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ABSTRACT

Models that learn spurious correlations from training data often fail when de-
ployed in new environments. While many methods aim to learn invariant represen-
tations to address this, they often underperform standard empirical risk minimiza-
tion (ERM). We propose a data-centric alternative that shifts the focus from learn-
ing invariant representations to leveraging invariant data pairs—pairs of samples
that should have the same prediction. We prove that certain counterfactuals natu-
rally satisfy this invariance property. Based on this, we introduce Noisy Counter-
factual Matching (NCM), a simple constraint-based method that improves robust-
ness by leveraging even a small number of noisy counterfactual pairs—improving
upon prior works that do not explicitly consider noise. For linear causal models,
we prove that NCM’s test-domain error is bounded by its in-domain error plus
a term dependent on the counterfactuals’ quality and diversity. Experiments on
synthetic data validate our theory, and we demonstrate NCM’s effectiveness on
real-world datasets.

1 INTRODUCTION

Spurious correlations are misleading patterns in the training data. The relationships between features
and the target do not hold across domains or environments. Models trained on such correlations may
perform well on their training distribution yet fail to generalize once the environment changes, be-
cause the correlations reflect coincidental or confounded associations rather than true causal links.
Addressing spurious correlations is therefore critical for building models that remain reliable under
distribution shift—especially in high-stakes domains such as healthcare, finance, and public ser-
vices. Spurious correlation falls under the broader problem of domain generalization (DG), which
seeks to generalize to new unseen test domains beyond the original training domains.

Invariant representation learning tackles the DG problem by forcing some distributional property
of the representation to be stable across domains (Peters et al., 2016; Li et al., 2018b;a; Arjovsky
et al., 2019). Approaches range from matching the marginal p(h(x)) or conditional p(h(x)|y) (Li
et al., 2018b), to causality-inspired objectives such as Invariant Causal Prediction (ICP) (Peters et al.,
2016) and Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), which match the conditional
p(y|h(x)). Both MatchDG (Mahajan et al., 2021) and Domain Invariant Representation Learning
with Domain Transformations (DIRT) (Nguyen et al., 2021) consider a two stage approach to invari-
ant representation learning. In the first stage, they estimate a mapping between domain distributions;
MatchDG uses iterative contrastive learning to find data pairings between domains while DIRT used
StarGAN Choi et al. (2018) to learn an explicit map between domains. In the second stage, they add
an invariant representation regularization term that encourages the latent representations of pairs to
be close. Although theoretically grounded, these methods often underperform empirical risk min-
imization (ERM) on modern benchmarks (Gulrajani and Lopez-Paz, 2021; Koh et al., 2021; Bai
et al., 2024), which may be due to the strong assumptions that do not necessarily hold in practice.

Inspired by the recent DG works that leverage additional data beyond the standard DG setup Blan-
chard et al. (2011b), we consider the following research question: Can shifting the focus from
learning invariant representations to leveraging invariant data provide a more direct and prac-
tical path toward domain generalization? Figure 1 illustrates the core intuition of why invariant
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pairs could be useful for robustness. This can be viewed as a data-centric viewpoint of MatchDG and
DIRT that focuses on estimating a robust classifier given data pairs between domains (correspond-
ing to stage two of MatchDG and DIRT). While at first glance it may seem that collecting such
invariant pairs would be infeasible, we suggest that they could be reasonably acquired in practice
under certain scenarios. For example, when the spurious correlations are artifacts of a measurement
process (e.g., x-ray machine, microscope, staining methodology, etc.), then an invariant pair could
be collected by measuring the same specimen under two different environments (e.g., send the same
patient to two x-ray machines). Second, when a domain expert can identify spurious features, they
can directly edit spurious features of the sample. An example of this would be using image editing
software including AI-based image editing to change the background of an image while keeping the
subject the same (e.g., putting a cow on a boat or a fish in a desert).
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Train Dom. 2 (y = 0)
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Test Domain (y = 1)
Invariant Pair

Figure 1: While ERM θ̂ on the training domains
(circles and triangles) is not robust to the change
in spurious feature in the unseen test domain
(pluses), a robust linear classifier θ∗ can be esti-
mated by making the classifier orthogonal to the
difference between a single invariant pair (green
line). The color represents label y.

While these are some natural ways to collect
such pairs, the focus of our paper is to theoreti-
cally and empirically analyze whether invariant
pair data could be helpful for robustness—i.e.,
this is a future-looking paper. Indeed, the current
lack of invariant pair datasets should not lead
to the conclusion that invariant pairs could not
be collected, but rather that the utility of such
pairs is not obvious. We hypothesize that invari-
ant data pairs could enable a data-driven way to
implicitly encode knowledge of spurious corre-
lations instead of requiring explicit specification
(e.g., specifying a causal graphical model). To
explain via an analogy, collecting invariant pairs
could be to spurious correlations as collecting
class labels is to classification. In both cases,
explicitly defining the target object (either spuri-
ous correlations or class) can be very challeng-
ing if not impossible but implicitly defining them
through data is significantly easier.

The natural next question is: How can these in-
variant pairs be used for robustness? MatchDG (Mahajan et al., 2021) and DIRT (Nguyen et al.,
2021) propose a simple regularization that encourages the latent representations of pairs to be close.
However, these works do not address two questions critical for a data-centric viewpoint: How do we
theoretically and practically handle noise in the invariant data pairs? How many pairs are needed
for robustness theoretically and empirically? The first addresses the inevitable noise incurred when
collecting or creating invariant data pairs, i.e., they are not perfect pairs. The second addresses the
practical question of whether it may be cost-effective to collect such pairs, which may be costly to
obtain (though not necessarily).

To address these data-centric questions, we analyze the theoretical guarantees and trade-offs of
using invariant pairs (pairs of inputs that should have the same prediction), focusing on the linear
setting. We formalize the spurious correlation setting using a causal perspective, proving that certain
spurious counterfactuals naturally create these invariant pairs. Based on this, we introduce Noisy
Counterfactual Matching (NCM), a simple method that adds a linear constraint to ERM. This
constraint, derived from the SVD of the differences between pairs, forces the model to ignore the
spurious features identified by the pairs. We prove that NCM is robust to spurious correlations even
with a small number of noisy pairs, and we validate our findings empirically. We summarize our
main contributions as:

• We introduce Noisy Counterfactual Matching, a simple, data-centric method that adds a constraint
to ERM to improve robustness to spurious correlation using a small set of noisy invariant pairs.

• We theoretically analyze NCM’s robustness by proving an out-of-domain error bound that decom-
poses into the in-domain risk and a term dependent on the quality of provided pairs.

• We show that the number of pairs needed can scale linearly with the spurious feature dimension.
• We empirically validate our theory, demonstrating improved robustness on synthetic data and on

real-world benchmarks via linear probing on a pretrained CLIP model.
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Notation: We use lowercase letters to denote random variable (e.g., y), bold lowercase letters
to denote random variables (e.g., x), and bold italic letters for their realizations (e.g., x). Capital
letters represent matrices or constants (e.g., U , N ), while calligraphic letters denote sets, domains,
or ranges (e.g.,M, E , X ). The notation [N ] represents the index set 1, 2, . . . , N . We denote the r-th
largest singular value by σr, and Qr denotes the r-largest singular values’ corresponding singular
vectors. ∥A∥Λ := ∥A⊤Λ1/2∥ is Mahalanobis-induced spectral norm.

2 PROBLEM SETUP

To formalize the goal of robustness to spurious correlations, we consider a set of domains E where
their difference are on spurious features. Our goal is to find the optimal classifier on these domains.
Definition 1 (Optimally Robust Classifier). Given a set of environments E , the optimally robust
classifier is defined as:

h∗
E := argmin

h
max
e∈E

E(x,y)∼Pe
[ℓ(h(x), y)] ,

where the optimization is over all possible predictive functions h.

In this work, we consider a setting where, in addition to the training set, a small dataset of invariant
data pairs is available. While our objective remains the same as the standard domain generalization
(DG) setup (Blanchard et al., 2011a), which is to achieve strong performance on an unseen test
domain, our data requirements differ. In contrast with DG’s requirement of labeled training sets
from multiple environments, our method requires labeled training data from one domain and a small
group of invariant data pairs as defined below.
Definition 2 (Invariant Pair). Given a set of environments E , a pair of distinct inputs (x,x′) with
x ̸= x′ is an invariant data pair if and only if the predictions under the optimally robust classifier
are equal, i.e., h∗

E(x) = h∗
E(x

′), where h∗
E is defined as in Definition 1.

Intuitively, invariant data pairs are inputs that should have the same prediction under a robust model.
For example, in medical diagnosis, X-rays from two different machines of the same patient should
yield the same probabilities, without requiring knowledge of the patient’s actual diagnosis.

2.1 CAUSALITY PRELIMINARIES

To formally define the set of spurious correlation environments and their corresponding invariant
pairs, we introduce some related concepts in causality. In summary, we consider that each domain
(or environment1) corresponds to a distinct structural causal model (SCM) (Pearl, 2009, Definition
7.1.1), the differences of the SCMs are equivalent to interventions, and counterfactuals are based on
applying two different SCMs to the same exogenous noise. First, we formally define an SCM.
Definition 3 (Structural Causal Model (Pearl, 2009, Definition 7.1.1)). An SCMM is represented by
a 3-tuple ⟨U ,V,F⟩, where U is the set of exogenous noise variables, V is a set of causal variables,
and F := {f1, f2, . . . , fm} denotes the set of causal mechanisms for each causal variable in Z
given its corresponding exogenous noise and parents, i.e., vi = fi(ui,vPa(i)).

We denote causal mechanism in domain e as Fe := {fe,1, fe,2, . . . , fe,m}. Given this, we consider
two notions when comparing two different causal models: intervention set and counterfactuals.
Definition 4 (Intervention Set). Given two SCMsM andM′ defined on the same set of exogenous
noise and causal variables, the intervention set is defined only in terms of their causal mechanisms
F and F ′ respectively I(Fe,Fe′) = {i : fe,i ̸= fe′,i} .

Note that this definition allows multiple types of intervention including soft, hard or do-style inter-
ventions. We now define counterfactual pairs as applying two SCMs to the same exogenous noise
based on the original definition of counterfactuals in SCMs (Pearl, 2009, Definition 7.1.5).
Definition 5 (Counterfactual Pair). A pair of causal variable realizations (vA,v

′
A) whereA ⊆ V is

a subset of causal variables is a counterfactual pair between two SCMsM andM′ (with the same
set of exogenous noise variables and causal variables) if and only if there exists a exogenous noise
realization u such that vA is the solution toM and v′

A is the solution toM′.
1We will use domain and environment interchangeably.
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Note that this is different than estimating counterfactuals given some factual evidence, which would
require the three steps of abduction, action, and prediction. Rather, here we simply define the
theoretic notion of a CF pair between two SCMs. However, in practice, we expect that perfect
CF pairs will not be feasible so we focus on providing theoretic analysis of noisy CF pairs.

