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ABSTRACT

Global image geo-localization aims to predict the precise geographic location of a
photo anywhere on Earth based on a single image. This task is highly challenging
yet widely applicable, especially in GPS-denied scenarios such as robotic naviga-
tion, post-disaster rescue, and open-world understanding. Existing methods often
overlook the geographic information embedded in the language modality, making
it difficult to resolve visual ambiguity and handle the heterogeneous global im-
age distribution. To address these issues, we propose a unified image—text—-GPS
tri-modal contrastive learning framework to enhance the robustness and accuracy
of global geo-localization. We first construct a high-quality tri-modal annotation
pipeline that integrates semantic segmentation, visual-language generation, and
a referee mechanism to automatically generate image-level and region-level de-
scriptions. Geographic labels such as city and country names are also introduced
as textual supplements. We then design a unified projection space where image,
text, and GPS coordinates are embedded into a shared representation. A dual-
level contrastive learning strategy at both global and regional scales is employed
to strengthen semantic—spatial alignment across modalities. In addition, we intro-
duce a hierarchical consistency loss and a dynamic hard negative mining strategy
to further enhance representational discrimination and structural stability. Experi-
mental results demonstrate that our method surpasses existing state-of-the-art ap-
proaches on multiple public geo-localization benchmarks, including Im2GPS3k,
GWS15k, and YFCC26k, validating the effectiveness and generality of tri-modal
alignment for global image geo-localization.

1 INTRODUCTION

Worldwide Image Geo-localization (WIGL) Vo et al.| (2017)) aims to precisely predict the shoot-
ing location of any photo taken on Earth. Unlike local geolocalization (e.g., at the city level) [Tan
et al.| (2021), geolocalization at the global scale greatly expands the application potential of this
task, supporting a wide range of real-world scenarios such as navigation, tourism, security, and
crime tracking. However, the task remains highly challenging: images collected worldwide exhibit
substantial diversity (e.g., landscapes, weather conditions, architectural styles), and localization be-
comes particularly difficult in regions lacking landmarks or outside popular areas.

Global image geolocalization methods on a global scale can be broadly categorized into three types:
(1) Classification-based methods |Clark et al.| (2023); [Pramanick et al| (2022)): partition the Earth
into discrete geographical units and train classifiers using hierarchical structures, scene-level tags,
or regional parsing; (2) Retrieval-based methods|Yang et al.|(2021)); Zhu et al.|(2022;2023): localize
images based on the known coordinates of visually similar images in a reference gallery, but scaling
to the global level requires maintaining an impractically large gallery; (3) Retrieval-augmented gen-
eration (RAG) methods Zhou et al.| (2024); Jia et al.| (2024)): leverage the reasoning ability of large
multimodal models (LMMs) by injecting retrieved GPS coordinates into prompt templates to gen-
erate more accurate predictions. Global image geolocalization still faces key challenges. First, ge-
ographically distant regions may share similar visual appearances, making it difficult for traditional
visual features to capture fine-grained spatial semantics. Second, geographic imbalance in global
datasets leads retrieval-based methods to perform unstably in data-sparse or remote regions. More-
over, existing approaches generally overlook the semantic cues contained in image descriptions. We
argue that integrating language information with visual features through multimodal modeling is
crucial for improving the accuracy and robustness of global image geolocalization.
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Figure 1: Overview of the Framework. First, the input image passes through an automated annota-
tion pipeline to produce global and regional semantic descriptions, while its geographic coordinates
are reverse-geocoded into country, region, and city names. During training, GPS coordinates are
mapped to high-dimensional Fourier features, image and text features are extracted with CLIP en-
coders, and all three are projected into a shared embedding space and jointly optimized with global
and local contrastive losses. At test time, we introduce Multi-Prompt Reasoning, using diverse
prompts to generate multiple candidate locations. For each candidate, we sample surrounding GPS
points to expand a GPS Gallery. Finally, we match the query’s image/text features against the gallery
embeddings and select the coordinate with the highest similarity.

We propose an automated annotation pipeline to construct high-quality image—text—GPS tri-modal
training data. Specifically, a semantic segmentation model extracts meaningful regions, a vi-
sion—language model (VLM) generates global and local descriptions, and—given VLM halluci-
nations—we introduce a Referee Model that filters low-quality or hallucinated content via keyword
verification and regeneration, producing structured textual annotations and geographic labels for
each image. Building on this, we present the Geo-alignment framework for tri-modal retrieval and
alignment. The framework maps GPS coordinates into high-dimensional embeddings and projects
them, together with image and text features, into a unified embedding space to enable cross-modal
representation learning. Finally, we design a multi-prompt—driven geographic reasoning module.
For each query image, we feed a set of prompts to a large language model to generate diverse
candidate locations and dynamically expand the GPS gallery. The final prediction is obtained by
measuring the similarity between the query’s visual/text features and the geographic embeddings of
all candidate coordinates and selecting the best match.

Our main contributions are as follows: 1. We propose a multi-modal contrastive learning framework
based on image—text—-GPS data for worldwide image geolocalization. 2. We construct a novel
image—text—GPS benchmark dataset, which augments existing image—GPS datasets with geographic
labels as well as image-level and region-level textual descriptions. 3. We design an image annotation
framework that integrates semantic segmentation, vision—language generation, and a Referee model
filtering mechanism. 4. We propose a multi-prompt-driven geographic reasoning module that guides
LLMs to generate multiple candidate locations and dynamically expand the GPS coordinate gallery.
The overall framework is illustrated in the Fig. [I]

2 RELATED WORK

2.1 LOCATION PREDICTION FROM IMAGES
In image geolocation, early methods relied on image retrieval [Muller-Budack et al. (2018)); [Pra-
manick et al.[ (2022}, but their dependence on large landmark databases makes global deployment
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infeasible. Classification-based approaches|Clark et al.|(2023)); Pramanick et al.|(2022) partition the
earth into geo-cells and refine them with hierarchical categories, multi-level modeling or semantic
fusion. However, fixed class centers and discrete boundaries limit prediction accuracy in real-world
scenarios. To address this, we formulate geolocation as direct regression from images to GPS coordi-
nates using continuous spatial representations. We apply equal-earth projection |Lapaine & Francula
(2022) to reduce high-latitude distortion and encode GPS with multi-scale learnable Fourier features
Li et al.|(2021)), mitigating the spectral bias of MLPs and enabling finer localization.

2.2 MULTIMODAL GENERATION AND LLM-ASSISTED ANNOTATION

In recent years, large language models (LLMs) have demonstrated strong capabilities in multimodal
representation learning |Li et al.| (2024); [Zhang et al.| (2024); [Wu et al.| (2023). Flamingo |Alayrac
et al.[(2022) and BLIP-2 |Li et al.| (2023) achieve image—text alignment and open-domain question
answering via cross-modal attention; general LLMs such as GPT-4 are used for prompted image
captioning Zhang et al.| (2023); [Maniparambil et al.| (2023)), effectively reducing manual annota-
tion costs. Meanwhile, contrastive learning methods like CLIP Hafner et al.| (2021)); Zhang et al.
(2022) construct a unified image—text semantic space. However, most existing studies focus on
the image—text modality, with limited exploration of jointly modeling LLMs and geographic coor-
dinates. Notably, the Perceive Anything Model |Lin et al.| (2025) unifies region segmentation and
semantic generation, showcasing the synergistic potential of LLMs and region-level visual under-
standing. Its “region perception + semantic generation” paradigm provides important inspiration for
geographic semantic modeling. We adapt PAM’s idea to the global localization task by annotating
different regions in geographic image datasets. As the foundation of our vision—language annotation
pipeline, the generated geographic tags are jointly modeled with image and coordinate embeddings
to construct a unified tri-modal space. This method realizes the fusion prediction of image, text and
location modalities in global geolocation tasks for the first time, demonstrating the wide application
potential of generative language models in spatial understanding tasks.

