. After Evo.

Figure 7: Qualitative examples of evolution-
ary refinement. The process makes intuitive
and effective improvements to initial tool de-
signs for tasks like GatherSpheres (top) and
MoveBall (bottom).

Table 1: Mean normalized reward (0–1) for Evolution vs. VLM Sampling under an Equal Sample
Budget. The structured search of VLMGINEER substantially outperforms the brute-force sampling
baseline, highlighting the critical role of the evolutionary framework.

Method ElevatePlate RetrieveHigh CleanTable Average
VLMGINEER (Evolution) 0.925 ± 0.007 1.000 ± 0.000 0.888 ± 0.018 0.938 (+119.2%)
VLM Sampling (Baseline) 0.317 ± 0.254 0.501 ± 0.705 0.466 ± 0.124 0.428

6.3 SIM-TO-REAL TRANSFER AND REAL-WORLD VALIDATION

To validate that our VLMGINEER generated design and actions work in real robotic scenarios, we
selected three tasks—MoveBall, ElevatePlate, and GatherSpheres—to transfer zero-shot
to a Franka robot. After running VLMGINEER in simulation, we replicated the simulated environment
in the real world, 3D printed the best manufacturable tool, mounted the tool on the robot, and played
the associated action plan. The only minor modification we apply is to trim any portion that overlaps
with the tool mounting head, a standard post-processing step. We present snapshots of our real-world
experiment execution in Figure 8. More details of our sim-to-real transfer process and real can be
found in Appendix A.9. In our real-robot experiments, for each task, we recorded the normalized
rewards by executing the co-design for 5 runs to account for any environmental variance during
execution, and obtained an average normalized reward for each task’s winning co-design. The average
normalized rewards from sim-to-real transfer experiments for MoveBall, ElevatePlate, and
GatherSpheres are 0.959, 0.761, and 0.713, respectively. Overall, we observe VLMGINEER’s
tools and actions effectively translate to real-world scenarios. Please refer to our website for the
real-world videos.

7 CONCLUSION

We propose VLMGINEER, the first fully autonomous framework for co-optimizing tool design and
tool use actions by leveraging the creativity of a VLM. By evaluating on 12 different simulation
tasks, we demonstrate the capability to design and use tools to solve challenging robotic manipulation
problems. Our results show that VLMGINEER outperforms baselines that either use no tools or take
design specifications directly from humans. We demonstrate that our co-designed tools and actions
successfully transfer to a real robot, solving three representative tasks with high performance. Our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

t

Figure 8: Snapshots of the real-world tool-action rollout on a Franka robot. The three rows correspond
to three tasks: MoveBall, ElevatePlate, and GatherSpheres.

ablation studies further confirm that our evolutionary framework is a critical component, providing
significant performance boosts over unstructured sampling.

Limitations and Future Works. While VLMGINEER demonstrates significant advancements,
several limitations remain: (1) Although we have shown successful sim-to-real transfer, broader
validation across more dynamic real-world scenarios is needed. (2) Robot actions are represented as
discrete end-effector poses, limiting the handling of complex dynamic tasks. (3) Tool representations
in URDF are constrained to simple geometries, and a comprehensive evaluation of more complex,
articulated tools is needed. (4) VLMGINEER is currently optimized for individual tasks, and we
have not explored multitask optimization or generalization. See App. A.8 for failure modes. Future
work should focus on enhancing action representations, exploring richer tool designs, and pursuing
multitask generalization. (5) Current VLMGINEER pipeline does not consider manufacturing consid-
erations and limitations. Future work needs to explore ways of incorporating these constraints into
the optimization for designs that could be more readily manufactured. (6) One might ask whether
it is practical to design new tools for every task. However, we cannot assume that a convenient
tool already exists in the environment for every new task. Instead, the ability to design and fashion
new tools suited to a task is a general capability provided by VLMGINEER. We acknowledge that
integrating existing or previous tools is beneficial, and future integration with methods capable of
selecting between existing and newly generated tools could enhance practicality and scalability. (7)
VLMGINEER requires low-level and environment-specific information, including raw environment
code and task description as input. While many other works have attempted to build digital twins of
the real world (Torne et al., 2024) or training policies in simulation that are transferable to the real
world (Ma et al., 2023), we instead investigate a much less studied aspect: automating the design of
tools and how to wield them. Our focus is on designing a fully autonomous framework for this co-
design problem, minimizing any task-specific manual design. We leave integrating well-established
modules, such as digital twin constructions and sim2real policy training, to future work.

8 REPRODUCIBILITY STATEMENT

We aim to make our results straightforward to replicate. The benchmark tasks, environment details,
and dense reward definitions are specified in A.2. The major evaluations are performed in a widely
available simulator, PyBullet. The full algorithmic pipeline is illustrated in Figure 2 and described in
Algorithm 1, with hyperparameters summarized in Appendix A.3.6. We include the complete set
of prompt templates and composition rules used in all experiments in Appendix A.4. Finally, we
indicate in the paper that the benchmark and code will be released to facilitate future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco JR Ruiz, Alan Malek, Alexis
Bellot, and Silvia Chiappa. Funbo: Discovering acquisition functions for bayesian optimization
with funsearch. arXiv preprint arXiv:2406.04824, 2024.

Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum. Rapid trial-and-error learning with
simulation supports flexible tool use and physical reasoning. Proceedings of the National Academy
of Sciences, 117(47):29302–29310, 2020.

Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Pe-
ter Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable learned
simulators. arXiv preprint arXiv:2202.00728, 2022.

Jagdeep Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, and Wojciech Matusik. Evolution gym:
A large-scale benchmark for evolving soft robots. Advances in Neural Information Processing
Systems, 34:2201–2214, 2021.

Jake Brawer, Meiying Qin, and Brian Scassellati. A causal approach to tool affordance learning. In
2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 8394–8399.
IEEE, 2020.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar.
Benchmarking in manipulation research: Using the Yale-CMU-Berkeley object and model set.
IEEE Robot. Autom. Mag., 22(3):36–52, September 2015.

Arvind Car, Sai Sravan Yarlagadda, Alison Bartsch, Abraham George, and Amir Barati Farimani.
Plato: Planning with llms and affordances for tool manipulation, 2024. URL https://arxiv.
org/abs/2409.11580.

Tao Chen, Eric Cousineau, Naveen Kuppuswamy, and Pulkit Agrawal. Vegetable peeling: A case
study in constrained dexterous manipulation, 2024. URL https://arxiv.org/abs/2407.
07884.

Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. Hardware as policy: Mechanical and compu-
tational co-optimization using deep reinforcement learning. arXiv preprint arXiv:2008.04460,
2020.

Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. Scalable co-optimization of morphol-
ogy and control in embodied machines. Journal of The Royal Society Interface, 15(143):20170937,
2018.

Norman Di Palo and Edward Johns. Keypoint action tokens enable in-context imitation learning in
robotics. In Proceedings of Robotics: Science and Systems (RSS), 2024.

Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston E Eiben. Evolutionary
robotics: what, why, and where to. Frontiers in Robotics and AI, 2:4, 2015.

Heng Dong, Junyu Zhang, Tonghan Wang, and Chongjie Zhang. Symmetry-aware robot design with
structured subgroups, 2023a. URL https://arxiv.org/abs/2306.00036.

Heng Dong, Junyu Zhang, and Chongjie Zhang. Leveraging hyperbolic embeddings for coarse-to-fine
robot design, 2023b. URL https://arxiv.org/abs/2311.00462.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/
pybullet-gym, 2018–2019.

Ioannis Exarchos, Karen Wang, Brian H Do, Fabio Stroppa, Margaret M Coad, Allison M Okamura,
and C Karen Liu. Task-specific design optimization and fabrication for inflated-beam soft robots
with growable discrete joints. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 7145–7151. IEEE, 2022.

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and Silvio
Savarese. Learning task-oriented grasping for tool manipulation from simulated self-supervision.
The International Journal of Robotics Research, 39(2-3):202–216, 2020.

11

https://arxiv.org/abs/2409.11580
https://arxiv.org/abs/2409.11580
https://arxiv.org/abs/2407.07884
https://arxiv.org/abs/2407.07884
https://arxiv.org/abs/2306.00036
https://arxiv.org/abs/2311.00462
 https://github.com/benelot/pybullet-gym
 https://github.com/benelot/pybullet-gym

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rohit Girdhar, Laura Gustafson, Aaron Adcock, and Laurens van der Maaten. Forward prediction for
physical reasoning. arXiv preprint arXiv:2006.10734, 2020.

Andrew Goldberg, Kavish Kondap, Tianshuang Qiu, Zehan Ma, Letian Fu, Justin Kerr, Huang
Huang, Kaiyuan Chen, Kuan Fang, and Ken Goldberg. Blox-net: Generative design-for-robot-
assembly using vlm supervision, physics simulation, and a robot with reset, 2024. URL https:
//arxiv.org/abs/2409.17126.

David Ha. Reinforcement learning for improving agent design. Artificial life, 25(4):352–365, 2019.

Huy Ha, Shubham Agrawal, and Shuran Song. Fit2Form: 3D generative model for robot gripper
form design. In Conference on Robotic Learning (CoRL), 2020.

Donald J Hejna III, Pieter Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution. arXiv
preprint arXiv:2102.13100, 2021.

Ian Huang, Guandao Yang, and Leonidas Guibas. Blenderalchemy: Editing 3d graphics with
vision-language models. In European Conference on Computer Vision, pp. 297–314. Springer,
2024.

Ivo F Jacobs, Auguste von Bayern, and Mathias Osvath. A novel tool-use mode in animals: New
caledonian crows insert tools to transport objects. Anim. Cogn., 19(6):1249–1252, November 2016.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.

Milan Jelisavcic, Kyrre Glette, Evert Haasdijk, and AE Eiben. Lamarckian evolution of simulated
modular robots. Frontiers in Robotics and AI, 6:9, 2019.

Kento Kawaharazuka, Toru Ogawa, and Cota Nabeshima. Tool shape optimization through backprop-
agation of neural network. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 8387–8393. IEEE, 2020.

Muhammad Haris Khan, Artyom Myshlyaev, Artem Lykov, Miguel Altamirano Cabrera, and Dzmitry
Tsetserukou. Evolution 6.0: Evolving robotic capabilities through generative design. arXiv preprint
arXiv:2502.17034, 2025.

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of
articulated objects via a vision-language foundation model. arXiv preprint arXiv:2410.13882,
2024.

Mengxi Li, Rika Antonova, Dorsa Sadigh, and Jeannette Bohg. Learning tool morphology for contact-
rich manipulation tasks with differentiable simulation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1859–1865. IEEE, 2023.

Yunfei Li, Tao Kong, Lei Li, Yifeng Li, and Yi Wu. Learning to design and construct bridge without
blueprint. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2398–2405. IEEE, 2021.

Thomas Liao, Grant Wang, Brian Yang, Rene Lee, Kristofer Pister, Sergey Levine, and Roberto Calan-
dra. Data-efficient learning of morphology and controller for a microrobot. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 2488–2494. IEEE, 2019.

Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B Tenenbaum, David Held, and Chuang Gan. Diffskill:
Skill abstraction from differentiable physics for deformable object manipulations with tools. arXiv
preprint arXiv:2203.17275, 2022a.

Xingyu Lin, Carl Qi, Yunchu Zhang, Zhiao Huang, Katerina Fragkiadaki, Yunzhu Li, Chuang Gan,
and David Held. Planning with spatial-temporal abstraction from point clouds for deformable
object manipulation. In 6th Annual Conference on Robot Learning, 2022b. URL https:
//openreview.net/forum?id=tyxyBj2w4vw.

12

https://arxiv.org/abs/2409.17126
https://arxiv.org/abs/2409.17126
https://openreview.net/forum?id=tyxyBj2w4vw
https://openreview.net/forum?id=tyxyBj2w4vw

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziang Liu, Stephen Tian, Michelle Guo, C. Karen Liu, and Jiajun Wu. Learning to design and use
tools for robotic manipulation, 2023. URL https://arxiv.org/abs/2311.00754.

Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient co-adaptation of
morphology and behaviour with deep reinforcement learning. In Leslie Pack Kaelbling, Danica
Kragic, and Komei Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume 100
of Proceedings of Machine Learning Research, pp. 854–869. PMLR, 30 Oct–01 Nov 2020. URL
https://proceedings.mlr.press/v100/luck20a.html.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Alican Mertan and Nick Cheney. Investigating premature convergence in co-optimization of mor-
phology and control in evolved virtual soft robots, 2024. URL https://arxiv.org/abs/
2402.09231.

Lakshmi Nair, Nithin Shrivatsav, and Sonia Chernova. Tool macgyvering: A novel framework for
combining tool substitution and construction. arXiv preprint arXiv:2008.10638, 2020.

Yuki Noguchi, Tatsuya Matsushima, Yutaka Matsuo, and Shixiang Shane Gu. Tool as embodiment
for recursive manipulation. arXiv preprint arXiv:2112.00359, 2021.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
2025. URL https://arxiv.org/abs/2506.13131.

Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to control
self-assembling morphologies: a study of generalization via modularity. Advances in Neural
Information Processing Systems, 32, 2019.

Carl Qi, Yilin Wu, Lifan Yu, Haoyue Liu, Bowen Jiang, Xingyu Lin, and David Held. Learning
generalizable tool-use skills through trajectory generation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2024.

Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Keto: Learning keypoint
representations for tool manipulation. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7278–7285. IEEE, 2020.

Kevin Qiu, Krzysztof Ciebiera, Paweł Fijałkowski, Marek Cygan, and Łukasz Kuciński. Robomorph:
Evolving robot morphology using large language models. arXiv preprint arXiv:2407.08626, 2024.