2.2 LATENT SPURIOUS CORRELATIONS

After introducing the causal preliminaries, we now formalize the latent spurious correlations by
specifying the collection of SCMs that define domains. This follows many latent SCM multi-domain
works (Liu et al., 2022; Zhang et al., 2023; von Kügelgen et al., 2023; Zhou et al., 2024).
Definition 6 (Class of Latent Domain SCMs). Letting E denote the set of domains, a latent domain
SCM class is a set of latent SCMsME = {Me}e∈E such that:

1. The causal models share the same set of exogenous noise variables, causal variables, and exoge-
nous noise distribution PU .

2. The causal variables V are split into observed variables X ∪ Y and latent variables Z .
3. The models share the same causal mechanisms for the observed variables, denoted by gx and gy,

and can only have latent variables in Z as parents.

The latent causal mechanisms for the i-th variable in Z for the e-th domain will be denoted as fe,i,
and the induced distribution over the observed random variables for each domain will be denoted
by Pe(x, y). The intervention set among the SCM class is defined as I(FE) :=

⋃
e,e′∈E I(Fe,Fe′) .

We now give our primary spurious correlation assumption that the domains in the class can only
intervene on spurious latent variables with respect to the target variable y, i.e., non-ancestors of y.
Assumption 1 (Spurious Correlation Latent SCM Class). Any variable in the intervention set must
be non-ancestors of y, i.e., I(FE) ∩ Anc(y) = ∅. Equivalently, all domains must share the mecha-
nisms for ancestors of y, i.e., fe,i = fe′,i,∀i ∈ Anc(y), e, e′ ∈ E .

This assumption defines the scope of our work to spurious correlation, which limits the types of
shift that we could see at test time to only spurious features, i.e., non-ancestors of y. However, this
assumption does not limit the strength of these shifts. Intuitively, if the sample x encodes infor-
mation about a descendant of y, a predictor trained on x cannot be invariant across interventional
distributions because x is a collider of all the latent causal variables and thus e and y will not be
d-separated. This is true even when interventions only target spurious features. We include an
illustration of causal DAG Figure 3 and a detailed explanation in Appendix A.1.

3 HANDLING NOISE IN INVARIANT PAIRS VIA NOISY COUNTERFACTUAL
MATCHING

Our goal in this section is to show how counterfactual pairs can be used to improve robustness.
Specifically, we first discuss the relationship between spurious counterfactuals and invariant pairs.
Motivated by this, we introduce the noisy counterfactual matching (NCM) method, which aims to
identify and recover the spurious subspace by leveraging potentially noisy CF pairs drawn exclu-
sively from the training domains.

Spurious Counterfactuals are Invariant Pairs. Given the causal model setup in Section 2, we
can now prove that counterfactuals within a spurious correlation latent SCM class are invariant pairs
w.r.t. the corresponding domain distributions.
Proposition 1 (Spurious Counterfactuals are Invariant Pairs). Given a spurious correlation latent
SCM class ME and a strictly convex loss function ℓ, any observed counterfactual pair (xe,xe′)
betweenMe ∈ ME andMe′ ∈ ME will be an invariant pair w.r.t. the optimally robust classifier
h∗
E based on ℓ induced by the domain distributions {Pe}e∈E almost surely, i.e., h∗

E(xe) = h∗
E(xe′).

See proof in Appendix C.1. This elegantly connects spurious counterfactuals and invariant pairs
(though again we note that invariant pairs could be defined for other perspectives). The natural next
question is: Is it possible to collect such pairs in reality? We argue that while perfect counterfactual
pairs are not possible, noisy or approximate counterfactual pairs could be reasonably simple to
collect in certain scenarios (see Appendix A.2)
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Noisy Counterfactual Matching (NCM). Given a set of CF pairs solely from the training
domains {(xej ,xej→e′j

)}kj=1, by Proposition 1, those counterfactuals are invariant pairs, i.e.,
h∗
E(xe) = h∗

E(xej→e′j
). Therefore, it is natural to consider a simple CF pair-matching method

that augments empirical risk minimization (ERM) with a constraint enforcing the outputs of each
pair to be equal:

min
h

E(x,y)∼Ptrain [ℓ(h(x; θ), y)], s.t. h(xej ; θ) = h(xej→e′j
; θ) ∀j, (1)

where ℓ(·, ·) measures data fidelity by using the prediction function h. If h is linear parameterized
by θ, the constraint simplifies to θ⊤δj = 0,∀j, where δj := xej −xej→e′j

. With sufficient diversity
and quantity, we aim to show that these CF differences could span the spurious feature subspace.

Oracle CF pairs in (1) are infeasible to obtain in practice, but noisy CF pairs can be collected in
certain scenarios. To address those, we propose an approximate spurious subspace matching method
using the noisy CF pairs. Concretely, define the noisy counterfactual pair difference matrix as ∆̃x :=[
xe1 − xe′1

, . . . ,xek − xe′k

]
∈ Rd×k. Given noisy pairs, the matrix ∆̃x has rank k. Enforcing the

classifier to be orthogonal to the noisy CF differences, i.e., θ⊤∆̃x = 0, can lead to pathological
outcomes. For example, if there are sufficient many CF pairs such that k > |IFE |, then θ must be
orthogonal to a larger subspace than the spurious feature subspace, leading to degraded performance.
Thus, we propose to introduce NCM as follows:

min
θ

E(x,y)∼Ptrain [ℓ(h(x; θ), y)] s.t. θ⊤Q̃r = 0, (2)

where Q̃r ∈ Rd×r denotes the space of left singular vectors corresponding to the r-truncated SVD
of ∆̃x. With perfect counterfactuals, Q̃r correspond to the spurious subspace, and the classifier
would be robust to changes in the spurious subspace. Because of the noise, a much delicate analysis
is required to show that this approach improves robustness based on the diversity and quality of
the noisy CF pairs. There are many efficient algorithms including reparameterization approach,
projected gradient descent to solve the constrained problem (2), we refer the reader to Algorithm 1
in Appendix B for a detailed implementation.

4 THEORETIC GUARANTEES OF NCM FOR LINEAR MODELS

In this section, we provide theoretic guarantees of NCM (2) for both linear regression and logistic
regression. Our study proceeds through four steps: (1) we decompose the test error into in-domain
error and spurious subspace misalignment (Theorem 1); (2) we quantify this misalignment using
Wedin’s sinΘ theorem (Wedin, 1972) (Corollary 3); (3) we characterize the out-of-domain risk
under ERM (Corollary 2); and (4) we show that oracle CF pairs in (2) recover the optimal robust
classifier (Corollary 4).

We consider both logistic regression and linear regression tasks, where the data generation processes
are linear in both cases, differing only in the target variable y. In logistic regression, gy(z) is a sign
function composed with a linear function, while in linear regression, gy(z) is a linear function. Given
the data generating process, it is natural to consider the linear regressor hE parameterized by θ to
predict y from x, and the optimally robust classifier h∗

E parameterized by θ∗.

To quantify the deviation of a test domain e+ ∈ Etest from the training domain Etrain, we introduce a
conceptual random variable defined as xe+→e := gx(fe(u)), where u is the same random variable
shared by xe+ , as xe+ = gx(fe+(u)). Therefore, for each realization of u, the corresponding
realization of (xe+ ,xe+→e), denoted as (xe+ ,xe+→e), forms an oracle CF pair. Note that the
conceptual random variable xe+→e is used only for analysis and does not need to be observed in the
training data. Given that the exogenous noise follows the distribution PU (cf. Definition 6), xe+→e

follows the training domain distribution p(xe). Building upon it, we introduce population second
moment matrix and its SVD as follows Me+,Etrain

:=
∑

e∈Etrain
P(e)Eu[(xe+ − xe+→e)(xe+ −

xe+→e)
⊤] = Q|I(FE)|Λ|I(FE)|Q

⊤
|I(FE)|, where Q|I(FE)| is the relevant spurious subspace for the

latent SCM classME where E contains the training domains and the e+ test domain, and P(e) is
the marginal distribution of environments in the training distribution. Note that the singular values
greater than |I(FE)| are zero due to our spurious correlation assumption (Assumption 1). We have
the following guarantee on NCM (2).

5
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Theorem 1 (Test-Domain Error Bound for NCM with Linear Models). Assuming that the environ-
ments are defined by a class of linear spurious correlation latent SCMs ME (Assumption 1), the
test-domain risk of any θ that satisfies the NCM constraint (2) for any test domainMe+ ∈ ME is
bounded as follows.

a) For logistic regression with log loss ℓLL, the following bound holds:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)]︸ ︷︷ ︸
Term I: In-domain error

+ ∥θ∥
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥
Λ|I(FE )|

.︸ ︷︷ ︸
Term II: Spurious subspace misalignment

b) Similarly, for linear regression with squared error loss ℓSE, the following holds:

E(xe+ ,ye+ )∼Ptest [ℓSE(θ
⊤xe+ , ye+)] ≤ 2E(x,y)∼Ptrain [ℓSE(θ

⊤x, y)]︸ ︷︷ ︸
Term I: In-domain error

+2∥θ∥2
∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

.︸ ︷︷ ︸
Term II: Spurious subspace misalignment

Furthermore, Term II in (a) and (b) can be bounded using the following:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+), (3)

where s := min{r, |I(FE)|} is the minimum of the user-specified r and the dimension of the relevant
spurious feature subspace, dist2(Q,Q′) := ∥QQ⊤−Q′Q′⊤∥2 denotes the squared distance between
subspaces (Chen et al., 2021), and λ1(e

+) and λs+1(e
+) denote the largest and (s + 1)-th largest

eigenvalue of Me+,Etrain
respectively.

See the appendix for proofs. The following comments are in order.

(i) Error decomposition: Observe that the test error due to spurious correlations can be categorized
into two terms. Term I: in-domain error and Term II: weighted spurious subspace misalignment.
In the extreme case, when we have full knowledge of the oracle counterfactual pairs and the the
ambient true dimension |I(FE)|, Term II vanishes, and thus, the test error reduced to in-domain
error. Intuitively, Term II quantifies the weighted impact of subspace misalignment, where the
weights are given by the eigenvalues of the true spurious subspace.

