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Output: “Group selfie of a
snowman and three girls” 4Add Background (Optional)1 Add Subjects2 Layered Canvas with Locking3

Figure 1: LayerComposer introduces an interactive personalization paradigm that enables a
Photoshop-like experience for multi-subject T2I generation. It allows users to place, resize, and
lock subjects on the proposed layered canvas. A new locking function is provided such that locked
subjects (e.g., background, snowman) are preserved with only necessary lighting adjustments, while
unlocked subjects are flexibly injected into the scene with variations guided by the text prompt.

ABSTRACT

Despite their impressive visual fidelity, existing personalized generative models lack
interactive control over spatial composition and scale poorly to multiple subjects.
To address these limitations, we present LayerComposer, an interactive framework
for personalized, multi-subject text-to-image generation. Our approach introduces
two main contributions: (1) a layered canvas, a novel representation in which
each subject is placed on a distinct layer, enabling occlusion-free composition;
and (2) a locking mechanism that preserves selected layers with high fidelity
while allowing the remaining layers to adapt flexibly to the surrounding context.
Similar to professional image-editing software, the layered canvas allows users
to place, resize, or lock input subjects through intuitive layer manipulation. Our
versatile locking mechanism requires no architectural changes, relying instead on
inherent positional embeddings combined with a complementary data sampling
strategy. Extensive experiments demonstrate that LayerComposer achieves superior
spatial control and identity preservation compared to the state-of-the-art methods
in human-centric personalized image generation.

1 INTRODUCTION

The advent of large-scale text-to-image (T2I) diffusion models (Rombach et al., 2022) has marked a
pivotal moment in digital content creation, enabling the synthesis of complex, high-fidelity images
from simple textual descriptions. This breakthrough has spurred a wave of research into person-
alization, which aims to create content containing specified identities in unseen contexts. Textual
Inversion (Gal et al., 2023), DreamBooth (Ruiz et al., 2023), and IP-Adapter (Ye et al., 2023) have
made significant strides in this domain in recent years.

Despite their progress, the creative potential of existing personalized generative models is largely
hindered due to two critical shortcomings: a lack of interactive spatial control and a fundamental
inability to scale efficiently to multiple identities. First, to enable spatial guidance, current approaches
rely on frameworks like ControlNet (Zhang et al., 2023). These approaches require users to generate
auxiliary control maps like pose skeletons or depth maps, which unfortunately fragments the creative
process. Second, to achieve multi-identity personalization, existing techniques (Ye et al., 2023; Chen
et al., 2025; Qian et al., 2025b) encode identity images into fixed-length token sequences that are then
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Target Image Source Image Layered Canvas

“A woman is holding a blue acoustic guitar and singing into a microphone.”

Figure 2: Locking-Aware Data Sampling Strategy. During training, layers in layered canvas (the
input to our LayerComposer) are extracted from multiple images within the same identity. Locked
layers (e.g., background) are sampled directly from the target image, resulting in pixel alignment
in input-target pair and thus preserving fidelity. In contrast, unlocked layers (e.g., the woman) are
sampled from other source images, enabling variation guided by the text prompt while maintaining
identity. Data augmentations are applied to all layers during training, ensuring that both locked and
unlocked layers can adapt to context at inference (e.g., lighting).

concatenated into longer conditioning embeddings. Such a method is constrained by a memory cost
that increases linearly with respect to the number of personalized subjects, making the composition
of many unique subjects expensive and even infeasible with a large number of identities. Together,
these limitations highlight the urgent need for a new paradigm with better interactivity and scalability.

To meet this demand, we introduce an interactive personalization paradigm. Inspired by professional
editing software (e.g., Photoshop), this paradigm positions the user as an art director, who can
intuitively compose a desired scene by placing and resizing multiple distinct input subjects on a
canvas, as shown in Fig. 1(1-2). This canvas-based approach is designed for better interactivity
and scalability, allowing the composition of many identities within a scene. The resulting canvas
configuration acts as a “visual template”, defining an optional background, multiple identities, and
their spatial arrangement.

To bring this template to life, we introduce LayerComposer, a generative model specifically designed
to render a canvas into a single, coherent, and high-fidelity image as in Fig. 1(4) in a feedforward
manner. The core of LayerComposer is a layered canvas, a novel input representation composed of a
few spatially aware RGBA layers where each layer defines a personalized subject as illustrated in Fig.
1(3). While its composition can be conceptualized as a collage (Sarukkai et al., 2024), layered canvas
offers three critical advantages. First, by preserving each subject on a separate layer, it resolves
occlusions that occur in the traditional collages where subjects overlap—an issue that frequently
occurs in multi-subject personalization. Second, our diffusion model uses the token sequence from
the layered canvas for conditioning. This token sequence is constructed via the transparent latent
pruning strategy, where we extract and concatenate only the valid tokens corresponding to non-
transparent (non-zero alpha) regions from all layers. This strategy decouples the length of the
conditioning sequence from the number of identities, enabling more efficient composition with a
scalable number of personalized elements.

Last but not least, our layered canvas provides the foundation for a novel locking mechanism,
which offers fine-grained control over content preservation. Users can selectively lock any layer,
constraining the model to preserve its visual content with high fidelity, while permitting necessary
lighting adjustment adjustments. In parallel, the unlocked layers remain free to vary, allowing
their appearance or pose to be synthesized according to the context. This capability is critical
for practical personalized T2I, such as preserving a character’s pose or maintaining a specific
background while regenerating the rest of the scene as shown in Fig. 1(3-4). To achieve the locking
mechanism, LayerComposer employs a model-data co-design, where we leverage the inherent
positional embeddings of pretrained models guided by a complementary data sampling strategy (Fig.
2), requiring no architectural modifications.