3 DATASET ANNOTATION PIPELINE

To construct high-quality supervisory signals for tri-modal alignment across images, text, and ge-
ographic coordinates, we design a vision-language annotation pipeline. This pipeline operates at
two levels of granularity—global (image-level) and local (region-level)—and integrates seman-
tic segmentation, vision-language model (VLM) generation, automatic evaluator verification, and
keyword-based filtering. Through multi-stage validation and refinement, this pipeline effectively
mitigates hallucinations and semantic inconsistencies, thereby ensuring consistency and reliability
among the annotated text, visual content, and geographic coordinates.

3.1 DATASET ANNOTATION DESCRIPTION

Our proposed annotation method extends the Im2GPS3k Hays & Efros| (2008), GWS15k |Clark
et al.| (2023), YFCC26k [Thomee et al.| (2016) dataset by introducing fine-grained vision-language-
geography annotations. Specifically, region-level annotations: Each image contains an average of
4.5 bounding boxes, with each box paired with a region-level natural language description averaging
15.2 words, providing precise correspondence to local visual content. Global descriptions: Each
image also includes a comprehensive description covering both global and local details, averaging
61.4 words. Geographic labels: Beyond visual-language annotations, we further incorporate dis-
crete geographic coordinate labels, enabling tri-modal alignment between images, language, and
geospatial information. As illustrated in Fig. [5] compared with the original dataset, our proposed
dataset not only incorporates more fine-grained region-level annotations but also integrates natural
language and geographic information. This enriched design is crucial for natural language-guided
geo-localization and navigation tasks.

3.2 IMAGE AND REGION-LEVEL ANNOTATION
As shown in Fig. 4] the pipeline consists of three stages:

Semantic Region Extraction: Given a raw image collection Z = {I;}},, we apply a pre-
trained semantic segmentation model (e.g., SAM + Mask2Former) to extract pixel-level masks:
R, = {ri; };V:il, s.t. 7, ; C I;, where 7; ; denotes the j-th valid semantic region within image
I;. We further filter low-confidence or extremely small regions based on mask area and prediction
scores to improve region description quality.

Initial Vision-Language Generation: We employ a vision-language model (VLM) to generate ini-

tial textual descriptions for each image and its regions: 1. Global-level description: For each whole

image I;, we generate K, textual candidates: T2 = {VLM(I;, p{")} 12|, where p$”) denotes the
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k-th global-level prompt (e.g., “Please describe this scene concisely”). 2. Region-level description:

For each segmented region r; ;, we generate a region-level caption: ﬁf;gion = VLM(r; ;, p,) where
p, prompts the model to focus on the target region and include spatial references (e.g., “Describe
this region and its position relative to the image center”).

Referee Model for Automatic Validation: Large vision-language models still exhibit common
issues such as hallucination, vague phrasing, and semantic misalignment. As such, raw textual
outputs are not guaranteed to meet annotation standards. To address this, we introduce a Referee
Model to automatically validate the quality of VLM-generated descriptions. The Referee model
applies a two-stage filtering process: Positive keyword detection: Validates whether the candidate
text includes at least one predefined semantic keyword, ensuring spatial or entity information is
present. Negative sample exclusion: Scans for undesirable tokens using a blacklist of negative
keywords, which capture hallucinated or ill-formed content.

The construction of keyword sets is guided through human-in-the-loop curation. Specifically, we
sample approximately 5,000 initial VLM outputs and feed them into a secondary large language
model (serving as a “teacher model”) for binary classification. Based on the teacher’s outputs,
we build frequency-based keyword lists: Negative keyword list O~ : includes common failure
patterns such as HTML tags (e.g., “img src”, “[image]”), apology phrases (e.g., “sorry”), and URLs.
Positive keyword list X: contains spatial or positional expressions (e.g., “on the left”, “next to
the building”, “far from the road”) to ensure geographic relevance. This referee mechanism enables
automatic screening and regeneration of VLM outputs, significantly reducing the need for manual
intervention while enhancing the structural consistency and semantic utility of the final annotations.

3.3 REVERSE GEOCODING

On the other hand, discrete geographic labels such as continent, country, city also play a crucial role
in geo-localization. Compared to continuous GPS coordinates, these semantically explicit discrete
attributes often exhibit abrupt transitions at geographic boundaries, making them an effective sup-
plement to the spatial localization of images. To convert latitude and longitude into location names,
we introduce a reverse geocoding module based on public geographic databases (e.g., Nominatim
or Google Geocoding API), which parses each image’s GPS coordinates (lat;,lon;) to obtain the
corresponding country, region, and city names, denoted as: Loc; = [Continent;, Country,, City,].
We then transform the location tags into human-readable natural language text as follows: 77 =
”A photo taken in ” + Continent; + Country, + City,, The geographic description 7:° is con-
catenated with the content-based image description Tf'es“ to form the complete textual input:
Thll — pdese T2 We transform numerical GPS coordinates into text expressions with regional
semantics, making them more easily aligned with visual content during multi-modal learning.

4 MULTIMODAL CONTRASTIVE LEARNING

4.1 IMAGE AND TEXT ENCODERS

In this work, we adopt the CLIP|Radford et al.|(2021) model as the backbone encoder for both image
and text modalities, leveraging its general semantic representations learned from large-scale image-
text alignment tasks. For the image encoder, we employ the ViT-L/14 from CLIP as the backbone
and keep it frozen to preserve its original visual understanding capabilities. Similarly, for the text
encoder, we use the text encoder from CLIP and also keep its parameters frozen.

4.2 LOCATION ENCODER

In worldwide image geo-localization, GPS coordinates G = (lat,lon) € R? are low-dimensional
continuous signals, and feeding them directly into an MLP makes alignment with image or text
embeddings difficult. Their dimensionality is far lower than the high-dimensional features pro-
duced by models like CLIP; moreover, low-dimensional inputs are susceptible to spectral bias Tan-
cik et al.[(2020); Vivanco Cepeda et al.|(2023), tending to learn only low-frequency patterns. More
critically, in high-dimensional spaces used by contrastive learning (e.g., InfoNCE, triplet loss), low-
dimensional coordinate features both struggle to align and can disrupt optimization due to scale mis-
match, leading to unstable training. To address this, we map GPS coordinates to high-dimensional,
structured representations. The position encoder comprises three components: Equal-Earth projec-
tion, multi-scale learnable Fourier features, and unified feedforward fusion.