(ii) Accuracy trade-off induced by r: The second term in (3) captures the model misspecification
error due to r ̸= |I(FE)|. In practice, |I(FE)| is unknown, so one may either overestimate or
underestimate it through r. Our theory quantifies the impact explicitly within the bound:

(a) If we overestimate the spurious feature dimension, i.e., choose r > |I(FE)|, then s = |I(FE)|,
and hence λs+1(e

+) = λ|I(FE)|+1(e
+) = 0. In this case, Term II vanishes, but Term I increases

since a larger r reduces the feasible region Qr,⊥, resulting in greater in-domain error.
(b) If we underestimate the spurious feature dimension, i.e., choose r < |I(FE)|, then s = r, and

thus λs+1(e
+) = λr+1(e

+) > 0, which increases monotonically as r decreases. Here, a smaller
r lowers Term I as the feasible region Qr,⊥ is larger but simultaneously amplifies Term II due to
the larger λr+1(e

+).

This elegant trade-off is clearly observed in both synthetic and real-world datasets, as shown in the
arc-shaped curves in Figure 2b and Figure 7, which illustrate how the model performance varies
with different values of r.

One simple corollary of our theorem occurs in the extreme case when r = 0 such that NCM reduces
to ERM. In this extreme case, we have that the subspace distance term is zero because s = 0 and
λr+1(e

+) = λ1(e
+), which is typically large and reflects the spurious correlation captured by ERM.

This yields the following test-domain error bound for ERM, which is novel to the best of the authors’
knowledge. This clearly shows how ERM error increases with increasingly stronger shifts in the test
domain.
Corollary 2 (Test-Domain Error Bound for ERM with Linear Models). Given the same assumptions
as Theorem 1, the test-domain error for ERM for logistic regression is bounded by:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)] + ∥θ∥
√
λ1(e+),

and similarly for linear regression.
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Next, we leverage Wedin’s sinΘ theorem Wedin (1972) to further characterize the spurious subspace
misalignment term (Term II in Theorem 1) based on the counterfactual noise ε := ∆̃x −∆x, where
∆x denotes the corresponding perfect counterfactuals. For this corollary, we assume that the oracle
counterfactuals corresponding to the observed counterfactuals spans the entire spurious subspace.
Thus, we can isolate the effect of noisy counterfactuals compared to oracle counterfactuals. This
shows that if the counterfactuals are diverse enough (i.e., they span the spurious subspace) and have
bounded noise levels, then we can improve test-domain performance.

Corollary 3 (Test-Domain Bound in Terms of Counterfactual Noise). Instate the setting in Theo-
rem 1. Further, assume that the oracle counterfactual difference ∆x has a rank equal to the spuri-
ous feature subspace, i.e., rank(∆x) = |I(FE)|, and suppose the noise matrix ε := ∆̃x − ∆x

(with singular values of ∆x denoted by σj) satisfies σ1 ≤ (1 − 1/
√
2)(σs − σs+1) where

s = min{r, |I(FE)|}. Then, for any θ that satisfies the NCM constraint (2) and any test domain
satisfyingMe+ ∈ME , the following holds for logistic regression:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)] + ∥θ∥

(
2
√

λ1(e+)

σs − σs+1
∥ε∥+

√
λs+1(e+)

)
,

and similarly for linear regression.

Choice of Clean ∆x. It is critical to note that we do not make any assumptions about the noise
except that σ1 ≤ (1 − 1/

√
2)(σs − σs+1).

2 Thus, given any observed noisy counterfactuals, we
could actually choose any such real counterfactual matrix that satisfies this condition, i.e., we could
theoretically choose an oracle counterfactual matrix ∆x that spans the spurious space and minimizes
the bound. Therefore, this result shows that as long as the counterfactuals are reasonably diverse
(i.e., they span the spurious subspace) and they are not too noisy, our NCM approach will improve
the robustness to spurious correlation.

A Small Number of Perfect Counterfactual Pairs Is Sufficient. Additionally, we note that a
simple corollary of this result is that by choosing s ≥ |I(FE)| with perfect counterfactuals (i.e.,
no noise), then the test-domain error will equal the train domain error. Furthermore, to satisfy the
rank condition, theoretically we only need |I(FE)| noiseless pairs whose differences are linearly
independent of each other. This emphasizes that in the ideal case only a small number of diverse
pairs are needed. In contrast to the IRM requires |Etrain| ≥ I(FE) (Rosenfeld et al., 2020). If there
is noise, then more pairs will be needed but we expect that still only a small number is needed to
improve robustness. We further observe this empirically (cf. Section 5).

5 EMPIRICAL EVALUATION

In this section, we present experiments on both synthetic and real world datasets. (i) The synthetic
dataset is used to validate the theoretical results. We evaluate robustness using both noisy and oracle
CF pairs, and confirm the few shot counterfactual pairs requirement of the CF pairs and the spurious
feature dimension (cf. Corollary 3). We also validate the trade-off effect of r (cf. Theorem 1
(ii)). (ii) Beyond synthetic data, we evaluate NCM (2) via linear probing on a frozen CLIP model
(Radford et al., 2021) across three real world datasets: ColoredMNIST, PACS, and Waterbirds.
While CLIP already demonstrates strong zero shot transfer (Radford et al., 2021), NCM (2) further
improves robustness to spurious correlations over CLIP. (iii) We compare three matching strategies:
random matching, nearest neighbor matching (Mahajan et al., 2021), and NCM (2), and show the
superiority of CF based approaches. Details on data generation, validation, and hyperparameter
tuning are provided in Appendix D.2. All experiments report in-domain validation in the main
text, with additional results including oracle-validation, hyperparameter sensitivity, and experiments
with traditional deep models as well as a result from the additional PACS dataset are provided in
Appendix E.

2Such a technical condition results from Wedin’s sinΘ theorem (Wedin, 1972). In reality, we found that
the performance of NCM still outperforms ERM even when such a condition is not satisfied (cf. Section 5) and
could be benefited by utilizing more pairs (cf. Figure 2a).
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(a) Acc vs. k under different noise, r = min(k, 20).
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(b) Acc vs. r under different noise, k = 100.

Figure 2: Result on the synthetic dataset with NCM. We report both in-domain test accuracy (in-
test accuracy) and test domain accuracy (test accuracy). We choose m = 100 and |I(FE)| = 20
(denoted by vertical dash line). The horizontal lines represent the ERM accuracy and oracle accuracy
(ERM train on test domain). The vertical line at 20 denotes I(FE). ε = 0 means oracle CF pairs.
The solid curves represent the mean over 10 runs with shaded regions indicating standard deviations.

Table 1: Main Results with in-domain validation.
Results with oracle validation can be found in Ta-
ble 3, Table 4, and Table 5 in the appendix.“WG”
represents worst group.

ColoredMNIST Waterbirds
Data Model in acc test acc in acc wg acc
DG Probing 0.852 0.093 0.885 0.781

IRM DG Probing 0.799 0.118 0.838 0.707
REx DG Probing 0.797 0.121 0.891 0.617
GroupDRO DG Probing 0.798 0.127 0.906 0.684
Fish DG Probing 0.798 0.118 0.900 0.744
SWAD DG Probing 0.800 0.113
LISA DG Probing 0.705 0.904 0.722
MatchDG 1NN CNN 0.698 0.361 0.970 0.080
MatchDG 1NN Finetune 0.850 0.181 0.920 0.112
MatchDG random Probing 0.799 0.120 0.793 0.009
MatchDG 1NN Probing 0.789 0.217 0.886 0.411

MatchDG clean Probing 0.793 0.181 0.906 0.536

NCM random Probing 0.794 0.176 0.804 0.269
NCM 1NN Probing 0.736 0.649 0.892 0.521
NCM clean Probing 0.740
random guess 0.500 0.500 - -

0.735 0.730 - -
theory oracle 0.750 0.750 - -

ERM (CLIP

ERM oracle

- -
0.000

0.693 0.864 0.812

Synthetic Experiments. The results indicate
that (a) oracle accuracy: NCM (2) achieves
oracle-level accuracy under small noise of CF
pairs (ε = 0, 1), as if the model were trained
directly on the test domain (see Figure 2a).
(b) Few-shot CF pairs: we observe that only
k = I(FE) = 20 oracle CF pairs are required
to correctly identify the spurious space, achiev-
ing the best possible performance. When the
noise is small (ε = 1), the performance re-
mains optimal. However, as the noise become
larger (ε = 5, 10), the performance degrades,
as predicted by Theorem 1. (c) Trade-off effect
of r: we fix the number of noisy CF pairs as
k = 100 and evaluate the effect of varying the
subspace rank r on test accuracy (see Figure 2b)
under different noises. For small noise levels
(ε = 0, 1), we observe monotonically decreas-
ing in-domain test accuracy and the arch shape
test accuracy curves (cf. Theorem 1 (ii)), show-
ing the trade-off effect of r. The best perfor-
mance achieves when r ≈ I(FE). In this case
of large noise (ε = 5, 10), the noise makes trun-
cated SVD decomposition more prone to pre-
serving some spurious features while removing
some invariant features, so a slightly aggressive
selection of r yields better results.

Real-world Dataset. We present the results of NCM (2) on two representative real-world datasets.
ColoredMNIST (Arjovsky et al., 2019) is a semi-synthetic dataset, but is widely recognized as dif-
ficult due to strong accuracy on the inverse line effect (Gulrajani and Lopez-Paz, 2021; Salaudeen
et al., 2024). Waterbirds-CF is a highly imbalanced dataset, where the minority group consists of
only 240 samples. We construct CF pairs by matching these with 240 randomly selected samples
from the majority group of original (See Appendix D.1 for detail). This dataset is used to highlight
the robustness of our method in this domain-imbalance scenario.

We summarize our results in Table 1 and give more detailed tables in the appendix. On ColoredM-
NIST result, our result shows that NCM probing on CLIP pretrained model (2) performs well on
both in-domain and oracle-validation (cf. Table 3), achieving test domain accuracies of 69.3% and
71.4%, respectively, nearly matching the ERM oracle accuracy of 73%, demonstrating the effec-
tiveness of NCM (2). The performance difference between two validation methods are only 2%,
indicating that NCM (2) is less sensitive to hyperparameter tuning. This stands in sharp contrast to
other algorithms such as ERM, IRM, GroupDRO, Fish, and REx, which only achieve around 10%
accuracy with in-domain validation and 20%-66% with oracle validation except for LISA which

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

achieves 69.3% on both validation methods. Our results show that NCM (2) with noisy CF pairs
achieves 81.2% worst-group accuracy, outperforming the best baseline (ERM) by 3.1% using in-
domain validation. In contrast, all other methods underperform ERM. We further include the oracle
validation and other baseline methods with CLIP on oracle validation. It also achieves 86% accu-
racy using oracle validation (see Table 4), outperforming the best probing method on CLIP by 3.3%.
We further include finetuning MatchDG with iterative matching as well as the ResNet50 end-to-end
training for comparison with iterative matching. Due to the non-linear backbone and the existence
of noises, the MSE constraint cannot effectively find the correct invariant subspace thus suffers from
the suboptimal results. Our observation are as follows: First, NCM (2) consistently outperforms
all baselines across these datasets. Second Random pairing and 1 Nearest Neighbor (1NN) pairing
perform well on ColoredMNIST, but fail on Waterbirds. On ColoredMNIST, invariant features are
inherently similar across samples, allowing even random pairing to produce reasonable noisy CF
pairs. In contrast, Waterbirds exhibit greater variability in the features making it difficult for 1NN to
find meaningful counterfactual matches.