LayerComposer therefore provides a scalable and interactive solution in which users can compose
many identities with high-fidelity control simply by arranging and locking layers on a canvas. Our
contributions are as follows:
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• We propose an interactive personalization paradigm for T2I generation, empowering users to act as
active directors by directly placing, resizing, and locking subjects on a canvas.

• We introduce layered canvas, a novel layered input representation that addresses the scalability
bottleneck through transparent latent pruning, and handles occlusion issues by its layered design.

• We present a novel locking mechanism achieved by a simple yet effective model-data co-design
strategy that does not require architectural changes.

• Through comprehensive evaluations, we demonstrate that LayerComposer achieves state-of-the-art
compositional control and fidelity compared to state-of-the-art personalization methods.

2 RELATED WORK

Personalized Generation. Personalization methods have shifted from expensive per-concept tun-
ing (Gal et al., 2023; Nitzan et al., 2022; Ruiz et al., 2023) to recent adapter-based solutions (Ye
et al., 2023; Li et al., 2024; Wang et al., 2024b; Gal et al., 2024; Guo et al., 2024; Qian et al., 2025a;
Patashnik et al., 2025), which enable efficient personalization while keeping the base diffusion model
frozen. Despite their efficiency, these methods provide limited interactive spatial control and suffer
from a fundamental scalability bottleneck when composing multiple subjects.

Spatial Control in Generation. A broad range of conditioning mechanisms has been proposed
to improve controllability. Pose-guided methods such as ControlNet (Zhang et al., 2023) and T2I-
Adapter (Mou et al., 2024) inject structural cues, while region-based approaches provide layout
guidance through bounding boxes (Li et al., 2023; Zheng et al., 2023; Dahary et al., 2024; Song
et al., 2023; Lee et al., 2024; Zhang et al., 2025) or segmentation masks (Yang et al., 2023; Liu
et al., 2025; Chen et al., 2024). Although these approaches excel at either identity preservation or
layout specification, they typically struggle to achieve both simultaneously. Collage-based techniques
such as CollageDiffusion (Sarukkai et al., 2024), NoiseCollage (Shirakawa & Uchida, 2024), and
HiCo (Cheng et al., 2024) demonstrate spatial control but often introduce artifacts, are limited to
occlusions, and some are computationally expensive (e.g., requiring O(N) passes per step).

Multi-Concept Personalization. Generating images that faithfully integrate multiple personalized
concepts remains challenging. Optimization-based approaches disentangle concepts (Kumari et al.,
2023; Avrahami et al., 2023; Garibi et al., 2025) or train multiple LoRAs (Po et al., 2024; Kong et al.,
2024). Optimization-free approaches rely on lightweight adapters (Xiao et al., 2025a; Wang et al.,
2024a; Han et al., 2024; Dalva et al., 2025; Chen et al., 2025; Qian et al., 2025b), but suffer from linear
complexity growth as subjects increase. General in-context image generation (Xiao et al., 2025b;
Wu et al., 2025c; Comanici et al., 2025; Wu et al., 2025a) supports arbitrary concepts but offers
limited interactivity, no selective preservation, and limited human generation quality. LayerComposer
advances the human-centric personalization literature by a layered canvas that achieves scalable
personalization, resolves occlusion ambiguity, and supports a locking mechanism for selective,
high-fidelity preservation.

3 LAYERCOMPOSER

3.1 LAYERED CANVAS

LayerComposer is a controllable text-to-image generation framework that offers an interactive
personalization experience, enabling users to control both the spatial composition and the appearance
of multiple subjects (identities and optional background). Concretely, the framework conditions a
pretrained diffusion model on two inputs: (1) a text prompt that specifies global image content and
high-level semantics, and (2) a layered canvas that jointly encodes spatial and visual guidance of the
subjects, augmented with a binary locking flag that determines the degree of fidelity preservation. This
design ensures that LayerComposer adheres faithfully to the user’s compositional intent: preserving
locked subjects with maximum fidelity while harmonizing the overall output into a globally coherent
scene.

The layered canvas is represented by a set of RGBA layers L = {l1, · · · , lN} and a corresponding
set of binary locking flags B = {b1, ..., bN} , where N denotes the number of layers. Each RGBA
layer li encodes the information of one subject. The RGB channels provide visual reference of the
subject while the alpha channel defines its spatial mask, indicating the valid regions of presence.
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Transparent Latent Pruning

Diffusion

Token Concatenation

VA
E

Masked Tokens Condition Latents

DiffusionN
oisy Latents

Generation Target

PosEmbd [1,x,y]

PosEmbd [2,x,y]

PosEmbd [0,x,y]
“Player on right is holding the ball to 

attack while player on left is defending”

Layered Canvas

Figure 3: LayerComposer Pipeline. LayerComposer conditions a diffusion model on both a text
prompt and a layered canvas. The canvas consists of multiple layers that can be either locked or
unlocked. Each layer is first encoded using the VAE. Next, the positional embeddings are added
according to the layer’s locking status: locked layers share the same positional embeddings as the
noisy latent [0, x, y], while each unlocked layer is assigned a unique layer index j in its positional
embeddings [j, x, y]. j distinguish unlocked layers when they overlap. Finally, a transparent latent
pruning is performed to retain only the latents in non-transparent regions per layer, while discarding
the others (gray boxes) for scalable personalized generation.

