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ABSTRACT

Machine unlearning seeks to remove the influence of specified data from a trained
model. While metrics such as unlearning accuracy (UA) and membership inference
attack (MIA) provide baselines for assessing unlearning performance, they fall short
of evaluating the reliability of forgetting. In this paper, we find that the data points
misclassified by UA and MIA still have their ground truth labels included in the
prediction set from the uncertainty quantification perspective, which raises the issue
of fake forgetting. To address this issue, we propose two novel metrics inspired by
conformal prediction that provide a more reliable evaluation of forgetting quality.
Building on these insights, we further propose an unlearning framework that
integrates conformal prediction into the Carlini & Wagner adversarial attack loss,
which can effectively push the ground truth label out of the conformal prediction
set. Through extensive experiments on image classification tasks, we demonstrate
both the effectiveness of our proposed metrics and the superiority of our framework.
Code is available at https://anonymous.4open.science/r/MUCP-60E4.

1 INTRODUCTION

Machine unlearning has become essential for data privacy, particularly under regulations such as
the GDPR Bourtoule et al. (2021), which grant individuals the right to have their data erased. This
creates a strong demand for methods that enable models to behave as if certain data were never
used during training. Beyond privacy, unlearning also serves as a tool for mitigating harmful biases
and stereotypes in models. Existing post hoc machine unlearning methods can be categorized into
training-based Graves et al. (2021); Tarun et al. (2023); Thudi et al. (2022); Warnecke et al. (2021)
and training-free Foster et al. (2024); Golatkar et al. (2021; 2020); Guo et al. (2019); Nguyen et al.
(2020); Sekhari et al. (2021) approaches, depending on whether they require any model training steps
during the unlearning process Foster et al. (2024).

To measure the forgetting quality and predictive performance of an unlearning model, several
unlearning metrics have been proposed Hayes et al. (2025); Cao & Yang (2015); Chen et al. (2021);
Kashef (2021); Shokri et al. (2017). However, existing unlearning metrics, such as unlearning
accuracy (UA) and membership inference attack (MIA), fall short in fully evaluating forgetting
reliability — these metrics primarily focus on whether models can predict forget data accurately
without sufficiently considering uncertainty and confidence level. In a nutshell, misclassifying the
forget data does not mean that the model has completely forgotten it to some extent.

To verify this view, conformal prediction Lei & Wasserman (2014); Papadopoulos et al. (2002) as an
uncertainty quantification technique, is applied in our work to recover the misclassified data in UA and
MIA. Through extensive experiments, we find that although the model misclassifies part of the forget
data from the UA and MIA perspectives, over 50% of these misclassified data instances still appear
in the conformal prediction set and can be easily recovered, which exposes a fake forgetting
issue. As shown in Figure 1, the important features of prediction visualize this fake forgetting issue
by using Grad-CAM Selvaraju et al. (2017). Despite the Finetune method misclassifying the forget
data, the Grad-CAM maps still focus heavily on the important features of the object itself since the
true label is included in the prediction set. In contrast, when our unlearning method removes the true
label from the set, activation regions shift significantly away from the object’s key features. This
confirms that forgetting quality improves if the true label can be excluded from the prediction set.
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Table 1: Grad-CAM maps of one original model in CIFAR-10 with ResNet18 and two corresponding
unlearning models. The Classification row indicates whether the model correctly predicts the image’s
true label, while the In Set row represents whether the true label is included in the prediction set.
Although the Finetune unlearning method, can misclassify the forget data, Grad-CAM can still
highlight key features of the object under this model since the true label is included in the prediction
set. In contrast, our unlearning method removes the true label from the set, with activation regions
shifting significantly away from the object’s key features. This confirms that the forgetting quality is
better if the true label can be excluded from the prediction set.

Class Name Forget
Data

Original
Model

Finetune
Method

Our
Method

Wok

Swimming
Trunks

Classification – 3 7 7

In Set – 3 3 7

visualize the important feature of models’ prediction by using Grad-CAM [28], further explain this37

phenomenon. Despite the Finetune method incorrectly predicting the forget data, the Grad-CAM38

maps still focus heavily on the important features of the object itself.39

Based on the above findings, we design two novel metrics that capture the uncertainty and robustness40

of unlearning performance more effectively inspired by conformal prediction. Additionally, motivated41

by Carlini & Wagner (C&W) attack [6] and conformal prediction, we propose a general unlearning42

framework to improve training-based unlearning methods and promote reliable forgetting. Grad-CAM43

maps of our method in Table 1 reveal that once the true label no longer falls within the conformal44

prediction set, the activation regions shift significantly. To sum up, the contributions of our work are45

as follows:46

• We identify pivotal limitations in current unlearning metrics, as they overlook misclassified47

data where ground truth labels remain potential candidates under uncertainty quantification.48

• We design two novel metrics to address the limitations motivated by conformal prediction.49

• We propose a general unlearning framework for training-based machine unlearning methods50

motivated by conformal prediction and C&W loss.51

• Extensive experiments demonstrate the effectiveness of novel metrics and our unlearning52

framework.53

2 Enhancing Metrics for Machine Unlearning Based on Conformal Prediction54

2.1 Preliminaries and Notations55

Machine Unlearning. Machine unlearning is the targeted removal of certain training data effects56

from a machine learning model. In our work, two different forgetting scenarios are considered: (i)57

random data forgetting focuses on randomly forgetting specific instances within the training data, and58

(ii) class-wise forgetting aims to remove all information associated with an entire class. Let Dtrain59

denote the original training data used to obtain an original model ✓o. We split the whole training60

data Dtrain into two subsets, forget data Df and retain data Dr = Dtrain \ Df . In random data61

forgetting, Dtest represents test data. In class-wise forgetting, Dtf corresponds to the test-forget data,62

exclusively containing the forget class, while Dtr represents the test-retain data within the test data63

Dtest. Let ✓u denote the model after the unlearning process, where the influence of forget data Df64

has been removed. The purpose of machine unlearning is to enable ✓u to forget Df (thus no longer65

recognizing Dtf in the class-wise forgetting scenario), while maintaining accuracy on the retain data66

Dr and avoiding a significant drop in accuracy on Dtest in the random data forgetting scenario or67

Dtr in the class-wise setting.68
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Figure 1: Grad-CAM maps of one original model and two
corresponding unlearning models in Tiny ImageNet with ViT.
The Classification row indicates whether the model correctly
predicts the image’s true label, while the In Set row represents
whether the true label is included in the prediction set.

Based on the above insights, we de-
sign two novel metrics CR and MIACR
that more effectively capture the uncer-
tainty and robustness of unlearning per-
formance inspired by conformal predic-
tion to tackle the fake forgetting issue.
Additionally, motivated by conformal
prediction insights about fake forgetting
and Carlini & Wagner (C&W) attack
loss Carlini & Wagner (2017), we pro-
pose a general unlearning framework,
which can improve existing training-
based unlearning methods and promote
reliable forgetting. Grad-CAM maps of
our method in Figure 1 reveal that once
the true label no longer falls within
the conformal prediction set, the acti-
vation regions shift significantly. To sum up, our contributions are as follows:

• Our analysis reveals that conformal prediction can recover a substantial portion of data
previously classified as forgotten by existing unlearning metrics. This fake forgetting issue
underscores critical limitations in existing unlearning evaluation methodologies.

• We design two novel metrics to address the limitations motivated by conformal prediction.

• We propose an unlearning framework motivated by conformal prediction and C&W loss,
enhancing existing training-based unlearning methods over both existing and our metrics.

2 ENHANCING METRICS FOR MACHINE UNLEARNING BASED ON
CONFORMAL PREDICTION

2.1 PRELIMINARIES AND NOTATIONS

Machine Unlearning. In our work, we focus on the image classification task, which is widely
used in prior literature Shen et al. (2024); Zhao et al. (2024). Two forgetting scenarios are mainly
considered in this work: (i) random data forgetting focuses on randomly forgetting specific data
instances within the training data, and (ii) class-wise forgetting aims to remove all data information
associated with an entire class. We also show the results of the subclass-wise forgetting scenario
in Table 10 in Appendix. Let Dtrain denote the original training data used to obtain an original
model θo. We split the whole training data Dtrain into two subsets, forget data Df and retain data
Dr = Dtrain \ Df . Let Dtest represent test data. θu denotes the model after the unlearning process.

Conformal Prediction. Conformal prediction is proposed to quantify uncertainty, providing predic-
tion sets that contain the ground truth label with a theoretically guaranteed probability Angelopoulos
& Bates (2021). Among the various types of conformal prediction, this work mainly focuses on split
conformal prediction (SCP)1 since it is the most straightforward and easy-to-implement approach. We
also report results of other conformal prediction techniques in Appendix F. To construct a conformal
prediction set, SCP involves four steps on the unlearning model:

1. Calibration Data. SCP first chooses unseen data as calibration data, which must be held out
from both the training and test sets to ensure independence.

2. Non-conformity Score. In our work, we follow the conventional choice and set the non-
conformity score as

S(x, yi) = 1− pi(x), (1)

where pi(x) represents the probability of different class yi.

1Note that while the goal is to remove the influence of the forget data so that it behaves similarly to the
calibration data, the exchangeability property may not always hold in machine unlearning settings. Here, we are
directly leveraging the concept of conformal prediction to evaluate machine unlearning performance.
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3. Quantile Computation. Given a target miscoverage rate α ∈ [0, 1], SCP obtains threshold q̂
by taking the 1− α quantile of the non-conformity score of the ground truth labels yt on the
calibration data (x, yt) ∈ Dc,

q̂ = Quantile1−α

(
S(x, yt)

)
. (2)

4. Prediction Set. For the data point x that needs to be tested, labels with non-conformity
scores lower than the threshold q̂ are selected for the final prediction set:

C(x) = {yi : S(x, yi) ≤ q̂}, (3)

2.2 IDENTIFYING FAKE FORGETTING IN EXISTING UNLEARNING METRICS

In this section, we show that a conformal prediction–based recovery technique can reconstruct the
true label with high probability even when one forget data point is misclassified. This highlights a
critical blind spot in existing UA and MIA metrics from the perspective of uncertainty quantification.
The first key question we pose is as follows:

(Q1) Can we recover the data that is identified as forgotten by the metrics UA and MIA?

If the ground truth of forget data falls within the conformal prediction set, we consider the recovery
successful. Thus, fake forgetting is defined as the scenario where a data point identified as
forgotten by model prediction can be recovered by conformal prediction.

Table 1: Unlearning performance measured by exist-
ing metrics across RT, FT and RL methods. All values
in percent (%). The sign ↑ (↓) represents the greater
(smaller) is better.

10% Random Forgetting 50% Random Forgetting
Methods UA ↑ RA ↑ TA ↑ MIA ↓ UA ↑ RA ↑ TA ↑ MIA ↓

RT 8.62 99.69 91.83 86.92 10.98 99.80 89.16 82.79
FT 3.84 98.14 91.57 92.00 2.59 99.08 91.77 92.92
RL 7.55 97.41 90.60 74.21 10.48 93.91 85.78 61.15

To substantiate our claim, we first apply metrics:
unlearning accuracy (UA, i.e., 1− the accuracy
on forget data), retain accuracy (RA, i.e., ac-
curacy on retain data), test accuracy (TA, i.e.,
accuracy on test data), and membership infer-
ence attack (MIA). See Appendix C for MIA im-
plementation details. We evaluate 3 classic un-
learning methods, Retrain (RT), Finetune (FT)
Warnecke et al. (2021), and Random Label (RL)
Graves et al. (2021). See Appendix A for a detailed introduction to the baselines. The results are
trained on CIFAR-10 with ResNet-18 in a random data forgetting scenario. In Table 1, the UA and
MIA results suggest that the models fail to correctly classify part of the forget data and identify
membership. However, can higher UA and lower MIA fully guarantee that these forget data points do
not appear in any form within the model’s predictions?

Table 2: Mis-label (mis-classification) count and in-
set ratio of UA and MIA metrics for RT, FT and RL
on CIFAR-10 with ResNet-18 under 10% and 50%
random data forgetting scenarios. In all settings, over
30% of mis-label data remains within the conformal
prediction set in both UA and MIA. More results of
other unlearning methods can be found in Appendix D.

10% Random Forgetting 50% Random Forgetting
Methods Mis-label ↑ In-set ↓ Ratio ↓ Mis-label ↑ In-set ↓ Ratio ↓

Mis-label and In-set Ratio of UA
RT 431 132 30.6% 2,745 1,573 57.3%
FT 192 112 58.3% 647 431 66.6%
RL 380 173 45.5% 2,625 1,795 68.4%

Mis-label and In-set Ratio of MIA
RT 654 209 32.0% 4,303 1,391 32.3%
FT 400 216 54.0% 1,769 813 46.0%
RL 1,289 1,011 78.4% 9,713 8,295 85.4%

We employ conformal prediction to investigate
whether we can recover forget data’s ground
truth, specifically, whether the ground truth la-
bels still appear within the conformal prediction
sets. The confidence level and calibration set
size are set to 95% and 2000 respectively. In
Table 2, we count the number of data points
that are identified as truly forgotten by UA and
MIA (marked as mis-label) and count how many
of these mis-label points can still be recovered
(marked as in-set). The results of UA reveal
that even though the model misclassifies part
of the forget data, on average 54.6% of these
misclassified data instances are still recovered
by conformal prediction. Even for the RT base-
line, UA does not reliably assess whether a data
point has truly been forgotten, since 30.6% of UA misclassified data points can still be recovered
by conformal prediction. This finding demonstrates that a high UA does not mean the model has
truly forgotten the data, and thus relying solely on UA to evaluate the forgetting quality is fragile.
A similar phenomenon occurs on results of MIA. In MIA, ‘0’ indicates a data point is forgotten,
while ‘1’ means it is still identified as a training member. The mis-label column of MIA refers to
the number of data points that are predicted as ‘0’. The in-set here refers to the number of mis-label
data points whose conformal prediction set still includes ‘1’. Thus, the recover ratio indicates that,
although the MIA fails to identify an average of 18.33% of the forget data as training membership,
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conformal prediction can still recover 54.7% of these forget data within prediction sets. For more
results of other unlearning methods, see Table 6 in AppendixD.1.

Overall, the high recover ratio observed in Tables 2 indicates that misclassified forget data cannot
be considered truly forgotten, as their traces can be readily detected and recovered via conformal
prediction from the perspective of uncertainty quantification. This encloses that the fake forgetting
issue arises when the true label of misclassified data falls within the conformal prediction set.

2.3 DESIGNING METRICS MOTIVATED BY CONFORMAL PREDICTION

Based on the limitation of UA and MIA metrics shown in Section 2.2, it raises a question as follows:

(Q2) Can we develop metrics to address the fake forgetting issue of UA and MIA?

Thus, we propose enhanced UA and MIA metrics that draw intuition from conformal prediction.

2.3.1 DEFINITION OF NEW METRICS

Conformal Ratio (CR). To overcome the fake forgetting inherent in UA, we introduce a novel
metric, CR, which incorporates both coverage and set size in conformal prediction to provide a more
comprehensive evaluation. Before defining CR, we introduce Coverage and Set Size.

Given a dataset D, the definition of Coverage is as follows:

Coverage :=
1

|D|
∑

(x,yt)∈D

I(yt ∈ Cm(x)), (4)

where yt is the true label of data point x. Indicator function I(·) returns 1 if the enclosed condition is
true and 0 otherwise. Coverage reflects the probability that the true label falls within the prediction
set Cm(x). For D = Df , high coverage indicates that the model retains significant information about
forget data, suggesting fake forgetting.

Given a dataset D, Set Size is defined as follows:

Set Size :=
1

|D|
∑

(x,yt)∈D

|Cm(x)|, (5)

where Cb(x) is the conformal prediction set in the multi-class classification task and |Cm(x)| denotes
the set size of data point x. When yt ∈ Cm(x), a small set size indicates that fewer non-ground truth
classes are included in the prediction set, reflecting stronger fake forgetting.

Based on Coverage and Set Size, we introduce the definition of CR for a dataset D as follows:

CR :=
Coverage
Set Size

=

∑
(x,yt)∈D I(yt ∈ Cm(x))∑

(x,yt)∈D |Cm(x)| . (6)

CR balances the information captured by Coverage and Set Size. A lower CR value implies stronger
forgetting. CR is inspired by conformal prediction, which is proposed to assess the model’s behavior
on new and unseen data, not on the training data. Thus, we emphasize that CR only measures forget
data Df and test data Dtest.

MIA Conformal Ratio (MIACR). MIACR is proposed to address the limitation of the existing
MIA metric. Among three potential conformal prediction sets {0}, {1}, and {0, 1}, only set {0} is an
ideal case for MIA, because the presence of ‘1’ represents that the data point can still be recognised
as a training member. Therefore, we introduce a new metric MIACR as:

MIACR :=
1

|Df |
∑

(x,yt)∈Df

I(Cb(x) = {0}), (7)

where Cb(x) is the conformal prediction set in the binary classification task. Cb(x) = {0} denotes
prediction set is exactly {0}. A higher MIACR score indicates a stronger forgetting. Under MIA,
a data point is considered forgotten once the logit for label ‘0’ exceeds that for label ‘1’. However,
this criterion is often fragile. If the model’s conformal prediction set for a forgetting data point still
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includes both {0, 1}, it indicates that the model retains a level of uncertainty and has not completely
purged the data’s membership information. To address this, MIACR enforces a stricter rule, requiring
that label ‘1’ be entirely absent from the prediction set, providing a more rigorous assessment of
membership status and forgetting quality.