6 RELATED WORKS

Data augmentation and generation: Data augmentations can be seen as simple-to-generate coun-
terfactual pairs, where the augmentations implicitly encode knowledge about desired invariances.
For example, standard functions like rotation, scaling, and noise addition suggest that such trans-
formations should not alter the predicted class (Honarvar Nazari and Kovashka, 2020; Shorten and
Khoshgoftaar, 2019). More sophisticated strategies follow this principle; LISA, for instance, is a
Mixup-inspired method that learns domain-invariant predictors through intra-label and intra-domain
mixing to encourage the model to respect class boundaries (Yao et al., 2024). DIRT (Nguyen et al.,
2021) suggests using StarGAN (Choi et al., 2018) to generate paired samples, while other work has
used ComboGAN (Anoosheh et al., 2018) to generate new data (Rahman et al., 2019). From our
perspective, these generated samples can be seen as complex, class-preserving data augmentations
to estimate pairs regarding some type of invariances. Our work provides a causal language and
theoretical guarantee for this approach.

Distribution or sample matching in addressing spurious correlations: Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019) aim to mitigate spurious correlations by learning domain-invariant
representations. Despite their theoretical appeal, IRM-based approaches often under perform in
practice, prompting several works to analyze and refine them (Rosenfeld et al., 2020; Krueger et al.,
2021; Ahuja et al., 2022). Beyond distribution matching, MatchDG (Mahajan et al., 2021) intro-
duces an iterative sample-level matching objective that aligns representations across domains in
latent space. Our method similarly employs sample-wise matching but crucially, we provide a theo-
retical robustness guarantee and deeper exploration on the properties of these pairs.

Causal inference seeking invariant predictor for robustness: The goal of domain generalization in
a causal perspective is to find a representation Φ of x such that y ⊥ e|Φ(x). Different approach
to induce Φ has been heavily explored. Most of the causal inference type of work focusing on
observable causal variables Magliacane et al. (2018) proposes to find subset of causal variable Φ(x)
in x, where x is the set of observable causal variables and Φ(x) ⊂ x, such that y ⊥ e|Φ(x) holds.
Subbaswamy et al. (2019) considers the graph surgery estimator that finding the stable estimator by
removing unstable mechanism from the joint factorization. However, it is extremely hard when the
causal variables are latent.

7 CONCLUSION AND DISCUSSION

We address spurious correlations from a data-centric view, showing that introducing (noisy) counter-
factual pairs during training improves model robustness. This mirrors classical supervised learning,
where labels guide models toward target concepts without formal definitions; similarly, invariant
pairs implicitly identify and mitigate spurious features. One challenge of our method is obtain-
ing counterfactual pairs. While straightforward in tasks like object classification (e.g., using image
editing for spurious features, as shown in the Waterbirds dataset), it is more complex in fields like
medical imaging, requiring expert involvement. However, experts can now help by creating or vali-
dating a few high-quality counterfactuals to improve robustness suggested by our findings.

9
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APPENDIX

The code is available at https://anonymous.4open.science/r/NCM-A35E.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, authors utilized the Large Language Model (LLM) to assist in
two capacities: for brainstorming initial conceptual approaches to theoretical proofs and for refining
the text for grammatical accuracy and clarity. The authors are fully responsible for all substantive
content and the final scientific conclusions.

A EXPANDED EXPLANATION

In this section, we include additional discussions about the causal model, assumptions, data avail-
ability, etc.

A.1 EXPANDED EXPLANATION OF LATENT CAUSAL MODEL

observable features

y

latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

x

Figure 3: Illustration of the latent causal model.
The ancestors of the target y are z1, z2, which are
assumed to be invariant across domains (see As-
sumption 1). On the other hand, z3, z4 are spu-
rious features. To be specific, z3 is confounded
with y, and z4 is descendant of y. Because they
are not ancestors of y, thus they are spurious.

𝑓! 𝑔"
𝑍!"

…

𝑍#"

𝑍""

𝑔"𝑓#
𝑍!!

…

𝑍#!

𝑍"!

𝑢!

…

𝑢#

𝑢"

Figure 4: An illustration of oracle counterfactual
pairs represented by our model, where f1 and
f2 are two SCMs’ solution function for domain
1 and domain 2, gx is the observation function
from z to x. In this figure, we do not plot the pre-
diction target y and correspondingly gy.

Figure 3 is an illustration of the proposed latent causal model, which satisfies the conditions in
Definition 6 and Assumption 1. We first note that this is a fairly common assumption in the
field (e.g., Rosenfeld et al. (2020); Arjovsky et al. (2019). We also suggest that this is not a sig-
nificant limitation. Suppose we had a graph where directly causes, i.e., y = gy(uy, x, zPa(y)).
We could then create a new graph with a new latent node equal to x, i.e., zx = x and change
gx(z1, z2, . . . , zx, . . . , ) = zx = x but now gy would only depend on latent variables. Thus, because
we already deal with complex latent variables, this is a not a limitation but more syntactic.

The domain counterfactuals encode crucial information about the underlying data generation mech-
anisms and help avoid reliance on features that are spuriously correlated with labels in the training
dataset. Oracle counterfactual pairs are samples living in two different causal worlds that shares the
same exogenous noise. In the example of Figure 4, two Aladdin images are oracle counterfactual
pairs where the intervention variable is “wealth” represented by some latent variable zi. gx encodes
the causal information to images.
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observable features

y

latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

(a) With known causal fes, we have a robust predic-
tor y ⊥ e|z1, z2, z3. Yet, because of the graph, we
know p(y|z1, z2, z3) = p(y|z1, z2). This suggests
that including z3 is safe but the optimal predictor will
be constant to z3 due to the conditional independence,
thus does not violate our lemma.

observable features

y

latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

(b) With known causal variables, we have y ̸⊥
e|z2, z4. Thus, using z4 is not robust, which is the
same as previous results.

observable features

y

latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

x

(c) For spurious correlation, we have y ⊥ e, but be-
cause we condition on the collider x, we have y ̸⊥
e|x, leading to non-robust predictor. Even when we
further hypothetically condition on any subset of the
latent variables z′ ⊂ {z1, z2, z3, z4}, we still have
y ̸⊥ e|z′, i.e., a non-robust predictor..

observable features

y

latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

x’

(d) Our proposed method can be seen as
post-processing intervention ϕ on x =
g(ux, z1, z2, z3, z4) such that x′ := ϕ(x) =
ϕ(g(ux, z1, z2, z3, z4)) = g′(ux, z1, z2) for some g′

that only depends on ux and z1. The post-processing
function ϕ can be seen as forming a new intervened
SCM with certain incoming edges removed. Invariant
pairs provide additional signal to find such ϕ. In the
linear case, we simply project out the spurious feature
by truncated SVD.

Figure 5: Illustration of robustness prediction corresponding to non-latent and latent causal vari-
ables.

From a causal perspective, the key of robustness to spurious correlation is getting independence
of y and e given some conditioning statements. If the causal z variables are observable, then one
could use a d-separation criteria to realize that z1, z2 and z3 is a d-separating set for e and y as
in Figure 5a. In this simplified scenario, conditioning on z4 would not be robust as illustrated in
Figure 5b. However, when conditioning on x, y and e are dependent because of the collider effect
of x and that z4 is a descendant of y as illustrated in Figure 5c. Our method is able to overcome this
limitation by being viewed as a postprocessing intervention on x that removes the edges from the
spurious features to x. This enables e and y to be independent. From this perspective, our approach
learns this postprocessing function ϕ based on counterfactual pairs.
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A.2 AVAILABILITY OF INVARIANT PAIRS Table 2: An illustrative taxonomy of scenarios
from explicit knowledge to no knowledge of spu-
rious correlations.

knowledge on spurious features pair data acquisition
level 3 explicit knowledge model constraint
level 2 soft expert knowledge sample editing
level 1 implicit assumed CF pair collection
level 0 no knowledge -

While invariant pairs can be hard to acquire, we
argue that it is feasible and practical to obtain in
certain scenarios.

For certain applications, obtaining such CF
pairs are both possible and effective. Table 2
from the introduction summarizes a range of
cases where there could be enough implicit
knowledge of spurious correlations to collect them. We further outline these levels in detail be-
low.

Level 3 - Explicit knowledge: In some scientific settings, spurious correlations can be coded as an
explicit and mathematical modeling constraint. For example, SchNet (Schütt et al., 2018) builds
molecule symmetries and invariance directly into the model structure. This case is straightforward
but does not hold in general, so we do not consider it in our work.

Level 2 - Domain expert “soft” knowledge of spurious features: In some applications, domain ex-
perts can articulate which features are irrelevant, even if they cannot encode this knowledge as model
constraints. For example, an x-ray technician knows that certain medical equipments should not af-
fect their diagnosis of cancer or not (Zech et al., 2018; Oakden-Rayner et al., 2020). In this case, CF
pairs can be either manually curated (via image editing or generative models) or collected (e.g., by
obtaining paired x-rays with and without fluid lines). Simple image augmentation techniques like
rotations, flips or color distortions may also fall under this category as they implicitly encode spu-
rious features that are assumed to not affect the downstream tasks (like ColoredMNIST experiment
(cf. Section 5)).

Level 1 - Implicit knowledge: At this level, the only differences between domains are assumed to be
spurious features because of application-specific knowledge, but domain experts may not know the
spurious features a priori. As one example, the differences between data coming from two similar
microscopes can be assumed to be spurious since the measurement effects should not affect the
underlying physical phenomena of interest. In this case, it is feasible to collect a small number of
counterfactual pairs by measuring a small number of samples with both microscopes.

Level 0 - No knowledge: Without any hints or assumptions about spurious features as in levels 1-
3, making a model robust to spurious features is likely infeasible. To illustrate, consider a simple
causal structure without any knowledge on (latent) spurious features: z1 → y → z2 where only z1
is invariant. Without any knowledge, there is no information to distinguish between invariant feature
z1 and spurious feature z2. Moreover, if z2 is more strongly correlated to y or related to y that is
easier to extract from inputs x, models are prone to shortcut learning (Hermann et al., 2024), the
model prediction will rely heavily or nearly solely on z2.