4.2.1 EQUAL EARTH PROJECTION:

Conventional latitude-longitude coordinate systems suffer from nonlinear distortion in high-latitude
regions, where Euclidean distances no longer correspond proportionally to real-world geographic
distances. This mismatch can mislead the contrastive learning objective. To alleviate this, we apply
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the Equal-Earth (EE) projection (+) to transform the spherical GPS coordinate G = (lat, lon) into

a 2D planar coordinate z = [z, y|" as follows:
Gllom = Pe° + P30T + P63 + Pio (1)
243 G{l°n cos §
G | 3(9pab® + Tp3bS + 3pa62 + py) | , 0 = arcsin (§ sin Gi’lat) , )
Pat? + p3f + p26° + p16
where, the constants are defined as p; = 1.340264, po = —0.081106, ps = 0.000893, and

ps = 0.003796 according to the EE projection. After projection, the output coordinates (x,y)
are linearly normalized to the range [—1, 1]. This transformation ensures that Euclidean distances in
the embedding space better reflect actual geographic distances, reducing the burden on the learning
process to compensate for spatial distortions later.

4.2.2 MULTI-SCALE LEARNABLE FOURIER FEATURES

Although the Equal-Earth projection maps geographic coordinates to a 2D planar space, the resulting
vector z = [z,y] remains low-dimensional and smooth. Directly feeding it into an MLP often
leads to spectral bias, where the model tends to learn low-frequency structures and fails to capture
fine-grained spatial differences. To address this, we adopt a multi-scale learnable Fourier encoding
mechanism inspired by Random Fourier Features (RFF), which explicitly injects high-frequency
signals into the coordinate representation. Our design incorporates three components: log-scale
frequency sampling, orthogonal random bases, and learnable gated-phase Fourier mapping.

Frequency Sampling. To ensure coverage of spatial patterns from continental to street-level gran-
ularity, we uniformly sample M scales in log space. The standard deviation o; of each scale as:
$igma; = Omin ( /Umaxa—min)ﬁ ¢ = 1,..., M. This logarithmic sampling guarantees that
the model captures spatial variations across multiple resolutions, mitigating the dominance of low-
frequency components. Orthogonal Random Bases. For each frequency scale, we generate an
orthogonal random matrix R; € R¥*2 and apply frequency normalization to obtain the projection
matrix: B; = o, ! R; where K is the number of frequency channels per scale. Orthogonality reduces
feature redundancy and enhances frequency diversity.

Gated Phase Fourier Mapping: Given the projected coordinate z, the Fourier features at scale ¢:
_ |gi ©sin(2nB;z + 9;)

Ti(z) = g; ® cos(2w Bz + 6;)

€ R 3)
gi; = softplus(w;) is a learnable gating weight for each channel, where the softplus activation en-
sures non-negativity. §; € R is the learnable phase shift. The symbol ® denotes element-wise
multiplication. This encoding scheme not only explicitly introduces high-frequency components
but also enables the network to automatically select the most informative frequency dimensions and
adjust their phases, thereby enhancing representational flexibility and data adaptability. The final
Fourier feature is formed by concatenating features across all scales: T'(z) = [T'1(z), ..., a(2)].
Multi-scale modeling mitigates spectral bias, enabling the network to capture both global and lo-
cal spatial variations. The gating mechanism (g;) softly selects among frequency components to
suppress noisy dimensions and improve robustness, while the learnable phase shift (§;) introduces
translation equivariance and alleviates gradient vanishing near sinusoidal zero-crossings. This en-
coder provides a high-dimensional structured representation of GPS coordinates, serving as a key
component of our tri-modal contrastive learning framework.

4.2.3 UNIFIED FEEDFORWARD AGGREGATION

Building upon the multi-scale encoding, prior works design separate MLP branches for each fre-
quency band. However, such multi-branch structures often lead to computational redundancy and
gradient inconsistency, increasing model complexity and impairing training stability. To address
these issues, we propose a unified feedforward network to aggregate the frequency-domain fea-
tures from all scales and produce the final coordinate embedding. Formally, given an input coor-
dinate G, we apply the Equal-Earth projection followed by multi-scale Fourier encoding to ob-
tain T'(o(G)) € R25M_ We then employ a two-layer feedforward neural network defined as:
L(G) = Wy - 0 (LN(W; - T(¢(G)))) € R% where W; € RM2EM apnd W, € R are
trainable weight matrices, o(-) denotes the GELU activation function, and LN is Layer Normaliza-
tion. This design maintains structural simplicity while providing sufficient expressive power. The
unified feedforward network adaptively learns nonlinear combinations of frequency features, and the
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single-path architecture effectively mitigates gradient fragmentation in multi-branch networks, im-
proving convergence stability. Ultimately, this module produces consistent coordinate embeddings
that support cross-modal contrastive learning.

4.3 UNIFIED PROJECTION SPACE CONSTRUCTION

We extract image and text features using CLIP, so their feature modalities are naturally well-
aligned. For GPS coordinates, a positional encoder is employed to lift the raw 2D input into a
high-dimensional representation. However, the resulting coordinate embeddings differ fundamen-
tally from the CLIP space in both semantic structure and distribution. Without additional alignment,
directly applying contrastive objectives leads to biased similarity computation and unbalanced gra-
dient propagation, thereby undermining the training process of tri-modal contrastive learning. To
address this issue, we introduce a unified projection space that maps all three modalities into the
same latent space. v; € R¥, v € R, V4 € R, where d; > dg = 2 denotes the dimen-
sionality of image, text, and GPS features respectively. We define a shared semantic space Z C R?
with d = 512, and construct a two-layer feed-forward network for each modality:

Po(¥m) = Wio -0 (IN(Wo1 - ¥)), me{I,T,G}, (4)

where W,,, 1 € R"*dm and W2 € R¥*" are learnable weights, o(+) is the GELU activation func-
tion, and LN(-) denotes Layer Normalization. To maintain the original CLIP image-text alignment
and maximize parameter sharing, we set the image and text branches to share projection weights:
Wi = Wrp,;, ¢ = 1,2, while the coordinate branch remains independently parameterized to
reduce training complexity. To alleviate potential gradient imbalance caused by inter-modality dis-
tributional gaps, we introduce a learnable modality-specific temperature vector = = (77, 71, 7¢)
and apply a centralization-normalization scheme:

P m({”m) - /L 1 A

Zm ||Pm({’m) _ NHQ Tmy K 3 ;E[Pm(vm)]a (5
where p denotes the cross-modal feature mean and each temperature 7,,, € R is jointly optimized
via backpropagation. The resulting embeddings z;, z7,zg € Z are thus aligned in dimensionality,
scale, and norm, making them directly comparable for downstream tri-modal contrastive objectives.
This projection framework not only preserves the semantic structure of the CLIP space but also
explicitly guides GPS features to align with these semantics, ensuring a numerically stable and
semantically meaningful representation for multimodal contrastive learning.