Superiority of Our Metrics. Existing accuracy-based metrics UA and MIA suffer from a fake
forgetting issue, since true labels of misclassified data points may still remain within the prediction
set. In contrast, our metrics CR and MIACR address this issue by examining the entire conformal
prediction set, providing a more reliable evaluation of forgetting quality. Besides evidence in Tables 2,
Figures 7–10 in the Appendix also support this superiority of our metrics.

Evaluation Criteria of Our Metrics
We consider two different criteria2to measure unlearning performance with our metrics,
➊ Gap to RT Criterion: A lower gap to the RT method is better for both CR and MIACR
metrics. The gap relative to RT is represented in blue text (•) in our result tables.
➋ Limit-Based Criterion: For the CR, a lower CR value of forget data Df indicates stronger
forgetting performance, while a higher CR value of Dtest represents higher preserved model
utility. For the MIACR, a higher MIACR value for Df reflects better unlearning effectiveness.

2.3.2 DISCUSSION OF CONFIDENCE LEVEL AND CALIBRATION SET SIZE

0 1000 2000 3000 4000 5000 6000
Calibration Set Size

0.4

0.6

0.8

1.0

q

10% forget 50% forget

Figure 2: The stability of q̂ in different
calibration set sizes. When the calibration
set size is greater than 2000, the fluctua-
tions of q̂ remain within a stable range.

In conformal prediction, the confidence level 1 − α (i.e.,
miscoverage rate α) and calibration set size are two factors.
We next discuss the suitable settings for the confidence level
and calibration set size, and the rationale behind them.

Confidence Level 1−α. A smaller miscoverage rate α, i.e.,
a higher confidence level 1−α, guarantees more reliable cov-
erage. In the conformal prediction related works Angelopou-
los & Bates (2021); Papadopoulos et al. (2002); Romano
et al. (2020a); Tailor et al., α = 0.05 is widely adopted
as a standard in most cases, reflecting its common use in
statistical hypothesis testing to balance false positives and
practical usability. Following prior work, we set α = 0.05 by default, while also reporting results for
higher values (0.10, 0.15, and 0.20) in Appendices D.3 and D.4 to account for scenarios where a more
relaxed confidence level is needed. Unless otherwise noted, all analyses use the default α = 0.05.

Calibration Set Size. A portion of the validation data is set aside as calibration data, ensuring
it remains independent from both the training and test data. The calibration set must be sufficient
to avoid abnormal q̂ values caused by outliers from small samples, which can destabilize coverage
estimates. Figure 2 illustrates the stability of q̂ across varying calibration set sizes. The results
are smoothed using a B-spline. We implement them on CIFAR-10 with ResNet-18 in 10% and
50% random data forgetting scenarios. The results show that for different settings using ResNet-18
on CIFAR-10, after the calibration set size is larger than 1000, abnormal q̂ values do not occur
anymore, and a stable threshold q̂ can be obtained. Similarly, we analyze the calibration set size of
the class-wise forgetting scenario and find that fewer calibration data points are required compared to
random data forgetting. This is because the targeted class forgetting reduces the complexity of the
distribution, unlike the broader variability introduced by random data forgetting.

3 ENHANCING MACHINE UNLEARNING VIA CONFORMAL PREDICTION

Based on the findings in Section 2.2, we observe that existing training-based unlearning methods are
typically optimized with respect to loss functions that do not directly support the improvement of
forgetting quality from our fake forgetting perspective. Specifically, the optimization objectives of
existing methods fail to ensure that the ground truth labels are sufficiently pushed out of the
conformal prediction set, which is key to overcoming fake forgetting. This raises a critical question:

2The appropriate evaluation criteria vary across unlearning application scenarios Kurmanji et al. (2023):
criterion ➊ is particularly relevant for user privacy scenario, while criterion ➋ focuses on bias removal scenario.
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(Q4) Can we explore advanced unlearning techniques via conformal prediction to optimize the
existing unlearning model’s forgetting quality?

Therefore, we propose a novel and general conformal prediction-based unlearning framework (CPU)
tailored for training-based unlearning methods, aimed at enhancing their forgetting quality. A key
insight driving our framework is to overcome the issue exposed by fake forgetting. This emphasizes
that the non-conformity scores of ground truth labels should be pushed beyond the conformal
prediction threshold q̂. Interestingly, this goal aligns naturally with the design of the C&W attack
loss Carlini & Wagner (2017), which motivates our creative adaptation to the unlearning scenario.

Let us first apply the original C&W loss directly to the unlearning scenario, without yet incorporating
conformal prediction. For the forget data Df , the goal of the unlearning loss is to decrease the model’s
confidence in the true labels of Df . Based on this, the C&W-inspired unlearning loss is defined as:

Lcw(x, yt) = max{pt(x)−max
i̸=t

{pi(x)}, −∆}, (8)

where (x, yt) ∈ Df and max{·} is a maximum operator that selects the largest value from the set.
pi(x) is the probability of class yi, and pt(x) refers specifically to the probability assigned to the true
label yt. We denote maxi̸=t{pi(x)} as the highest probability value of the non-ground truth classes.
This loss Lcw maximizes the difference between the highest probability value for class yi (i ̸= t)
and the probability value for the true class yt. It tries to decrease the probability of the true class
yt and further increase that of the class yi with the highest probability. The margin parameter ∆
controls the enforced margin between the true class and the strongest competing class. When the
maxi̸=t{pi(x)} − pt(x) < ∆, this loss encourages the model to decrease the true label’s probability
pt(x). Increasing the value of ∆ further increase the margin between maxi̸=t{pi(x)} and pt(x).

With this C&W loss, we can indeed reduce the probability assigned to the true label yt, thereby
compelling the model to misclassify the data point into another class yi. However, this loss still
fails to guarantee that the true label yt can be excluded from the conformal prediction set. If we
let the threshold in conformal prediction play the role of maxi̸=t{pi(x)} in Eq. 8, and push the
non-conformity score of yt further away from this threshold, the above issue can be effectively
resolved. Therefore, we further improve the C&W-inspired unlearning loss function by combining
conformal prediction.

In conformal prediction, calibration data helps in estimating non-conformity scores and determining
a threshold to ensure valid statistical guarantees about the model’s uncertainty estimates. A portion
of calibration data D′

c can be reserved for the unlearning phase, which is kept separate from the
calibration data Dc used in the evaluation phase. With calibration data D′

c, the threshold q̄ for the
unlearning phase is easily calculated given an α. Given q̄, by revising C&W-inspired unlearning loss
with a calibration step, a general unlearning loss function is defined as follows:

Lunlearn(x, yt) = max{q̄ − S(x, yt), −∆}. (9)

We replace probability pt(x) and maxi̸=t{pi(x)} in Eq. 8 with the threshold q̄ and non-conformity
score S(x, yt) respectively. q̄ is updated in each training epoch to obtain an accurate value. Since q̄ is
computed merely as a quantile, this process incurs negligible computational overhead (experimental
evidence is provided in Appendix E.2).

The loss Lunlearn adheres to the same principle of Lcw, which encourages S(x, yt)− q̄ ≥ ∆. It helps
to increase the non-conformity score S(x, yt) of the true label yt to surpass the threshold q̄. As an
improvement over the loss Lcw, the loss Lunlearn makes it more difficult for the model to include the
true label in conformal prediction set. In this loss, even a small value of ∆ is sufficient to achieve
the desired effect, because the true label yt is excluded from the conformal prediction set once its
non-conformity score S(x, yt) exceeds the threshold q̄. Therefore, in our work, we set ∆ = 0.01.

As a general framework, to preserve the efficacy of specific unlearning methods themselves, we
reserve their original loss Loriginal in our framework. Consequently, we combine these terms to form
the final objective loss function as:

Ltotal = Loriginal + λ · Lunlearn, (10)

where λ is a hyperparameter that controls the forgetting degree.

6
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Table 3: Unlearning performance on CIFAR-10 with ResNet-18 and Tiny ImageNet with ViT in 10% random
data forgetting. The results are average values from 3 independent trials and the standard deviation values
are reported in Appendix D. For evaluation criterion ➊, performance differences compared to the RT method
are highlighted with (•). For clarity in observing criterion ➋, the sign ↑ represents greater is better, while ↓
denotes ideally small. It shows the unlearning methods that excel under the existing metric UA do not necessarily
perform well under our CR metric due to the fake unlearning issue.

Existing Metrics Coverage Set Size CRMethods UA ↑ RA ↑ TA ↑ Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑
CIFAR-10 with ResNet-18

RT 8.6%(0.0) 99.7%(0.0) 91.8%(0.0) 0.941(0.000) 0.944(0.000) 1.089(0.000) 1.074(0.000) 0.864(0.000) 0.879(0.000)

FT 3.8%(4.8) 98.1%(1.6) 91.6%(0.2) 0.994(0.053) 0.951(0.007) 1.008(0.081) 1.026(0.048) 0.986(0.122) 0.927(0.048)
RL 7.6%(1.0) 97.4%(2.3) 90.6%(1.2) 0.970(0.029) 0.949(0.005) 1.242(0.153) 1.197(0.123) 0.788(0.076) 0.796(0.083)
GA 0.6%(8.0) 99.5%(0.2) 94.1%(2.3) 0.994(0.053) 0.945(0.001) 1.002(0.087) 1.009(0.065) 0.994(0.130) 0.936(0.057)

Teacher 0.8%(7.8) 99.4%(0.3) 93.5%(1.7) 0.991(0.050) 0.941(0.003) 1.003(0.086) 1.021(0.053) 0.993(0.129) 0.922(0.043)
SSD 0.5%(8.1) 99.5%(0.2) 94.2%(2.4) 0.996(0.055) 0.945(0.001) 0.999(0.090) 1.008(0.066) 0.994(0.130) 0.936(0.057)

NegGrad+ 8.7%(0.1) 98.8%(0.9) 92.2%(0.4) 0.934(0.007) 0.948(0.004) 1.068(0.021) 1.086(0.012) 0.875(0.011) 0.873(0.006)
Salun 3.7%(4.9) 98.9%(0.8) 91.8%(0.0)) 0.987(0.046) 0.950(0.006) 1.132(0.043) 1.143(0.069) 0.872(0.008) 0.832(0.047)

SFRon 4.8%(3.8) 97.4%(2.3) 91.4%(0.4) 0.977(0.036) 0.953(0.009) 1.100(0.011) 1.143(0.069) 0.889(0.025) 0.834(0.045)

Tiny ImageNet with ViT
RT 14.7%(0.0) 98.8%(0.0) 86.0%(0.0) 0.944(0.000) 0.949(0.000) 1.876(0.000) 1.840(0.000) 0.503(0.000) 0.516(0.000)

FT 6.9%(7.8) 97.9%(0.9) 84.1%(1.9) 0.994(0.050) 0.950(0.001) 2.133(0.257) 2.440(0.600) 0.466(0.037) 0.389(0.127)
RL 26.9%(12.2) 96.0%(2.8) 81.4%(4.6) 0.969(0.025) 0.952(0.003) 17.890(16.014) 8.572(6.732) 0.054(0.449) 0.111(0.405)
GA 3.2%(11.5) 97.4%(1.4) 84.9%(1.1) 0.996(0.052) 0.947(0.002) 1.539(0.337) 2.018(0.178) 0.647(0.144) 0.469(0.047)

Teacher 17.3%(2.6) 86.7%(12.1) 79.0%(7.0) 0.977(0.033) 0.956(0.007) 5.473(3.597) 5.080(3.240) 0.179(0.324) 0.188(0.328)
SSD 1.5%(13.2) 98.5%(0.3) 86.1%(0.1) 0.998(0.054) 0.950(0.001) 1.354(0.522) 1.827(0.013) 0.737(0.234) 0.520(0.004)

NegGrad+ 19.4%(4.7) 98.3%(0.5) 84.0%(2.0) 0.999(0.055) 0.890(0.059) 0.949(0.927) 1.614(0.227) 1.052(0.823) 0.552(1.289)
Salun 9.2%(5.5) 97.7%(1.1) 83.6%(2.4) 0.995(0.051) 0.964(0.015) 2.803(0.927) 2.726(0.886) 0.528(1.347) 0.376(1.464)

SFRon 9.3%(5.4) 97.0%(1.8) 83.9%(2.1) 0.989(0.045) 0.948(0.001) 2.000(0.124) 2.208(0.368) 0.495(0.008) 0.429(0.086)

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets and Models. We focus on the image classification task and report experiments on CIFAR-
10 Krizhevsky (2009) and Tiny ImageNet Le & Yang (2015) datasets with ResNet-18 He et al. (2016)
and ViT Dosovitskiy et al. (2021) architectures.
Baselines and Metrics. We employ 9 different unlearning methods, including RT, FT Warnecke
et al. (2021), RL Graves et al. (2021), Gradient Ascent (GA) Thudi et al. (2022), Bad Teacher
(Teacher) Tarun et al. (2023), SSD Foster et al. (2024), NegGrad+ Kurmanji et al. (2023), Salun
Fan et al. (2024b) and SFRon Huang et al. (2025). See Appendix A for a detailed overview of
these unlearning methods. We evaluate the performance of various unlearning methods using the
existing metrics, including UA, RA, TA, MIA, as well as our proposed metrics CR and MIACR.
See Appendix C for the detailed introduction to MIA and our implementation.
Implementation Details. For hyperparameters, we set the miscoverage rate α ∈
{0.05, 0.10, 0.15, 0.20}. Results for α = 0.05 are reported in the main paper, while results for
α ∈ {0.10, 0.15, 0.20} are provided in Appendix D. The margin parameter ∆ = 0.01, unlearn-
ing loss weight λ ∈ [0, 0.2, 0.5, 1]. Additional training and baseline setup details are included in
Appendix B.

4.2 MEASURE UNLEARNING METHODS VIA NEW METRICS

In this section, we explore how existing unlearning methods perform with the consideration of the
fake forgetting perspective. We evaluate the performance of 9 various unlearning methods using the
proposed metrics CR and MIACR, together with Coverage and Set Size. The experimental results
are presented in Table 3, which summarizes the unlearning performance under 10% random data
forgetting scenario on CIFAR-10 and Tiny ImageNet, respectively. See Tables 10 - 17 in Appendix D
for additional experimental results on other forgetting scenarios, including class-wise, subclass-wise
and worst-case forgetting.

CR Metric. We take the results on CIFAR-10 as an example for analysis of CR on forget data Df

based on two evaluation criteria proposed in Section 2.3. According to evaluation criterion ➊, the top
4 methods under the UA metric are NegGrad+, RL, SFRon, and Salun, as their unlearning accuracy
is closest to the RT method. However, this ranking shifts slightly under the CR metric, where the
top 4 become Salun, NegGrad+, SFRon, and RL. CR metric identifies that Salun performs better in
forgetting quality and can deal with the fake forgetting issue well, while RL faces a fake forgetting
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situation and performs poorly on our metric CR. This observation suggests that methods excelling
in the traditional UA metric may not perform well under the CR metric. The underlying rationale
behind this is that the CR metric takes into account the possibility that the true labels of some
misclassified forget data points may still remain within the prediction set. This observation aligns
with the insights we discussed in Section 2.2 regarding the fake forgetting issue of the UA metric.

Regarding evaluation criterion ➋, a similar pattern is observed as with criterion ➊. Under the UA
metric, the top 4 methods in terms of forgetting quality are NegGrad+, RT, RL and SFRon. However,
under the CR metric, the top 4 shift to RL, RT, Salun and NegGrad+. This indicates that some
unlearning methods, such as NegGrad+, show weak forgetting quality when viewed from the fake
forgetting perspective. This also highlights that the CR captures critical scenarios overlooked by UA,
specifically the potential retention of true labels within prediction sets for the forget data points. CR
ensures a more robust and reliable evaluation for unlearning quality.

Table 4: MIACR results on CIFAR-10 with ResNet-
18 in both 10% and 50% random data forgetting.