We specifically target the hard and feasible levels 1 and 2, and suggest that in certain cases these pairs
could feasibly be collected or created either via manual editing or generative AI tools (Rombach
et al., 2022; Betker et al., 2023). It seems that our method requires additional domain knowledge
compared to the standard DG setting. We claim this is an alternative form of domain knowledge,
as the standard DG setting also requires domain knowledge, as it is encoded in the multi-domain
data collection (see Appendix A.4 for further explanation). Noticing that this CF pairs acquisition
are still costly, so we ask: if we have k estimated CF pairs with noise ε, what kind of robustness
guarantee can we get?

A.3 DISCUSSION ON SAMPLE COMPLEXITY

We wanted to further clarify the difference between the data requirements of IRM and NCM by
considering the data scaling requirements for a certain number of intervened/spurious features, i.e.,
|I(FE)|. For this comparison, we will assume an theoretically ideal setting with an infinite number
of samples for each domain, but a finite number of perfect counterfactual pairs, where the true data-
generating process is compatible with logistic loss.

IRM (Arjovsky et al., 2019): As proven in a prior study (Rosenfeld et al., 2020, Corollary 5.2),
achieving optimal invariant predictors with IRM requires the number of training domains e to be
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greater than the number of spurious feature dimensions, i.e., e > |I(FE)|. And this requirement is
true even if there is an infinite number of samples in each of the domains.

Noisy Counterfactual Matching (NCM): Our method, NCM, requires the number of linear indepen-
dent invariant pairs, k, to be greater than the spurious feature dimension to achieve optimal invariant
predictors, as shown in our paper’s Corollary 4, i.e., k ≥ |I(FE)|. Linear independence could be
satisfied if we assume full rank exogenous noise and soft intervention across domains, which are
both common assumptions that are easy to satisfy.

It is important to note that the data-generating process for IRM is a special case of the structural
causal model (SCM) that our NCM uses. (Specifically, while IRM does not account for the ancestors
of the target variable e, it does permit some descendants of y to be unintervened, which are safe
features for prediction based on d-separation.)

This distinction of the data requirement has significant practical implications, particularly in high-
dimensional applications where the spurious feature dimension could be large: IRM would require
the number of domains e to scale with the spurious feature dimension, which may be infeasible or
too costly in practice (e.g., x-ray machine example). Our NCM, on the other hand, only requires
the number of counterfactual pairs k to scale with the spurious feature dimension, which may be
significantly more feasible (e.g., x-ray machine example).

A.4 DISCUSSION OF IMPLICIT DOMAIN KNOWLEDGE REQUIREMENT

Nearly all methods require domain knowledge to some extends. For instance, IRM implicitly uses
expert’s knowledge based on the specification of the domain labels. In IRM, domain labels are
by definition the way of specifying what the predictions should be invariant to. Another example
of using expert knowledge is data augmentations (See section 6 in our paper). While it seems
that data augmentations don’t use any domain knowledge, they actually implicitly use the domain
knowledge that ”the predictions should not change under this augmentation” (e.g., small rotations
or color distortions). While not explicit, these data setups actually incorporate domain knowledge.
As a concrete example, take the Rotated MNIST dataset. If the goal is to predict the digit, then
rotation can be a domain label. However, if the goal is to predict the rotation, then the digit can be a
domain label. Thus, knowledge about the task and what is irrelevant is key for even defining what
parts of the data can be considered domain labels. We argue that the expert knowledge required for
validating or creating domain counterfactuals is similar in spirit to the expert knowledge for defining
domain labels or data augmentations. They are implicit ways of incorporating expert knowledge.

While our data setup differs from standard domain generalization tasks, we argue that expert knowl-
edge is not required to employ the learning algorithm itself, but rather to construct the appropriate
dataset. One approach is to use standard domain generalization methods like IRM, which require
labeled data from multiple domains. In contrast, we present an alternative approach that requires
only possibly noisy invariant pairs and labeled data from a single domain. Note that in our setting,
the invariant pairs do not need to be labeled (for example, different x rays of the same patient even if
the diagnosis is unknown). In all cases, whether using domain labels as in IRM, data augmentation
as in LISA, or counterfactual pairing as in NCM, our algorithms can be generically applied given
the appropriate data constructed through expert knowledge.

B PRACTICAL ALGORITHM

Algorithmically, to ensure the learned model θ orthogonal to the spurious feature subspace estimated
by r-truncated SVD decomposition of the noisy CF pairs, we consider reparameterization approach
that projects the samples x onto the orthogonal complement of Q̃r (i.e., I − Q̃rQ̃

⊤
r ) and then trains

an unconstrained classifier (See Algorithm 1). This ensures the classifier only use the invariant com-
ponent of x to predict y. This approach processes the data using the CF pairs before optimization,
thus allows simple optimization approach. Other algorithm like projected gradient descent method
could also be used here, and we expect it would have similar results, but we do not explore it further.
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Algorithm 1 Noisy Counterfactual-Matching

Input: Training Dataset Dtrain; pair difference matrix ∆̃x ∈ Rd×k; truncated SVD size r; epochs T ;
step size η; batch size B.

// Phase I: Find projection matrix to remove estimated spurious subspace Q̃r.
Q̃r, Σ̃r, Ṽ

⊤
r = TruncatedSVD(∆̃x, r)

P = I − Q̃rQ̃
⊤
r

// Phase II: Gradient descent with preprocessing.
for t = 1, 2, . . . , T do

for sample mini-batch {(xi,yi)}Bi=1 ⊂ Dtrain do
θ ← θ − η∇ 1

B

∑B
i=1 ℓ(h(Pxi; θ),yi),

end for
end for

Output θ

C PROOFS

C.1 PROOF OF PROPOSITION 1

The proof is based on the idea that the optimally robust classifier cannot vary w.r.t. the non-ancestors
of y. Intuitively, if it does, then there exists an (adversarial) environment that can make the objective
high. Given this invariance of the optimally robust predictor, it is simple to see that counterfactuals
are indeed invariant pairs. For theoretic clarity, we will present the lemma that the optimally robust
predictor is invariant to non-ancestors of y. Then, we will prove the proposition given this lemma
and finally give the proof of the lemma.

For simplicity of notation in this section, we will let z1 := zAnc(y) denote the latent z variables that
are ancestors of y and let z2,e := zZ\Anc(y),e denote variables that are not ancestors. Note that z2,e
depends on the environment e but z1 does not depend on e by our spurious correlation latent SCM
class assumption (cf. Assumption 1).

Lemma 1 (Optimally Robust Predictor is Invariant to Non-Ancestors). Any optimally robust pre-
dictor for a spurious correlation latent SCM class must be constant w.r.t. the non-ancestors of y
almost everywhere, i.e., for almost all ux and z1, there exists a constant cux,z1 w.r.t. z2,e such that
h∗
E(gx(ux, z1, z2,e)) = cux,z1 almost everywhere.

Proposition 1 (Spurious Counterfactuals are Invariant Pairs). Given a spurious correlation latent
SCM class ME and a strictly convex loss function ℓ, any observed counterfactual pair (xe,xe′)
betweenMe ∈ ME andMe′ ∈ ME will be an invariant pair w.r.t. the optimally robust classifier
h∗
E based on ℓ induced by the domain distributions {Pe}e∈E almost surely, i.e., h∗

E(xe) = h∗
E(xe′).

Proof of Proposition 1. By the definition of spurious counterfactual pairs, we know that xe and xe′

must come from the same exogenous noise u. And because we assume that no causal mechanism for
ancestors is intervened, this means that there exists (ux, z1, z2,e, z2,e′) such that gx(ux, z1, z2,e) =
x and gx(ux, z1, z2,e′) = x′. Because of Lemma 1, we know that the optimally robust predictor h∗

E
must be invariant to changes in z2,e values. Therefore, we have:

h∗
E(x) = h∗

E(gx(ux, z1, z2,e)) = h∗
E(gx(ux, z1, z2,e′)) = h∗

E(x
′), (4)

where the second equality is by Lemma 1 and the others are by definition of a spurious counterfac-
tual.

Proof of Lemma 1. We step through a few key steps of the proof.

Handling non-injective gx First, we show that if gx is non-injective w.r.t. the support of the orig-
inal distribution Pe, it can be written as an injective function of the support of another distribution
P̃e, which will have the same objective value as when using Pe. First, let g†x(x) denote one pseudo
inverse of gx (note there could be many but we only need one here). Then, we can define the new
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distribution to be equal to Pe except for the following:

P̃e(ux, z1, z2) =

{
Pe(x = x), if ∃x such that (ux, z1, z2) = g†x(x)

0, otherwise
. (5)

We now show that this is equivalent to the objective using Pe:

E(x,y)∼Pe
[ℓ(h(x), y)] = EPe(x)[EPe(y|x)[ℓ(h(x), y)]] (6)

= EP̃e(ux,z1,z2)
[EPe(y|x)[ℓ(h(gx(ux, z1, z2), y)]] (7)

= EP̃e(x)
[EPe(y|x)[ℓ(h(x, y)]] (8)

= EP̃e(x,y)[ℓ(h(x, y)] , (9)

where the second two equals are by LOTUS rules. Thus, the rest of the proof can assume that gx is
injective w.r.t. the support of P̃e.

Decomposition into independent optimization problems Second, we show that the global min-
max optimization problem can be decomposed into local min-max problems given a particular
(ux, z1):

min
h

max
e∈E

E(x,y)∼P̃e
[ℓ(h(x), y)] (10)

= min
h

max
fe:e∈E

Eux,uy,z1,u2
[ℓ(h(gx(ux, z1, fe(u2, z1))), gy(uy, z1))] (11)

= min
k

max
fe:e∈E

Eux,uy,z1,u2
[ℓ(k(ux, z1, fe(u2, z1)), gy(uy, z1))] (12)

= Eux,z1

[
min

k(z2|ux,z1)
max

fe(u2|z1)
Euy,u2|ux,z1

[ℓ(k(ux, z1, fe(u2, z1)), gy(uy, z1))]

]
, (13)

the last step is because k is injective due to gx being injective on p̃ so we can freely and independently
choose predictions for each value of ux and z1 in the support of p̃. Similarly, fe can independently
and freely choose values for each value of z1 (it is already constant w.r.t. ux.