4.4 GLOBAL-REGION JOINT TRI-MODAL CONTRASTIVE LEARNING

Existing multimodal contrastive learning mainly aligns image—text embeddings at the whole-image
level, while real-world geographic scenarios require both global semantics and local structures. Re-
lying solely on global features can confuse visually similar but geographically different regions,
whereas focusing only on local features risks losing contextual information. Therefore, we pro-
pose a joint modeling approach with two granularity levels: (1) Global contrast provides robust
scene-level semantic anchors to ensure large-scale cross-modal consistency; (2) Region-level con-
trast enhances contrast difficulty and fine-grained discriminability through hard positive and negative
mining (intra-image inter-region, cross-image nearby regions). The hierarchical contrastive learning
design not only alleviates the limitations of single-granularity learning but also enables a two-stage
strategy of “coarse localization + fine adjustment,” achieving higher resolution for local positioning
while maintaining macro-level stability. We introduce a global-region joint tri-modal contrastive
learning framework, which simultaneously optimizes alignment at the image level and region level
in a shared projection space Z C R?. For each input image I; € Z, we utilize a pretrained seman-
tic segmentation model to obtain pixel-level masks and divide it into R; = {r;1,7i2,...,7i N, }

semantic regions. Each region r; ; corresponds to an image region feature vY’J ), a textual descrip-
tion feature vgpw ), and its corresponding GPS embedding V(é’j ), which are projected to the shared

embedding space via the projection module described in Section [3}

Pm({’srzz’j)) —H
1P (957 = poll2
Tm € R4 denotes the learnable temperature parameter for modality m. To align semantic embed-
dings across three modalities, we introduce the following three loss terms:

209) —

Tm, m€{l,T,G}, 5)

1. Global Contrastive Loss: This term ensures semantic consistency among the entire image, the
overall textual description, and the GPS coordinates by using the InfoNCE loss:
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‘Cgllbal ==

Z log exp(sim( Zm ,Zn )/T) (6)

(mmer Lz exp(sim(zn,z”) /1)
where,P = {(I,T),(I,G), (T, G)}, 2\ € R? denotes the normalized embedding vector of sample
i in modality m € {I,T,G}, sim(-,-) represents cosine similarity, and 7 is the temperature co-
efficient. The set P enumerates all three modality pairs: image—text, image—GPS, and text-GPS.
This loss encourages embeddings from the same image across different modalities to be close while
pushing away negative samples from other images.

2. Region Triplet Loss. For each region 7; ;, in order to bring the tri-modal embeddings of the same
region within the same image closer and push apart embeddings from different regions or images,
we introduce a cross-modal triplet loss:

Lidm= 3 Joctai?al?) = min d(a?, o) ™

(m,n)eP

where, z%’g ) denotes the embedding representation of the j-th semantic region in the i-th image un-
der modality m, [-]+ indicates the hinge function, « is a margin hyperparameter, and d(-, -) denotes
the distance function (e.g., Euclidean or 1 — cosine distance). This loss encourages intra-region
cross-modal embeddings to be close and distant from the embeddings of other regions or images.

3. Hierarchical Alignment Loss. To align the semantic representations of region-level and image-

level embeddings, we define the following regularization term: ,

N;
() _ @ _ LN 609
‘Chier - Z Zy N’L Z Zy (8)
me{l, T} j=1 9
where zﬁ,? € R? represents the global image or text embedding vector of sample i under modal-

ity m € {I,T}, and z(w ) denotes the local embedding of the j-th semantic region. [N; is the
total number of semantic segmentation regions for sample ¢. This loss minimizes the Euclidean
distance between the global embedding and the mean of its local region embeddings, encouraging
local features to naturally aggregate toward the global center in the projected space, thus enhancing
consistency and structural expressiveness of semantic representations. Overall Objective Loss:

M
1 Z i i
- M /\gﬁf(;llbal + >\7" § :Eﬁegl)on + /\h ‘Chler (9)

where, Ay, A, and A;, are hyperparameters that control the weights of different loss components.

Positive and Negative Sampling Strategy: To enhance the discriminative power and semantic
resolution of region-level contrastive learning, we design a structured positive-negative sampling
strategy that leverages both local semantic structure and spatial priors to provide precise supervisory

signals for trimodal alignment. Specifically, we define: Positive Pairs: For each semantic region

r;,; in image 4, we treat the projected trimodal embeddings z( ) %’J ), and zg’j ) as positive pairs.

This design ensures alignment across modalities by: - Ensuring all three embeddings originate from
the same image and the same region; - Maintaining semantic consistency among the modalities to
form strong positive supervision. Hard Negatives: Real-world scenes often contain many locally
similar distractors. Using randomly sampled negatives may make training too easy, leading to sparse
gradients and overfitting. To address this, we introduce two types of hard negatives: - Intra-image
hard negatives: These are embeddings from different regions r; ;- (j' # j) in the same image that are
visually or geometrically similar to the target region. They test the model’s ability to distinguish fine-
grained semantic boundaries. - Cross-image hard negatives: These are selected from other images
based on proximity in GPS space (e.g., neighboring blocks) or similar textual semantics. This helps
prevent the model from relying solely on geographic closeness or superficial semantic cues. Easy
Negatives: To maintain diversity and training stability, we also randomly sample unrelated regions
across different images as easy negatives. These are visually and semantically dissimilar, helping to
form clear contrastive boundaries in the early training stage.

Hard Negative Memory Bank: To dynamically maintain effective negative samples, we implement
a memory bank that stores region embeddings from both current and previous batches. During each
training iteration, we use nearest-neighbor search to retrieve the top-/K most similar embeddings

to a given region as hard negatives: N"4(i, j) = Top-K ({d(z%’j) (& )) | (¢, 7") # (l,])})
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where d(-, ) denotes a distance metric. This mechanism enhances the adversarial nature and ro-
bustness of training, encouraging the model to focus on regions that are semantically ambiguous,
spatially adjacent, or visually similar. By incorporating global and region-level trimodal contrastive
learning with hard-aware sampling, our method preserves macro-level semantic alignment while
enabling fine-grained structure recognition and geographic modeling. This provides a robust and
discriminative feature foundation for trimodal geolocalization and retrieval.

4.5 MULTI-PROMPT GEO-REASONING

To enhance the generalization and rea-

soning capability of large language

models (LLMs) in geolocation tasks, TR S 4 <

we propose a prompt-driven framework ‘/\ ;

named Multi-Prompt Geo-Reasoning Y .\

(MPGR). MPGR aims to construct a se- PromptA | __ee="" "7 ‘<
mantically diverse and cognitively en- EIZ:Z:’IE*’

riched set of geolocation candidates, en-

abling robust adaptation across a wide e oot
range of visual scenes. The overall GPS

Query Image

Figure 2: Overview of GPS Gallery Construction from
Multi-Prompt Outputs.

framework is illustrated in Figure [3]
MPGR consists of two main stages:
Step 1: Image Candidate Mining (Pos-
itive/Negative Sampling) For each query image, we employ a vision-geolocation joint encoder (e.g.,
GeoCLIP) to retrieve a set of K geographically similar images from the training set as positive
candidates. Additionally, we randomly select several geographically dissimilar images as negative
candidates to strengthen the discriminative power of the subsequent reasoning process.