Ryan P. Ringel, Zachary S. Charlick, Jiaxun Liu, Boxi Xia, and Boyuan Chen. Text2robot: Evolu-
tionary robot design from text descriptions, 2025. URL https://arxiv.org/abs/2406.
19963.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly learning to construct
and control agents using deep reinforcement learning. In 2019 international conference on robotics
and automation (ICRA), pp. 9798–9805. IEEE, 2019.

Kenneth Shaw, Yulong Li, Jiahui Yang, Mohan Kumar Srirama, Ray Liu, Haoyu Xiong, Russell
Mendonca, and Deepak Pathak. Bimanual dexterity for complex tasks. In 8th Annual Conference
on Robot Learning, 2024.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools, 2023. URL https://arxiv.org/abs/
2306.14447.

13

https://arxiv.org/abs/2311.00754
https://proceedings.mlr.press/v100/luck20a.html
https://arxiv.org/abs/2402.09231
https://arxiv.org/abs/2402.09231
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2406.19963
https://arxiv.org/abs/2406.19963
https://arxiv.org/abs/2306.14447
https://arxiv.org/abs/2306.14447

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Karl Sims. Evolving virtual creatures. In Seminal Graphics Papers: Pushing the Boundaries, Volume
2, pp. 699–706. 2023.

Junru Song, Yang Yang, Huan Xiao, Wei Peng, Wen Yao, and Feifei Wang. Laser: Towards diversified
and generalizable robot design with large language models. In The Thirteenth International
Conference on Learning Representations, 2025.

Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Matusik, and Daniela Rus. Learning-
in-the-loop optimization: End-to-end control and co-design of soft robots through learned deep
latent representations. Advances in Neural Information Processing Systems, 32, 2019.

Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel. Learning robotic
assembly from cad, 2018. URL https://arxiv.org/abs/1803.07635.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust
manipulation. arXiv preprint arXiv:2403.03949, 2024.

Marc Toussaint, Jung-Su Ha, and Ozgur S Oguz. Co-optimizing robot, environment, and tool
design via joint manipulation planning. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6600–6606. IEEE, 2021.

Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable
physics and stable modes for tool-use and manipulation planning. Robotics: Science and systems
foundation, 2018.

Kathryn Walker and Helmut Hauser. Evolution of morphology through sculpting in a voxel based
robot. In Artificial Life Conference Proceedings 33, volume 2021, pp. 27. MIT Press One Rogers
Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2021.

Yuxing Wang, Shuang Wu, Haobo Fu, QIANG FU, Tiantian Zhang, Yongzhe Chang, and Xueqian
Wang. Curriculum-based co-design of morphology and control of voxel-based soft robots. In
The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=r9fX833CsuN.

Yuxing Wang, Shuang Wu, Tiantian Zhang, Yongzhe Chang, Haobo Fu, Qiang Fu, and Xueqian Wang.
Preco: Enhancing generalization in co-design of modular soft robots via brain-body pre-training.
In Conference on Robot Learning, pp. 478–498. PMLR, 2023b.

Yizhe Wu, Sudhanshu Kasewa, Oliver Groth, Sasha Salter, Li Sun, Oiwi Parker Jones, and Ingmar
Posner. Imagine that! leveraging emergent affordances for 3d tool synthesis. arXiv preprint
arXiv:1909.13561, 2019.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through physical
understanding: Using novel objects as tools with visual foresight. arXiv preprint arXiv:1904.05538,
2019.

Danfei Xu, Ajay Mandlekar, Roberto Martín-Martín, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Deep
affordance foresight: Planning through what can be done in the future. In 2021 IEEE international
conference on robotics and automation (ICRA), pp. 6206–6213. IEEE, 2021a.

Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and Pulkit
Agrawal. An end-to-end differentiable framework for contact-aware robot design. In Robotics:
Science and Systems XVII, RSS2021. Robotics: Science and Systems Foundation, July 2021b. doi:
10.15607/rss.2021.xvii.008. URL http://dx.doi.org/10.15607/RSS.2021.XVII.
008.

Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei Xia,
Jie Tan, and Ding Zhao. Creative robot tool use with large language models, 2023.

14

https://arxiv.org/abs/1803.07635
https://openreview.net/forum?id=r9fX833CsuN
https://openreview.net/forum?id=r9fX833CsuN
http://dx.doi.org/10.15607/RSS.2021.XVII.008
http://dx.doi.org/10.15607/RSS.2021.XVII.008

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xiaomeng Xu, Huy Ha, and Shuran Song. Dynamics-guided diffusion model for robot manipulator
design. arXiv preprint arXiv:2402.15038, 2024.

Yida Yin, Zekai Wang, Yuvan Sharma, Dantong Niu, Trevor Darrell, and Roei Herzig. In-context
learning enables robot action prediction in llms. In ICRA, 2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao,
Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei
Xia. Language to rewards for robotic skill synthesis. Arxiv preprint arXiv:2306.08647, 2023.

Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and Kris Kitani. Transform2act: Learning a transform-
and-control policy for efficient agent design. arXiv preprint arXiv:2110.03659, 2021.

Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus,
and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. ACM
Trans. Graph., 39(6), November 2020. ISSN 0730-0301. doi: 10.1145/3414685.3417831. URL
https://doi.org/10.1145/3414685.3417831.

15

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://doi.org/10.1145/3414685.3417831

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 BASELINE DETAILS

A.1.1 HUMAN-PROMPTED DESIGNS EXPERIMENT IMPLEMENTATION

Each participant underwent the following experimental procedure for each task: (i) We provided a
screenshot of the environment and a description of the task, accompanied by a brief Q&A session to
ensure the participants understood the task. (ii) Participants then had five minutes to write a prompt
in English specifying their desired tool design and robot action. We instructed participants to be as
descriptive as possible while focusing on both the design of the tool and how the robot should use it
to accomplish the task. (iii) we integrated their prompt into our standardized request to the VLM
(by adding instructions as shown in Appendix A.4.9), generating 5 tool described in URDF format
along with a batch of 10 samples of action waypoints for each tool. (iv) The VLM outputs were then
evaluated in our simulation environment using the same reward metrics described in Section 6. (v)
Finally, we evaluated and recorded the best-performing tool and action pair based on the task reward
metric for each participant. For a case study, we obtained prompts from three humans coming from
three different backgrounds, including an LLM expert (a student with extensive research experience
in LLM), a robotics expert (a student with extensive research experience in robotics), and a layperson
(with no technical background). This case study will serve as an initial attempt on the concept. In
the future, we plan to recruit more human subjects to conduct human study experiments on a larger
sample population.

A.1.2 NO-TOOL EXPERIMENT IMPLEMENTATION

In the no-tool baseline experiment, we evaluate the robot’s performance without any additional tool
attachment. The Franka Panda robot uses its original two-finger gripper to perform the task, with the
VLM generating action waypoints for the robot end effector pose and gripper open/close, totaling 7
degrees of freedom. The prompt for this baseline is adapted from our proposed prompt by removing
the tool design component and associated instructions, while retaining the task description and action
generation requirements. We use 5 agents with each generating 10 samples of action waypoints,
evaluated using the same metrics introduced in Section 6. The complete no-tool prompt is provided
in Appendix A.4.8.