Proving minimax solutions to independent problems are constant w.r.t. z2 We will now
suppress notation on ux and z1 and simply denote k(z2) and f(u2). Furthermore, we will de-
note ϕ(α) := Euy,u2|ux,z1

[ℓ(α, gy(uy, z1))]. Given this simplified notation, we will show that for
each of these subproblems, the optimal solution to the following problem for k is constant w.r.t.
z2 = fe(u2):

min
k

max
fe

Eu2 [ϕ(k(fe(u2)))] . (14)

Environment strategy: The environment’s optimal strategy is to concentrate all the mass on the worst
case prediction:

max
fe

Eu2 [ϕ(k(fe(u2)))] = sup
z2

ϕ(k(z2)) . (15)

The proof of this can be seen by contradiction. If fe was optimal but varied w.r.t. u2, then there exists
at least two measurable subsets that have different outputs. We could construct another predictor f ′

e
by changing all the predictions to the supremum which would increase the objective, which leads to
a contradiction.

Predictor’s strategy: Now we can analyze the predictor’s optimal strategy given this simplification
and show that the optimal strategy is constant w.r.t. z2:

k∗(z2) := argmin
k

sup
z2

ϕ(k(z2)) = argmin
k

J(k) = c . (16)

Again, the proof is by contradiction. Suppose there was a k that was optimal but was not constant.
Then, we can construct a new k′ that will have a strictly better value: k′(z2) := c = argmin α ϕ(α)
that is a constant, where α is optimized over the set of possible outputs of k. Because there must
exist at least two distinct outputs of k by assumption, then we can analyze the relation between the
objectives achieved for k and k′:

J(k) = sup
z2

ϕ(k(z2)) = sup
α

ϕ(α) > min
α

ϕ(α) = ϕ(c) = sup
z2

ϕ(c) = sup
z2

ϕ(k′(z2)) = J(k′) ,

(17)
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where the strict inequality is because k was assumed to be non-constant. This leads to the contra-
diction that k was optimal for the minimax problem. Thus, k∗ must be a constant w.r.t. z2 as stated
before. This completes the proof when combining over all values of ux and z1 in the support of P̃.

The optimally robust classifier h∗
E is defined as the solution to:

h∗
E = argmin

h
J(h) = argmin

h
max
e∈E

E(x,y)∼Pe
[ℓ(h(x),y)],

where ℓ is a strictly convex loss function. Using latent variables, and letting k(ux, z1, z2,e) :=
h(gx(ux, z1, z2,e)), the objective function can be expressed as:

J(h) = Eux,z1

[
max
e∈E

Euy

[
Ez2,e∼Pe(·|ux,z1)[ℓ(k(ux, z1, z2,e), gy(uy, z1))]

]]
.

The outer expectation Eux,z1 is taken because the random variables ux and z1 (ancestors of y, z1 =
zAnc(y)) are not affected by the choice of environment e ∈ E . The term z2,e denotes latent random
variables that are non-ancestors of y, whose causal mechanisms fe,i (and thus their distribution
Pe(z2,e|ux, z1) conditioned on realizations ux, z1) can vary with e. The function gy(uy, z1) (target
generation from realization uy, z1) is also invariant across environments.

To minimize J(h), we need to effectively minimize the term inside the Eux,z1 [·] for each pair of
realizations (ux, z1) independently. Let’s fix (ux, z1). Define:

ϕux,z1(α) := Euy [ℓ(α, gy(uy, z1))].

Since ℓ is strictly convex, ϕux,z1
(α) is also strictly convex. Let cux,z1

be the unique minimizer of
ϕux,z1

(α):
cux,z1

:= argmin
α

ϕux,z1
(α).

This cux,z1
represents the optimal prediction given realizations (ux, z1), averaging out uy , and it is

independent of the realization z2,e and environment e.

For fixed realizations (ux, z1), the problem for the predictor h (which chooses k(ux, z1, ·) as a
function of z2,e) and the environment e is to determine:

M(k;ux, z1) = max
e∈E

[
Ez2,e∼Pe(·|ux,z1)[ϕux,z1(k(ux, z1, z2,e))]

]
.

The predictor h chooses its function k(ux, z1, ·) (which maps a realization z2,e to a prediction value)
to minimize M(k;ux, z1).

1. Environment’s Strategy: For any function k(ux, z1, ·) chosen by h, the environment e
will choose the distribution Pe(z2,e|ux, z1) to maximize Ez2,e

[ϕux,z1
(k(ux, z1, z2,e))].

Assuming the class of SCMsME allows the environment to concentrate probability mass,
this maximum will be:

sup
z′
2,e

ϕux,z1(k(ux, z1, z
′
2,e)).

This is because the environment can choose Pe(z2,e|ux, z1) to be a point mass (or a se-
quence of distributions approaching a point mass) at the realization z′

2,e that yields the
highest value for ϕux,z1

(k(ux, z1, z
′
2,e)).

2. Predictor’s Optimal Strategy (Construction): The predictor h must choose its function
k(ux, z1, ·) to minimize this supremum value:

min
k(ux,z1,·)

(
sup
z′
2,e

ϕux,z1
(k(ux, z1, z

′
2,e))

)
.

To minimize the supremum (i.e., the worst-case value over realizations z′
2,e) of

ϕux,z1(k(ux, z1, z
′
2,e)), the optimal strategy for k(ux, z1, ·) is to make its output con-

stant with respect to z′
2,e. Let this constant be Cux,z1 . Then the expression becomes

ϕux,z1(Cux,z1). The predictor will then choose this constant Cux,z1 to be cux,z1 =
argminαϕux,z1(α), because this value minimizes ϕux,z1(·).
Thus, the constructed optimal strategy for k(ux, z1, ·) is k(ux, z1, z2,e) = cux,z1

for all
realizations z2,e.
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3. Value Achieved by the Optimal Strategy: With k(ux, z1, z2,e) = cux,z1
, the value

M(k;ux, z1) becomes ϕux,z1
(cux,z1

). If k(ux, z1, z2,e) were any other function (i.e., not
constant and equal to cux,z1

for all realizations z2,e), then there would exist some realiza-
tion z′′

2,e such that k(ux, z1, z
′′
2,e) ̸= cux,z1

. Let v′′ = k(ux, z1, z
′′
2,e). Then ϕux,z1

(v′′) >
ϕux,z1

(cux,z1
) due to the strict convexity of ϕux,z1

and cux,z1
being its unique mini-

mizer. The adversarial environment would ensure that supz′
2,e

ϕux,z1
(k(ux, z1, z

′
2,e)) ≥

ϕux,z1
(v′′) > ϕux,z1

(cux,z1
). Thus, any strategy other than k(ux, z1, z2,e) = cux,z1

results in a strictly larger value for M(k;ux, z1).

The overall objective J(h) is Eux,z1 [M(k;ux, z1)]. Since the optimal strategy for each pair of
realizations (ux, z1) is to set k(ux, z1, z2,e) = cux,z1 , the optimally robust predictor h∗

E must be
such that its corresponding k-function implements this strategy. Therefore, by construction of the
optimal strategy for the minimax problem, it must be that:

h∗
E(gx(ux, z1, z2,e)) = cux,z1

almost everywhere.

This shows that h∗
E(gx(ux, z1, z2,e)) is constant with respect to the realization z2,e and equal to

cux,z1
.

C.2 PERTURBATION THEORY

In this subsection, we revisit some important notions in the matrix perturbation theory. Let ∆x and
∆̃x = ∆x + ε be two matrices in Rd×k, without loss of generality, assume d ≥ k, as d denotes the
dimension of x and k denote the counterfactual pair. Their SVDs are given respectively as follows.

∆x =

k∑
i=1

σiqi(vi)
⊤ = [Qj Q⊥,j ]

[
Σ 0
0 Σ⊥
0 0

] [
V ⊤
j

V ⊤
⊥,j

]
,

∆̃x =

k∑
i=1

σ̃iq̃iṽ
⊤
i =

[
Q̃j Q̃⊥,j

] Σ̃ 0

0 Σ̃⊥
0 0

[ Ṽ ⊤
j

Ṽ ⊤
⊥,j

]
.

Here, σ̃1 ≥ · · · ≥ σ̃k (resp. σ1 ≥ · · · ≥ σk) are the singular values of ∆̃x (resp. ∆x) in descending
order. ũi (resp. ui) is the left singular vector corresponding to σ̃i (resp. σi), and vi (resp. vi) is the
right singular vector. Define:

Σ̃ := diag([σ̃1, . . . , σ̃j ]), Σ̃⊥ := diag([σ̃j+1, . . . , σ̃k]), (18)

Q̃j := [q̃1, . . . , q̃j ] ∈ Rd×j , Q̃⊥ := [q̃j+1, . . . , q̃d] ∈ Rd×(d−j),

Ṽ := [ṽ1, . . . , ṽj ] ∈ Rk×j , Ṽ⊥ := [ṽj+1, . . . , ṽk] ∈ Rk×(k−j).

The matrices Σ,Σ⊥, Q,Q⊥, V, V⊥ are defined analogously.

Wedin (1972) developed a perturbation bound for singular subspaces that parallels the Davis-Kahan
sinΘ theorem for eigenspaces. The Lemma below provides bounds on the perturbation of the left
and right singular subspaces.
Lemma 2 (Wedin’s sinΘ theorem). Consider the setup in Appendix C.2. If σ1(ε) < (1 −
1/
√
2)(σj − σj+1), then

max
{
dist(Q̃j , Qj),dist(Ṽj , Vj)

}
≤ 2∥ε∥

σj − σj+1
,

max
{
distF (Q̃j , Qj),distF (Ṽj , Vj)

}
≤ 2

√
j∥ε∥

σj − σj+1
.

C.3 PROOF OF THEOREM 1

We will prove the result for linear regression as it is the simplest to understand. Then, we will prove
for logistic regression. And finally, we will prove the extra bound on the spurious misalignment
term.
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Proof for linear regression part of Theorem 1. Notice that by Assumption 1, we have ye =
ye′ ,∀e, e′, i.e., the environment does not affect the target values so we can write this as y. Therefore,
we first decompose the objective by inflating by the counterfactuals xe+→e:

Ep(xe+ )[ℓ(θ
⊤xe+ , ye+)]

=
∑

e∈Etrain
P(e)Ep(xe+ ,xe+→e)

[∥θ⊤(xe+ + xe+→e − xe+→e)− y∥22]

=
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ + xe+→e − xe+→e)− y∥22]

≤
∑

e∈Etrain
P(e)(2Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2Eu[∥θ⊤xe+→e − y∥22])

= 2
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2

∑
e∈Etrain

P(e)Ep(xe,y)[∥θ
⊤xe − y∥22]

= 2
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2E(x,y)∼Ptrain

[∥θ⊤x− y∥22],

where xe+→e follows the training domain distribution p(xe) and (xe+ ,xe+→e) is a conceptual coun-
terfactual pair. Notice the second term is the training loss. Furthermore, we note that:∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22]

= θ⊤
∑

e∈Etrain
P(e)Eu[(xe+ − xe+→e)(xe+ − xe+→e)

⊤]θ

= θ⊤Me+,Etrain
θ .