Subsequently, this mask is used to identify the valid tokens that will be used for generation, as detailed
in Sec. 3.2.

The locking flag bi determines whether the layer should be strictly preserved or allowed to adapt.
When a layer is locked (bi = 1), the model is constrained to render the subject in the layer with
maximum fidelity, permitting only minimal variations (e.g., lighting or shading adjustments) to ensure
seamless integration with the rest of the scene. In contrast, when a layer is unlocked (bi = 0), the
subject may be flexibly adapted to the surrounding context while still retaining its semantic identity.
This mechanism balances fidelity and adaptability, ensuring that user-specified subjects can be either
preserved exactly or reinterpreted creatively depending on the desired outcome.

3.2 LAYERCOMPOSER PIPELINE

LayerComposer builds on a pretrained latent-based diffusion transformer (DiT) (Peebles & Xie,
2023), as illustrated in Fig. 3. Our framework first encodes the input layered canvas into conditional
latent tokens, which are then concatenated with noisy latent tokens to achieve personalization. To
improve scalability to multiple subjects, we introduce a transparent latent pruning strategy, which
discards the tokens corresponding to transparent (zero alpha value) regions and retains only those
from valid spatial locations across all layers. To enable the locking functionality, we assign distinct
positional embeddings to the latents from each layer, encoding both their specific location and locked
status. The full pipeline is described below.

Layer Latent Extraction. For each input layer li ∈ L, we first encode the RGB content using the
pretrained VAE encoder to obtain layer latents zi = E(lRGB

i ) ∈ RH′×W ′×D where E is the VAE
encoder, H ′ and W ′ are the spatial dimensions in latent space, and D is the feature dimension.

Positional Embedding with Locking. To enable the locking mechanism, we introduce a simple
yet effective positional embedding scheme: each layer latent zi is augmented with a 3D positional
embedding that encodes both its spatial location and locking status:

posi =
{
[0, x, y] ∈ R3, bi = 1 (locked)
[j, x, y] ∈ R3, bi = 0 (unlocked)

(1)

where (x, y) are the spatial coordinates in the latent space and bi ∈ {0, 1} is a binary locking flag.
For the locked layers (bi = 1), we fix the layer index (i.e., the first positional dimension) to 0. As a
result, all locked subjects share the same layer as the noisy latent tokens, which also use the positional
embeddings [0, x, y]. The motivation is that the pretrained diffusion models exhibit strong spatial
and visual consistency when conditioned on nearly clean latent tokens (Ho et al., 2020). Leveraging
this property, we reuse the same positional embeddings for locked subjects, which empirically yields
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highly faithful preservation across denoising steps. In contrast, for the unlocked layers (bi = 0),
each of them is assigned a unique index j in the first dimension to separate each unlocked subject
in a distinct layer, where j ∈ {1, 2, . . . , |{ i | bi = 0 }|}. This separation is used to avoid mixed
appearance when two subjects overlap in the canvas.

Transparent Latent Pruning. To increase the scalability of multi-subject personalization, we
introduce a transparent latent pruning strategy that selectively retains the latent tokens from valid
spatial locations according to the alpha channel, while discarding the rest. Concretely, for each layer’s
alpha channel lαi , we first downsample it to the latent resolution using nearest-neighbor interpolation:

αlatent
i = NearestResize(lαi ) ∈ RH′×W ′

. (2)

We then apply alpha-based masking to the latent tokens zi, keeping only those in regions with
non-zero alpha values:

zvalid
i = Concat({zi(x, y)|αlatent

i (x, y) = 1}), (3)

where zi(x, y) and αlatent
i (x, y) denote the latent token and its corresponding alpha value at spatial

coordinate (x, y).

Prior methods (Chen et al., 2025; Qian et al., 2025b) concatenate token sequences of fixed length
from all input images, leading to a memory cost that increases linearly with respect to the number of
personalized subjects N . In contrast, our transparent latent pruning strategy makes the length of the
token sequence proportional only to the non-transparent content area, yielding substantial efficiency
improvements when handling many personalized subjects.

Layer Conditioning Integration. Finally, we construct the conditional latents of the layer canvas by
aggregating the pruned latents from all layers: zcond = Concat(zvalid

1 , zvalid
2 , . . . , zvalid

N ), which is then
concatenated with the noisy image latents zt to form the latent input of the DiT model.

3.3 LAYERCOMPOSER TRAINING

As aforementioned, our model treats locked layers and unlocked layers differently. In this section, we
detail how we sample both types of layers, and how is the model trained.

Locking-Aware Data Sampling Strategy. LayerComposer training employs a locking-aware data
sampling strategy, illustrated in Fig. 2. This training requires a multi-image-per-scene dataset
described in Sec. 4.1. Each scene consists of an image set containing the same identities. For
each training sample, one ground-truth image is randomly selected as the target, I target, while the
remaining images in the scene serve as sources. Each image is segmented into subjects (e.g., humans,
backgrounds), with each subject i assigned to its own layer li.

The input layered canvas is constructed as follows. We initialize L = {}. A random subset of layers
from the target image is added to L and marked as locked (bi = 1), yielding L = {ltarget

i | bi = 1}.
The remaining layers for subjects that are not selected are marked as unlocked (bi = 0) and are
sampled from the corresponding layers from source images within the same scene. Unlike locked
layers, which directly copy content from I target, unlocked layers provide cross-image appearance
references without pixel-level correspondence.