10% Forgetting 50% ForgettingMethods MIA(%) ↓ MIACR ↑ MIA(%) ↓ MIACR ↑
RT 86.92(0.000) 0.089(0.000) 82.79(0.000) 0.117(0.000)

FT 92.00(5.08) 0.037(0.052) 92.92(10.13) 0.038(0.079)
RL 74.21(12.71) 0.056(0.033) 61.15(21.64) 0.057(0.060)
GA 98.80(11.88) 0.010(0.079) 98.86(16.07) 0.010(0.107)

Teacher 87.24(0.32) 0.011(0.078) 93.24(10.45) 0.031(0.086)
SSD 98.78(11.86) 0.010(0.079) 98.87(16.08) 0.011(0.106)

NegGrad+ 90.30(3.38) 0.076(0.013) 93.82(11.03) 0.045(0.072)
Salun 57.58(29.34) 0.055(0.034) 59.12(23.67) 0.044(0.073)

SFRon 91.55(4.63) 0.060(0.029) 92.52(9.73) 0.058(0.059)

MIACR Metric. In Table 4, we show the MI-
ACR results on CIFAR-10 under both 10% and
50% random data forgetting. Under our evalu-
ation criterion ➊, most methods show superior
MIA and MIACR performance in the 10% for-
getting scenario compared to 50% forgetting, be-
cause larger forget sets pose greater challenges
for unlearning methods. This demonstrates that
the general trend of membership leakage risk
remains broadly consistent across MIA and MI-
ACR. Under evaluation criterion ➋, Salun, which
appears optimal under MIA, does not achieve the
best performance when assessed by MIACR. In the 10% random forgetting scenario, MIA deems
2,121 data points as truly forgotten by Salun and 423 by SFRon. However, MIACR reveals that 1,848
of the 2,121 points under Salun can still be recovered via conformal prediction, whereas only 121 of
the 423 points remain within the prediction set for SFRon.

Overall, the results show that, compared to MIACR, the existing MIA metric still leaves privacy
concerns. Although MIA may fail to predict some forget data points as training members, these
points can still appear in the conformal prediction set with high confidence. In contrast, MIACR
more strictly controls potential membership leakage risk by measuring the probability that
only non-member predictions (i.e., label ‘0’) appear in the prediction set.

4.3 PERFORMANCE OF OUR UNLEARNING FRAMEWORK

In this experiment, we apply RT, FT, and RL methods to our framework CPU, i.e., CPU-RT, CPU-FT,
CPU-RL. Table 5 presents the results for CIFAR-10 with ResNet-18 and Tiny ImageNet with ViT
in 10% random data forgetting. We vary λ in the range [0, 0.2, 0.5, 1], where λ = 0 represents the
baseline without our framework applied. See Table 18 in Appendix E for the results of λ = 1.

From the perspective of evaluation criterion ➊, we take CPU-FT as an example for analysis. The gap
(blue text (•)) between CPU-FT and RT on the existing metric UA decreases effectively as λ increases.
Specifically, the UA gap decreases from 4.8% to 0.7% on CIFAR-10 and from 7.8% to 0.9% on Tiny
ImageNet. It is worth noting that the model utility remains relatively stable on the RA and TA results.
Similarly, CRDf

metric is also decreased when λ > 0. For the average gap across UA, RA, and TA
metrics, the CPU-FT method achieves a promising average gap of 1.47 on ResNet-18 when λ = 0.5,
compared to an average gap of 2.2 when λ = 0. Similarly, on the ViT model, CPU-FT reduces the
average gap from 3.53 to 1.63 when λ = 0.5. It is obvious that our framework can strongly improve
forgetting strength. That means the methods that are prone to over-forgetting, such as RL, perform
adequately without requiring CPU for additional enhancements under our evaluation criterion ➊.

For evaluation criterion ➋, when λ = 0.5, the UA improves by an average of 3.93% on ResNet-18 and
9.23% on ViT over all methods, while TA decreases only slightly by 1.0% and 0.57% on ResNet-18
and ViT respectively. As similarly shown in the CR metric, the value of CRDtest

remains nearly
unchanged compared to the baseline (λ = 0) with only 0.03 drop on average, while CRDf

shows a
greater reduction with an average of 0.08 across all methods.
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Table 5: Performance of our unlearning framework CPU. We show the performance on CIFAR-10 with
ResNet-18 and Tiny ImageNet with ViT in 10% random data forgetting. λ = 0 represents the baseline
without our framework applied. It shows our framework significantly improves the forgetting quality, not only
across our metric but also existing metric UA, while preserving stable predictive performance.

λ = 0 λ = 0.2 λ = 0.5Methods UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑ UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑ UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑
CIFAR-10 with ResNet-18

CPU-RT 8.6%(0.0) 99.7%(0.0) 91.8%(0.0) 0.864(0.000) 0.879(0.000) 10.8%(2.2) 98.3%(1.4) 91.0%(0.8) 0.788(0.076) 0.824(0.055) 14.0%(5.4) 97.8%(1.9) 90.4%(0.4) 0.763(0.101) 0.825(0.054)
CPU-FT 3.8%(4.8) 98.1%(1.6) 91.6%(0.2) 0.986(0.122) 0.927(0.048) 6.8%(1.8) 97.0%(2.7) 90.8%(1.0) 0.844(0.020) 0.829(0.050) 7.9%(0.7) 96.9%(2.8) 90.9%(0.9) 0.853(0.011) 0.843(0.036)
CPU-RL 7.6%(1.0) 97.4%(2.3) 90.6%(1.2) 0.788(0.076) 0.796(0.083) 9.7%(1.1) 96.6%(3.1) 89.4%(2.4) 0.709(0.155) 0.736(0.143) 9.9%(1.3) 96.9%(2.8) 89.7%(2.1) 0.708(0.156) 0.731(0.148)

Tiny ImageNet with ViT
CPU-RT 14.7%(0.0) 98.8%(0.0) 86.0%(0.0) 0.503(0.000) 0.516(0.000) 19.3%(4.6) 98.8%(0.0) 86.0%(0.0) 0.458(0.045) 0.516(0.000) 26.4%(11.7) 98.7%(0.1) 85.8%(0.2) 0.396(0.107) 0.489(0.027)
CPU-FT 6.9%(7.8) 97.9%(0.9) 84.1%(1.9) 0.466(0.037) 0.389(0.127) 9.8%(4.9) 97.4%(1.4) 83.6%(2.4) 0.441(0.062) 0.399(0.117) 13.6%(0.9) 97.2%(1.6) 83.6%(2.4) 0.413(0.090) 0.401(0.115)
CPU-RL 26.9%(12.2) 96.0%(2.8) 81.4%(4.6) 0.054(0.449) 0.111(0.405) 31.8%(17.1) 95.3%(17.9) 80.9%(5.1) 0.051(0.452) 0.111(0.405) 36.2%(21.5) 95.3%(3.5) 80.4%(5.6) 0.051(0.452) 0.121(0.395)
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Figure 3: CPU-FT accuracy of Df , Dr and Dtest under different λ values across each epoch on CIFAR-10
(a-c) and Tiny ImageNet (d-f). As λ increases, accuracy on Df drops significantly, while retain and test accuracy
remain stable.

Moreover, in Figure 3, we further present the CPU-FT accuracy on forget data Df , retain data Dr and
test data Dtest under different λ values across each epoch on Tiny ImageNet with ViT for 10% random
data forgetting. As λ increases, the accuracy on Df drops quickly, showing stronger unlearning
effectiveness, while the accuracy on Dr and Dtest remains stable. In summary, the experimental
results demonstrate that our framework notably enhances the forgetting quality while maintaining
stable predictive performance.

The experimental results demonstrate a significant improvement in both UA and CRDf
across all

methods, reflecting improved forgetting quality as λ increases. Notably, the RA, TA, and CRDtest

values remain relatively stable, indicating that the substantial improvement in forgetting quality does
not compromise the model’s predictive performance.

5 RELATED WORK

Machine unlearning has emerged as a vital research topic due to several privacy, regulatory, and
ethical concerns associated with machine learning models. It refers to the process of selectively
removing specific data points from a trained machine learning model. Generally, post-hoc machine
unlearning can be divided into training-based Graves et al. (2021); Tarun et al. (2023); Thudi et al.
(2022); Warnecke et al. (2021) and training-free approaches Foster et al. (2024); Golatkar et al. (2021;
2020); Guo et al. (2019); Nguyen et al. (2020); Sekhari et al. (2021).

To evaluate these methods, several unlearning metrics have been proposed, including UA Brophy
& Lowd (2021); Foster et al. (2024) and MIA Chen et al. (2021); Hayes et al. (2025); Shokri et al.
(2017). However, these metrics often fail to account for the confidence of the forgetting quality. To
address this limitation, we improve it in our work motivated by conformal prediction Angelopoulos &
Bates (2021), which stands out among uncertainty quantification techniques for its ability to provide
well-calibrated, reliable confidence measures. As a generic methodology, conformal prediction can
transform the outputs of any black box prediction algorithm into a prediction set. Due to its versatility,
many works have specifically designed numerous conformal prediction methods tailored to particular
prediction problems Lei et al. (2018); Lei & Wasserman (2014); Papadopoulos et al. (2002); Romano
et al. (2020a).

One work Becker & Liebig (2022) has primarily focused on parameter-level uncertainty without fully
addressing the broader implications of unlearning on prediction confidence. It assesses the sensitivity
of model parameters to the target data through the Fisher Information Matrix, but they often rely on
computationally intensive operations and may struggle to scale to large models or datasets.
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6 CONCLUSION

Motivated by conformal prediction, we introduce new metrics, CR and MIACR, to enhance the
evaluation and reliability of machine unlearning. In addition, our unlearning framework, which
incorporates the adapted C&W loss with conformal prediction, improves unlearning effectiveness.
Together, we provide a more rigorous foundation for privacy-preserving machine learning.

REPRODUCIBILITY STATEMENT

The implementation details are introduced in Appendix A-B and the codes are available at
https://anonymous.4open.science/r/MUCP-60E4.
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antafillou. What makes unlearning hard and what to do about it. Advances in Neural Information
Processing Systems, 37:12293–12333, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A BASELINE DETAILS

We introduce the details of our unlearning baselines as follows : RT retrains the model from scratch
using only the remaining dataset Dr. FT Warnecke et al. (2021) fine-tunes the pre-trained model θo
on the remaining dataset Dr. RL Graves et al. (2021) fine-tunes the model on the forgetting dataset
Df using randomly assigned labels to enforce forgetting. GA Thudi et al. (2022) performs gradient
ascent on the forgetting data Df , which often harms the model’s utility. Teacher Tarun et al. (2023)
distills knowledge from a corrupted teacher model to the student, aiming to uniformly increase the
loss on forgetting samples but often causing catastrophic forgetting. SSD Foster et al. (2024) induces
forgetting by identifying and dampening parameters highly associated with the forgetting set using
the Fisher information matrix, without retraining. NegGrad+ Kurmanji et al. (2023) addresses GA’s
issue by combining fine-tuning on Dr and gradient ascent on Df . Salun Fan et al. (2024b) performs
unlearning by optimizing only the salient parameters of the model identified from the random labeled
forgetting data. SFRon Huang et al. (2025) embeds the unlearning update into the parameter manifold
shaped by the retained data using Hessian modulation, approximated via a fast-slow update strategy.

B SETTING DETAILS

For CIFAR-10 with ResNet-18 architecture, we train the original model from scratch for 200 epochs
using SGD with a Cosine Annealing learning rate schedule, starting from an initial learning rate
of 0.1. We set the momentum to 0.9 and a batch size of 64. The RT model adopts the same
training configuration. Other models are trained for the following durations: FT for 20 epochs, RL
for 10 epochs, SalUn for 10 epochs, GA for 1 epoch (to avoid over-forgetting and significant RA
degradation), NegGrad+ for 10 epochs (reduced to 2 epochs in class-wise scenarios), and SFRon for
10 epochs. All other hyperparameters match those of the original model.

For the ViT architecture, we initialize the original model by training a pretrained ViT model for 15
epochs on Tiny ImageNet. We start with a learning rate of 0.001, while other training parameters
match those used for ResNet-18. We use SGD and set the momentum to 0.9 and a batch size of 64.
The RT model follows the same training procedure as the original model. Other models are trained
for the following durations: FT for 5 epochs, RL for 5 epochs, Salun for 5 epochs, GA for 1 epoch,
NegGrad+ for 5 epochs, and SFRon for 5 epochs. All other hyperparameters are consistent with the
original model’s training.

For CIFAR-10/Tiny ImageNet, we randomly select 200/50 data points per class (2000/10000 data
points in total) as calibration data Dc and D′

c, respectively. The calibration data Dc does not participate
in the model training or unlearning processes and is only used for calibrating the threshold q̂, while
D′

c is used in the process of our unlearning framework to generate q̄. All experiments are conducted
on 1 Tesla V100-SXM2 GPU card with 32GB memory in a single node.

C MIA IMPLEMENTATION DETAILS

Following prior works Jia et al. (2023); Kurmanji et al. (2023); Zhao et al. (2024); Song et al. (2019);
Yeom et al. (2018), we adopt a confidence-based membership inference attack to evaluate the privacy
preservation of the unlearning model. Specifically, we construct an MIA predictor by training it on a
balanced dataset sampled from the retain set Dr (labeled as members) and the test set Dtest (labeled
as non-members). The trained support vector classifier (SVC) is then applied to the unlearning model
θu during evaluation.

To measure unlearning effectiveness, we compute the MIA success rate, which quantifies how many
samples in the forget set Df are still predicted as training members by the MIA predictor. Formally,

MIA =
TP
|Df |

, (11)

where TP represents the count of forget samples still identified as training samples and |Df | is the
size of the forget data Df .
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Intuitively, since the MIA score reflects the success rate of membership inference attacks on the forget
data, a lower score indicates that less membership information about Df is retained in θu, implying
stronger privacy preservation and more effective unlearning.

D EVALUATING MU METHODS

D.1 MIS-LABEL NUMBER AND IN-SET RATIOS

Table 6: Mis-label number and in-set ratios of UA and MIA metrics.

10% Forgetting 50% Forgetting
Methods Mis-label ↑ In-set ↓ Ratio ↓ Mis-label ↑ In-set ↓ Ratio ↓

Mis-label and In-set Ratio of UA
RT 431 132 30.6% 2,745 1,573 57.3%
FT 192 112 58.3% 647 431 66.6%
RL 380 173 45.5% 2,625 1,795 68.4%
GA 30 2 6.7% 150 9 6.0%

Teacher 40 4 10% 400 37 9.3%
SSD 25 2 8.0% 116 9 7.8%

NegGrad+ 435 115 26.4% 711 249 35.5%
Salun 185 117 63.2% 1,065 695 65.3%

SFRon 240 125 52.1% 1,000 610 61.0%

Mis-label and In-set Ratio of MIA
RT 654 209 32.0% 4,303 1,391 32.3%
FT 400 216 54.0% 1,769 813 46.0%
RL 1,289 1,011 78.4% 9,713 8,295 85.4%
GA 60 10 16.7% 284 31 10.9%

Teacher 638 586 91.8% 1,689 895 53.0%
SSD 61 11 18.0% 282 24 8.5%

NegGrad+ 486 106 21.8% 1,545 415 26.9%
Salun 2,121 1,848 87.1% 10,221 9,121 89.2%

SFRon 423 121 28.6% 1,871 433 23.1%

Conformal prediction is applied to UA and MIA predictions to determine the number of misclassified
data points (mis-label) and the number of these points that fall within the conformal prediction set
(in-set). We evaluate both the UA and MIA metrics by counting the misclassified data points and
calculating how many of them are included in the conformal prediction set. The detailed results are
presented in Table 6, which is the extended results of Table 2.

D.2 DISTRIBUTION COMPARISON OF FORGOTTEN DATA ON UA AND CR

As shown in Figures 7-10, we further analyze the probability and loss distributions of ground truth
labels for data identified as truly forgotten by CR (i.e., out-set) and UA (i.e., mis-label), respectively.
The distribution curves are fitted using KDE for clearer visualization. The softmax outputs for
‘out-set’ are consistently near 0 compared to ‘mis-label’, which strongly suggests that ‘out-set’ more
rigorously captures real forgotten data. In the cross-entropy loss distribution, forgotten data identified
by CR consistently show higher cross-entropy loss than UA. Higher loss indicates better forgetting
quality, which further validates that CR better removes fake forgetting data.

D.3 CR METRIC

Tables 11 and 12 show the unlearning performance on CIFAR-10 with ResNet-18 in 10% and 50%
random data forgetting scenarios, while Table 13 is the results in class-wise forgetting scenario.
Tables 14 and 15 present the unlearning performance on Tiny ImageNet with ResNet-18 in the
random data forgetting scenario, while Table 16 details the unlearning performance in the class-wise
forgetting scenario. For class-wise forgetting scenario, we note Dtest = Dtf ∪Dtr. Dtf corresponds
to the test-forget data exclusively containing the forget class, while Dtr represents the test-retain data
within the test data Dtest.

For all unlearning methods, as α level increases, it results in reduced Coverage and smaller Set Size.
This happens because a higher α loosens the conformal threshold q̂, allowing fewer predictions to be
included within the prediction set for each data point. On the contrary, the CR tends to increase with
increasing α. Although both Coverage and Set Size may decrease, Set Size often decreases more
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significantly. Consequently, the CR value of Df generally becomes larger as α increases. It is natural
that the adjustment of α affects both Coverage and Set Size. However, the final CR value really
depends on the model’s performance itself. For a strict evaluation, we encourage setting α to 0.5.

When α is set to 0.2, most methods show a value of Set Size less than 1 in both Table 11, 12, 14,
15. The intuition behind it is that conformal prediction, as a static predictor, is intrinsically tied to
the model’s base prediction performance and accuracy. When the model’s accuracy is significantly
higher than the confidence level, conformal prediction can achieve the required coverage with ease.
In fact, it can generate partial empty prediction sets for some data points while still meeting the target
coverage. Thus, the choice of α is crucial. Overly high α values may skew evaluation results by
failing to let CR accurately reflect model performance. Therefore, we emphasize that a small α is
generally appropriate for most unlearning scenarios.