Given this, we can simplify this term based on the NCM constraint as follows:

θ⊤Me+,Etrain
θ

(2)
= θ⊤(I − Q̃rQ̃

⊤
r )Me+,Etrain

(I − Q̃rQ̃
⊤
r )

⊤θ

(a)
= θ⊤(I − Q̃rQ̃

⊤
r )Q|I(FE)|Λ|I(FE)|Q

⊤
|I(FE)|(I − Q̃rQ̃

⊤
r )

⊤θ

=

∥∥∥∥θ⊤ Q̃r,⊥︸︷︷︸
Rd×(d−r)

Q̃⊤
r,⊥︸︷︷︸

R(d−r)×d

Q|I(FE)|︸ ︷︷ ︸
Rd×|I(FE )|

√
Λ|I(FE)|

∥∥∥∥2

=

∥∥∥∥θ⊤Q̃r,⊥Q̃
⊤
r,⊥Q|I(FE)|

√
Λ|I(FE)|

∥∥∥∥2
(b)
=

∥∥∥∥θ⊤Q̃r,⊥Q̃
⊤
r,⊥Q|I(FE)|

∥∥∥∥2
Λ|I(FE )|

= ∥θ∥2
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥2
Λ|I(FE )|

,

where in (a), we use eigendecomposition of Me+,Etrain
which Q|I(FE)| ∈ Rd×|I(FE)|, and

Λ|I(FE)| ∈ R|I(FE)|×|I(FE)| are corresponding eigenvectors and eigenvalues diagonal matrix and
in (b), we used the definition of Mahalanobis-induced spectral norm.

Proof for logistic regression part of Theorem 1. For logistic regression where y ∈ {−1, 1}, we have
a similar decomposition as in linear regression. First, we note that the log loss has a Lipschitz
constant of 1 and thus we have the following:

|ℓ(θ⊤x, y)− ℓ(θ⊤x′, y)| ≤ ∥θ⊤x− θ⊤x′∥ = ∥θ⊤(x− x′)∥ (19)

⇔ ℓ(θ⊤x, y) ≤ ℓ(θ⊤x′, y) + ∥θ⊤(x− x′)∥ . (20)

Given this we can easily get our initial result:

Exe+ ,ye+ [ℓ(θ
⊤xe+ , ye+)] (21)

≤
∑

e∈Etrain
P(e)E[ℓ(θ⊤xe+→e, y) + ∥θ⊤(xe+ − xe+→e)∥] (22)

=
∑

e∈Etrain
P(e)E[ℓ(θ⊤xe, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] (23)

= E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] , (24)
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where we use the fact that xe+→e has the same distribution as xe. Now we bound the second term
as follows: ∑

e∈Etrain
P(e)E[∥θ⊤(xe+ − xe+→e)∥] (25)

=
∑

e∈Etrain
P(e)E[

√
∥θ⊤(xe+ − xe+→e)∥2] (26)

≤
√∑

e∈Etrain
P(e)E[∥θ⊤(xe+ − xe+→e)∥2] (27)

=
√

θ⊤
(∑

e∈Etrain
P(e)E[(xe+ − xe+→e)(xe+ − xe+→e)⊤]

)
θ (28)

=
√

θ⊤Me+,Etrain
θ (29)

≤
√
∥θ∥2

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥2
Λ|I(FE )|

(30)

= ∥θ∥
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥
Λ|I(FE )|

, (31)

where (27) is by Jensen’s inequality and (30) is by using the same logic as in the linear regression
case for this term. Combining the above derivations, we get the following:

Exe+ ,ye+ [ℓ(θ
⊤xe+ , ye+)] (32)

≤ E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] (33)

≤ E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

√
∥θ∥2

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥2
Λ|I(FE )|

(34)

= E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] + ∥θ∥

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥
Λ|I(FE )|

. (35)

Proof of bound on the orthonormal term. In this proof, we seek to prove the following:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+) . (36)

We will consider two cases to bound the result depending on whether r is greater or less than
|I(FE)|.
Case I: r < |I(FE)|. Given this case, we can decompose as follows:∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

=
∥∥∥Q̃⊤

r,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (37)

=
∥∥∥Q̃⊤

r,⊥QrΛ
1
2
r

∥∥∥2 + ∥∥∥Q̃⊤
r,⊥Qr+1:|I(FE)|Λ

1
2

r+1:|I(FE)|

∥∥∥2 (38)

≤ λ1(e
+)
∥∥∥Q̃⊤

r,⊥Qr

∥∥∥2 + λr+1(e
+)
∥∥∥Q̃⊤

r,⊥Qr+1:|I(FE)|

∥∥∥2 (39)

≤ λ1(e
+)
∥∥∥Q̃⊤

r,⊥Qr

∥∥∥2 + λr+1(e
+) (40)

≤ λ1(e
+)
∥∥∥Q̃rQ̃

⊤
r −QrQ

⊤
r

∥∥∥2 + λr+1(e
+) (41)

= λ1(e
+)dist2(Q̃r, Qr) + λr+1(e

+) , (42)

where (39) is by the properties of norms, (40) is by the fact that ∥QQ′∥ for any orthogonal matrices
is always less than 1, (41) is from Chen et al. (2021), and (42) is by the definition of the dist function
between two subspaces.
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Case II: r ≥ |I(FE)|. Given this condition, we can get a simpler case without the second term:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

=
∥∥∥Q̃⊤

r,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (43)

=
∥∥∥Q̃⊤

|I(FE)|,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (44)

≤ λ1(e
+)
∥∥∥Q̃⊤

|I(FE)|,⊥Q|I(FE)|

∥∥∥2 (45)

≤ λ1(e
+)∥Q̃|I(FE)|Q̃

⊤
|I(FE)| −Q|I(FE)|Q

⊤
|I(FE)|∥

2 (46)

= λ1(e
+)dist2(Q̃|I(FE)|, Q|I(FE)|) , (47)

where (44) is by the condition of Case II and the others follow similarly from Case I. Now we can
combine both of these cases to form a bound based on s := min{r, |I(FE)|} to yield the final result:∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+) .

C.4 PROOF OF TEST-DOMAIN BOUNDS IN TERMS OF COUNTERFACTUAL NOISE

Proof of Corollary 3. First, by the rank condition on the corresponding clean counterfactuals, we
know that the clean counterfactual matrix ∆x must only span the spurious subspace. Thus, the
eigenvectors of ∆x∆

⊤
x (denoted by Q∆x are equivalent to the left singular vectors of Me+,Etrain

,
i.e., Q ≡ QMe+,Etrain

= Q∆x .

Based on this, we can derive the result where we let s := min(r, |I(FE)|):

dist(Q̃s, Qs) = dist(Q̃∆̃x,s
, Q∆x,s) ≤

2∥ε∥
σs − σs+1

,

where the first is by the definition of Q̃ and the fact above, and the inequality is by Wedin’s theorem
(Lemma 2). Combining this with the original results in Theorem 1, we arrive at the bound.

C.5 PERFECT COUNTERFACTUAL CASE

We now consider the noiseless counterfactual case. We can easily prove a corollary that the test-
domain error is equal to the train domain error if the counterfactuals are diverse enough (i.e., they
satisfy the rank condition of Corollary 3).
Corollary 4. Instate the setting from Corollary 3. Further, assume that r ≥ |I(FE)| and the noise
is zero, i.e., ε = 0, then we can derive that the test-domain error for any θ satisfying the NCM
constraint is equal to the training error for both logistic and linear regression:

E(xe+ ,ye+ )∼Ptest

[
ℓ(θ⊤xe+ , ye+)

]
= E(x,y)∼Ptrain

[
ℓ(θ⊤x, y)

]
. (48)

Proof. First, we note that the inequality for squared error that introduces the 2 can be removed for
perfect counterfactuals because the term is 0 and doesn’t need to use bounds. Other than that, we
can simply apply the result from Corollary 3 and note that λs+1(e

+) will inherently be 0 due to the
r ≥ |I(FE)| assumption and the ∥ε∥ = 0 by assumption as well.

We validate this result using the synthetic dataset in Section 5 (see Figure 2a) with ε = 0, showing
that when k ≥ |I(FE)|, the model achieves optimal performance.

The following comments are in order. 1) Simple CF pair-matching (1) provably generalizes to new
test domains. If we run an algorithm A to solve (1), and if it can perform well on the training do-
main, then, it will also perform well on the test domain. 2) A linear number of oracle counterfactual
pairs is sufficient to achieve domain generalization. By assuming that the differences are linearly
independent, the required number of counterfactual pairs is bounded by k ≥ |I(FE)|. This implies
that each counterfactual pair effectively removes one spurious dimension. Even when the data di-
mension d is high in reality, by the sparse mechanism shift hypothesis, the spurious mechanism shift
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CF-Waterbirds

Training (majority groups) Counterfactual Testing (minority groups)

y=“land”
e=“water”

y=“water”
e=“land”

y=“water”
e=“water”

y=“water”
e=“land”

y=“land”
e=“water”

y=“land”
e=“land”

Validation

y=“water”
e=“water”

y=“land”
e=“land”

Figure 6: Illustration of the training samples, counterfactual pairs, validation examples, and test
examples for the Waterbirds-CF dataset. The training set (majority groups), validation set, and test
set are identical to those in the original Waterbirds dataset. Counterfactual pairs feature the same
birds from the training set but with different backgrounds.

(Schölkopf et al., 2021) suggests that the spurious feature space is indeed low, thereby supporting
the effectiveness of our proposed method.

A another case arises when e+ chosen to be sampled from mixture of training domains. In this case,
the spurious subspace misalignment vanishes as the test domain is already seen, thus xe+ = xe+→e

i.e., λ1(e
+) = 0, NCM objective (2) and simple CF pair-matching (1) reduce to empirical risk

minimization (ERM).

D DETAILED EXPERIMENT SETUP AND HYPERPARAMETERS

We provide a detailed description of our experiments setup and hyperparameter selection.

D.1 DETAILED CONSTRUCTION OF WATERBIRDS-CFS

The original Waterbirds dataset (Sagawa et al., 2019) combines bird images from the CUB dataset
(Wah et al., 2011) with background images from the Places dataset (Zhou et al., 2017). The task is
to classify whether a given image depicts a waterbird (y = 1) or a landbird (y = 0). Waterbirds
include seabirds (albatross, auklet, cormorant, frigatebird, fulmar, gull, jaeger, kittiwake, pelican,
puffin, and tern) and waterfowl (gadwall, grebe, mallard, merganser, guillemot, and Pacific loon).