A.1.3 RLBENCH EXPERIMENT IMPLEMENTATION

In the RLBench experiment, we evaluate the robot’s performance with tools from RLbench. We
assume the tool is already attached to the end effector without considering the picking step. The tool
are scaled to adapt to our tasks which are similar to the ones in RLBench. The prompt for this baseline
is also adapted from our proposed prompt by removing the tool design component and associated
instructions. We use 5 agents with each generating 10 samples of action waypoints, evaluated using
the same metrics introduced in Section 6. The complete no-tool prompt is provided in Appendix
A.4.10.

A.2 ROBOTOOLBENCH DETAILS

In this section, we provide detailed descriptions of each task and their corresponding dense reward
functions in ROBOTOOLBENCH.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

BringCube

In this task, a red cube on the desk which is out of the
reach of the robot is needed to be brought closer to the
target zone.
The reward measures how close the cube is to the target as
a fraction of its starting distance, and scales it to 0~1.

CleanTable

In this task, the colorful cubes representing dusts need to
be pushed away from the robot into a circular target zone
marked by the green boundary.
The reward reflects, on average, how far each cube has
been pushed toward the goal circle, and scales it to 0~1.

DislodgeCube

In this task, a red cube is confined within a white,
transparent pipe in front of the robot, which has two exits:
one opening faces the robot (along negative X) and the
other at the front-right corner (along negative Y). The
objective is to dislodge the cube through either opening.
The reward captures the cube’s progress toward either of
the two pipe exits by computing two separate, normalized
(on a 0~1 scale) “distance-to-exit” scores and then taking
the better one.

ElevatePlate

In this task, a white plate placed on the desk in front of the
robot needs to be securely lifted up.
The reward measures how far the plate has moved from its
starting position to the desired lifted position, and scales it
to 0~1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

GatherSpheres

In this task, an open three-walled container filled with
small purple spheres is placed before the robot. The
objective is to gather and elevate as many spheres as
possible above 0.3 m.
The reward captures, on average, how high the spheres
have been lifted up to a specified cap, and scales it to 0~1.

HighObject

In this task, a green cube sits on the top shelf. The
objective is to place it inside the beige box positioned
between the shelf and the robot.
The reward combines a hard “in-box” check with a smooth
distance-based signal and a bonus for lowering the cube
off the shelf, and scales it to 0~1.

LiftBox

In this task, a brown box on the desk in front of the robot
must be lifted above a height threshold of 0.25 m.
This reward measures how much the box has moved
toward its target (lifted) position, and scales it to 0~1.

MoveBall

In this task, a red ball on the desk must be moved from the
robot’s left side to its right side.
The reward balances two objectives, getting the ball
toward the right-side target and keeping its speed in check,
and scales it to 0~1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

OneBook

In this task, two book holders with five books between
them are in front of the robot. The objective is to pull out
the middle (3rd) book while keeping the others in place.
This reward balances two goals, pulling out the middle
book and keeping the others perfectly still, and scales it to
0~1.

ScoreGoal

In this task, a hockey puck and a goal are placed on the
ground far from the robot. The objective is to place the
puck inside the goal.
The reward gives full credit once the puck is entirely
inside the goal’s 3D bounding box, and otherwise scales
linearly with how much closer the puck is, horizontally, to
the goal than it was at the start, and scales it to 0~1.

SnatchCookie

In this task, a transparent jar of cookies sits on the desk in
front of the robot. The objective is to take at least one
cookie from the jar.
The reward checks whether any cookie has been lifted out
of the jar, and otherwise gives partial credit, from 0 to 1,
based on how high the tallest cookie has been raised.

TurkeyLegs

In this task, a silver pot with handles on both sides, full of
turkey legs, sits on the desk in front of the robot. To the
pot’s left (robot’s perspective) is a chef’s box. The
objective is to transfer all turkey legs into the box without
moving the pot.
The reward combines two checks, keeping the pot out of
the box and getting each turkey leg into the box, by
multiplying, and scales it to 0~1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.3 VLMGINEER IMPLEMENTATION DETAILS

A.3.1 DESIGN AGENTS CONTEXT

This section describes the context that applies to a single design agent. The design agent is provided
with task context as illustrated in Fig. 2, which includes (1) the environment code, (2) a screenshot of
the environment, (3) a brief task description, and (4) a total text prompt composed by the prompts in
Appendix A.4. We also provide task-agnostic context, including (i) environment base class, which
provides basic task-agnostic functionalities, (ii) environment runner, which establishes the context
for how we will use the output tool and action, and (iii) a URDF of the Franka Panda without the
tool to indicate where to attach the tool. All task environments are implemented as child classes of
the environment base class, ensuring they inherit the fundamental functionalities while allowing for
task-specific implementations.

A.3.2 DESIGN AGENTS QUERIES

In VLMGINEER, we query VLM for designs by first initializing nagents number of agents in parallel
with the same prompts. For each agent, we prompt it to generate ntool number of tool designs, and
naction number of action waypoint samples that correspond to each tool design. Therefore, the total
number of tool-action pairs that are generated via one complete query is nagents × ntool × naction.
The prompt we use to specify this behavior to each agent is presented in Appendix A.4.2.

We explicitly choose this style of querying to maximize time efficiency and design diversity: (1)
time efficiency is achieved by reducing the querying algorithmic complexity by using parallel VLM
agents. (2) Empirically, we found that design diversity is achieved when we balance dependence and
independence between design decisions. Specifically, when a single VLM agent auto-regressively
generates ntool × naction tool-actions pairs, having later design outputs be conditioned on previous
design outputs can encourage diversity within that conditional distribution. However, in order to
sample from many distinct conditional distributions, as this provides additional diversity, we found
that parallel VLM queries that share no history can help with that. Ultimately, we found that
optimizing time efficiency and design diversity led to better and faster initial samples as well as
evolutions.

See Appendix A.3.6 for details on the values we used for these parameters for benchmarking.

A.3.3 DESIGN AGENT OUTPUTS

As a part of our prompt to the VLM to query for designs, we specified our desired tool and action
formats. For our tool design requirements, please refer to Appendix A.4.3 for details. For our
action design requirements, please refer to Appendix A.4.4 for details. Notably, these prompts are
separated into with & without the Franka gripper usage. Is it also important to note that the number of
waypoints the VLM outputs is completely decided by the VLM itself. During VLMGINEER’s initial
sampling, some design agents are asked to design tools for the gripper, some are not. This ensures
the full capabilities of the default morphology are used. The two types of tools are also specified with
different required attachment locations: gripper-using tools are asked to be attached to the two Franka
gripper fingers, and non-gripper-using tools are asked to be attached to a “virtual joint”, which is a
joint we set up positioned at the flange of the Franka end effector to make the attachment process
more standardized.