Notably, the insights gained from the random data forgetting scenario can also be extended to the
class-wise forgetting scenario. Additionally, in the class-wise scenario, some unlearning methods like
RT and RL with UA = 100% and CR approaching 0% indicate they are truly effective at forgetting
the specified class.

D.4 MIACR METRIC

Table 17 presents the performance of 9 machine unlearning methods on CIFAR-10 in ResNet-18,
evaluated with the MIACR metric. In addition to the settings discussed in Section 4, we include
results for α ∈ [0.1, 0.15, 0.2] in Table 17.
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Figure 4: Distribution shifting processing with different strategies. The distribution of calibration data gradually
converges with that of forget data.

D.5 MEASURING FORGETTING UNDER DISTRIBUTION SHIFTS

RL and Salun are unlearning methods that employ label corruption in their unlearning strategy,
which can cause distribution shifts. Here, we introduce how to better measure forgetting under these
circumstances. Figure 4(a) shows the non-conformity score distribution of calibration data Dc and
forget data Df in the unlearning model θu obtained by the RL method in Tiny ImageNet with ViT.
It looks like there is a significant discrepancy between the distribution of the forget data and the
calibration data.

To align the distribution of Dc with that of Df and minimize the differences between them, we design
a shadow model. To make the explanation clearer and more intuitive, we take RL as an example. In
the RL unlearning method, the forget data is assigned random labels. Therefore, we apply the same
random labeling process to the calibration data and train a shadow model accordingly. We designed
two methods:
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Figure 5: Non-conformity density of calibration data Dc and forget data Df without our unlearning frame-
work in CIFAR-10 with ResNet-18 under 10% random data forgetting scenario.
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Figure 6: Non-conformity score density of calibration data Dc and forget data Df with our unlearning
framework in CIFAR-10 with ResNet-18 under 10% random data forgetting scenario. Our unlearning framework
shifts the distribution of the forget data to the right, demonstrating improved forgetting quality.

1. Shadow model. A shadow model replicates the behavior of forget data Df throughout the
unlearning process. A shadow model is a two-step approach: (1) it firstly trains a shadow
original model θ′o using train data Dtrain and clean calibration data Dc with the same epoch
number as the original model θo; (2) subsequently, we finetune the θ′o using the random
labeled calibration data.

2. Semi-shadow model. The semi-shadow model only adopts the second step in the shadow
model. It finetunes the original model θo with random-labeled calibration data.

The results are presented in Figure 4, where (b)-(e) present the results of the semi-shadow model
with different epochs and (f) illustrates the shadow model’s result. Under the semi-shadow model,
as the number of epochs increases, the distribution of calibration data gradually moves to the right
until it becomes consistent with the distribution of forget data. It also shows that the shadow model
demonstrates the best ability to handle distribution shifts compared to the semi-shadow model.
However, this comes at the cost of higher computational overhead. Overall, the semi-shadow model
offers a balanced trade-off between handling distribution shifts effectively and maintaining lower
computational costs.

E PERFORMANCE OF OUR UNLEARNING FRAMEWORK

E.1 UNLEARNING PERFORMANCE

Table 18 presents the performance of our unlearning framework, including α ∈ [0.05, 0.1, 0.15, 0.2].
We explored the impact of varying λ within the range [0, 0.2, 0.5, 0.1], where λ = 0 serves as
the baseline without applying our framework, which can be found in Tables 11 and 14. The
results reveal a clear trend: as λ increases, the UA improves significantly across all methods,
accompanied by a substantial reduction in CRDf

. Interestingly, the RA, TA, and CRDtest metrics
remain relatively stable. These results underscore the effectiveness of our unlearning framework in
achieving substantial improvements in forgetting quality while preserving the stability of the model’s
predictive performance.

Furthermore, we conduct an ablation study and analyze the impact of using our unlearning framework.
As illustrated in Figures 5 and 6, we compare the density distributions of non-conformity scores for
calibration data Dc and forget data Df under the RT, FT, and RL unlearning methods. We set λ to
1. Clearly, a higher non-conformity score for Df indicates that it is less likely to be included in the
conformal prediction set, reflecting more effective forgetting.

Comparing Figures 5 and 6, after applying our unlearning framework, we observe a significant
rightward shift in the non-conformity score distribution of forget data, which is a promising signal
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according to evaluation criterion ➋. Furthermore, the FT distribution in Figure 6 exhibits substantial
overlap with the calibration data, nearly matching the distribution observed in RT. Based on evaluation
criterion ➊, since calibration data represents unseen examples, the similarity between forget data and
calibration data distributions provides strong evidence of effective forgetting. Overall, the results
evaluated on both evaluation criteria ➊ and ➋ consistently confirm the efficacy of our framework in
enhancing forgetting quality.

Table 7: Training time comparison (in minutes) with and without our CPU loss.

Methods w/o CPU w/ CPU

CIFAR-10 with ResNet18
RT 70.1 72.1
FT 6.3 6.8
RL 6.3 6.8

Tiny ImageNet with ViT
RT 60.75 62.85
FT 20.2 22.1
RL 21.3 23.4

E.2 TIME COMPARISON

We compare the training time with and without our unlearning calibration process on CIFAR-10 and
Tiny ImageNet under the 10% random data forgetting scenario. As shown in Table 7, the training
times with and without CPU support differ only marginally, confirming that our CPU loss computation
introduces negligible overhead.

F OTHER CONFORMAL PREDICTION METHODS

Table 8: CR performance with different conformal prediction methods. The performance gap relative
to the RT method is represented in (•).

LAC EntmaxScore APS
Methods CR(Df ) ↓ CR(Df ) ↑ CR(Df ) ↓ CR(Df ) ↑ CR(Df ) ↓ CR(Df ) ↑

RT 0.862(0.000) 0.876(0.000) 0.863(0.000) 0.877(0.000) 0.805(0.000) 0.836(0.000)
FT 0.901(0.039) 0.846(0.030) 0.901(0.038) 0.848(0.029) 0.808(0.004) 0.784(0.052)
RL 0.676(0.186) 0.752(0.124) 0.883(0.020) 0.838(0.039) 0.573(0.232) 0.670(0.166)
GA 0.995(0.133) 0.931(0.055) 0.995(0.132) 0.930(0.054) 0.985(0.180) 0.875(0.038)

Teacher 0.988(0.127) 0.915(0.039) 0.987(0.125) 0.917(0.040) 0.511(0.293) 0.536(0.300)
SSD 0.995(0.133) 0.933(0.057) 0.994(0.131) 0.930(0.054) 0.985(0.181) 0.876(0.039)

NegGrad+ 0.865(0.003) 0.863(0.013) 0.869(0.006) 0.870(0.006) 0.860(0.056) 0.856(0.020)
Salun 0.881(0.019) 0.839(0.037) 0.878(0.015) 0.839(0.038) 0.407(0.398) 0.430(0.407)

SFRon 0.893(0.031) 0.838(0.038) 0.893(0.030) 0.838(0.039) 0.815(0.010) 0.769(0.067)

While we adopt vanilla split-conformal as the default due to its simplicity and reproducibility, our
framework is not limited to this variant. Here, we report the results using other conformal prediction
methods, LAC Sadinle et al. (2019), EntmaxScore Campos et al. (2025), and ASP Romano et al.
(2020b) on CIFAR-10 with ResNet18 under 10% random data forgetting.

As shown in the Table 8, the CR results of LAC and EntmaxScore are similar to those obtained using
SCP in Table 3. This suggests that the results are stable under conformal prediction methods that offer
formal coverage guarantees. However, APS produces different CR values compared to LAC, SCP, and
EntmaxScore. This discrepancy is expected and is due to the inherent characteristics of APS, which
make it unsuitable for evaluating unlearning metrics. APS generally produces loose prediction sets
and is highly sensitive to noisy probability estimates in the lower-ranked classes Angelopoulos et al.
(2020), which introduces randomness in the ordering of unlikely classes and leads to unreliable set
construction. Our findings indicate that not all conformal prediction methods are inherently suitable
for evaluating forgetting quality. And the reliability of such evaluation depends critically on whether
the resulting prediction sets faithfully capture the model’s uncertainty.
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Table 9: Unlearning performance on CIFAR-10 with ResNet-18 in 10% worst-case data forgetting
scenario. The results are reported in the format a±b, where a is the mean and b is the standard
deviation from 3 independent trials. The performance gap relative to the RT method is represented in
(•).

Existing Metrics Coverage Set Size CRMethods UA ↑ RA ↑ TA ↑ Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑
RT 0.0%(0.0) 99.2%(0.0) 91.5%(0.0) 1.000(0.000) 0.948(0.000) 1.000(0.000) 1.116(0.000) 1.000(0.000) 0.850(0.000)

FT 0.0%(0.0) 99.8%(0.6) 94.1%(2.6) 1.000(0.000) 0.938(0.010) 1.000(0.000) 0.992(0.124) 1.000(0.000) 0.945(0.095)
RL 21.3%(21.3) 97.4%(1.7) 88.5%(3.0) 0.976(0.024) 0.955(0.007) 6.753(5.753) 2.192(1.076) 0.146(0.854) 0.441(0.409)
GA 0.3%(0.3) 96.9%(2.2) 91.3%(0.2) 0.999(0.001) 0.954(0.006) 1.029(0.029) 1.179(0.063) 0.971(0.029) 0.810(0.040)

Teacher 15.8%(15.8) 97.9%(1.2) 90.6%(0.9) 0.850(0.150) 0.946(0.002) 1.177(0.177) 1.249(0.133) 0.745(0.255) 0.760(0.090)
SSD 0.0%(0.0) 99.7%(0.5) 94.0%(2.6) 1.000(0.000) 0.954(0.006) 1.000(0.000) 1.037(0.079) 1.000(0.000) 0.920(0.070)

NegGrad+ 0.0%(0.0) 99.8%(0.6) 94.2%(2.7) 1.000(0.000) 0.947(0.001) 1.000(0.000) 1.012(0.104) 1.000(0.000) 0.936(0.086)
SalUn 13.0%(13.0) 97.6%(1.6) 90.0%(1.5) 0.962(0.038) 0.947(0.001) 3.991(2.991) 1.567(0.451) 0.246(0.754) 0.606(0.244)
SFRon 0.0%(0.0) 99.5%(0.3) 93.8%(2.4) 1.000(0.000) 0.956(0.008) 1.000(0.000) 1.053(0.063) 1.000(0.000) 0.908(0.058)

Overall, conformal prediction serves as a component within our uncertainty quantification-based
evaluation framework. The simplest and most straightforward conformal prediction methods, es-
pecially SCP, are often the most suitable tools. While many recent conformal prediction variants
improve upon different issues, e.g., by modifying the nonconformity scores or explicitly penalizing
low-probability classes Angelopoulos et al. (2020); Huang et al. (2023), these techniques often distort
the nonconformity values across some classes. Since our goal is to use conformal prediction as a tool
for designing fair metrics and evaluating forgetting quality, we intentionally avoid such modifications.
Introducing these more complex methods could result in additional noise, thereby compromising the
fairness and interpretability of our evaluation.

G OTHER FORGETTING SCENARIO

Worst-case Forgetting scenario Random data forgetting may affect unlearning models differently,
introducing variance and bias that make it a relatively weak evaluation setting. To more rigorously
assess the effectiveness of our proposed metrics, we further evaluate them using worst-case forget
sets Fan et al. (2024a). As shown in Table 9, the results are consistent with our previous analysis.

Table 10: Unlearning performance on CIFAR-20 with ResNet18 in subclass-wise forgetting
scenario.

Existing Metrics Coverage Set Size CRMethods UA ↑ UAtf ↑ RA ↑ TA ↑ Df ↓ Dtf ↓ Dtr ↑ Df ↑ Dtf ↑ Dtr ↓ Df ↓ Dtf ↓ Dtr ↑
RT 97.6%(0.0) 94.0%(0.0) 99.9%(0.0) 84.5%(0.0) 1.000(0.000) 1.000(0.000) 0.953(0.000) 20.000(0.000) 20.000(0.000) 1.713(0.000) 0.050(0.000) 0.050(0.000) 0.556(0.000)
FT 70.9%(26.7) 74.7%(19.3) 95.7%(4.1) 76.0%(8.6) 0.994(0.006) 0.987(0.013) 0.952(0.001) 17.637(2.363) 16.893(3.107) 3.091(1.377) 0.057(0.007) 0.059(0.009) 0.312(0.245)
RL 99.5%(1.9) 94.7%(0.7) 98.2%(1.7) 76.7%(7.9) 0.931(0.069) 1.000(0.000) 0.955(0.001) 18.807(1.193) 19.527(0.473) 3.300(1.586) 0.050(0.000) 0.051(0.001) 0.289(0.267)
GA 40.7%(56.9) 60.7%(33.3) 99.0%(0.8) 82.2%(2.3) 0.999(0.001) 0.993(0.007) 0.954(0.001) 18.305(1.695) 17.553(2.447) 2.409(0.695) 0.055(0.005) 0.057(0.007) 0.397(0.159)

Teacher 90.6%(7.0) 97.3%(3.3) 98.6%(1.3) 81.3%(3.2) 0.989(0.011) 0.933(0.067) 0.948(0.005) 19.871(0.129) 18.840(1.160) 2.747(1.034) 0.050(0.000) 0.050(0.000) 0.350(0.206)
SSD 73.6%(24.0) 80.0%(14.0) 99.8%(0.0) 84.5%(0.1) 0.997(0.003) 0.980(0.020) 0.955(0.001) 19.206(0.794) 17.740(2.260) 2.407(0.694) 0.052(0.002) 0.055(0.005) 0.423(0.133)

NegGrad+ 98.9%(1.3) 100.0%(6.0) 97.0%(2.8) 80.9%(3.7) 1.000(0.000) 1.000(0.000) 0.950(0.003) 20.000(0.000) 20.000(0.000) 2.761(1.048) 0.050(0.000) 0.050(0.000) 0.372(0.184)
Salun 99.9%(2.3) 96.0%(2.0) 98.8%(1.0) 78.9%(5.6) 0.955(0.045) 0.993(0.007) 0.951(0.002) 19.235(0.765) 19.707(0.293) 2.737(1.023) 0.050(0.000) 0.050(0.000) 0.348(0.208)

SFRon 99.9%(2.3) 100.0%(6.0) 91.9%(7.9) 79.7%(4.9) 1.000(0.000) 1.000(0.000) 0.951(0.003) 20.000(0.000) 20.000(0.000) 2.587(0.874) 0.050(0.000) 0.050(0.000) 0.370(0.186)

Subclass-wise Forgetting Scenario To further verify our metrics in other forgetting scenarios, we
report subclass-wise forgetting results on CIFAR-20 (derived from CIFAR-100) using ResNet-18,
following the setting proposed in Foster et al. (2024). As shown in the Table 10, the findings align
well with our prior analysis.

H LARGE LANGUAGE MODELS USAGE STATEMENT

We used a large language model (LLM) to polish the language and improve the clarity of the paper.
All content, including the core ideas, methodology, and experimental results, was originally created by
the authors. The LLM was used exclusively as an editing tool to enhance readability and grammatical
correctness, without generating any substantive or technical content.
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Figure 7: Softmax distribution in 10% random data forgetting scenario. We analyze the softmax distributions
of true labels for data identified as truly forgotten by CR and UA, respectively. The distribution curves are fitted
using KDE for clearer visualization. The results illustrate the softmax distributions of CR consistently closer
to 0 when compared to UA, providing strong evidence that CR is better than UA in accurately capturing and
measuring ‘real forgetting’.
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Figure 8: Softmax distribution in 50% random data forgetting scenario.
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Figure 9: Loss distribution in 10% random data forgetting scenario. We analyze the cross-entropy loss
distributions of true labels for data identified as truly forgotten by CR and UA, respectively. Forgotten data
identified by CR consistently show higher cross-entropy loss than UA. Higher loss indicates better forgetting
quality, which further validates that CR better captures ‘real forgetting’.
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Figure 10: Loss distribution in 50% random data forgetting scenario.
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Table 11: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet-18 in 10%
random data forgetting scenario. The results are reported in the format a±b, where a is the mean
and b is the standard deviation from 3 independent trials. The performance gap relative to the RT
method is represented in (•).