In summary, locking-aware data sampling assigns locked layers directly from the target image and
unlocked layers from other images in the same scene. This design compels the model to preserve the
fidelity of locked content to the maximum extent, while allowing variation in the unlocked layers.

Layer-Conditioned Finetuning. We adapt the pretrained model by finetuning it with LoRA (Hu
et al., 2022). Specifically, we train the LoRA adapters θ on the attention layers of the DiT backbone.
The parameters are optimized using a flow matching loss (Lipman et al., 2023):

Lcond = Et∼(0,1),z0,z1,zcond,P

[ ∥∥vθ(zt, t, zcond, P )− (z1 − z0)
∥∥2 ] , (4)

where vθ(·) is the predicted velocity, z1 and z0 are the latents of the target image and the sampled
noise, zt is the noisy latents at timestep t of the target image I target, zcond is the conditional latents of
our layered canvas L, and P is the text prompt, respectively.
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InputsFLUX Kontext Overlay Kontext Qwen-Image-Edit Nano-Banana Ours

“w
alking, in a city”

“a candlelit dinner”
“seated on a train”

“shaking hands”

Figure 4: Qualitative Comparison in Four-person (4P) Personalization. While state-of-the-art
baselines frequently distort, omit subjects, or produce unnatural copy-pasted artifacts, LayerComposer
consistently generates high-fidelity and coherent compositions, faithfully preserving teir identities and
spatial arrangement of all subjects. Crucially, our approach excels even when subjects are partially
occluded in the input (shown in red boxes in 1st and 4th rows) because of our unique layered canvas.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Dataset Curation. Our training set comprises ∼32M in-house images across 6M scenes,
focusing on human subjects. We filter the data to ensure each scene contains at most 4 identities,
to exclude low-resolution, low-quality faces. To construct the layered training data, we apply
internal instance human segmentation to extract each human as a distinct layer and leave the rest
as background. When constructing the input layered canvas in each training step, we apply data
augmentations to each layer, including random scaling, shifting, and color perturbations.

Training Details. We train a LoRA with a rank of 512 on the frozen FLUX Kontext (Labs et al.,
2025) using the AdamW optimizer (Loshchilov & Hutter, 2019). The model is trained for 200K
iterations with a constant learning rate of 1×10−4, a batch size of 32, and at a 512×512 resolution.
The entire training took 4 GPU days on 4 nodes, each with 8 A100 GPUs.

Evaluation Details. We evaluate at a 1024×1024 resolution using 128 images from FFHQ-in-the-
wild (Karras et al., 2019) as identity inputs. FFHQ is a public, single-frame dataset and is not included
in our training. There are 32 prompts for each benchmark. All evaluations are conducted with 28
denoising steps for our model, without any per-prompt tuning or post processing. Quantitatively,
following the previous arts, we adopt a set of widely used metrics in personalized T2I. Identity
preservation is evaluated with ArcFace (Deng et al., 2022) through the Insightface library (Contrib-
utors, 2024), text alignment with prompts is assessed by VQAScore (Lin et al., 2024), and image
quality is measured by HPSv3 (Ma et al., 2025). A user study is also performed to pick the best
generation among all methods per prompt that reaches the balance among identity preservation,
prompt following, and image quality. Check Appendix for the evaluation details of all baselines.
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InputsOursUniPortrait Storymaker UNO OmniGen2

“a candlelit dinner”
“pointing at a laptop”

“draw
ing, in an art class”

“eating, at a food truck”

Figure 5: Qualitative Comparison in Two-Person (2P) Personalization. When personalizing an
image with two subjects, competing methods often fail to compose a coherent, interactive scene. This
frequently results in missing, duplicated, or distorted subjects and unrealistic interactions. In contrast,
LayerComposer produces visually coherent, high-fidelity scenes where both subjects are present and
naturally interacting with each other and their surroundings, while preserving their distinct identities.

4.2 BASELINE COMPARISONS

Four-Person (4P) Personalization. Most existing personalization methods struggle to scale beyond
two persons due to the linear growth in computation and memory with the number of subjects. This
bottleneck limits their applicability to challenging but relevant real-world use cases, such as 4P
personalization. In contrast, LayerComposer, enabled by our novel layered canvas, natively supports
multi-subject personalization beyond the restrictive two-person setting without any prohibitive
overhead.

We benchmark LayerComposer in the 4P setting against FLUX Kontext (Labs et al., 2025), Overlay
Kontext (a.k.a, Place it) (ilkerzgi & gokaygokay, 2025), Qwen-Image-Edit (Wu et al., 2025a), and
Gemini 2.5 Flash Image (a.k.a Nano-Banana) (Comanici et al., 2025). LayerComposer shows
significantly stronger performance in human-centric personalization tasks. As shown in Fig. 4,
LayerComposer generates high-quality images that faithfully follow user-specified spatial layouts
while effectively preserving the identities of the input subjects. More crucially, in multi-subject
personalization, where the number of personalized subjects increases, occlusion naturally arises.
LayerComposer also excels in the presence of occlusion due to our layered canvas strategy. Baseline
approaches, however, often fail under such conditions.

Quantitatively, as reported in Tab. 1, LayerComposer achieves the highest identity preservation as
indicated by ArcFace and the highest image quality assessed by HPSv3, maintaining a strong level of
prompt following gauged by VQAScore. LayerComposer was also liked in most cases in the user
study (48.96% v.s. 34.46% for Nano-Banana), and significantly outperforms other strong baselines.