A.3.4 SIMULATION EVALUATION

From the previous section, we obtain a list of tool-action pairs in the form of URDF designs and action
waypoints, respectively. To use these for simulation evaluation, we first merge the tool URDF without
modification into a blank Franka Panda URDF (a blank Franka URDF will contain a gripper if gripper
usage is enabled, and otherwise will not). For the action waypoints, which are inherently sparse, we
implement linear interpolation for the position trajectory and SLERP (Spherical Linear Interpolation)
for the orientation trajectory. The Pybullet simulation then executes these interpolated actions in
the designated task environment. Finally, the environment returns result metrics for each run with
the corresponding samples, allowing for both choosing evolution candidates and for producing the
quantitative evaluation of the design performance. To speed up the evaluation, ksim samples are
evaluated in parallel Pybullet simulations at a time.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3.5 EVOLUTION

After evaluating all previous tool-action pairs, we perform selection as follows: (1) For every task,
we define two parameters to control the behavior of selection: rewardsave and ktop. (2) Using these
parameters, we first select the ktop number of tool-action pairs with the highest task rewards, and
then keep only the pairs that have a reward higher than the rewardsave threshold, resulting in a set of
winner tool-action pairs. We found this selection mechanism empirically allows for the best signals
for evolution.

We then take this winner tool-action pair set and feed it as context into the next design agent query.
These previous designs are introduced to the VLM by the “evolution mission introduction prompt” in
Appendix A.4.1, where the VLM is asked to perform mutation and crossover on the previous tools
via the rules specified in A.4.7. These evolved design samples will be fed into the simulation for
evaluation, and the cycle will continue. We define a final niteration parameter to control the number
of iterations that this cycle would go on for.

See Appendix A.3.6 for details on the values we used for these parameters for benchmarking.

A.3.6 VLMGINEER BENCHMARKING DETAILS

Table 2: Benchmarking Parameters for Different Tasks

Task Name nagent ntool naction ktop rewardsave niteration ksim

BringCube 20 10 10 5 0.6 3 100
CleanTable 20 10 10 5 0.6 3 100
DislodgeCube 20 10 10 5 0.6 3 100
ElevatePlate 20 10 10 5 0.6 3 100
GatherSpheres 20 10 10 5 0.6 3 100
HighObject 20 10 10 5 0.5 3 100
LiftBox 30 15 15 5 0.1 3 100
MoveBall 20 10 10 5 0.6 3 100
OneBook 20 10 10 5 0.4 3 100
ScoreGoal 20 10 10 5 0.4 3 100
SnatchCookie 5 5 5 5 0.3 3 100
TurkeyLegs 30 10 15 5 0.2 4 100

When benchmarking VLMGINEER against ROBOTOOLBENCH, we used a different set of parameters
for each task, detailed in Table. 2. We used gemini-2.5-pro-preview-03-25 as our VLM
model throughout the entire experiment, and ran PyBullet evaluations on an AMD Ryzen 7 9800X3D
8-Core Processor CPU with 64 GB of RAM. On average, one run of VLMGINEER on one of these
tasks should take around 30 minutes. Below, we explain each hyperparameter:

- nagent: the number of parallel VLMgineer evolutionary design agents. Each agent independently
performs design sampling and evaluation. The top-k designs across all agents are selected and passed
to the next evolutionary iteration. We empirically found that employing multiple parallel agents
enhances both diversity and runtime efficiency, as a single agent often becomes trapped in local
minima and runs more slowly.

- ntool: the number of tool samples generated by each evolutionary agent in each iteration.

- naction: the number of action samples generated per tool in each iteration by each evolutionary agent.
Note that tool and action samples are generated simultaneously in one pass by the VLM, resulting in
a total of ntool x naction samples per iteration per evolutionary agent.

- ktop: the number of top-performing samples selected from all samples generated by all agents at the
end of each iteration.

- rewardsave: in addition to ktop, we apply a minimum reward threshold to determine whether a
sample should be retained.

- niteration: the total number of evolutionary iterations conducted.

- ksim: the number of simulation evaluation steps performed for each sampled design.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Empirically, we observed that using too few agents constrained the diversity of generated tools.
Thus, we consciously selected a sufficiently large number of agents within our computational budget.
For parameters such as ktop and rewardsave, our experiments indicated that selecting too few top
samples reduces diversity. We further present experimental ablations to illustrate the sensitivity of
VLMgineer’s performance to variations in naction and ntool samples.

Our analysis reveals that VLMgineer’s performance consistently improves as the number of generated
samples increases. The table below reports the average reward (0.0-1.0) and standard deviation across
4 benchmark tasks for varying sample sizes. Number of samples corresponds to nagent ×ntool ×naction.

A.4 FULL PROMPTS

In this section, we provide all VLMGINEER prompts. We show individual prompt components
in section A.4.1- A.4.7. We then describe we compose these prompts for different experiments in
section A.4.8-A.4.10. We also include a environment code sample input in section A.4.11. For details
of their usage, please refer to Appendix A.3.

A.4.1 MISSION INTRODUCTION

Initial sampling mission introduction prompt:

You are a robotics hardware and controls expert. You operate with
boldness and brilliance in the physical realm. You work with a
robot arm that sits in the origin of your environment. You will be
presented with some robotic tasks, and will be asked to design tools
and actions to complete the task. Your goal is not to complete the
task to perfection in one fell swoop. Instead, your meta-goal is
to generate a wide range of differentiated good solutions over time,
where one of them will inevitably succeed.

Evolution mission introduction prompt:

You are a robotics hardware and controls expert. You operate with
boldness and brilliance in the physical realm. The goal is to
create tools and actions to complete a given task. You will be
given a list of previously generated tool designs via JSON with
URDF. Your goal is to evolve the tool designs via mutation and
crossover, and generate the new best actions for the evolved tools.
This will be done in a way that is similar to genetic algorithms,
and will be specified in detail in the "Evolutionary Process"
section below.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.4.2 PROCEDURE INSTRUCTION

The procedure you will follow:
1. Receive Environment Descriptions: The user will provide some
detailed environment descriptions, robotic task instructions, and an
initial image of the workspace area from the overhead camera.
2. Describe the Scene: Analyze the environment. Write down the
spatial relationship, including by not limited to the position,
orientation, dimension, and geometry of all the objects in the
scene. Use all the information provided to you, including all text,
code, and images.
3. Create Strategies and Designs: You will need to create ntool

tool that you can use to complete the task. For each of the tools
you designed, you must generate naction set of action waypoints that
you can use to complete the task. Specifically, for a total of ntool

times, do the following steps:

(a) First, write down a completely different, out-of-the-box
tool design to tackle the task. Make it unlike any other
tool design you made in your other strategies.

(b) Create these tools following the "Tool Specification"
section below.