Coverage Set Size CRMethods α Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑ q̂

RT
0.05 0.941±0.002(0.000) 0.944±0.005(0.000) 1.089±0.002(0.000) 1.074±0.011(0.000) 0.864±0.004(0.000) 0.879±0.004(0.000) 0.883±0.007

0.1 0.881±0.000(0.000) 0.895±0.010(0.000) 0.934±0.004(0.000) 0.947±0.008(0.000) 0.943±0.011(0.000) 0.945±0.001(0.000) 0.192±0.001

UA8.6%, RA99.7%, TA91.8% 0.15 0.820±0.002(0.000) 0.839±0.008(0.000) 0.841±0.009(0.000) 0.867±0.009(0.000) 0.975±0.001(0.000) 0.968±0.003(0.000) 0.015±0.011

0.2 0.780±0.007(0.000) 0.808±0.004(0.000) 0.789±0.002(0.000) 0.824±0.009(0.000) 0.988±0.006(0.000) 0.981±0.007(0.000) 0.003±0.002

FT
0.05 0.994±0.001(0.053) 0.951±0.004(0.007) 1.008±0.003(0.081) 1.026±0.008(0.048) 0.986±0.003(0.122) 0.927±0.004(0.048) 0.721±0.045

0.1 0.968±0.001(0.087) 0.899±0.005(0.004) 0.969±0.001(0.035) 0.924±0.008(0.023) 0.998±0.001(0.055) 0.972±0.003(0.027) 0.079±0.013

UA3.8%, RA98.1%, TA91.6% 0.15 0.915±0.003(0.095) 0.848±0.002(0.009) 0.916±0.003(0.075) 0.860±0.001(0.007) 1.000±0.000(0.025) 0.986±0.002(0.018) 0.008±0.000

0.2 0.861±0.010(0.081) 0.806±0.008(0.002) 0.861±0.010(0.072) 0.811±0.009(0.013) 1.000±0.000(0.012) 0.993±0.001(0.012) 0.002±0.000

RL
0.05 0.970±0.006(0.029) 0.949±0.005(0.005) 1.242±0.151(0.153) 1.197±0.098(0.123) 0.788±0.089(0.076) 0.796±0.061(0.083) 0.877±0.057

0.1 0.913±0.010(0.032) 0.897±0.007(0.002) 0.975±0.028(0.041) 0.980±0.025(0.033) 0.936±0.022(0.007) 0.916±0.019(0.029) 0.572±0.059

UA7.6%, RA97.4%, TA90.6% 0.15 0.825±0.006(0.005) 0.843±0.009(0.004) 0.854±0.010(0.013) 0.888±0.017(0.021) 0.966±0.006(0.009) 0.949±0.009(0.019) 0.329±0.021

0.2 0.755±0.021(0.025) 0.798±0.005(0.010) 0.774±0.020(0.015) 0.832±0.009(0.008) 0.976±0.002(0.012) 0.959±0.005(0.022) 0.234±0.028

GA
0.05 0.994±0.003(0.053) 0.945±0.008(0.001) 1.002±0.010(0.087) 1.009±0.010(0.065) 0.994±0.016(0.130) 0.936±0.011(0.057) 0.621±0.015

0.1 0.990±0.005(0.109) 0.905±0.019(0.010) 0.990±0.014(0.056) 0.928±0.005(0.019) 0.998±0.002(0.055) 0.973±0.012(0.028) 0.062±0.016

UA0.6%, RA99.5%, TA94.1% 0.15 0.969±0.012(0.149) 0.848±0.004(0.009) 0.969±0.014(0.128) 0.858±0.019(0.009) 1.000±0.014(0.025) 0.986±0.008(0.018) 0.006±0.009

0.2 0.925±0.012(0.145) 0.805±0.022(0.003) 0.924±0.007(0.135) 0.811±0.013(0.013) 0.998±0.013(0.010) 0.992±0.012(0.011) 0.003±0.005

Teacher
0.05 0.991±0.022(0.050) 0.941±0.001(0.003) 1.003±0.012(0.086) 1.021±0.009(0.053) 0.993±0.021(0.129) 0.922±0.015(0.043) 0.744±0.015

0.1 0.967±0.000(0.086) 0.898±0.007(0.003) 0.963±0.007(0.029) 0.929±0.018(0.018) 0.998±0.000(0.055) 0.969±0.013(0.024) 0.591±0.005

UA0.8%, RA99.4%, TA93.5% 0.15 0.913±0.006(0.093) 0.845±0.007(0.006) 0.912±0.014(0.071) 0.859±0.005(0.008) 0.996±0.018(0.021) 0.983±0.015(0.015) 0.481±0.009

0.2 0.865±0.009(0.085) 0.806±0.021(0.002) 0.866±0.009(0.077) 0.816±0.012(0.008) 0.998±0.008(0.010) 0.988±0.016(0.007) 0.426±0.007

SSD
0.05 0.996±0.004(0.055) 0.945±0.002(0.001) 0.999±0.019(0.090) 1.008±0.011(0.066) 0.994±0.006(0.130) 0.936±0.014(0.057) 0.622±0.019

0.1 0.987±0.003(0.106) 0.902±0.010(0.007) 0.990±0.003(0.056) 0.926±0.017(0.021) 0.998±0.020(0.055) 0.973±0.002(0.028) 0.063±0.022

UA0.5%, RA99.5%, TA94.2% 0.15 0.967±0.016(0.147) 0.849±0.009(0.010) 0.965±0.000(0.124) 0.862±0.012(0.005) 1.002±0.019(0.027) 0.990±0.002(0.022) 0.007±0.007

0.2 0.922±0.006(0.142) 0.803±0.000(0.005) 0.923±0.009(0.134) 0.811±0.005(0.013) 1.002±0.020(0.014) 0.992±0.009(0.011) 0.001±0.005

NegGrad+
0.05 0.934±0.007(0.007) 0.948±0.007(0.004) 1.068±0.017(0.021) 1.086±0.022(0.012) 0.875±0.008(0.011) 0.873±0.011(0.006) 0.989±0.013

0.1 0.895±0.004(0.014) 0.898±0.008(0.003) 0.964±0.008(0.030) 0.950±0.013(0.003) 0.928±0.005(0.015) 0.946±0.005(0.001) 0.044±0.041

UA8.7%, RA98.8%, TA92.2% 0.15 0.851±0.013(0.031) 0.851±0.016(0.012) 0.896±0.016(0.055) 0.876±0.019(0.009) 0.950±0.003(0.025) 0.971±0.003(0.003) 0.000±0.000

0.2 0.800±0.006(0.020) 0.799±0.001(0.009) 0.832±0.006(0.043) 0.813±0.001(0.011) 0.961±0.002(0.027) 0.983±0.001(0.002) 0.000±0.000

Salun
0.05 0.987±0.002(0.046) 0.950±0.001(0.006) 1.132±0.007(0.043) 1.143±0.002(0.069) 0.872±0.006(0.008) 0.832±0.003(0.047) 0.867±0.001

0.1 0.936±0.010(0.055) 0.896±0.008(0.001) 0.956±0.012(0.022) 0.954±0.011(0.007) 0.979±0.003(0.036) 0.939±0.003(0.006) 0.489±0.029

UA3.7%, RA98.9%, TA91.8% 0.15 0.871±0.005(0.051) 0.849±0.008(0.010) 0.881±0.006(0.040) 0.886±0.010(0.019) 0.989±0.002(0.014) 0.958±0.002(0.010) 0.314±0.020

0.2 0.788±0.010(0.008) 0.794±0.001(0.014) 0.794±0.010(0.005) 0.821±0.004(0.003) 0.992±0.001(0.004) 0.966±0.003(0.015) 0.221±0.005

SFRon
0.05 0.977±0.003(0.036) 0.953±0.004(0.009) 1.100±0.023(0.011) 1.143±0.021(0.069) 0.889±0.015(0.025) 0.834±0.012(0.045) 0.926±0.018

0.1 0.945±0.004(0.064) 0.905±0.005(0.010) 0.986±0.005(0.052) 0.977±0.008(0.030) 0.958±0.001(0.015) 0.927±0.003(0.018) 0.435±0.043

UA4.8%, RA97.4%, TA91.4% 0.15 0.895±0.002(0.075) 0.847±0.002(0.008) 0.912±0.004(0.071) 0.879±0.001(0.012) 0.982±0.002(0.007) 0.963±0.003(0.005) 0.082±0.007

0.2 0.857±0.008(0.077) 0.808±0.002(0.000) 0.868±0.007(0.079) 0.826±0.005(0.002) 0.988±0.002(0.000) 0.978±0.004(0.003) 0.025±0.005

Table 12: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet18 in 50%
random data forgetting scenario.

Coverage Set Size CRMethods α Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑ q̂

RT
0.05 0.955±0.004(0.000) 0.947±0.005(0.000) 1.287±0.001(0.000) 1.214±0.010(0.000) 0.742±0.005(0.000) 0.780±0.006(0.000) 0.984±0.002

0.1 0.898±0.011(0.000) 0.904±0.010(0.000) 1.023±0.005(0.000) 1.021±0.003(0.000) 0.878±0.003(0.000) 0.886±0.003(0.000) 0.650±0.004

UA11.0%, RA99.8%, TA89.2% 0.15 0.833±0.007(0.000) 0.847±0.005(0.000) 0.883±0.002(0.000) 0.906±0.003(0.000) 0.943±0.010(0.000) 0.934±0.005(0.000) 0.090±0.004

0.2 0.782±0.005(0.000) 0.814±0.004(0.000) 0.812±0.010(0.000) 0.850±0.009(0.000) 0.964±0.005(0.000) 0.958±0.003(0.000) 0.018±0.006

FT
0.05 0.996±0.000(0.041) 0.952±0.002(0.005) 1.007±0.000(0.280) 1.029±0.004(0.185) 0.989±0.001(0.247) 0.925±0.002(0.145) 0.738±0.014

0.1 0.975±0.006(0.077) 0.896±0.013(0.008) 0.976±0.006(0.047) 0.921±0.017(0.100) 0.999±0.000(0.121) 0.972±0.004(0.086) 0.081±0.033

UA2.6%, RA99.1%, TA91.8% 0.15 0.936±0.004(0.103) 0.854±0.004(0.007) 0.936±0.004(0.053) 0.867±0.006(0.039) 1.000±0.000(0.057) 0.985±0.002(0.051) 0.011±0.002

0.2 0.859±0.010(0.077) 0.790±0.010(0.024) 0.859±0.010(0.047) 0.795±0.011(0.055) 1.000±0.000(0.036) 0.993±0.001(0.035) 0.001±0.000

RL
0.05 0.976±0.001(0.022) 0.949±0.002(0.002) 1.973±0.396(0.686) 1.971±0.406(0.757) 0.508±0.100(0.234) 0.495±0.098(0.285) 0.899±0.012

0.1 0.942±0.011(0.043) 0.907±0.009(0.003) 1.227±0.103(0.204) 1.235±0.107(0.214) 0.771±0.064(0.107) 0.738±0.064(0.147) 0.837±0.016

UA10.5%, RA93.9%, TA85.8% 0.15 0.891±0.013(0.058) 0.856±0.012(0.009) 1.009±0.047(0.125) 1.011±0.045(0.105) 0.884±0.039(0.059) 0.847±0.037(0.087) 0.770±0.022

0.2 0.834±0.003(0.051) 0.799±0.005(0.016) 0.897±0.026(0.086) 0.893±0.025(0.043) 0.929±0.024(0.034) 0.895±0.022(0.063) 0.713±0.028

GA
0.05 0.996±0.000(0.041) 0.945±0.008(0.002) 1.003±0.007(0.284) 1.005±0.007(0.209) 1.050±0.007(0.308) 0.945±0.007(0.165) 0.616±0.008

0.1 0.985±0.006(0.087) 0.902±0.009(0.002) 0.989±0.006(0.034) 0.926±0.006(0.095) 1.095±0.004(0.217) 0.916±0.006(0.030) 0.057±0.005

UA0.6%, RA99.5%, TA94.3% 0.15 0.966±0.006(0.133) 0.848±0.007(0.001) 0.966±0.002(0.083) 0.857±0.009(0.049) 1.141±0.001(0.198) 0.879±0.006(0.055) 0.005±0.007

0.2 0.929±0.004(0.147) 0.809±0.007(0.005) 0.932±0.000(0.120) 0.817±0.005(0.033) 1.150±0.002(0.186) 0.871±0.001(0.087) 0.001±0.007

Teacher
0.05 0.985±0.015(0.030) 0.944±0.018(0.003) 1.066±0.003(0.221) 1.143±0.012(0.071) 0.923±0.010(0.181) 0.823±0.017(0.043) 0.857±0.013

0.1 0.949±0.012(0.051) 0.909±0.016(0.005) 0.970±0.006(0.053) 0.986±0.014(0.035) 0.980±0.001(0.102) 0.918±0.009(0.032) 0.834±0.005

UA1.6%, RA98.3%, TA91.7% 0.15 0.885±0.010(0.052) 0.849±0.018(0.002) 0.894±0.017(0.011) 0.893±0.010(0.013) 0.992±0.002(0.049) 0.950±0.013(0.016) 0.813±0.013

0.2 0.818±0.014(0.036) 0.798±0.014(0.016) 0.823±0.009(0.011) 0.826±0.002(0.024) 0.997±0.015(0.033) 0.971±0.007(0.013) 0.793±0.012

SSD
0.05 0.993±0.005(0.038) 0.944±0.011(0.003) 0.999±0.007(0.288) 1.001±0.009(0.213) 0.995±0.009(0.253) 0.941±0.013(0.161) 0.585±0.014

0.1 0.991±0.015(0.093) 0.904±0.014(0.000) 0.991±0.001(0.032) 0.929±0.011(0.092) 1.000±0.011(0.122) 0.975±0.010(0.089) 0.060±0.011

UA0.5%, RA99.5%, TA94.3% 0.15 0.964±0.016(0.131) 0.850±0.011(0.003) 0.967±0.009(0.084) 0.860±0.014(0.046) 1.000±0.001(0.057) 0.988±0.003(0.054) 0.005±0.010

0.2 0.930±0.018(0.148) 0.807±0.002(0.007) 0.929±0.002(0.117) 0.814±0.017(0.036) 1.000±0.003(0.036) 0.992±0.001(0.034) 0.002±0.005

NegGrad+
0.05 0.986±0.000(0.031) 0.949±0.001(0.001) 1.039±0.008(0.248) 1.062±0.011(0.152) 0.949±0.008(0.207) 0.893±0.008(0.113) 0.855±0.028

0.1 0.951±0.005(0.053) 0.903±0.004(0.001) 0.964±0.008(0.059) 0.944±0.010(0.076) 0.987±0.003(0.109) 0.956±0.007(0.070) 0.177±0.055

UA2.8%, RA99.6%, TA92.9% 0.15 0.889±0.004(0.056) 0.845±0.003(0.002) 0.892±0.004(0.009) 0.861±0.003(0.045) 0.996±0.000(0.053) 0.981±0.001(0.047) 0.012±0.002

0.2 0.825±0.003(0.043) 0.796±0.004(0.018) 0.827±0.003(0.015) 0.805±0.004(0.045) 0.999±0.000(0.035) 0.989±0.000(0.032) 0.002±0.000

Salun
0.05 0.988±0.001(0.034) 0.951±0.003(0.004) 1.314±0.113(0.027) 1.381±0.121(0.167) 0.756±0.064(0.014) 0.692±0.058(0.088) 0.871±0.013

0.1 0.956±0.003(0.058) 0.897±0.005(0.007) 1.015±0.003(0.008) 1.021±0.001(0.001) 0.941±0.006(0.064) 0.878±0.004(0.007) 0.776±0.002

UA4.3%, RA97.7%, TA89.4% 0.15 0.910±0.005(0.078) 0.847±0.006(0.000) 0.937±0.009(0.054) 0.916±0.008(0.010) 0.972±0.004(0.029) 0.924±0.003(0.010) 0.714±0.010

0.2 0.856±0.008(0.074) 0.796±0.010(0.019) 0.872±0.008(0.060) 0.844±0.008(0.006) 0.982±0.003(0.019) 0.943±0.004(0.015) 0.669±0.008

SFRon
0.05 0.977±0.003(0.022) 0.953±0.004(0.006) 1.100±0.023(0.188) 1.143±0.021(0.071) 0.889±0.015(0.147) 0.834±0.012(0.054) 0.926±0.018

0.1 0.945±0.004(0.047) 0.905±0.005(0.001) 0.986±0.005(0.037) 0.977±0.008(0.044) 0.958±0.001(0.081) 0.927±0.003(0.042) 0.435±0.043

UA4.0%, RA97.3%, TA91.6% 0.15 0.895±0.002(0.062) 0.847±0.002(0.000) 0.912±0.004(0.029) 0.879±0.001(0.027) 0.982±0.002(0.039) 0.963±0.003(0.029) 0.082±0.007

0.2 0.857±0.008(0.075) 0.808±0.002(0.006) 0.868±0.007(0.056) 0.826±0.005(0.024) 0.988±0.002(0.024) 0.978±0.004(0.020) 0.025±0.005
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Table 13: Unlearning performance of 9 unlearning methods on CIFAR-10 with ResNet18 in class-
wise forgetting scenario.