Step 2: Prompt Diversification for Geo-Prediction To fully exploit the multi-level reasoning ca-
pabilities of LLMs, we design a set of prompt templates with semantic diversity and contextual
depth. These prompts guide the model to generate candidate geolocations from different inferential
perspectives, forming a high-confidence pool of potential coordinates. Specifically, we define four
representative types of prompts: Prompt A: Zero-shot Commonsense Reasoning leverages only
the image content description and detected key objects to stimulate LLMs to perform open-ended
geolocation reasoning, without relying on any external priors or exemplars. Prompt B: Compara-
tive Inference provides the query image along with its retrieved positive candidates and associated
descriptions. The model is guided to infer the likely location through analogy and semantic com-
parison. Prompt C: Contextual Landmark Decoding encourages the model to interpret multi-modal
contextual clues, such as language, architectural styles, and terrain patterns, enabling better gener-
alization across diverse regions. Prompt D: Fine-grained Urban Prediction focuses on micro-level
urban cues (e.g., license plates, road signs, storefronts), guiding the model to reason at the street-
block level for high-resolution localization. Through the coordinated guidance of these four types
of prompts, MPGR constructs a rich and diversified set of candidate locations, providing reliable
support for subsequent contrastive matching and fusion.

4.6 GPS GALLERY

We construct a hierarchically ex- Prompt A p Prompt C
tended GPS coordinate database Zero-shot reasoning Contextual landmark /@
. . .. LLM reason over image descrtion decoding
generatlon mechanism. In the ini- and key objects, relying only LLM decodes language, —
. . hitecture, and terrai
tial stage, we build the base database on common sense architecture, and terrain cues
through random sampling from the Prompt B - Prompt D
training set and image feature-based | Comparative inference g Fine-grained urban ﬁj
: LLM compares semantic similarity @ predlct_lon )
retrieval. NeXt, we 1eVerage a set of to multiple known image examples LLM predicts location based on —

street-level elements and landmarks

designed prompts to guide the GPT
model in generating multiple candi-
date geographic locations. For each
predicted location, we collect surrounding samples from the training set to further expand the GPS
database, as shown in Fig. 2] To construct a globally distributed GPS coordinate database, we be-
gin by sampling from the training set Dy.,i, with a priority on ensuring geographic uniformity. We
divide the Earth’s surface into uniform grid cells and randomly select samples from each grid cell,
resulting in a base GPS set: Gue = {(I;, GPS;) | (I;, GPS;) € Dyain, GPS; € UniformGrid}. We
incorporate candidate GPS generated by a series of prompt strategies {P;, P, ..., Px }. For each

Figure 3: An overview of the four designed prompt strategies
for guiding LLM in global geolocation tasks.

query image I, we apply each prompt P, to the LLM to obtain: gék) = { gé]fl) , gf]’;), e } We then
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retrieve training samples within a 25km radius of each predicted coordinate:
. (k ~(k
N(5)) = {(1,GPS) € Dy | d(GPS, 41) < 25km} (10)

where d(-, -) is the geodesic distance. We aggregate all retrieved regions into a prompt-augmented

pool: Gorompe = U akj N (gfjf}), To further enhance diversity, we include visually retrieved samples
Gretrieval based on image similarity (e.g., CLIP): Gfnat = Gbase U Gprompt U Gretrieval- This multi-source
construction results in a spatially rich and semantically diverse GPS database that facilitates robust
and accurate geo-localization. Inference: To infer the geographic location of a query image, we
first extract visual and textual features from the image and its corresponding textual description us-
ing a visual encoder and a text encoder. Meanwhile, each candidate location in the GPS coordinate
database is transformed into a high-dimensional geographic representation via a GPS encoder. Then,
in a shared embedding space, we compute the cosine similarity between the query’s image-text fea-
tures and each GPS embedding. Finally, a weighted aggregation is applied, and the GPS coordinate
with the highest overall similarity is regarded as the most likely location of the query image.

5 EXPERIMENT

5.1 DATASETS AND EVALUATION DETAILS

For training, we use the MP-16 datasetLarson et al.|(2017), which contains approximately 4.72 mil-
lion geotagged images collected from Flickr. For testing, we evaluate the generalization ability of
our model on several datasets, including Im2GPS3k |[Hays & Efros|(2008)), the recently introduced
Google World Streets 15K (GWS15k) |Clark et al.| (2023), and YFCC26k [Thomee et al.| (2016).
During testing, we adopt an image-to-GPS retrieval setting: each query image from the test set is
matched against a candidate GPS gallery containing 100K (Im2GPS3k) or 500K (GWS15k) co-
ordinates. The evaluation metric is based on the Geodesic Distance, which measures the distance
between the predicted and ground-truth coordinates. We report the percentage of predictions that
fall within predefined thresholds of 1 km, 25 km, 200 km, 750 km, and 2500 km.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We conduct a comprehensive comparison between our proposed method and leading global im-
age geo-localization approaches across multiple benchmark datasets, including Im2GPS3k, Google
World Streets 15k (GWS15k), and YFCC26k. As shown in Table[TJ2]3] our method achieves state-
of-the-art performance on Im2GPS3k across all evaluation thresholds (1km, 25km, 200km, 750km,
and 2500km), consistently outperforming previous best methods. Notably, our approach demon-
strates significant advantages on the more challenging GWS15k dataset, achieving substantial accu-
racy gains under the 25km, 200km, 750km, and 2500km thresholds compared to prior SOTA mod-
els. Compared to GeoCLIP, which does not incorporate textual input, our method shows marked
improvement in handling the diversity of global imagery. Even when compared with G3, which
also leverages textual information, our approach yields notable performance gains. The GWS15k
dataset consists of globally and uniformly sampled image locations, without bias toward any par-
ticular region. Moreover, the images exhibit considerable distributional shifts from the training
data, making the geo-localization task particularly challenging. Our superior performance on this
dataset highlights the effectiveness and strong generalization capabilities of our multimodal align-
ment framework in complex real-world scenarios.

5.3 ABLATION STUDY

To comprehensively evaluate the effectiveness of each proposed component in the tri-modal geo-
alignment framework, we conduct a series of ablation experiments. The evaluation metric is Top-1
geolocation accuracy, and all experiments are conducted on the Im2GPS3k dataset [Hays & Efros
(2008). The results are summarized in Table [} and we provide detailed analysis in Appendix

6 CONCLUSION

We present a multimodal framework for global image geolocalization. We first build a tri-modal
auto-annotation pipeline—semantic segmentation, vision—language generation, and a Referee mod-
ule—to produce image-/region-level descriptions with geographic labels. On this data, we propose
a unified contrastive learning approach with a shared embedding space, hierarchical alignment, and
region-level objectives to jointly model visual, semantic, and spatial cues. To boost accuracy, we
design a multi-prompt geographic reasoning module that uses LL.Ms to generate candidate locations
and dynamically expand the GPS gallery. At inference, cross-modal similarity retrieval selects the
most likely coordinates. The method achieves SOTA results on multiple benchmarks, validating the
effectiveness of multimodal alignment and prompt-driven reasoning for global localization.
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A APPENDIX

A.1 LLM USAGE STATEMENT

Large language models were an integral component of the proposed framework for global image
geo-localization. Specifically, we employed a pretrained vision-language model (OpenAl GPT-4)
within our annotation pipeline to automatically generate both image-level and region-level textual
descriptions based on semantic segmentation results. These generated captions, together with geo-
graphic labels such as city and country names, serve as a textual modality and are embedded into a
shared representation space alongside image features and GPS coordinates.