(c) For this tool, write the following down: (1) The spatial
relationship (pose transformation) between the end-effector
and each component of the tool; (2) The 3D space that each
tool component will take up when connected to the robot; (3)
The usage of each component of the tool when carrying out the
task.

(d) Use your previous analysis to tweak any obvious issues
with the position, orientation, and dimension of your tool
design.

(e) Next, using your knowledge of the tool and your in depth
analysis regarding the intricate 3D spatial relationships
between the tool and its environment, create naction number of
different step by step action plans to enable to effective
tool use (See more in "Desired Action Criteria Definitions").
Be very wary about how objects interact with each other

(f) Transform your step-by-step action plan into waypoints
adhering to the "Action Specifications". During this
transformation, think about the inherent nature of
controlling robots with waypoint control and the difficulty
that may present.

A.4.3 TOOL SPECIFICATIONS

Tool specification prompt without the use of Franka Grippers:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(Tool Specifications) Your design of the tool must follow these
rules: (1) You must only use 3D rectangles for each component; (2)
Your tool will be outputted in a URDF block format, which should be
directly added to the end of a panda URDF file, before the robot
closing declaration; (3) Make sure your tools weigh very little in
the URDF file, where each tool part should weigh no more than a few
grams (these weights do not have to be realistic, it is just for
the robot inverse kinematics to have a easier time converging). (4)
Your design will be a single rigid tool, which should be attached
directly to the "panda_virtual" link, which you can safely assume to
have the same orientation as the world frame. (5) Any attachments
you design should geometrically be directly connected to their
parent links in the URDF (there should be no gaps in between!) (6)
As a general observation, you perform better when the tools you
design are complex and intricate.

Tool specification prompt with the use of Franka Grippers:

(Tool Specifications) Your design of the tool must follow these
rules: (1) You must only use 3D rectangles for each component;
(2) Your tool will be outputted in a URDF block format, which
should be directly added to the end of a panda URDF file, before
the robot closing declaration; (3) Make sure your tools weigh very
little in the URDF file, where each tool part should weigh no more
than a few grams (these weights do not have to be realistic, it
is just for the robot inverse kinematics to have a easier time
converging). (4) Your design will be a pair of attachments to
the robot gripper fingers (which allows the tool to be actuated
with the robot gripper); You should attach the left attachment to
"panda_leftfinger" and the right attachment to "panda_rightfinger".
(5) Any attachments you design should geometrically be directly
connected to their parent links in the URDF (there should be no gaps
in between!) (6) As a general observation, you perform better when
the tools you design are complex and intricate.

A.4.4 ACTION SPECIFICATIONS

Action specification prompt without the use of Franka Grippers:

(Action Specifications) Your tool-using action will be a Nx6 numpy
array of action waypoints, where N is the number of waypoints, and
each waypoint is of dimension 6 (xyz position + roll-pitch-yaw euler
angle orientations). Your action needs to be precisely six numbers
per waypoint. Your waypoints will be carried out by the EnvRunner
class. It is important to stress this: the action waypoints are
controlling the robot end-effector "panda_virtual" link: this
means you have to carefully take into account the dimensions of
the tool and the thickness of its parts when designing effective
waypoints. Again, you can safely assume the end-effector has the
same orientation as the world frame upon initialization (see frame
clarification again for details)!

Action specification prompt with the use of Franka Grippers:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(Action Specifications) Your tool-using action will be a Nx7 numpy
array of action waypoints, where N is the number of waypoints, and
each waypoint is of dimension 7 (xyz position + roll-pitch-yaw euler
angle orientations + binary gripper open/close state in integers
[0 for open, 1 for closed]). Your action needs to be precisely
seven numbers per waypoint. Your waypoints will be carried out by
the EnvRunner class. It is important to stress this: the action
waypoints are controlling the robot end-effector "panda_virtual"
link: this means you have to carefully take into account the
dimensions of the tool and the thickness of its parts when designing
effective waypoints. Again, you can safely assume the end-effector
has the same orientation as the world frame upon initialization (see
frame clarification again for details)!

A.4.5 ACTION DIVERSITY SPECIFICATION

(Desired Action Criteria Definitions) For the description below, we
will call a single sequential set of waypoints in a single rollout
as one "action set". For each tool you created, the goal is to
generate naction action sets that optimize the task success and motion
differentiation. Task success is optimized when an action set is
able to complete the task successfully. Motion differentiation is
optimized when there exists a large variance in the motion taken
across all action sets you design for the same tool. A large
variance in motion is defined the tool, at each time step, is
located at a different location in the 3D space. Think about how
a tool can be used to interact with the object from many different
sides, angles, and ways. When both conditions are met, you have
successfully designed a good set of actions sets.

A.4.6 FRAME CLARIFICATIONS

(Frame Clarification) In the world frame, front/back is along the
x axis, left/right is along the y axis, and up/down is along the
z axis with the following directions: Positive x: Towards the
front of the table. Negative x: Towards the back of the table.
Positive y: Towards the left. Negative y: Towards the right.
Positive z: Up, towards the ceiling. Negative z: Down, towards
the floor. In terms of orientation, starting from the origin frame,
Positive rotation about the x-axis: tilting the end-effector head
to the left. Negative rotation about the x-axis: tilting the
end-effector head to the right. Positive rotation about the y-axis:
tilting the end-effector head down. Negative rotation about the
y-axis: tilting the end-effector head up. Positive rotation about
the z-axis: rotating the end-effector head counter-clockwise.
Negative rotation about the z-axis: rotating the end-effector head
clockwise.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.4.7 EVOLUTIONARY INSTRUCTIONS

(Evolutionary Process) Your design decision is a part of a tool
design genetic algorithm. For each of the ntool tool designs, you
can choose to either mutate or crossover. Specifically, tool
mutation is defined as one change to a single randomly selected
previous tool design. Mutation changes include:

(1) Changing the dimension, location, or orientation of a
single component of the tool.

(2) Adding, removing, or replacing a single component of the
tool.

Crossover is defined as the process of combining two randomly
selected previous tool designs to create a new tool design.
Combination is defined as:

(1) Selecting components from two previous tool designs and
combining them to form a new tool design.

All mutation and crossover decisions must potentially increase the
likelihood of task success, yet all decisions must be different and
diverse.

A.4.8 NO TOOL INSTRUCTIONS

You are a robotics hardware and controls expert. You operate with
boldness and brilliance in the physical realm. You work with a
robot arm that sits in the origin of your environment. You will
be presented with some robotic tasks, and will be asked to design
actions to complete the task.

...

The complete prompt is composed together with instructions from A.4.2, A.4.4, A.4.5, and A.4.6.

A.4.9 HUMAN SPECIFICATION INSTRUCTIONS

You are a helpful robotics hardware and controls expert. You have
a robot arm that sits in the origin of your environment. You are
working with a colleague as a team to design tools and actions for
a robot to complete a task. Your colleague will provide you with
a design and action instructions in the form of natural language
instructions. Your goal is to use your colleague’s design and
action instructions to output URDF and action waypoints for the
robot to use. You should not use your own knowledge to design
the tool and action, but rather follow your human colleague’s
instruction. Here is the human colleague’s prompt: {human_prompt}

...