Coverage Set Size CRMethods α Df ↓ Dtf ↓ Dtr ↑ Df ↑ Dtf ↑ Dtr ↓ Df ↓ Dtf ↓ Dtr ↑ q̂f q̂test

RT
0.05 1.000±0.001(0.000) 1.000±0.001(0.000) 0.964±0.008(0.000) 10.000±0.000(0.000) 10.000±0.000(0.000) 1.148±0.013(0.000) 0.100±0.000(0.000) 0.100±0.000(0.000) 0.840±0.002(0.000) 1.000±0.000 0.982±0.003

0.1 1.000±0.000(0.000) 1.000±0.001(0.000) 0.882±0.011(0.000) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.922±0.009(0.000) 0.100±0.000(0.000) 0.100±0.001(0.000) 0.956±0.007(0.000) 1.000±0.001 0.080±0.003

UA100%, UAtf100%, 0.15 1.000±0.000(0.000) 1.000±0.000(0.000) 0.856±0.012(0.000) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.882±0.007(0.000) 0.100±0.001(0.000) 0.100±0.001(0.000) 0.970±0.004(0.000) 1.000±0.000 0.018±0.010

RA99.9%, TA92.4% 0.2 1.000±0.000(0.000) 1.000±0.000(0.000) 0.814±0.010(0.000) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.830±0.001(0.000) 0.100±0.001(0.000) 0.100±0.001(0.000) 0.981±0.002(0.000) 1.000±0.000 0.003±0.001

FT
0.05 0.994±0.003(0.006) 0.962±0.022(0.038) 0.944±0.011(0.020) 9.854±0.127(0.146) 9.403±0.501(0.597) 1.045±0.040(0.103) 0.101±0.001(0.001) 0.102±0.003(0.002) 0.904±0.028(0.065) 1.000±0.000 0.731±0.166

0.1 0.969±0.011(0.031) 0.882±0.020(0.118) 0.908±0.010(0.026) 9.495±0.255(0.505) 8.528±0.571(1.472) 0.956±0.006(0.034) 0.102±0.002(0.002) 0.104±0.005(0.004) 0.950±0.007(0.006) 1.000±0.000 0.314±0.010

UA100%, UAtf100%, 0.15 0.951±0.014(0.049) 0.840±0.011(0.160) 0.851±0.031(0.005) 9.265±0.279(0.735) 8.131±0.523(1.869) 0.872±0.039(0.010) 0.103±0.003(0.003) 0.103±0.007(0.003) 0.976±0.009(0.006) 1.000±0.000 0.073±0.054

RA96.7%, TA90.8% 0.2 0.942±0.014(0.058) 0.818±0.072(0.182) 0.838±0.016(0.023) 9.163±0.245(0.837) 7.934±0.533(2.066) 0.854±0.019(0.024) 0.103±0.003(0.003) 0.103±0.010(0.003) 0.981±0.005(0.000) 1.000±0.000 0.039±0.017

RL
0.05 0.995±0.002(0.005) 0.954±0.009(0.046) 0.959±0.015(0.005) 9.993±0.003(0.007) 9.900±0.011(0.100) 1.170±0.155(0.022) 0.100±0.000(0.000) 0.096±0.001(0.004) 0.828±0.097(0.012) 1.000±0.000 0.870±0.145

0.1 0.984±0.003(0.016) 0.907±0.015(0.093) 0.918±0.021(0.036) 9.978±0.004(0.022) 9.800±0.019(0.200) 0.982±0.036(0.059) 0.099±0.000(0.001) 0.093±0.002(0.007) 0.936±0.022(0.021) 1.000±0.000 0.469±0.250

UA100%, UAtf100%, 0.15 0.961±0.009(0.039) 0.859±0.014(0.141) 0.870±0.019(0.014) 9.950±0.017(0.050) 9.700±0.066(0.300) 0.904±0.045(0.021) 0.097±0.001(0.003) 0.089±0.001(0.011) 0.964±0.027(0.006) 1.000±0.000 0.144±0.163

RA98.0%, TA92.7% 0.2 0.935±0.027(0.065) 0.815±0.012(0.185) 0.804±0.016(0.010) 9.919±0.035(0.081) 9.637±0.076(0.363) 0.820±0.026(0.010) 0.094±0.002(0.006) 0.085±0.001(0.015) 0.981±0.012(0.000) 0.999±0.001 0.014±0.013

GA
0.05 1.000±0.003(0.000) 1.000±0.005(0.000) 0.948±0.004(0.016) 10.000±0.009(0.000) 10.000±0.003(0.000) 1.204±0.002(0.056) 0.100±0.007(0.000) 0.100±0.011(0.000) 0.787±0.011(0.053) 1.000±0.010 0.988±0.000

0.1 1.000±0.003(0.000) 1.000±0.010(0.000) 0.899±0.008(0.017) 10.000±0.005(0.000) 10.000±0.006(0.000) 1.005±0.003(0.083) 0.100±0.012(0.000) 0.100±0.006(0.000) 0.894±0.002(0.062) 1.000±0.000 0.562±0.003

UA84.6%, UAtf82.5%, 0.15 1.000±0.006(0.000) 1.000±0.001(0.000) 0.843±0.011(0.013) 10.000±0.005(0.000) 10.000±0.006(0.000) 0.893±0.010(0.011) 0.100±0.004(0.000) 0.100±0.008(0.000) 0.944±0.007(0.026) 1.000±0.001 0.051±0.002

RA96.4%, TA89.6% 0.2 0.828±0.003(0.172) 0.782±0.011(0.218) 0.838±0.010(0.024) 9.550±0.007(0.450) 9.366±0.002(0.634) 0.884±0.000(0.054) 0.087±0.008(0.013) 0.084±0.005(0.016) 0.948±0.010(0.033) 1.000±0.002 0.038±0.003

Teacher
0.05 0.994±0.003(0.006) 0.959±0.002(0.041) 0.939±0.003(0.025) 9.877±0.000(0.123) 9.502±0.003(0.498) 1.000±0.004(0.148) 0.101±0.004(0.001) 0.101±0.004(0.001) 0.939±0.001(0.099) 0.955±0.005 0.588±0.004

0.1 0.931±0.000(0.069) 0.904±0.001(0.096) 0.890±0.001(0.008) 9.199±0.002(0.801) 8.604±0.004(1.396) 0.914±0.004(0.008) 0.101±0.004(0.001) 0.105±0.004(0.005) 0.974±0.003(0.018) 0.926±0.004 0.116±0.005

UA90.1%, UAtf86.5%, 0.15 0.879±0.004(0.121) 0.881±0.001(0.119) 0.834±0.001(0.022) 8.730±0.002(1.270) 8.081±0.001(1.919) 0.845±0.005(0.037) 0.101±0.004(0.001) 0.109±0.002(0.009) 0.986±0.004(0.016) 0.921±0.001 0.017±0.002

RA99.5%, TA94.0% 0.2 0.809±0.004(0.191) 0.841±0.004(0.159) 0.816±0.000(0.002) 8.141±0.003(1.859) 7.525±0.003(2.475) 0.824±0.003(0.006) 0.099±0.002(0.001) 0.112±0.003(0.012) 0.990±0.002(0.009) 0.916±0.005 0.010±0.003

SSD
0.05 0.995±0.014(0.005) 0.935±0.013(0.065) 0.940±0.007(0.024) 1.030±0.014(8.970) 1.067±0.013(8.933) 0.991±0.011(0.157) 0.966±0.010(0.866) 0.876±0.007(0.776) 0.949±0.010(0.109) 0.804±0.015 0.447±0.007

0.1 0.984±0.021(0.016) 0.910±0.009(0.090) 0.880±0.001(0.002) 0.992±0.011(9.008) 0.982±0.005(9.018) 0.896±0.003(0.026) 0.992±0.003(0.892) 0.926±0.017(0.826) 0.981±0.012(0.025) 0.434±0.007 0.022±0.005

UA1.16%, UAtf7.75%, 0.15 0.960±0.012(0.040) 0.876±0.011(0.124) 0.847±0.007(0.009) 0.962±0.007(9.038) 0.931±0.006(9.069) 0.857±0.013(0.025) 0.998±0.016(0.898) 0.941±0.002(0.841) 0.989±0.002(0.019) 0.215±0.007 0.005±0.017

RA99.5%, TA94.3% 0.2 0.895±0.020(0.105) 0.816±0.010(0.184) 0.823±0.015(0.009) 0.895±0.014(9.105) 0.850±0.004(9.150) 0.831±0.002(0.001) 0.999±0.001(0.899) 0.960±0.014(0.860) 0.991±0.003(0.010) 0.078±0.003 0.002±0.009

NegGrad+
0.05 0.989±0.016(0.011) 0.961±0.056(0.039) 0.945±0.027(0.019) 9.432±0.803(0.568) 9.038±1.360(0.962) 1.053±0.020(0.096) 0.105±0.007(0.005) 0.107±0.010(0.007) 0.897±0.008(0.058) 1.000±0.000 0.835±0.085

0.1 0.980±0.029(0.020) 0.954±0.065(0.046) 0.881±0.028(0.001) 9.250±1.061(0.750) 8.836±1.647(1.164) 0.913±0.018(0.009) 0.106±0.009(0.006) 0.109±0.013(0.009) 0.965±0.012(0.009) 1.000±0.000 0.057±0.021

UA96.2%, UAtf95.2%, 0.15 0.952±0.068(0.048) 0.908±0.130(0.092) 0.849±0.026(0.007) 8.600±1.980(1.400) 8.077±2.719(1.923) 0.868±0.016(0.014) 0.113±0.018(0.013) 0.116±0.023(0.016) 0.977±0.012(0.007) 1.000±0.000 0.012±0.003

RA97.6%, TA92.8% 0.2 0.958±0.060(0.042) 0.921±0.111(0.079) 0.814±0.007(0.001) 8.673±1.876(1.327) 8.219±2.519(1.781) 0.828±0.020(0.002) 0.112±0.017(0.012) 0.115±0.022(0.015) 0.983±0.015(0.001) 1.000±0.000 0.004±0.003

Salun
0.05 0.996±0.001(0.004) 0.941±0.008(0.059) 0.952±0.001(0.012) 9.996±0.002(0.004) 9.892±0.003(0.108) 1.028±0.008(0.121) 0.100±0.000(0.000) 0.095±0.001(0.005) 0.926±0.008(0.087) 1.000±0.000 0.785±0.049

0.1 0.988±0.004(0.012) 0.906±0.011(0.094) 0.901±0.002(0.020) 9.985±0.003(0.015) 9.817±0.045(0.183) 0.928±0.006(0.006) 0.099±0.000(0.001) 0.092±0.001(0.008) 0.971±0.004(0.015) 1.000±0.000 0.042±0.011

UA100%, UAtf100%, 0.15 0.960±0.003(0.040) 0.851±0.005(0.149) 0.878±0.006(0.022) 9.952±0.000(0.048) 9.677±0.088(0.323) 0.896±0.005(0.013) 0.096±0.000(0.004) 0.088±0.000(0.012) 0.980±0.001(0.010) 1.000±0.000 0.009±0.001

RA99.6%, TA94.3% 0.2 0.915±0.019(0.085) 0.807±0.038(0.193) 0.820±0.035(0.005) 9.893±0.024(0.107) 9.511±0.192(0.489) 0.828±0.039(0.002) 0.092±0.002(0.008) 0.085±0.002(0.015) 0.990±0.004(0.009) 1.000±0.000 0.001±0.001

SFRon
0.05 1.000±0.000(0.000) 1.000±0.000(0.000) 0.952±0.005(0.013) 10.000±0.000(0.000) 10.000±0.000(0.000) 1.022±0.030(0.127) 0.100±0.000(0.000) 0.100±0.000(0.000) 0.932±0.024(0.092) 1.000±0.000 0.677±0.206

0.1 1.000±0.000(0.000) 1.000±0.000(0.000) 0.908±0.013(0.026) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.937±0.028(0.014) 0.100±0.000(0.000) 0.100±0.000(0.000) 0.970±0.015(0.014) 1.000±0.000 0.089±0.092

UA100%, UAtf100%, 0.15 1.000±0.000(0.000) 1.000±0.000(0.000) 0.840±0.026(0.016) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.849±0.026(0.033) 0.100±0.000(0.000) 0.100±0.000(0.000) 0.989±0.003(0.019) 1.000±0.000 0.002±0.001

RA99.3%, TA94.4% 0.2 1.000±0.000(0.000) 1.000±0.000(0.000) 0.807±0.024(0.008) 10.000±0.000(0.000) 10.000±0.000(0.000) 0.813±0.025(0.017) 0.100±0.000(0.000) 0.100±0.000(0.000) 0.992±0.003(0.010) 1.000±0.000 0.001±0.001

Table 14: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in 10%
random data forgetting scenario.

Coverage Set Size CRMethods α Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑ q̂

RT
0.05 0.944±0.006(0.000) 0.949±0.026(0.000) 1.876±0.009(0.000) 1.840±0.014(0.000) 0.503±0.018(0.000) 0.516±0.018(0.000) 0.984±0.002

0.1 0.892±0.006(0.000) 0.900±0.025(0.000) 1.151±0.002(0.000) 1.144±0.018(0.000) 0.775±0.016(0.000) 0.786±0.026(0.000) 0.853±0.003

UA14.7%, RA98.8%, TA86.0% 0.15 0.841±0.024(0.000) 0.850±0.017(0.000) 0.956±0.014(0.000) 0.956±0.017(0.000) 0.880±0.014(0.000) 0.889±0.019(0.000) 0.539±0.001

0.2 0.790±0.015(0.000) 0.799±0.023(0.000) 0.846±0.004(0.000) 0.854±0.014(0.000) 0.934±0.012(0.000) 0.935±0.015(0.000) 0.238±0.012

FT
0.05 0.994±0.005(0.050) 0.950±0.019(0.001) 2.133±0.008(0.257) 2.440±0.011(0.600) 0.466±0.009(0.037) 0.389±0.016(0.127) 0.994±0.020

0.1 0.978±0.007(0.086) 0.903±0.003(0.003) 1.234±0.010(0.083) 1.317±0.001(0.173) 0.792±0.018(0.017) 0.685±0.001(0.101) 0.935±0.012

UA6.9%, RA97.9%, TA84.1% 0.15 0.938±0.001(0.097) 0.851±0.010(0.001) 1.014±0.005(0.058) 1.017±0.016(0.061) 0.925±0.007(0.045) 0.836±0.016(0.053) 0.681±0.003

0.2 0.888±0.009(0.098) 0.801±0.012(0.002) 0.915±0.006(0.069) 0.885±0.000(0.031) 0.970±0.020(0.036) 0.905±0.005(0.030) 0.326±0.011

RL
0.05 0.969±0.021(0.025) 0.952±0.008(0.003) 17.890±0.003(16.014) 8.572±0.010(6.732) 0.054±0.013(0.449) 0.111±0.002(0.405) 0.996±0.019

0.1 0.892±0.017(0.000) 0.902±0.013(0.002) 2.639±0.017(1.488) 1.843±0.019(0.699) 0.338±0.022(0.437) 0.489±0.013(0.297) 0.971±0.014

UA26.9%, RA96.0%, TA81.4% 0.15 0.793±0.021(0.048) 0.855±0.008(0.005) 1.225±0.013(0.269) 1.164±0.000(0.208) 0.648±0.002(0.232) 0.734±0.000(0.155) 0.894±0.022

0.2 0.681±0.010(0.109) 0.803±0.003(0.004) 0.831±0.006(0.015) 0.946±0.011(0.092) 0.820±0.022(0.114) 0.849±0.006(0.086) 0.715±0.013

GA
0.05 0.996±0.003(0.052) 0.947±0.002(0.002) 1.539±0.004(0.337) 2.018±0.007(0.178) 0.647±0.003(0.144) 0.469±0.002(0.047) 0.988±0.004

0.1 0.986±0.006(0.094) 0.900±0.000(0.000) 1.104±0.006(0.047) 1.224±0.005(0.080) 0.894±0.003(0.119) 0.736±0.006(0.050) 0.899±0.001

UA3.2%, RA97.4%, TA84.9% 0.15 0.967±0.002(0.126) 0.852±0.005(0.002) 1.003±0.008(0.047) 0.993±0.004(0.037) 0.964±0.005(0.084) 0.859±0.006(0.030) 0.632±0.009

0.2 0.934±0.001(0.144) 0.800±0.007(0.001) 0.946±0.008(0.100) 0.871±0.008(0.017) 0.987±0.008(0.053) 0.919±0.005(0.016) 0.296±0.009

Teacher
0.05 0.977±0.004(0.033) 0.956±0.003(0.007) 5.473±0.006(3.597) 5.080±0.004(3.240) 0.179±0.008(0.324) 0.188±0.002(0.328) 0.987±0.008

0.1 0.930±0.003(0.038) 0.902±0.008(0.002) 1.991±0.004(0.840) 1.959±0.002(0.815) 0.467±0.004(0.308) 0.460±0.002(0.326) 0.971±0.007

UA17.3%, RA86.7%, TA79.0% 0.15 0.873±0.003(0.032) 0.850±0.009(0.000) 1.295±0.006(0.339) 1.319±0.005(0.363) 0.674±0.007(0.206) 0.645±0.003(0.244) 0.944±0.006

0.2 0.816±0.007(0.026) 0.803±0.009(0.004) 1.020±0.006(0.174) 1.058±0.004(0.204) 0.800±0.005(0.134) 0.758±0.005(0.177) 0.910±0.006

SSD
0.05 0.998±0.004(0.054) 0.950±0.006(0.001) 1.354±0.008(0.522) 1.827±0.002(0.013) 0.737±0.008(0.234) 0.520±0.008(0.004) 0.985±0.005

0.1 0.993±0.008(0.101) 0.897±0.008(0.003) 1.039±0.002(0.112) 1.134±0.008(0.010) 0.956±0.007(0.181) 0.791±0.002(0.005) 0.852±0.001