The LLM-generated content is further processed and validated through a referee mechanism to en-
sure semantic accuracy and consistency before being used in the tri-modal contrastive learning stage.
This integration of LLMs is essential to our method’s semantic—spatial alignment process and plays
a critical role in addressing visual ambiguity and heterogeneous global image distributions. All
algorithmic designs, theoretical formulations, training procedures, and experimental analyses were
independently developed by the authors. The use of LLMs is fully documented, reproducible, and
central to the methodological contributions rather than limited to writing assistance.

A.1.1 AUTOMATED IMAGE ANNOTATION PIPELINE

Grounding I
DINO Text Generation Referee Model

Promt for Region Positive keyword detection)

Describe [key objects] with
[characteristics], Negative sample exclusion
Promt for Whole Image

Describe [Whole Image | with

[characteristics],

Annotation

Figure 4: Automated Image Annotation Pipeline. Given an input image, we first apply Grounding
DINO to detect multiple semantic regions. For each region and the entire image, a Vision-Language
Model generates preliminary region-level and global-level descriptions. These candidate texts are
then passed through a Referee Model, which conducts Positive Keyword Detection and Negative
Sample Exclusion to filter out vague or hallucinated outputs. The final output consists of structured
region-level and global-level descriptions, along with associated geographic labels.

12
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A.2 EXPERIMENT RESULTS

Method Street City Region Country  Continent
lkm 25km % 200km% 750km% 2500 km%
[LIKNN, o = 4Vo et al.[(2017) 7.2 19.4 26.9 38.9 55.9
PlaNetWeyand et al.|[(2016) 8.5 24.8 343 48.4 64.6
CPIANetSeo et al.|(2018) 10.2 26.5 34.6 48.6 64.6
ISNsMuller-Budack et al.|(2018) 10.5 28.0 36.6 49.7 66.0
TranslocatorPramanick et al.|(2022) 11.8 31.1 46.7 58.9 80.1
GeoDecoderClark et al.|[(2023) 12.8 33.5 459 61.0 76.1
GeoclipVivanco Cepeda et al.|(2023) | 14.11 34.47 50.65 69.67 83.82
G3Jia et al.|(2024) 16.65 40.94 55.56 71.24 84.68
Ours 17.32 42.01 57.18 72.44 85.16

Table 1: (a) Localization accuracy on the Im2GPS3k|Hays & Efros (2008) dataset.

Method Street City Region Country Continent
1km% 25km % 200km % 750km % 2500 km %
ISNsMuller-Budack et al.[(2018) 0.05 0.6 4.2 15.5 38.5
TranslocatorPramanick et al.|(2022) 0.5 1.1 8.0 25.5 48.3
GeoDecoderClark et al.|(2023) 0.7 1.5 8.7 26.9 50.5
GeoCLIP|Vivanco Cepeda et al.|(2023) 0.6 3.1 16.9 45.7 74.1
Ours 0.9 4.3 18.7 49.4 78.5
Table 2: (b) Results on the GWS15k|Clark et al.|(2023)dataset.
Method Street City Region Country Continent
1km% 25km % 200km % 750km % 2500 km %
PlaNet|Weyand et al.|(2016) 44 11.0 16.9 28.5 47.7
ISNs |Muller-Budack et al.|(2018) 53 12.3 19.0 31.9 50.7
Translocator |Pramanick et al.|(2022) 7.2 17.8 28.0 41.3 60.6
GeoDecoder|Clark et al.|(2023) 10.1 239 34.1 49.6 69.0
GeoCLIP|Vivanco Cepeda et al.[(2023) 11.61 22.19 36.69 57.47 76.02
G3Jia et al.[(2024) 23.99 35.89 46.98 64.26 78.15
Ours 25.71 37.02 47.45 66.21 79.46

Table 3: Results on YFCC26k Thomee et al.|(2016]) dataset

A.3 ABLATION STUDY

Location Encoder.

Raw GPS coordinates lie on a non-Euclidean latitude-longitude sphere. Di-

rectly using them in a contrastive framework results in spatial discontinuity and unstable gradients.
To address this, we introduce a location encoder that transforms coordinates into high-dimensional
learnable embeddings. Without this encoder, the model can only align image and text semantically,
lacking explicit spatial constraints. As shown in Rows 1-2 of Table ] the inclusion of the location
encoder significantly improves geolocation accuracy. This module provides strong spatial priors and
serves as the foundational bridge between semantics and geography, improving modality separation
and spatial boundary modeling.

Textual Module. Textual descriptions often encode semantic cues that are missing from images or
coordinates, offering strong complementary information. However, directly incorporating text may
lead to performance drops due to the modality gap. As shown in Rows 2-3 of Table ] the Top-1
accuracy drops by 3.2% after introducing the textual modality, highlighting the misalignment across
modalities. This underscores that while text is semantically rich, a unified representation space is
required for effective integration.

Projection Space. To mitigate the above modality mismatch, we introduce a learnable nonlin-
ear projection space that aligns image, text, and geolocation embeddings into a unified embedding
space. As shown in Rows 3—4 of Table ] the Top-1 accuracy improves by 7.6%, not only recover-
ing the performance loss from textual inputs, but also surpassing the original bimodal setup. This
demonstrates the projection space’s capability in harmonizing multimodal distributions.
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Multi-

Hierarchical Street

Location Textual Projection Region Global Alignment Prompt Tkm City Region Country Continent
Encoder Annotation Space Contrastive Loss Contrastive Loss Losi Geo- % 25km% 200km % 750km % 2500km %
Reasoning °
10.19 26.13 34.60 48.24 63.89
v 12.78 3145 4120  56.70  70.20
v v 10.45 28.00 36.70 50.60 66.20
v v v 13.92 36.02 47.80 63.00 78.30
v v v v 15.01 3891 51.23 66.42 80.76
v v v v v 1535 3936 5428 68.72 82.45
v v v v v v 16.25 40.25 54.88 69.38 83.09
v v v v ' v v 17.32 42.01 57.18 72.44 85.16

Table 4: Ablation study on the Im2GPS3k dataset|Hays & Efros| (2008).

Region Contrastive Loss. Global-level contrast often fails to capture fine-grained differences,
especially in urban scenes with repetitive structures. We introduce region-level contrastive learning
by first segmenting each image into semantic regions and aligning tri-modal embeddings per re-
gion. As shown in Rows 4-5 of Table[d] this module significantly improves performance, especially
at street- and city-level localization. By mining hard negatives from “intra-image inter-region” and
“inter-image geo-neighbors,” the model learns to distinguish fine-grained regional differences, prov-
ing highly effective in high-redundancy urban contexts. This module enhances local discriminability
and pushes beyond the limits of coarse global retrieval.

Global Contrastive Loss. This module performs tri-modal alignment at the global image level,
serving as a “coarse-grained semantic anchor” and functioning as the coarse retrieval phase. As
shown in Rows 5-6 of Table |4} global contrast improves overall geolocation accuracy, particularly
at the country and continent levels. Although region contrast excels at fine-grained discrimination,
it lacks macro-level context and may fragment semantic understanding. Removing global contrast
loss severely disrupts semantic cohesion, resulting in drifting region embeddings. This module is
essential for maintaining global structure and consistent retrieval performance.