In the dataset, the invariant features are represented by the bird segments, while the spurious features
are the backgrounds. In the training set, the background is highly correlated with the bird species:
95% of waterbirds appear in a water background (ocean or natural lake), and similarly, 95% of land-
birds are shown against a land background (bamboo or broadleaf forest). The remaining 5% consist
of counterfactual samples, which are random samples from the majority group. Counterfactual pairs
share the same bird segment but differ in the background. The validation and test sets are identical to
the original Waterbirds dataset, meaning the conditional distribution of the background given either
waterbirds or landbirds is 50%.

In summary, the modification made between our Waterbirds-CF dataset and the original waterbirds
dataset only pertains to the minority groups in the training set. We randomly sampled 184 landbirds
and 56 waterbirds from the majority group and replaced the backgrounds of these samples to gen-
erate the minority group counterfactuals. See Figure 6 for the illustration. We then applied ERM
on both these two datasets to investigate the changing in the training distribution. We include the
convergence curve in Appendix E.2.

D.2 HYPERPARAMETER SELECTION

In this section, we present all the hyperparameters and evaluation used in our experiments to ensure
reproducibility.
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Synthetic Dataset Invariant features are sampled from a standard normal distribution, i.e., zinv ∼
N (0, I), The observation function gy is linear, with parameter θy ∼ N (0, σI), and the label

y = sign(zinvθy). The spurious features is correlated to the label y, i.e., zspu ∼ N
(

y
|I(FE)| , σsI

)
where σs varies across domains. The observation function gx is a random orthonormal matrix. The
dimension of z and x are both 100, i.e., m = d = 100.

We run 100 iterations of gradient descent using binary cross-entropy loss. We use the Adam opti-
mizer (Kingma, 2014) with a learning rate of 0.01 for ERM, IRM, and NCM. The Lagrange multi-
plier for both IRM and NCM is set to λ = 1000 selected through grid search.

ColoredMNIST We use the Adam optimizer with a learning rate of 0.001 and a weight decay of
10−4. The model is trained with a batch size of 256 for 40 epochs. We tune the hyperparameter r in
the range [2, 24] using 256 counterfactual pairs.

Waterbirds-CF We use the Adam optimizer with a learning rate of 0.001 and a weight decay of
10−4. The model is trained with a batch size of 256 for 100 epochs. We tune the hyperparameter r
in the range [2, 24].

PACS We use the Adam optimizer with a learning rate of 0.01 and a weight decay of 10−4. The
model is trained with a batch size of 256 for 100 epochs. We tune the hyperparameter r in the range
[2, 24].

Details on hyperparameter tuning and baseline method selection can be found in the code repository.

E ADDITIONAL EXPERIMENTS

Table 3: Main Results on ColoredMNIST

in-domain validation oracle validation
in acc test acc in acc test acc

ERM (CLIP) 0.852 0.093 0.753 0.253
IRM 0.799 0.118 0.724 0.469
REx 0.797 0.121 0.691 0.664
GroupDRO 0.798 0.127 0.786 0.201
Fish 0.798 0.118 0.495 0.486
SWAD 0.800 0.113 0.501 0.505
LISA 0.705 0.705 0.693
MatchDG w. random 0.799 0.120 0.511 0.512
MatchDG w. 1NN 0.789 0.217 0.728 0.662
MatchDG w. clean 0.793 0.181 0.742 0.672
NCM w. random 0.794 0.176 0.680 0.706
NCM w. 1NN 0.736 0.649 0.711 0.707

NCM w. clean 0.740 0.727
random guess 0.500 0.500 0.500 0.500
ERM oracle 0.735 0.730 0.735 0.730
theory oracle 0.750 0.750 0.750 0.750

0.693

0.693 0.714

Table 4: Main Results on Waterbirds-CF

Oracle Validation
in acc wg acc in acc wg acc

ERM (CLIP) 0.885 0.781 0.882 0.800
ERM+UW 0.889 0.795 0.882 0.829
IRM 0.838 0.707 0.820 0.767
REx 0.891 0.617 0.878 0.729
GroupDRO 0.906 0.684 0.896 0.827
Fish 0.900 0.744 0.869 0.805
LISA 0.904 0.722 0.876 0.812
MatchDG w. random 0.793 0.009 0.785 0.149
MatchDG w. 1NN 0.886 0.411 0.886 0.411
MatchDG w. estimated CF 0.906 0.536 0.896 0.651

NCM w. random 0.804 0.269 0.804 0.269

NCM w. 1NN 0.892 0.521 0.882 0.560
NCM w. estimated CF 0.864 0.854

In-domain Validation

0.812 0.860

In this section, we include more experiments results. We further illustrate the effectiveness of our
method, as well as the hyperparameters sensitivity.

E.1 ABLATION STUDY

Sensitivity on truncated SVD parameter r. We empirically evaluate the trade-off effect of the
hyperparameter r on model performance during linear probing on the Waterbirds-CF dataset (cf.
Figure 7), thus validating Theorem 1 comment (iii): accuracy trade-off induced by r. This pattern
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Table 5: Main Results on PACS

In-domain Validation Oracle Validation
A C P S Avg A C P S Avg

ERM (CLIP) 0.924 0.968 0.996 0.859 0.937 0.924 0.968 0.996 0.859 0.937
IRM 0.938 0.976 0.996 0.840 0.938 0.941 0.976 0.996 0.845 0.940
REx 0.953 0.963 0.993 0.836 0.936 0.953 0.975 0.996 0.845 0.942
GroupDRO 0.903 0.963 0.996 0.873 0.934 0.941 0.975 0.996 0.843 0.939
Fish 0.936 0.973 0.996 0.837 0.936 0.936 0.973 0.996 0.837 0.936
SWAD 0.941 0.976 0.996 0.838 0.938 0.941 0.977 0.996 0.838 0.938
LISA 0.926 0.997 0.848 0.937 0.940 0.997 0.864 0.946
MatchDG w. rand. 0.412 0.509 0.316 0.749 0.497 0.454 0.509 0.358 0.749 0.518
MatchDG w. 1NN. 0.971 0.995 0.880 0.973 0.996

NCM w. rand. 0.591 0.609 0.577 0.833 0.653 0.592 0.625 0.583 0.843 0.661
NCM w. 1NN. 0.957 0.974 0.974 0.885

0.978 0.983

0.964 0.953 0.964 0.887 0.955

0.998 0.882 0.953 0.964 0.998 0.955
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Figure 7: In-domain test and worst-group accuracy with changing hyperparameter r. In-domain
accuracy remains stable for small values of r, but starts to drop at r ≈ 128. Worst-group accuracy
first increases then decreases as r grows.
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Figure 8: The number of counterfactuals vs. in-test accuracy curve and test accuracy curve on
ColoredMNIST using the CLIP + Linear model. We conduct evaluations using 32, 64, 128, 256,
and 512 data pairs.

reflects the model’s shifting reliance from spurious to invariant features: when r is too small, spu-
rious correlations dominate, resulting in high in-domain but low worst-group performance. As r
increases and suppresses these spurious features, worst-group accuracy improves. However, beyond
a certain point, further increases in r begin to remove invariant features as well, leading to a decline
in both metrics.
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Figure 9: Compare the convergence curve of in-domain average test accuracy as well as the worst-
case test accuracy on waterbirds and Waterbirds-CF datasets
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Figure 10: The convergence curve of Waterbirds-CF dataset. It shows that our method is signifi-
cantly more stable than other DG methods without suffering overfitting.

Sensitivity on the number of CF pairs. We evaluate the number of counterfactual pairs
needed on ColoredMNIST dataset and report the in-domain test accuracy and test accuracy with
32,64,128,256,512 CF pairs. The results show that with 32 counterfactual pairs, the number of pairs
is insufficient for the model to eliminate spurious features, leading to spurious correlations (as in-
dicated by an in-domain accuracy over 75%, meaning the classification relies on spurious features).
However, when using 128 or 256 counterfactual pairs, the performance increases significantly and
remains stable compared to the 32 counterfactual pairs. An insufficient number of pairs fails to
eliminate the spurious feature, allowing the model to eventually rely on it, which leads to decreased
accuracy on the test domain.

E.2 COMPARISON BETWEEN WATERBIRDS AND WATERBIRDS-CF ON ERM.

We run ERM on both waterbirds dataset and our Waterbirds-CF dataset. The results of ERM on
both datasets are almost identical (cf. Figure 9).

E.3 BEYOND LINEARITY

Though our NCM relies on linear assumption, our method could further work under nonlinear mod-
els empirically. In this section, we consider waterbirds-cf dataset using ResNet dataset. We apply
mini-batch SGD with 300 epochs on the pretrained ResNet50 (He et al., 2016)3. The optimizer used
is SGD with a step size of 0.001, momentum of 0.9, and weight decay of 0.0001, as recommended
for the Waterbirds dataset. The batch size is set to 128, For each batch, 128 counterfactual pairs

3pretrained model is IMAGENET1K V1 from torchvision. Download here.
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Table 6: Waterbirds-CF results on ResNet-50: best performance over 300 epochs, averaged across
5 runs. Adjusted accuracy is the reweighted metric to match the training distribution. Avg. Acc and
WG. Acc denotes average accuracy and worst-group accuracy respectively.

Oracle Validation
In-domain Acc Test Acc Worst domain Acc

ERM 0.978 0.917 0.767
ERM + UW 0.980 0.958 0.856
IRM 0.943 0.920 0.849
GroupDRO 0.934 0.907 0.842
NCM w. oracle pairing 0.978 0.953 0.872
NCM w. oracle pairing +UW 0.980 0.957 0.900

are sampled to form the constraint term, which these pairs are matched prior to the linear classifier
with MSE loss, The latent dimensionality is 64. The Lagrange multiplier is set to 500 (and 100
for IRM). For GroupDRO, we set the learning rate for updating the weight to be 0.01. All these
hyperparameters are selected through grid search. We report the convergence curve of our methods
as well as comparison to other baselines in Table 4. In the table, we report all the methods’ best
performance on average over 300 epochs of running. From the result we show that our NCM using
only 240 counterfactual pairs, outperforms ERM by 10.5% on the worst group accuracy. Further,
we outperform other baselines like IRM and GroupDRO by 3.0% and 2.6%. Observe that Figure 10
shows that NCM is much more stable compared to IRM and GroupDRO. As mentioned that NCM is
a causal data-centric approach, it could be combined with existed method to further improve domain
generalization potentially. Here, we combine our method with up-weighting technique and we get
4.4% improvement over the ERM up-weighting counterpart. We further include experiments on the
sensitivity of hyperparameters in Appendix D.
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