UA1.5%, RA98.5%, TA86.1% 0.15 0.981±0.005(0.140) 0.853±0.001(0.003) 0.993±0.001(0.037) 0.962±0.005(0.006) 0.988±0.004(0.108) 0.887±0.004(0.002) 0.542±0.007

0.2 0.956±0.002(0.166) 0.805±0.003(0.006) 0.960±0.003(0.114) 0.864±0.009(0.010) 0.996±0.005(0.062) 0.932±0.002(0.003) 0.249±0.006

NegGrad+
0.05 0.999±0.000(0.146) 0.890±0.002(0.030) 0.949±0.002(0.005) 1.614±0.023(0.665) 1.052±0.002(0.823) 0.552±0.007(1.289) 0.995±0.000

0.1 0.995±0.001(0.144) 0.848±0.000(0.013) 0.898±0.000(0.005) 1.093±0.005(0.193) 1.109±0.001(0.042) 0.775±0.003(0.369) 0.933±0.002

UA19.4%, RA98.3%, TA84.0% 0.15 0.987±0.000(0.137) 0.814±0.001(0.047) 0.850±0.001(0.009) 1.009±0.000(0.159) 1.161±0.001(0.206) 0.807±0.002(0.149) 0.685±0.002

0.2 0.966±0.001(0.108) 0.783±0.003(0.078) 0.802±0.002(0.012) 0.972±0.000(0.173) 1.205±0.004(0.359) 0.805±0.003(0.049) 0.320±0.001

Salun
0.05 0.995±0.003(0.142) 0.964±0.026(0.103) 2.803±1.607(1.859) 2.726±0.727(1.777) 0.528±0.454(1.347) 0.376±0.129(1.464) 0.988±0.001

0.1 0.977±0.014(0.126) 0.924±0.040(0.064) 1.229±0.286(0.337) 1.281±0.120(0.381) 0.831±0.237(0.319) 0.728±0.104(0.417) 0.939±0.005

UA9.2%, RA97.7%, TA83.6% 0.15 0.936±0.041(0.086) 0.874±0.041(0.013) 0.972±0.103(0.131) 1.032±0.005(0.182) 0.974±0.155(0.018) 0.847±0.044(0.109) 0.819±0.003

0.2 0.870±0.081(0.012) 0.810±0.017(0.051) 0.845±0.036(0.055) 0.925±0.046(0.126) 1.034±0.143(0.188) 0.876±0.025(0.022) 0.630±0.003

SFRon
0.05 0.989±0.001(0.045) 0.948±0.001(0.001) 2.000±0.059(0.124) 2.208±0.037(0.368) 0.495±0.014(0.008) 0.429±0.007(0.086) 0.986±0.000

0.1 0.960±0.003(0.068) 0.899±0.002(0.001) 1.227±0.017(0.076) 1.268±0.007(0.123) 0.783±0.010(0.008) 0.709±0.003(0.077) 0.902±0.003

UA9.3%, RA97.0%, TA83.9% 0.15 0.917±0.002(0.076) 0.849±0.002(0.001) 1.024±0.006(0.068) 1.015±0.005(0.059) 0.896±0.007(0.016) 0.837±0.004(0.053) 0.689±0.012

0.2 0.866±0.006(0.076) 0.802±0.003(0.003) 0.916±0.004(0.070) 0.892±0.005(0.037) 0.946±0.002(0.012) 0.899±0.003(0.036) 0.426±0.018
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Table 15: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in 50%
random data forgetting scenario.

Coverage Set Size CRMethods α Df ↓ Dtest ↑ Df ↑ Dtest ↓ Df ↓ Dtest ↑ q̂

RT
0.05 0.946±0.001(0.000) 0.948±0.003(0.000) 2.146±0.006(0.000) 2.106±0.002(0.000) 0.441±0.004(0.000) 0.450±0.005(0.000) 0.987±0.004

0.1 0.892±0.007(0.000) 0.899±0.008(0.000) 1.222±0.002(0.000) 1.211±0.007(0.000) 0.730±0.004(0.000) 0.742±0.002(0.000) 0.889±0.009

UA16.0%, RA98.8%, TA84.9% 0.15 0.838±0.004(0.000) 0.847±0.001(0.000) 0.977±0.002(0.000) 0.977±0.006(0.000) 0.858±0.008(0.000) 0.868±0.006(0.000) 0.607±0.001

0.2 0.786±0.005(0.000) 0.796±0.002(0.000) 0.856±0.007(0.000) 0.863±0.001(0.000) 0.918±0.007(0.000) 0.922±0.008(0.000) 0.304±0.008

FT
0.05 0.995±0.013(0.051) 0.949±0.024(0.000) 1.879±0.014(0.003) 2.216±0.003(0.376) 0.527±0.028(0.024) 0.428±0.020(0.088) 0.992±0.019

0.1 0.979±0.021(0.087) 0.901±0.014(0.001) 1.183±0.018(0.032) 1.281±0.020(0.137) 0.828±0.029(0.053) 0.701±0.010(0.085) 0.926±0.025

UA5.4%, RA97.1%, TA84.4% 0.15 0.953±0.024(0.112) 0.850±0.022(0.000) 1.014±0.011(0.058) 1.017±0.026(0.061) 0.940±0.027(0.060) 0.839±0.004(0.050) 0.681±0.020

0.2 0.910±0.029(0.120) 0.806±0.024(0.007) 0.937±0.018(0.091) 0.895±0.001(0.041) 0.977±0.029(0.043) 0.902±0.007(0.033) 0.345±0.016

RL
0.05 0.974±0.011(0.028) 0.953±0.001(0.005) 26.032±0.007(23.886) 23.369±0.008(21.263) 0.038±0.015(0.403) 0.038±0.016(0.412) 0.994±0.010

0.1 0.930±0.016(0.038) 0.902±0.013(0.003) 5.277±0.001(4.055) 4.621±0.007(3.410) 0.178±0.011(0.552) 0.197±0.001(0.545) 0.987±0.008

UA22.5%, RA93.5%, TA77.1% 0.15 0.875±0.011(0.037) 0.856±0.008(0.009) 1.758±0.004(0.781) 1.657±0.005(0.680) 0.496±0.006(0.362) 0.516±0.009(0.352) 0.970±0.017

0.2 0.810±0.006(0.024) 0.805±0.013(0.009) 1.147±0.005(0.291) 1.144±0.005(0.281) 0.707±0.004(0.211) 0.707±0.013(0.215) 0.945±0.005

GA
0.05 0.998±0.007(0.052) 0.949±0.001(0.001) 1.807±0.001(0.339) 2.338±0.001(0.232) 0.552±0.006(0.111) 0.407±0.006(0.043) 0.992±0.006

0.1 0.986±0.009(0.094) 0.896±0.007(0.003) 1.147±0.003(0.075) 1.278±0.007(0.067) 0.863±0.008(0.133) 0.703±0.002(0.039) 0.918±0.010

UA3.9%, RA96.1%, TA84.2% 0.15 0.968±0.008(0.130) 0.850±0.002(0.003) 1.015±0.008(0.038) 1.020±0.002(0.043) 0.954±0.009(0.096) 0.835±0.002(0.033) 0.696±0.009

0.2 0.931±0.011(0.145) 0.804±0.004(0.008) 0.948±0.000(0.092) 0.893±0.003(0.030) 0.983±0.006(0.065) 0.900±0.004(0.022) 0.363±0.002

Teacher
0.05 0.967±0.013(0.021) 0.950±0.017(0.002) 6.465±0.007(4.319) 6.233±0.004(4.127) 0.151±0.002(0.290) 0.151±0.006(0.299) 0.990±0.014

0.1 0.922±0.008(0.030) 0.899±0.002(0.000) 2.202±0.012(0.980) 2.167±0.005(0.956) 0.418±0.009(0.312) 0.419±0.024(0.323) 0.977±0.001

UA22.1%, RA85.7%, TA76.2% 0.15 0.869±0.025(0.031) 0.852±0.002(0.005) 1.467±0.015(0.490) 1.459±0.004(0.482) 0.591±0.005(0.267) 0.581±0.001(0.287) 0.958±0.021

0.2 0.814±0.020(0.028) 0.801±0.017(0.005) 1.125±0.005(0.269) 1.138±0.001(0.275) 0.718±0.017(0.200) 0.704±0.009(0.218) 0.927±0.017

SSD
0.05 0.999±0.001(0.053) 0.952±0.001(0.004) 1.346±0.001(0.800) 1.824±0.000(0.282) 0.742±0.000(0.301) 0.522±0.001(0.072) 0.986±0.001

0.1 0.995±0.001(0.103) 0.897±0.000(0.002) 1.033±0.001(0.189) 1.135±0.001(0.076) 0.959±0.000(0.229) 0.790±0.000(0.048) 0.847±0.001

UA1.3%, RA98.4%, TA86.1% 0.15 0.982±0.001(0.144) 0.847±0.000(0.000) 0.987±0.000(0.010) 0.956±0.000(0.021) 0.989±0.001(0.131) 0.890±0.001(0.022) 0.517±0.001

0.2 0.959±0.001(0.173) 0.804±0.001(0.008) 0.961±0.000(0.105) 0.862±0.000(0.001) 0.995±0.001(0.077) 0.932±0.001(0.010) 0.243±0.001

NegGrad+
0.05 0.999±0.000(0.053) 0.979±0.001(0.031) 0.946±0.002(1.200) 1.443±0.028(0.663) 1.056±0.002(0.615) 0.678±0.012(0.228) 0.992±0.001

0.1 0.996±0.000(0.104) 0.946±0.002(0.047) 0.900±0.003(0.322) 1.078±0.006(0.134) 1.107±0.003(0.377) 0.877±0.003(0.135) 0.933±0.003

UA11.5%, RA98.7%, TA83.8% 0.15 0.990±0.000(0.152) 0.900±0.003(0.052) 0.853±0.004(0.124) 1.008±0.002(0.031) 1.161±0.005(0.303) 0.892±0.001(0.025) 0.712±0.015

0.2 0.977±0.000(0.191) 0.848±0.003(0.052) 0.805±0.002(0.052) 0.982±0.000(0.119) 1.214±0.003(0.296) 0.863±0.003(0.058) 0.381±0.009

Salun
0.05 0.993±0.003(0.047) 0.962±0.026(0.014) 3.284±2.048(1.138) 4.112±0.813(2.007) 0.500±0.478(0.059) 0.241±0.057(0.209) 0.989±0.001

0.1 0.976±0.011(0.084) 0.924±0.039(0.026) 1.386±0.423(0.164) 1.579±0.130(0.368) 0.764±0.292(0.034) 0.590±0.077(0.152) 0.973±0.002

UA9.2%, RA95.7%, TA81.9% 0.15 0.944±0.024(0.106) 0.876±0.046(0.029) 1.051±0.175(0.074) 1.139±0.017(0.162) 0.920±0.195(0.062) 0.770±0.051(0.098) 0.942±0.002

0.2 0.900±0.044(0.114) 0.825±0.049(0.029) 0.910±0.097(0.054) 0.969±0.037(0.105) 1.000±0.164(0.082) 0.851±0.020(0.071) 0.893±0.002

SFRon
0.05 0.994±0.001(0.048) 0.947±0.003(0.001) 2.010±0.188(0.136) 2.327±0.087(0.222) 0.497±0.045(0.057) 0.407±0.016(0.043) 0.983±0.002

0.1 0.980±0.006(0.087) 0.900±0.003(0.001) 1.245±0.060(0.023) 1.338±0.039(0.126) 0.788±0.041(0.058) 0.673±0.020(0.069) 0.909±0.003

UA6.3%, RA96.8%, TA82.9% 0.15 0.951±0.011(0.113) 0.849±0.003(0.001) 1.041±0.020(0.065) 1.044±0.023(0.067) 0.913±0.028(0.055) 0.813±0.016(0.055) 0.738±0.029

0.2 0.910±0.011(0.125) 0.803±0.003(0.008) 0.947±0.006(0.091) 0.910±0.022(0.046) 0.961±0.017(0.044) 0.884±0.017(0.038) 0.523±0.068

Table 16: Unlearning performance of 9 unlearning methods on Tiny ImageNet with ViT in class-wise
forgetting scenario.

Coverage Set Size CRMethods α Df ↓ Dtf ↓ Dtr ↑ Df ↑ Dtf ↑ Dtr ↓ Df ↓ Dtf ↓ Dtr ↑ q̂f q̂test

RT
0.05 1.000±0.000(0.000) 1.000±0.000(0.000) 0.950±0.003(0.000) 200.000±0.000(0.000) 200.000±0.000(0.000) 1.785±0.056(0.000) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.532±0.009(0.000) 1.000±0.000 0.984±0.002

0.1 0.936±0.011(0.000) 0.960±0.016(0.000) 0.903±0.009(0.000) 192.882±0.912(0.000) 193.340±2.620(0.000) 1.146±0.002(0.000) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.788±0.008(0.000) 1.000±0.000 0.859±0.004

UA100%, UAtf100%, 0.15 0.904±0.039(0.000) 0.960±0.046(0.000) 0.853±0.005(0.000) 186.791±2.173(0.000) 188.880±1.802(0.000) 0.957±0.010(0.000) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.892±0.003(0.000) 1.000±0.000 0.535±0.002

RA98.7%, TA86.4% 0.2 0.787±0.061(0.000) 0.860±0.024(0.000) 0.805±0.003(0.000) 171.051±3.183(0.000) 174.480±2.311(0.000) 0.860±0.010(0.000) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.936±0.002(0.000) 1.000±0.000 0.232±0.001

FT
0.05 0.993±0.006(0.007) 0.960±0.009(0.040) 0.952±0.006(0.002) 8.360±0.007(191.640) 8.280±0.006(191.720) 2.442±0.011(0.657) 0.119±0.018(0.114) 0.116±0.001(0.111) 0.390±0.023(0.142) 0.999±0.006 0.993±0.005

0.1 0.984±0.009(0.048) 0.860±0.013(0.100) 0.898±0.005(0.005) 1.802±0.009(191.080) 1.660±0.018(191.680) 1.287±0.009(0.141) 0.546±0.008(0.541) 0.518±0.004(0.513) 0.698±0.019(0.090) 0.971±0.019 0.924±0.016

UA13.8%, UAtf22.0%, 0.15 0.902±0.019(0.002) 0.800±0.004(0.160) 0.852±0.017(0.001) 1.120±0.021(185.671) 1.040±0.006(187.840) 1.021±0.017(0.064) 0.806±0.012(0.801) 0.769±0.013(0.764) 0.835±0.022(0.057) 0.809±0.010 0.686±0.004

RA97.5%, TA84.1% 0.2 0.860±0.021(0.073) 0.760±0.003(0.100) 0.800±0.018(0.005) 0.969±0.002(170.082) 0.960±0.003(173.520) 0.882±0.010(0.022) 0.888±0.005(0.883) 0.792±0.002(0.787) 0.907±0.006(0.029) 0.595±0.002 0.338±0.019

RL
0.05 0.998±0.005(0.002) 0.980±0.003(0.020) 0.952±0.049(0.002) 199.489±0.512(0.511) 195.220±1.003(4.780) 2.317±0.009(0.532) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.411±0.000(0.121) 1.000±0.000 0.995±0.032

0.1 0.971±0.013(0.035) 0.900±0.017(0.060) 0.900±0.002(0.003) 180.442±0.710(12.440) 170.960±0.948(22.380) 1.237±0.050(0.991) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.727±0.016(0.061) 1.000±0.000 0.925±0.024

UA100%, UAtf100%, 0.15 0.922±0.011(0.018) 0.900±0.011(0.060) 0.852±0.015(0.001) 165.884±2.037(20.907) 159.980±1.012(28.900) 1.001±0.003(0.044) 0.006±0.001(0.001) 0.006±0.000(0.001) 0.851±0.023(0.041) 1.000±0.000 0.641±0.035

RA98.2%, TA84.6% 0.2 0.882±0.007(0.095) 0.860±0.007(0.000) 0.807±0.007(0.002) 154.896±2.028(16.155) 149.280±3.013(25.200) 0.886±0.032(0.026) 0.006±0.000(0.001) 0.006±0.001(0.001) 0.912±0.013(0.024) 1.000±0.000 0.262±0.022

GA
0.05 1.000±0.001(0.000) 0.980±0.002(0.020) 0.948±0.026(0.002) 22.836±0.045(177.164) 20.600±0.011(179.400) 1.781±0.017(0.004) 0.044±0.017(0.019) 0.048±0.028(0.043) 0.532±0.013(0.000) 1.000±0.000 0.984±0.033

0.1 0.991±0.022(0.055) 0.900±0.014(0.060) 0.897±0.016(0.006) 1.631±0.031(191.251) 1.720±0.005(191.620) 1.133±0.044(0.013) 0.608±0.006(0.603) 0.523±0.007(0.518) 0.792±0.037(0.004) 0.972±0.033 0.849±0.039

UA9.1%, UAtf20.0%, 0.15 0.958±0.002(0.054) 0.820±0.010(0.140) 0.850±0.006(0.003) 1.151±0.039(185.640) 1.140±0.042(187.740) 0.958±0.026(0.001) 0.832±0.003(0.827) 0.719±0.021(0.714) 0.887±0.044(0.005) 0.868±0.023 0.535±0.011