Hierarchical Alignment Loss. To ensure consistency between region and image-level represen-
tations, we propose a hierarchical alignment loss that minimizes the discrepancy between global
embedding and the mean of region embeddings. As shown in Rows 6-7 of Table[d] this module im-
proves performance by 1.6%, and more importantly, stabilizes training. By aggregating region-level
features to the global center, it prevents semantic drift and reinforces structural coherence. This is
especially useful in scenes with unbalanced region distributions (e.g., open fields vs. commercial
blocks), helping weaker regions align better and promoting global-local consistency in representa-
tion.

Multi-Prompt Geo-Reasoning. Rows 7-8 in the table demonstrate that the MPGR module brings
significantly greater performance gains at higher geographic levels such as Region, Country, and
Continent. This indicates that multi-prompt-driven large language models (LLMs) are capable of
extracting more abstract and global geographic semantics from image content—such as language
cues, architectural styles, and terrain characteristics—which enables more accurate predictions of
a given image’s broader regional or national origin. This capability is particularly crucial in chal-
lenging scenarios where images are ambiguous, cross-domain, or lack distinctive local landmarks.
It shows that MPGR is not merely a supplementary signal but a critical component in enhancing the
model’s global geographic reasoning, providing strong support for hierarchical location inference.

A.4 PARAMETER ANALYSIS OF MULTI-PROMPT GEO-REASONING

Analysis of the Impact of Prompt Quantity on Geolocation Performance: As shown in Fig.
[l increasing the number of prompts from 1 to 7 leads to a general upward trend in geolocation
accuracy across all spatial levels, including street, city, region, country, and continent. This indi-
cates that prompt diversification effectively enhances the LLM’s ability to reason about the geo-
graphic attributes of images. However, beyond four prompts, the improvement in accuracy begins
to plateau—especially at finer-grained levels such as street and city. For example, street-level ac-
curacy shows only marginal gains from the 4th to 7th prompt (17.32 — 17.38), and continent-level
accuracy remains nearly unchanged (85.16). It is worth noting that although increasing the number
of prompts yields some performance gains, it also introduces considerable computational overhead.
More prompts generate more location candidates, which expands the GPS gallery and increases
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[ Ared contuction crne is visie i the disan k.

A historic stone castle with four comer towers and a central

Tn the fir background, a range of mounans sirtches across
the entire image.

main tower.

Several yurts can be seen near the horizon n the upper left
and center of the image.

Green rees suround the casle, partally obscuring the
buildings

Tnthedistan cnter and e, lrge roups of ctle and shcp
e scatered on the grassland.

Tn front of  long gray castl wall i a plaza area where large
groups of tourists are athered i orderly ines,

“Towo heders on horseback ae i the iver near the center-top ‘
wer

Aiver unsacros the foreground of the image, witha yellow
boat flonting near the ower lef comer.

In the middle of the image, a shallow river crosses
horizontally.

“Thi is  panoramic image of a castle with a ivr i the

In the foreground atthe bottm, there i  large area of green
s

foreground. The castle siands centally with four prominent
towers. Touiss gather alon therverbank, reenery
surounds th srucure, and thesky s cea.

o

Inthe center right,thre s white two-tory buiding with an

Thisis 2 panoramic photo of a vast grassland pastre. I the
forcground islush green grass, with askallow iver i the
middle where two herders on horseback are crosing. Large
herds of catle and sheep are scatered inth disance, and
several yuts dot the hoizon. The background features rolling
mountains under a brght,clear sky,creatng a scene of
ranquily and viality.

extemal staircase.

Nexttothe white building on the ight,there s a geen tee,
with ity ole standing between the tree and the building

In the cener, a tall Arc de Triomphe stands withits main
archway inthe middle. At the lower sidesof the arch, detiled
relief sculptures e present on boththelet and ight, forming
the arch's decoratve relief arca

rir [ nthe grasy e atthe cener, o wilypoes stand. |

[ e et ther s  l gren e |

On both sides and in the distant background, several multi
story city uiklings ae visble.

Near the horizon,several low buildings and a few vehicles are
scattered.

At the bottom, a yellow-green lawn is interlaced with a

Inthe foreground at the bottom, many tourists anda siver car
ae visible.

walkway that extends from the lower left comer across the
grass 10 the area behind the house

“This i a photo of a commnity scene. On the rght i a white
two-story building with a tree next to it, and a utlity pole
between the tree and the buiking. Inthe cente, two utlity
poles stand on the grass. A tall ree i located i the lefi-center

“This isacityscape centered on the Arc de Triomphe. The arch
stands tall and majestic, with relief sulptres on each sde of
the archvay. The foregound s crowded with tourits and a
car atthebotiom right ity buiklings are sen i the
background, while the top feaures a blue sky with scatered
clouds, creatng a solemn and open atmosphere

Tn the distanc, low buidings and vehicles ar lned up near
the hoizon. Thelower part i covered ingrass, and the sky
above s clear with some clouds

Inthe cener, a wooden long pier steches from the
foreground toward the disant horizon. A rilvay track runs

In the center, a massive red rock formation stands in the
distance.

along the middle ofthe pir, spanning it entie length

Anwhite railing runs along the rght side of the picr, extending

At the foot of the distant red rock, a band of vegetation runs.
‘horizontally across the scene.

into the distance.

In the lower left, dense grass and a clump of talle desert
plants are present

Several tall, curvd stret lamps are lined up along the right
side of the pict.

Near the center of the pier, one person is running on the left
side, and another person is by the railing fo the lefi of the
rumner.

“The lowerright comer s flled with dense yellowish grass
and low ground plants.

Inthe fir distance a theend ofthe pier, many city buildings
are spead actos the land

“This is a scenic photo of a long wooden per tetching into
the sea. A alvay track run alon the cener of the pct. On

“Ths is an outback landscape photo from Austalia, featring
the massive red Uluru rock atthe center. The forcground is
densely covered with yellowgreen grasses, with afe tllr
desent plants scattered here and there. The top of the image
shows a blue sky with a few whie clouds, reaing a vast and
spectacular s

the pir,one person is umning while anoher stands closer o
the leftside. Tall curved stret lamps and a white rilin line
the ight side ofthe piec. On b sides,the vastsea extends
outvard, and i the fr disance behind the pi, land with
many building is visibl. The sy abov s open.

Figure 5: Output Example of the Automated Image-Text Annotation System

Impact of Number of Prompts on Geolocation Accuracy
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Figure 6: Effect of Prompt Quantity on Geolocation Accuracy.on the In2GPS3k dataset

[Efros| (2008)

retrieval time. Additionally, redundant or semantically similar prompts may produce overlapping

or ambiguous location predictions, further lengthening the inference pipeline.

Therefore, balanc-

ing accuracy improvements and computational efficiency, using four prompts offers a practical and

effective trade-off.
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Text Query: “Forest”

Figure 7: Global geospatial distribution generated from the text query “Forest”. The map visualizes
cosine similarities between the query’s textual embedding and GPS embeddings projected via our
Geo-alignment mechanism.