Two-Person (2P) Personalization. Unlike a few canvas-based approaches that can handle up to
four persons as discussed above, most existing personalization methods are designed specifically
for 2P personalization. State-of-the-art 2P methods, including UniPortrait (He et al., 2025), Story-
Maker (Zhou et al., 2024), UNO (Wu et al., 2025c), and OmniGen2 (Wu et al., 2025b), are evaluated

7
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“eating, at a food truck”
“relaxing, in a cafe”

InputsOursIPA-FLUX PuLID-FLUX InfiniteYou

“laughing, at a station”
“resting, under a tree”

Figure 6: Qualitative Comparison in Single-Person (1P) Personalization. State-of-the-art 1P
personalization approaches tend to inject the reference face identity with limited flexibility, resulting
in copy-pasted effects. In contrast, LayerComposer generates realistic outputs, faithful to both the
human identity and text prompt. Notably, our method captures diverse expressions (e.g., laughing, 1st

row), handles challenging states such as relaxing (2nd row), and supports diverse activities like eating
(3rd row) and closed eyes (4th row), which require complex body poses or expressive facial gestures.

in Fig. 5. As observed, prior methods often fail to produce coherent scenes with both subjects
correctly placed and interacting naturally: some omit one subject, others duplicate it, and many yield
identity not preserved. In contrast, our approach generates high-fidelity, prompt-aligned scenes where
both identities are faithfully preserved and their interactions look more natural. As demonstrated in
Tab. 1, LayerComposer is significantly preferred by users, achieves the highest identity preservation,
and delivers image quality and text adherence on par with OmniGen2, findings that are consistent
with our qualitative comparisons.

Single-Person (1P) Personalization. Prior to multi-subject personalization, single-person generation
was the focus in personalization. To evaluate LayerComposer on 1P benchmark, we compare
it to several leading methods developed built on top of FLUX.1 dev (Black Forest Labs, 2024),
including IP-Adapter (Ye et al., 2023), PuLID (Guo et al., 2024), and InfiniteYou (Jiang et al.,
2025). As illustrated in Fig. 6, competing methods often directly inject the input identity with
limited pose and expression variations and are often unable to follow diverse text prompts. In
contrast, LayerComposer produces coherent natural generations following prompts with diverse facial
expressions. Quantitatively, Tab. 1 verifies that ours excels at prompt following and is preferred by a
significantly larger portion in the user study. See §D for additional visual examples.

4.3 ABLATION AND ANALYSIS

8
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1 23

w/o layered canvasInputs w/o Locking Lock 1

23

Lock 1 2 Lock 1 2 3

1

Figure 7: Ablation study. Locking can be applied to any subject, preserving the selected subjects
with only necessary lighting and shading adjustments (e.g., reducing head reflection in the right man)
in the final output. The layered canvas resolves occlusion issues, without which the overlapped details
might be lost (e.g., the hat of the left woman).

Method ArcFace ↑ VQAScore ↑ HPSv3 ↑ User Rate(%) ↑
Four-Person (4P) Personalization

FLUX Kontext 0.217 0.869 12.3 6.25
Overlay Kontext 0.251 0.828 11.2 2.08
Qwen-Image-Edit 0.236 0.869 11.6 1.04
Nano-Banana 0.434 0.826 10.4 36.46
Ours 0.533 0.840 12.5 48.96

Two-Person (2P) Personalization
UniPortrait 0.536 0.723 8.01 0
StoryMaker 0.542 0.523 4.97 0
UNO 0.071 0.870 11.2 0
OmniGen2 0.121 0.828 12.8 16.67
Ours 0.547 0.796 11.6 83.33

Single-Person (1P) Personalization
IPA-FLUX 0.453 0.790 9.88 9.38
PuLID-FLUX 0.639 0.859 11.5 9.38
InfiniteYou 0.528 0.853 13.2 15.63
Ours 0.487 0.893 12.5 65.63

Table 1: Quantitative comparison across different per-
sonalization benchmarks. LayerComposer ranks among
the top two methods in image quality across benchmarks
according to HPSv3. On multi-subject benchmarks, it sub-
stantially outperforms other leading approaches in identity
preservation as measured by ArcFace. Notably, because
ArcFace tends to reward faces with the same expression
and head pose, our score on 1P generation is lower than
baselines that tend to copy paste the input face. Our strong
VQA score in 1P demonstrates superior adherence to text
prompts compared to competing baselines. User studies in
rating the overall best method for each prompt show that
our method is favored across all benchmarks.

Since our contributions primarily lie on
the control side—specifically the lock-
ing mechanism and the layered canvas—
it is most intuitive to evaluate them qual-
itatively, as quantitative differences are
less pronounced. Their effectiveness in
preservation and occlusion handling is
shown in Fig. 7.

Effect of Locking Mechanism. To
demonstrate the effect, we progressively
lock each input layer. A locked layer
preserves the pose of the subject—while
the model applies only outpainting and
subtle lighting changes. We highlight
that this is different from the masked in-
ference, where the masked regions will
not be updated at all. In terms of our
unlocked layers, they will be flexibly ad-
justed based on the locked ones and the
broader context. See another example
in Fig. II for the effect of locking.