The complete prompt is composed together with instructions from A.4.2, A.4.3, A.4.4, A.4.5, and
A.4.6.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.4.10 RLBENCH INSTRUCTIONS

You are a helpful robotics hardware and controls expert. You have
a robot arm that sits in the origin of your environment. You are
working with a colleague as a team to design tools and actions
for a robot to complete a task. Your colleague will provide you
with a design in the format of a URDF, which is attached for you as
tool.txt. Your goal is to use your colleague’s URDF to come up with
an action plan for the robot to use.

...

The complete prompt is composed together with instructions from A.4.2, A.4.4, A.4.5, and A.4.6.

A.4.11 SAMPLE ENVIRONMENT CODE

1 from envs.base_env import BaseEnv
2 from models.primative_objects.cube import Cube
3 import numpy as np
4 import pybullet as p
5

6 class BringCubeCloserEnv(BaseEnv):
7 def __init__(
8 self,
9 **kwargs,

10):
11 self.start_cube_pos = np.array([1.0, 0, 0.035])
12 self.target_cube_pos = np.array([0.6, 0, 0.035])
13

14 super().__init__(
15 **kwargs,
16)
17

18 def _setup_environment(self):
19 # Load plane
20 planePos = [0, 0, -0.625]
21 planeOri = p.getQuaternionFromEuler([0, 0, np.pi/2])
22 self.plane = p.loadURDF("plane/plane.urdf", \
23 planePos, planeOri, useFixedBase=True)
24 p.changeDynamics(self.plane, -1, restitution=0.95)
25

26 # Load table
27 tablePos = [0.6, 0, -0.625]
28 tableOri = p.getQuaternionFromEuler([0, 0, 0])
29 self.table = p.loadURDF("table/table.urdf", \
30 tablePos, tableOri, useFixedBase=True)
31

32 # Load cube
33 cubeSize = 0.07
34 self.cube = Cube(cubeSize, self.start_cube_pos).get_shape()
35

36 # Load visual goal
37 self.goal = p.loadURDF("visual_goal/goal.urdf", \
38 self.target_cube_pos-np.array([0, 0, 0.035]), useFixedBase=True)
39

40 if self.blender_recorder:
41 self.blender_recorder.register_object(self.table, "table")
42 self.blender_recorder.register_object(self.cube, "cube")
43 self.blender_recorder.register_object(self.goal, "goal")
44

45 def reward(self):
46 cube_pos, _ = p.getBasePositionAndOrientation(self.cube)
47 current_distance = np.linalg.norm(self.target_cube_pos - \
48 np.array(cube_pos), ord=1)
49 initial_distance = np.linalg.norm(self.target_cube_pos - \

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

50 self.start_cube_pos, ord=1)
51

52 # Normalize reward to be 0 at initial position and 1 at target
53 normalized_reward = max(0, 1-current_distance/initial_distance)
54 return normalized_reward
55

56 def reset(self):
57 super().reset()
58 # Reset cube position
59 p.resetBasePositionAndOrientation(
60 self.cube,
61 self.start_cube_pos,
62 p.getQuaternionFromEuler([0, 0, 0])
63)}

A.5 TOOL DESIGN GALLERY

In this tool design gallery, we take the opportunity to display tools from a few tasks that seemed to
have allowed VLMGINEER the most creative freedom. These are tool designs that are not presented
elsewhere in the paper. We believe this illustrates VLMGINEER’s impressive physical creativity and
problem-solving capabilities.

Task Name

BRINGCUBE

CLEANTABLE

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Task Name

ELEVATEPLATE

GATHERSPHERES

MOVEBALL

A.6 AN EXAMPLE OF ACTION SEQUENCES

Each action set is a 6-(or 7-)dimensional vector representing [x, y, z] position and [roll, pitch, yaw]
orientation (and an optional gripper command). The number of action waypoints in each action set

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

is not fixed, as different trajectories may contain different numbers of steps. An example is shown
below.

1 "action_sets": [
2 [
3 [0.6, 0.0, 0.4, 0.0, 0.0, 0.0],
4 [0.6, 0.0, 0.32, 0.0, -0.2, 0.0],
5 [0.8, 0.0, 0.32, 0.0, -0.2, 0.0],
6 [0.8, 0.0, 0.32, 0.0, 0.2, 0.0],
7 [0.8, 0.0, 0.7, 0.0, 0.2, 0.0]
8],

A.7 STATISTICAL SIGNIFICANCE ANALYSIS

Figure 9: Comparison of the mean and standard deviation of reward generated by VLMGINEER,
human-prompted designs, and Franka Gripper across 12 tasks. Error bars represent standard deviation
(clipped to the range [0, 1]).

Fig. 9 presents our primary quantitative results, including standard deviations across 5 runs. Across all
12 tasks, VLMGINEER consistently surpasses all baselines, exhibiting notably low variation between
trials. This indicates that VLMGINEER reliably produces high-performing and stable tool-action
designs.

In contrast, results obtained from human-prompted designs not only yield significantly lower per-
formance but also show greater variations across runs. We attribute this discrepancy to several
factors. First, human-specified tools often require more intricate control strategies; even if capable of
completing the task, these designs tend to be less resilient to suboptimal or imperfect executions. By
comparison, VLMGINEER-generated tools typically exhibit greater robustness to action imperfec-
tions. Second, human prompts sometimes suffer from specification ambiguity or misalignment with
the VLM. There can be discrepancies between human intent and the VLM’s internal representation
and physical modeling capabilities. By automating the design process, VLMGINEER avoids these
alignment issues, resulting in more effective and precisely realizable solutions.

A.8 VLMGINEER’S COMMON FAILURE MODES

In the VLMGINEER pipeline, common failures include physically infeasible initial tool designs.
For example, generated tools sometimes penetrate the environment due to inaccurate simulation
physics or intersect with the robot itself at the beginning of the task. More careful prompting and
post-processing can help mitigate these. Furthermore, additional practical failure modes emerge
when attempting real-world deployment, such as tools being too thin for reliable 3D printing and
excessively large for single-piece fabrication.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

A.9 SIM-TO-REAL TRANSFER PROCESS

We selected three simulated task environments in the RoboToolBench, MoveBall, ElevatePlate, and
GatherSpheres, as the basis of this real-world experiment. We selected these three environments for
how easy they would be to construct their real-world equivalent. For each task in the simulation, we
would first attach our custom-made Franka end-effector mounting head to the robot at the location
where the tools were specified to be mounted via our prompt. This allows our tool to be directly
integrated with the mount, which makes real-world tool attachment simple. After getting a winning
candidate, we inspect the design and trim it using a bounding box. The bounding box will remove
the portions that overlap with the attachment. After that, we run a script to automatically convert the
mount-attached tools to a single URDF file and convert it directly to a printable STL file using Blender.
We import the STL file into our 3D printer’s software (Bambu Lab), perform typical 3D printing
processing (placing, adding support, slicing), and directly send the job to the 3D printer (Bambu Lab
P1S). After printing and removing the supports (if present), since our tools have mounts attached, we
can directly attach the tool to our Franka Panda robot end effector via screws. With the respective
real-world task environment already set up, we simply send the VLMgineer optimized end-effector
action waypoints to our Franka position controller for execution. After the action trajectory is carried
out, we measure the relevant object states to determine the reward obtained by this tool and action
tuple.