A.5 GLOBAL GEO-VISUALIZATION FROM TEXTUAL QUERIES

Due to our tri-modal contrastive learning framework, the location encoder is jointly aligned with
both visual and textual modalities. This enables us to effectively map free-form textual descriptions
into geographic coordinates. This functionality allows the model to assign spatial context to any
given textual concept. Specifically, we take an arbitrary text input and extract its embedding using
the CLIP text encoder. The embedding is then projected through our trained projection layer and
compared against a bank of GPS embeddings. By computing cosine similarity between the text
embedding and all GPS coordinate embeddings, we generate a similarity map that reflects the geo-
graphic distribution of the queried concept. For example, given the text query “Forest”, we visualize
the resulting similarity scores over a world map, as shown in Figure[7] The resulting heatmap high-
lights geographic regions where the learned GPS representations are most semantically aligned with
the textual concept of “forest,” thereby demonstrating our model’s ability to reason about global
spatial semantics from purely linguistic inputs.

A.6 IMPACT OF GEOGRAPHIC LABEL GRANULARITY ON LOCALIZATION PERFORMANCE

Method Street City Region Country Continent
Ikm 25km 200km 750km 2500 km
Continent | 21.99  33.89 44,98 62.26 76.55
+ Country | 24.02  35.60 46.80 65.31 76.93
+City 25.71  37.02 47.45 66.21 79.46

Table 5: Localization result under different geographic label granularities on YFCC26k
dataset

To investigate how different granularities of geographic labels influence image geolocation accuracy,
we designed three settings: using only Continent-level labels, using both Country and Continent-
level labels, and using full hierarchical labels including City, Country, and Continent. We evaluate
model performance on five standard metrics: Street, City, Region, Country, and Continent, with
results shown in Table 5] The experimental results demonstrate that increasing label granularity
significantly enhances fine-grained localization accuracy. When only Continent labels are used, the
model achieves 21.99% on the Street metric. After incorporating City-level labels, performance
rises to 25.71%, indicating that fine-grained labels improve the model’s ability to perceive local
spatial structures. City and Region accuracies also increase by 3.13% and 2.47%, respectively, fur-
ther confirming the importance of City-level labels in modeling mid- and small-scale geographic
semantics. In addition, the use of Country-level labels contributes notably to improvements in Re-
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gion and Country metrics, with gains of approximately 1.82% and 3.05%, respectively. Meanwhile,
the Continent-level accuracy remains relatively stable, suggesting that coarse labels are sufficient
for large-scale region distinction, and finer details offer limited additional benefit at this level. In
conclusion, there is a clear positive correlation between label granularity and localization perfor-
mance. Fine-grained labels are essential for improving performance on high-resolution tasks (e.g.,
Street and City), while a hierarchical label structure enhances the model’s ability to generalize across
multiple spatial scales.

A.7 SATIAL DISTRIBUTION

Aligned Modalities Unaligned Modalities
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Figure 8: This figure illustrates the spatial distribution of image, text, and GPS modalities under
both aligned and unaligned conditions.

Figure (8| illustrates the spatial distributions of image, text, and GPS modalities under both aligned
and unaligned conditions. Figure X presents the spatial distribution of the three modalities—image,
text, and GPS—in aligned and unaligned states, to intuitively verify the effectiveness of our pro-
posed modality alignment mechanism in geographic semantic learning. We simulate 10 geographic
locations (distinguished by color), and represent the three modalities—image, text, and GPS—with
different shapes. In both subfigures, we adopt a consistent visualization process: image and text
modalities are first passed through their respective feature extractors to obtain embedding features,
which are then reduced to two dimensions via t-SNE and linearly scaled to the value range of GPS
coordinates to ensure comparability across modalities. The GPS modality is directly visualized us-
ing its original coordinates without dimensionality reduction. The left subfigure shows the result
after modality alignment. After projection into a shared semantic space, the image and text features
are tightly clustered around their corresponding GPS positions, with all three modalities exhibiting
clear spatial consistency at the same geographic location. In contrast, the right subfigure shows
the result using unprojected features. Here, only the original image and text features are reduced
and mapped, and the result shows that although these modalities come from the same geographic
locations, their features fail to align with the corresponding GPS points and are instead scattered
irregularly across the space, unable to form clusters around GPS anchors. This comparison clearly
demonstrates that without feature alignment, different modalities—even when associated with the
same location—still exhibit significant spatial deviation, making it difficult to achieve semantic con-
sistency and limiting the feasibility of cross-modal understanding and retrieval. In contrast, with the
introduction of a modality alignment mechanism, the three modalities—image, text, and GPS—can
establish clear semantic correspondences in a unified embedding space, providing effective support
for downstream cross-modal geographic retrieval and location reasoning tasks.

A.8 ROBUSTNESS ACROSS LANGUAGE MODELS

As shown in Fig. [0 we visualize the predicted geographic coordinates for the same query image
using two different large language models: GPT and LLaMA. In the figure, the outer blue circles
represent GPT predictions, while the inner red circles represent LLaMA predictions. Despite using
different underlying models, the high-confidence predictions from both are geographically close and
largely overlapping. Table [f]lists the specific predicted coordinates and their associated confidence
scores. Table[/|further compares the performance of our framework when using GPT or LLaMA as
the base model across various localization metrics. The results show that although GPT performs
slightly better in terms of accuracy, the overall similarity suggests that our framework does not rely
on any specific large language model.
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Model Predicted Location (Lat, Lon) Confidence
Bethany Beach, Delaware 38.5266, -75.0535 22%
Ocean City, Maryland 38.3750, -75.0700 18%
Virginia Beach, Virginia 36.8500, -75.9780 12%
Nags Head, Outer Banks, North Carolina  35.9096, -75.5970 14%

GPT Wrightsville Beach, North Carolina 34.2592, -77.8286 8%
Destin, Florida 30.3935, -86.4958 7%
Gulf Shores, Alabama 30.2500, -87.6839 6%
Cape San Blas, Florida Panhandle 29.7174, -85.3020 5%
Perdido Key, Florida/Alabama border 30.3250, -87.4367 4%
Galveston, Texas 29.3000, -94.7900 4%
Bethany Beach, DE 38.5361, -75.0610 20%
Ocean City, MD 38.4108, -75.0616 16%
Cape May, NJ 38.9351,-74.9083 12%
Rehoboth Beach, DE 38.7109, -75.0890 10%

LLaMA Nags Head (Outer Banks), NC 35.9408, -75.6724 9%
Wrightsville Beach, NC 34.2158, -77.7976 8%
Virginia Beach, VA 36.8529, -75.9780 7%
Gulf Shores, AL 30.2440, -87.7000 6%
Destin, FLL 30.3935, -86.4958 6%
Provincetown, MA 42.0505, -70.1805 6%

Table 6: Comparison of Location Predictions and Confidence Estimates for an Image by GPT and
LLaMA.

Method Street City Region Country Continent
lkm% 25km % 200km % 750km % 2500 km %
LLaMA 17.23 41.94 57.07 72.35 83.82
GPT-mini 17.15 41.67 56.89 72.21 84.68
GPT 17.32 42.01 57.18 72.44 85.16

Table 7: Evaluation of localization performance with different LLMs integrated into the Geo-
Reasoning pipeline on the Im2GPS3k Hays & Efros| (2008)) dataset.
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Figure 9: Comparison of location predictions by GPT and LLaMA models. Outer blue circles
represent GPT predictions; inner red circles represent LLaMA predictions. Circle size corresponds
to model confidence.
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