Effect of Layered Canvas. Without
the layered canvas, the model is trained
on a single collage image as the con-
ditioning input, shown as “Inputs” in
Fig. 7. As seen in the “w/o layered can-
vas” column, e.g., occlusion in the col-
lage causes missing information. For
example, the ball on the Christmas hat disappears from the left woman. By contrast, our layered
canvas explicitly handles occlusion and prevents such artifacts. We also show that the layered canvas
is versatile and can accept an optional background as an additional input layer in §D.1.

5 CONCLUSION

In this paper, we introduced LayerComposer, a novel and effective framework for interactive person-
alized text-to-image generation. By treating user inputs as a set of spatially-aware layers, our method
provides direct occlusion-free control over the composition of multiple personalized subjects. The
proposed locking mechanism further refines this control, enabling high-fidelity subject preservation
in the locked layers, while allowing creative variance in the unlocked layers. Our experiments
demonstrate that LayerComposer surpasses existing methods in both spatial control and identity
preservation, offering a more intuitive and powerful tool for creative expression. We believe that
LayerComposer, specifically the layered canvas paradigm, opens the door to many exciting and
meaningful future work. See Appendix for discussions on limitations of this work.
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ETHICS STATEMENT

First, regarding the images used for training, we relied exclusively on our licensed datasets with
heavy NSFW filtering. Second, for benchmarking, we used the publicly available dataset FFHQ-in-
the-Wild—collected in StyleGAN (Karras et al., 2019)—instead of unlicensed photographs. Finally,
we acknowledge that our model can generate synthetic images that may be misused with harmful
intent. In accordance with our internal policy, we will not open-source the model at this time. For API
access, we will implement input safeguards and prompt filtering mechanisms to mitigate potential
misuse.

REPRODUCIBILITY STATEMENT

We describe our dataset curation process and provide sufficient details of training and evaluation in
Sec. 4.1 to ensure reproducibility. Our model is built on top of FLUX.1 Kontext (Labs et al., 2025),
which is publicly available.

REFERENCES

Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene:
Extracting multiple concepts from a single image. In SIGGRAPH Asia 2023 Conference Papers,
pp. 1–12, 2023.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
CoRR, abs/2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Sko-
rokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject
open-set personalization in video generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6099–6110, 2025.

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-
shot object-level image customization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6593–6602. IEEE, 2024.

Bo Cheng, Yuhang Ma, Liebucha Wu, Shanyuan Liu, Ao Ma, Xiaoyu Wu, Dawei Leng, and Yuhui Yin.
Hico: hierarchical controllable diffusion model for layout-to-image generation. In Proceedings of
the 38th International Conference on Neural Information Processing Systems, pp. 128886–128910,
2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

InsightFace Contributors. Insightface: 2d and 3d face analysis project. https://github.com/
deepinsight/insightface, 2024.

Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention for
multi-subject text-to-image generation. In European Conference on Computer Vision, pp. 432–448.
Springer, 2024.

Yusuf Dalva, Hidir Yesiltepe, and Pinar Yanardag. Lorashop: Training-free multi-concept image
generation and editing with rectified flow transformers. CoRR, abs/2505.23758, 2025.

10

https://github.com/black-forest-labs/flux
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos Zafeiriou. Arcface:
Additive angular margin loss for deep face recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
44(10):5962–5979, 2022.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In ICLR. OpenReview.net, 2023.

Rinon Gal, Or Lichter, Elad Richardson, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
Cohen-Or. Lcm-lookahead for encoder-based text-to-image personalization. In ECCV (14), volume
15072 of Lecture Notes in Computer Science, pp. 322–340. Springer, 2024.

Daniel Garibi, Shahar Yadin, Roni Paiss, Omer Tov, Shiran Zada, Ariel Ephrat, Tomer Michaeli, Inbar
Mosseri, and Tali Dekel. Tokenverse: Versatile multi-concept personalization in token modulation
space. ACM Transactions on Graphics (TOG), 44(4):1–11, 2025.

Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, Peng Zhang, and Qian He. Pulid: Pure and light-
ning ID customization via contrastive alignment. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Yucheng Han, Rui Wang, Chi Zhang, Juntao Hu, Pei Cheng, Bin Fu, and Hanwang Zhang.
EMMA: your text-to-image diffusion model can secretly accept multi-modal prompts. CoRR,
abs/2406.09162, 2024.

Junjie He, Yifeng Geng, and Liefeng Bo. Uniportrait: A unified framework for identity-preserving
single- and multi-human image personalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

ilkerzgi and gokaygokay. Overlay-kontext-dev-lora. https://huggingface.co/ilkerzgi/
Overlay-Kontext-Dev-LoRA, 2025. LoRA fine-tune of FLUX.1-Kontext-dev for image
overlay tasks.

Liming Jiang, Qing Yan, Yumin Jia, Zichuan Liu, Hao Kang, and Xin Lu. Infiniteyou: Flexible
photo recrafting while preserving your identity. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2025.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, pp. 4401–4410, 2019.

Zhe Kong, Yong Zhang, Tianyu Yang, Tao Wang, Kaihao Zhang, Bizhu Wu, Guanying Chen, Wei Liu,
and Wenhan Luo. Omg: Occlusion-friendly personalized multi-concept generation in diffusion
models. In European Conference on Computer Vision, pp. 253–270. Springer, 2024.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. In CVPR, pp. 1931–1941, 2023.

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Di-
agne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext: Flow match-
ing for in-context image generation and editing in latent space. arXiv preprint arXiv:2506.15742,
2025.

Phillip Y. Lee, Taehoon Yoon, and Minhyuk Sung. Groundit: Grounding diffusion transformers via
noisy patch transplantation. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 22511–22521, 2023.