A.10 COMPARISON OF DIFFERENT VLMS

In Table 4 and Table 5, we provide the performance comparison across different VLM models.
Table 4 compares Gemini-2.5-pro and GPT-o3 on average and best-run reward, and it shows that
Gemini-2.5-pro clearly leads over GPT-o3; Table 5 compares the performance across Gemini family,
which shows that 2.5-pro is the strongest one, while 2.5-flash is mid-tier and 2.0-flash trails, and the
step from 2.5-flash to 2.5-pro yields obvious gains.

Table 4: Performance Comparison Across Different VLM Models.

Model Avg. Reward Top Reward
Gemini-2.5-pro 0.6054 0.8222
GPT-o3 0.3775 0.5436

Table 5: Performance Comparison Across the Gemini family.

Model Avg. Reward Top Reward
2.5-pro 0.6054 0.8222
2.5-flash 0.3393 0.4481
2.0-flash 0.0686 0.0796

A.11 COMPARISON OF IMAGE FEEDBACK

To evaluate our design choice of using purely the tool-action reward signal for evolution, we ablated
our method against a variation of our method that added each tool-action execution’s last frame
to the next VLM evolution query as feedback signal. We tested this method variation on three
tasks, ElevatePlate, GatherSpheres, and MoveBall, running this and the baseline on 500 samples
per iteration with 3 evolution iterations. Note that this is in total a smaller sample size than our
main experiment, which used about 2000 samples per iteration. We see in Table 6 that the inclusion
of visual feedback leads to an small decline of 5.4% in average reward. This quantitative result
supports our qualitative observation that VLMs often struggle to accurately ground fine-grained
physical progress from raw visual observations, leading to noisy selection signals that can hamper
the evolutionary search.

A.12 COMPARISON OF SINGLE-SAMPLE ITERATIVE REFINEMENT

To evaluate the effectiveness of our population-based evolutionary search, we compare against a
simple iterative refinement baseline that represents a natural alternative approach for VLM-driven

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on feedback modality: Comparison of VLMgineer with and without image
feedback across three tasks.

Method Elevate Plate Gather Spheres Move Ball Average
VLMgineer w. Img Feedback 0.30 0.45 0.80 0.52
VLMgineer w/o. Img Feedback (Ours) 0.28 0.56 0.82 0.55

tool action co-design. In this baseline, the VLM maintains a single tool design at each iteration rather
than a diverse population of candidates. At each step, the VLM receives the current tool design, its
associated action sequence, and the scalar reward feedback same as in the proposed evolutionary
approach. The VLM then directly refines the design based on this feedback, generating an improved
tool and N=10 action plan. Unlike our approach, which leverages population diversity through
mutation and crossover operators to explore the design space broadly before converging on solutions,
the iterative refinement baseline performs greedy local search from a random initial guess, producing
lower performance. We tested the baseline in three tasks: ElevatePlate, GatherSpheres, and MoveBall,
with each running refinement for 30 times. The running procedure for this baseline is exactly the
same as our main proposed method. We use the same setup for our proposed method as in the image
feedback ablation A.11. This experiment shows that our evolutionary approach outperforms iterative
prompt refinement. Iterative refinement is easy to stuck at local minimum with bad initial proposal
while evolutionary approach could expand exploration, leading to higher performance.

Table 7: Ablation study on evolutionary vs. single sample iterative prompt refinement

Method Elevate Plate Gather Spheres Move Ball Average
Iterative Refinement 0.0 0.07 0.76 0.28
Evolutionary (Ours) 0.28 0.56 0.82 0.55

A.13 LICENSES

The cardboard box asset used in LIFTBOX environment is from PartNet-Mobility Dataset Xiang et al.
(2020). Their terms of use are stated here: sapien.ucsd.edu/about.

The book assets and the book holder used in the ONEBOOK environment came from the YCB
Dataset Calli et al. (2015). This dataset is under the CC BY 4.0 license.

The goal frame and net assets used in the SCOREGOAL environment came from the Meta-World
Benchmark Yu et al. (2019). This benchmark is under the MIT License.

The transparent jar asset used in the SNATCHCOOKIE environment came from cgtrader, a 3D CAD
model website. This asset is under the "Royalty Free No Ai License", detailed here.

The cookie assets used in the SNATCHCOOKIE environment came from sketchfab, a 3D CAD model
website. This asset is under the CC BY 4.0 license.

The turkey leg assets used in the TURKEYLEGS environment came from sketchfab, a 3D CAD model
website. This asset is under the CC BY 4.0 license.

A.14 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We mainly use LLMs to polish our writing. The use of LLMs in this work could not be regarded as a
contributor.

32

https://sapien.ucsd.edu/about
https://www.cgtrader.com/free-3d-models/household/kitchenware/glass-mason-jar-16oz
https://www.cgtrader.com/pages/terms-and-conditions#royalty-free-license
https://sketchfab.com/3d-models/cookie-778c9c225d904e60b890cc43875a7aad
https://sketchfab.com/3d-models/turkey-leg-3c889b5ee6b64a2aafb9b8977f8a8219

	Introduction
	Related Work
	Background
	Method
	Robot Tool Design Benchmark
	Evaluation
	Performance on RoboToolBench
	Evaluating The Role of Evolutionary Search
	Sim-to-Real Transfer and Real-World Validation

	Conclusion
	Reproducibility Statement
	Appendix
	Baseline Details
	Human-Prompted Designs Experiment Implementation
	No-Tool Experiment Implementation
	RLBench Experiment Implementation

	RoboToolBench Details
	VLMgineer Implementation Details
	Design Agents Context
	Design Agents Queries
	Design Agent Outputs
	Simulation Evaluation
	Evolution
	VLMgineer Benchmarking Details

	Full Prompts
	Mission Introduction
	Procedure Instruction
	Tool Specifications
	Action Specifications
	Action Diversity Specification
	Frame Clarifications
	Evolutionary Instructions
	No Tool Instructions
	Human Specification Instructions
	RLBench Instructions
	Sample Environment Code

	Tool Design Gallery
	An Example of Action Sequences
	Statistical Significance Analysis
	VLMgineer's Common Failure Modes
	Sim-to-Real Transfer Process
	Comparison of Different VLMs
	Comparison of Image Feedback
	Comparison of Single-Sample Iterative Refinement
	Licenses
	The Use of Large Language Models (LLMs)