RA98.6%, TA86.1% 0.2 0.880±0.047(0.093) 0.800±0.051(0.060) 0.803±0.025(0.002) 0.929±0.002(170.122) 0.900±0.009(173.580) 0.861±0.006(0.001) 0.947±0.036(0.942) 0.889±0.029(0.884) 0.933±0.027(0.003) 0.473±0.016 0.238±0.000

Teacher
0.05 0.982±0.014(0.018) 1.000±0.007(0.000) 0.952±0.025(0.002) 199.971±0.009(0.029) 200.000±0.000(0.000) 5.095±0.020(3.310) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.187±0.008(0.345) 1.000±0.000 0.989±0.001

0.1 0.909±0.013(0.027) 0.940±0.015(0.020) 0.903±0.032(0.000) 199.813±0.009(6.931) 199.900±0.013(6.560) 2.033±0.031(0.887) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.444±0.006(0.344) 1.000±0.000 0.965±0.003

UA100%, UAtf100%, 0.15 0.887±0.014(0.017) 0.880±0.011(0.080) 0.854±0.003(0.001) 199.667±0.030(12.876) 199.760±0.026(10.880) 1.331±0.012(0.374) 0.004±0.000(0.001) 0.004±0.001(0.001) 0.641±0.010(0.251) 1.000±0.000 0.919±0.001

RA88.8%, TA78.6% 0.2 0.838±0.022(0.051) 0.840±0.002(0.020) 0.799±0.017(0.006) 199.413±0.024(28.362) 199.620±0.030(25.140) 1.022±0.017(0.162) 0.004±0.001(0.001) 0.004±0.001(0.001) 0.781±0.019(0.155) 1.000±0.000 0.825±0.002

SSD
0.05 1.000±0.000(0.000) 1.000±0.000(0.000) 0.950±0.017(0.000) 198.769±0.052(1.231) 197.320±1.010(2.680) 1.866±0.019(0.081) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.509±0.013(0.023) 1.000±0.000 0.986±0.006

0.1 0.949±0.017(0.013) 0.900±0.012(0.060) 0.897±0.007(0.006) 171.073±0.209(21.809) 169.360±2.002(23.980) 1.141±0.014(0.005) 0.006±0.000(0.001) 0.005±0.000(0.000) 0.786±0.021(0.002) 1.000±0.000 0.854±0.006

UA100%, UAtf100%, 0.15 0.913±0.007(0.009) 0.880±0.020(0.080) 0.852±0.015(0.001) 157.140±1.209(29.651) 154.960±0.907(33.920) 0.959±0.011(0.002) 0.006±0.001(0.001) 0.006±0.000(0.001) 0.888±0.012(0.004) 1.000±0.000 0.538±0.007

RA98.4%, TA86.1% 0.2 0.833±0.007(0.046) 0.800±0.013(0.060) 0.806±0.022(0.001) 136.502±3.022(34.549) 136.420±2.422(38.060) 0.864±0.002(0.004) 0.006±0.000(0.001) 0.006±0.000(0.001) 0.932±0.015(0.004) 1.000±0.000 0.254±0.005

NegGrad+
0.05 1.000±0.000(0.000) 1.000±0.000(0.000) 0.947±0.002(0.003) 200.000±0.000(0.000) 200.000±0.000(0.000) 1.850±0.036(0.065) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.512±0.009(0.020) 1.000±0.000 0.987±0.001

0.1 0.927±0.104(0.009) 0.950±0.071(0.010) 0.894±0.001(0.009) 193.994±8.493(1.112) 197.490±3.550(4.150) 1.140±0.007(0.006) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.784±0.004(0.004) 1.000±0.000 0.859±0.003

UA100%, UAtf100%, 0.15 0.862±0.013(0.042) 0.870±0.042(0.090) 0.849±0.000(0.004) 188.686±0.954(1.894) 195.590±0.863(6.710) 0.961±0.001(0.004) 0.005±0.000(0.000) 0.004±0.000(0.001) 0.884±0.000(0.008) 1.000±0.000 0.537±0.003

RA99.0%, TA85.8% 0.2 0.830±0.027(0.043) 0.840±0.085(0.020) 0.802±0.002(0.003) 187.219±0.064(16.168) 194.310±0.948(19.830) 0.861±0.001(0.002) 0.004±0.000(0.000) 0.004±0.000(0.001) 0.931±0.001(0.005) 1.000±0.000 0.220±0.002

Salun
0.05 0.997±0.003(0.003) 0.993±0.012(0.007) 0.949±0.001(0.001) 199.599±0.207(0.401) 197.440±1.244(2.560) 1.980±0.050(0.196) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.479±0.012(0.053) 1.000±0.000 0.989±0.001

0.1 0.975±0.019(0.039) 0.927±0.023(0.033) 0.899±0.001(0.003) 191.973±1.616(0.910) 185.220±0.918(8.120) 1.169±0.002(0.023) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.769±0.001(0.019) 1.000±0.000 0.884±0.001

UA100%, UAtf100%, 0.15 0.961±0.022(0.057) 0.860±0.040(0.100) 0.850±0.001(0.004) 187.825±3.461(1.034) 180.307±2.908(8.573) 0.969±0.002(0.012) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.877±0.002(0.015) 1.000±0.000 0.562±0.003

RA98.4%, TA86.1% 0.2 0.960±0.015(0.173) 0.840±0.020(0.020) 0.801±0.001(0.004) 184.838±3.478(13.787) 177.647±2.627(3.167) 0.863±0.004(0.003) 0.005±0.000(0.001) 0.005±0.000(0.000) 0.928±0.003(0.008) 1.000±0.000 0.230±0.009

SFRon
0.05 1.000±0.000(0.000) 1.000±0.000(0.000) 0.948±0.001(0.002) 200.000±0.000(0.000) 200.000±0.000(0.000) 2.264±0.254(0.479) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.423±0.050(0.110) 1.000±0.000 0.990±0.003

0.1 1.000±0.000(0.064) 1.000±0.000(0.040) 0.900±0.001(0.003) 200.000±0.000(7.118) 200.000±0.000(6.660) 1.266±0.044(0.120) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.711±0.026(0.077) 1.000±0.000 0.912±0.017

UA100%, UAtf100%, 0.15 1.000±0.000(0.096) 1.000±0.000(0.040) 0.850±0.002(0.003) 200.000±0.000(13.209) 200.000±0.000(11.120) 1.009±0.012(0.051) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.843±0.011(0.049) 1.000±0.000 0.668±0.029

RA96.1%, TA84.3% 0.2 1.000±0.000(0.213) 1.000±0.000(0.140) 0.802±0.003(0.003) 200.000±0.000(28.949) 200.000±0.000(25.520) 0.886±0.006(0.026) 0.005±0.000(0.000) 0.005±0.000(0.000) 0.905±0.007(0.031) 1.000±0.000 0.358±0.017
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Table 17: MIACR performance on CIFAR-10 with ResNet-18.

10% Forgetting 50% ForgettingMethods α MIACR ↑ q̂ MIACR ↑ q̂

RT
0.05 0.089±0.001(0.000) 0.877±0.004 0.117±0.010(0.000) 0.899±0.007

0.1 0.147±0.000(0.000) 0.589±0.008 0.201±0.011(0.000) 0.570±0.001

MIA86.92% (10% Forgetting) 0.15 0.203±0.010(0.000) 0.485±0.005 0.272±0.011(0.000) 0.472±0.009

MIA82.79% (50% Forgetting) 0.2 0.246±0.000(0.000) 0.473±0.001 0.318±0.006(0.000) 0.459±0.003

FT
0.05 0.037±0.011(0.052) 0.745±0.013 0.038±0.001(0.079) 0.780±0.011

0.1 0.077±0.008(0.070) 0.627±0.000 0.103±0.011(0.098) 0.558±0.012

MIA92.00% (10% Forgetting) 0.15 0.128±0.007(0.075) 0.517±0.008 0.159±0.011(0.113) 0.494±0.011

MIA92.92% (50% Forgetting) 0.2 0.196±0.003(0.050) 0.483±0.003 0.244±0.010(0.074) 0.476±0.004

RL
0.05 0.056±0.010(0.033) 0.627±0.011 0.057±0.016(0.060) 0.547±0.000

0.1 0.178±0.027(0.031) 0.572±0.005 0.137±0.030(0.064) 0.547±0.001

MIA74.21% (10% Forgetting) 0.15 0.272±0.006(0.069) 0.492±0.015 0.194±0.031(0.078) 0.547±0.001

MIA61.15% (50% Forgetting) 0.2 0.320±0.025(0.074) 0.485±0.011 0.261±0.001(0.057) 0.546±0.000

GA
0.05 0.010±0.002(0.079) 0.862±0.016 0.010±0.019(0.107) 0.771±0.008

0.1 0.032±0.003(0.115) 0.502±0.016 0.055±0.003(0.146) 0.486±0.005

MIA98.80% (10% Forgetting) 0.15 0.076±0.000(0.127) 0.477±0.007 0.107±0.016(0.165) 0.474±0.015

MIA98.86% (50% Forgetting) 0.2 0.146±0.016(0.100) 0.476±0.019 0.164±0.016(0.154) 0.473±0.011

Teacher
0.05 0.011±0.006(0.078) 0.750±0.014 0.031±0.003(0.086) 0.635±0.018

0.1 0.038±0.023(0.109) 0.672±0.028 0.065±0.021(0.136) 0.582±0.013

MIA87.24% (10% Forgetting) 0.15 0.072±0.013(0.131) 0.625±0.029 0.110±0.017(0.162) 0.548±0.007

MIA93.24% (50% Forgetting) 0.2 0.113±0.008(0.133) 0.588±0.019 0.159±0.017(0.159) 0.532±0.006

SSD
0.05 0.010±0.011(0.079) 0.861±0.012 0.011±0.002(0.106) 0.748±0.011

0.1 0.031±0.010(0.116) 0.511±0.011 0.051±0.005(0.150) 0.488±0.001

MIA98.78% (10% Forgetting) 0.15 0.077±0.005(0.126) 0.480±0.013 0.104±0.006(0.168) 0.477±0.015

MIA98.87% (50% Forgetting) 0.2 0.139±0.011(0.107) 0.475±0.013 0.168±0.012(0.150) 0.477±0.006

NegGrad+
0.05 0.076±0.025(0.013) 0.844±0.024 0.045±0.008(0.072) 0.863±0.025

0.1 0.128±0.018(0.019) 0.481±0.009 0.109±0.007(0.092) 0.511±0.008

MIA90.30% (10% Forgetting) 0.15 0.174±0.022(0.029) 0.480±0.005 0.167±0.017(0.105) 0.477±0.010

MIA93.82% (50% Forgetting) 0.2 0.213±0.012(0.033) 0.480±0.004 0.230±0.014(0.088) 0.472±0.008

Salun
0.05 0.055±0.014(0.034) 0.691±0.011 0.044±0.001(0.073) 0.670±0.008

0.1 0.113±0.009(0.034) 0.681±0.013 0.115±0.009(0.086) 0.630±0.009

MIA57.58% (10% Forgetting) 0.15 0.198±0.006(0.005) 0.642±0.015 0.170±0.009(0.102) 0.610±0.003

MIA59.12% (50% Forgetting) 0.2 0.267±0.009(0.021) 0.608±0.011 0.220±0.005(0.098) 0.586±0.005

SFRon
0.05 0.060±0.001(0.029) 0.711±0.009 0.058±0.002(0.059) 0.715±0.008

0.1 0.040±0.004(0.107) 0.626±0.025 0.046±0.002(0.155) 0.562±0.013

MIA91.55% (10% Forgetting) 0.15 0.113±0.003(0.090) 0.517±0.003 0.134±0.013(0.138) 0.498±0.003

MIA92.52% (50% Forgetting) 0.2 0.184±0.002(0.062) 0.487±0.002 0.206±0.014(0.112) 0.483±0.002

Table 18: Performance of our unlearning framework. We show the unlearning performance on
CIFAR-10 with ResNet-18 and Tiny ImageNet with ViT in 10% random data forgetting scenario.

λ = 0.2 λ = 0.5 λ = 1Methods α UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑ UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑ UA ↑ RA ↑ TA ↑ CRDf
↓ CRDtest

↑
CIFAR-10 with ResNet-18

0.05 0.788(0.076) 0.824(0.055) 0.763(0.101) 0.825(0.054) 0.719(0.145) 0.820(0.059)

RT 0.1
10.8%(2.2) 98.3%(1.4) 91.0%(0.8)

0.914(0.029) 0.924(0.021)
14.0%(5.4) 97.8%(1.9) 90.4%(0.4)

0.879(0.064) 0.912(0.033)
17.7%(9.1) 96.8%(2.9) 90.5%(1.3)

0.838(0.105) 0.911(0.034)
0.15 0.956(0.019) 0.959(0.009) 0.936(0.039) 0.954(0.014) 0.906(0.069) 0.951(0.017)
0.2 0.977(0.011) 0.976(0.005) 0.963(0.025) 0.966(0.015) 0.932(0.056) 0.965(0.016)

0.05 0.844(0.020) 0.829(0.050) 0.853(0.011) 0.843(0.036) 0.835(0.029) 0.854(0.025)

FT 0.1
6.8%(1.8) 97.0%(2.7) 90.8%(1.0)

0.948(0.005) 0.924(0.021)
7.9%(0.7) 96.9%(2.8) 90.9%(0.9)

0.940(0.003) 0.927(0.018)
9.2%(0.6) 97.9%(1.8) 91.2%(0.6)

0.938(0.005) 0.936(0.009)
0.15 0.983(0.008) 0.959(0.009) 0.975(0.000) 0.961(0.007) 0.976(0.001) 0.970(0.002)
0.2 0.989(0.001) 0.974(0.007) 0.983(0.005) 0.975(0.006) 0.986(0.002) 0.984(0.003)

0.05 0.709(0.155) 0.736(0.143) 0.708(0.156) 0.731(0.148) 0.629(0.235) 0.669(0.210)

RL 0.1
9.7%(1.1) 96.6%(3.1) 89.4%(2.4)

0.896(0.047) 0.887(0.058)
9.9%(1.3) 96.9%(2.8) 89.7%(2.1)

0.902(0.041) 0.896(0.049)
12.6%(4.0) 95.3%(4.4) 88.1%(3.7)

0.845(0.098) 0.858(0.087)
0.15 0.946(0.029) 0.931(0.037) 0.939(0.036) 0.932(0.036) 0.911(0.064) 0.913(0.055)
0.2 0.964(0.024) 0.949(0.032) 0.959(0.029) 0.950(0.031) 0.936(0.052) 0.938(0.043)

Tiny ImageNet with ViT
0.05 0.458(0.045) 0.516(0.000) 0.396(0.107) 0.489(0.027) 0.346(0.157) 0.481(0.035)

RT 0.1
19.3%(4.6) 98.8%(0.0) 86.0%(0.0)

0.729(0.046) 0.786(0.000)
26.4%(11.7) 98.7%(0.1) 85.8%(0.2)

0.649(0.126) 0.765(0.021)
35.7%(21.0) 98.6%(0.2) 85.2%(0.8)

0.549(0.226) 0.739(0.047)
0.15 0.841(0.039) 0.889(0.000) 0.768(0.112) 0.880(0.009) 0.658(0.222) 0.861(0.028)
0.2 0.898(0.036) 0.932(0.003) 0.839(0.095) 0.929(0.006) 0.743(0.191) 0.918(0.017)

0.05 0.441(0.062) 0.399(0.117) 0.413(0.090) 0.401(0.115) 0.342(0.161) 0.363(0.153)

FT 0.1
9.8%(4.9) 97.4%(1.4) 83.6%(2.4)

0.753(0.022) 0.683(0.103)
13.6%(0.9) 97.2%(1.6) 83.6%(2.4)

0.718(0.057) 0.683(0.103)
20.0%(5.3) 96.4%(2.4) 82.9%(3.1)

0.627(0.148) 0.652(0.134)
0.15 0.884(0.004) 0.823(0.066) 0.848(0.032) 0.819(0.070) 0.772(0.108) 0.802(0.087)
0.2 0.942(0.008) 0.893(0.042) 0.914(0.020) 0.890(0.045) 0.856(0.078) 0.877(0.058)

0.05 0.051(0.452) 0.111(0.405) 0.051(0.452) 0.121(0.395) 0.048(0.455) 0.119(0.397)

RL 0.1
31.8%(17.1) 95.3%(17.9) 80.9%(5.1)

0.278(0.497) 0.451(0.335)
36.2%(21.5) 95.3%(3.5) 80.4%(5.6)

0.254(0.521) 0.449(0.337)
40.2%(25.5) 94.5%(4.3) 79.5%(6.5)

0.236(0.539) 0.436(0.350)
0.15 0.579(0.301) 0.710(0.179) 0.541(0.339) 0.708(0.181) 0.480(0.400) 0.673(0.216)
0.2 0.752(0.182) 0.825(0.110) 0.718(0.216) 0.827(0.108) 0.642(0.292) 0.793(0.142)
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