11

https://huggingface.co/ilkerzgi/Overlay-Kontext-Dev-LoRA
https://huggingface.co/ilkerzgi/Overlay-Kontext-Dev-LoRA


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker:
Customizing realistic human photos via stacked ID embedding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8640–8650. IEEE, 2024.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In European
Conference on Computer Vision, pp. 366–384. Springer, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICLR. OpenReview.net, 2023.

Sean J. Liu, Nupur Kumari, Ariel Shamir, and Jun-Yan Zhu. Generative photomontage. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7931–7941,
2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human
preference score. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2025.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-
adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 4296–4304, 2024.

Yotam Nitzan, Kfir Aberman, Qiurui He, Orly Liba, Michal Yarom, Yossi Gandelsman, Inbar Mosseri,
Yael Pritch, and Daniel Cohen-Or. Mystyle: A personalized generative prior. ACM Transactions
on Graphics (TOG), 41(6):1–10, 2022.

Or Patashnik, Rinon Gal, Daniil Ostashev, Sergey Tulyakov, Kfir Aberman, and Daniel Cohen-Or.
Nested attention: Semantic-aware attention values for concept personalization. In Proceedings
of the Special Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Papers, pp. 1–12, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4172–4182. IEEE, 2023.

Ryan Po, Guandao Yang, Kfir Aberman, and Gordon Wetzstein. Orthogonal adaptation for modular
customization of diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7964–7973. IEEE, 2024.

Guocheng Qian, Kuan-Chieh Wang, Or Patashnik, Negin Heravi, Daniil Ostashev, Sergey Tulyakov,
Daniel Cohen-Or, and Kfir Aberman. Omni-id: Holistic identity representation designed for
generative tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2025a.

Guocheng Gordon Qian, Daniil Ostashev, Egor Nemchinov, Avihay Assouline, Sergey Tulyakov,
Kuan-Chieh Jackson Wang, and Kfir Aberman. Composeme: Attribute-specific image prompts for
controllable human image generation. arXiv preprint arXiv:2509.18092, 2025b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR,
pp. 22500–22510, 2023.

Vishnu Sarukkai, Linden Li, Arden Ma, Christopher Ré, and Kayvon Fatahalian. Collage diffusion.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
4208–4217, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Takahiro Shirakawa and Seiichi Uchida. Noisecollage: A layout-aware text-to-image diffusion model
based on noise cropping and merging. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim, and
Daniel Aliaga. Objectstitch: Object compositing with diffusion model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18310–18319, 2023.

Kuan-Chieh Wang, Daniil Ostashev, Yuwei Fang, Sergey Tulyakov, and Kfir Aberman. Moa: Mixture-
of-attention for subject-context disentanglement in personalized image generation. In SIGGRAPH
Asia 2024 Conference Papers, pp. 1–12, 2024a.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
Instantid: Zero-shot identity-preserving generation in seconds. arXiv preprint arXiv:2401.07519,
2024b.

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. arXiv preprint arXiv:2508.02324,
2025a.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
arXiv preprint arXiv:2506.18871, 2025b.

Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more
generalization: Unlocking more controllability by in-context generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2025c.

Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcomposer:
Tuning-free multi-subject image generation with localized attention. International Journal of
Computer Vision, 133(3):1175–1194, 2025a.

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 13294–13304, 2025b.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang
Wen. Paint by example: Exemplar-based image editing with diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 18381–18391, 2023.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Hui Zhang, Dexiang Hong, Maoke Yang, Yutao Cheng, Zhao Zhang, Jie Shao, Xinglong Wu, Zuxuan
Wu, and Yu-Gang Jiang. Creatidesign: A unified multi-conditional diffusion transformer for
creative graphic design. arXiv preprint arXiv:2505.19114, 2025.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
Controllable diffusion model for layout-to-image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 22490–22499, 2023.

Zhengguang Zhou, Jing Li, Huaxia Li, Nemo Chen, and Xu Tang. Storymaker: Towards holistic
consistent characters in text-to-image generation. arXiv preprint arXiv:2409.12576, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered
Canvas

— Supplementary Material —

A BENCHMARK DETAILS

A.1 BASELINES

4P Personalization. For all baselines, we use the collaged image as input, as they do not support a
layered canvas with spatial control like ours. We use the same prompt for FLUX Kontext (Labs et al.,
2025), Qwen-Image-Edit (Wu et al., 2025a), Nano-Banana (Comanici et al., 2025), and our Layer-
Composer. For Overlay Kontext (ilkerzgi & gokaygokay, 2025), we follow the official instructions to
add the “place it” trigger phrase before the generation prompt: "Place it.{prompt}".

2P Personalization. We use the same prompt for all baselines except OmniGen2, which requires in-
context instruction: "The first person is image 1 and the second person is
image 2.{prompt}."

1P Personalization. All baselines use the cropped head as input. For our method, we place the same
cropped head into a black canvas to be compatible with our training.

A.2 AUTOMATED BENCHMARKING PIPELINE

Layered canvas is primarily designed for interactive personalization. However, for benchmarking
purposes, we built an automated canvas creation pipeline so that evaluation can be performed without
any human intervention. The pipeline works as follows: for each prompt, we first run the FLUX.1
dev model to generate a prior image. We then apply face detection, obtaining relevant face bounding
boxes. Next, we detect the bounding boxes of all input subjects. Finally, each input face is resized
and placed according to the size and location of each prior face, yielding a canvas that serves as
the input for the evaluation of our model. The collage image is the composition generated from the
layered canvas, which is then used for the collage-based baselines. This automated pipeline is used
across all benchmarks in this paper.

B LIMITATION AND FUTURE WORK

LayerComposer, despite its innovative personalization paradigm, suffers from limitations originating
from data quality and the diffusion backbone.

Reasoning limitation.. The method sometimes struggles with complex reasoning, particularly
when the generated image requires a sophisticated spatial relationship between the humans and the
background. For example, LayerComposer fails to correctly place foreground humans in the chairs in
a given background. As future work, we argue that this limitation can be addressed by integrating the
strong reasoning capabilities of Vision Language Models (Bai et al., 2023; 2025) into the personalized
generation process.

Beyond 4-Person (>4P) Generation Limitations. LayerComposer in principle supports any number
of subjects in the layered canvas. However, its performance is currently limited in scenarios with
more than four people, due to two factors. First, data limitations: our existing in-house samples for
groups larger than four often contain identities with highly similar poses, expressions, and low-quality
faces. Incorporating such data leads the model to “copy-paste” humans, degrading the quality of the
generated images. Including >4P scenarios with rigorous data filtering would improve performance.
Second, base model limitations: FLUX Kontext itself is much less robust for >4P generation.
Access to the raw FLUX.1 Kontext model, prior to high-quality finetuning or even before guidance
distillation, would likely allow for room in the improved performance.
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Figure I: 4P Personalization with Background. Our layered canvas can be seamlessly integrated
with the background, resulting in five layers: four persons and one background. In the final output,
the inserted humans interact naturally with the background, e.g. leaning against a tree trunk or taking
food from the table, while maintaining overall coherent lighting.

C LLM USAGE DECLARATION

We only used large language models (LLMs) to polish the writing, e.g. correcting grammar and
improving formality.

D ADDITIONAL RESULTS

D.1 ADDITIONAL 4P PERSONALIZATION WITH BACKGROUND

The layered canvas also accepts an optional background image as input. LayerComposer is able to
generate images where humans interact naturally with the background under coherent lighting, as
indicated in Fig. I.

D.2 ADDITIONAL ABLATION STUDY

We provide another example illustrating the usefulness of locking, e.g. preserving the symbolic pose
of an identity, as shown in Fig. II.

D.3 ADDITIONAL 4P RESULTS

This section presents an extensive set of 32 qualitative examples for 4-person personalization,
organized across four figures, to provide a comprehensive and uncurated evaluation of our method.
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Input Image Layered Canvas w/o Locking w/ Locking

“a man talking to another woman in office”

Figure II: Additional Locking Example. Locking can be used to preserve a subject’s symbolic pose
during generation.

We provide qualitative results in Tab. I. We compare our results against several key baselines:
Overlay Kontext (ilkerzgi & gokaygokay, 2025), Qwen Image Edit (Wu et al., 2025a), and Nano-
Banana (Comanici et al., 2025), with FLUX Kontext (Labs et al., 2025) serving as our base model.

Across these diverse scenarios, a clear pattern of performance emerges. Overlay Kontext often results
in a simple ‘cut-and-paste’ look with poor semantic integration. Qwen Image Edit frequently alters
the global scene context or fails to preserve subject identity. Nano-Banana (Comanici et al., 2025) is
a noteworthy baseline; in the rare instances where it does not fail, it can produce highly naturalistic
images that are free of artifacts. We believe this is a result of its stronger closed-model architecture
and extensive data filtering. However, this peak performance is undermined by a critical lack of
robustness. The model’s performance is erratic, frequently failing entirely or producing images
with significant compositional and anatomical artifacts. In stark contrast, our approach consistently
generates high-quality, coherent images that faithfully adhere to input conditions, demonstrating a
qualitative superiority rooted in robustness and reliability.

D.4 ADDITIONAL 2P RESULTS

To demonstrate the effectiveness of our method on paired subjects, we provide a comprehensive set of
qualitative examples for 2-person personalization in Tab. II. We compare our approach against several
state-of-the-art methods following our experiments provided in the main paper: UniPortrait (He et al.,
2025), StoryMaker (Zhou et al., 2024), UNO (Wu et al., 2025c), and OmniGen2 (Wu et al., 2025b).

The results highlight different failure modes among the baselines. UniPortrait (He et al., 2025) often
struggles with identity preservation and produces an unnatural, ‘pasted-on’ effect. StoryMaker (Zhou
et al., 2024) frequently generates overly stylized or semantically incoherent images, leading to
failure cases. Although UNO (Wu et al., 2025c) and OmniGen2 (Wu et al., 2025b) show stronger
performance, they can suffer from inconsistent subject interaction and subtle identity drift. In contrast,
our method consistently excels at preserving subject identities, rendering realistic interactions, and
maintaining coherence across a wide variety of challenging scenarios, underscoring its superior
qualitative performance and reliability.

D.5 ADDITIONAL 1P RESULTS

To showcase the fidelity of our method for single person personalization, this section provides a
comprehensive set of qualitative comparisons in Tab. III. We benchmark our approach against several
powerful, recent methods: IP-Adapter(IPA-FLUX) (Ye et al., 2023), PuLID (Guo et al., 2024), and
InfiniteYou (Jiang et al., 2025).

The results reveal critical distinctions in model capability and reliability. IPA-FLUX (Ye et al., 2023)
often suffers from failure cases or severe identity leakage, failing to disentangle the input identity from
the subject in the original scene. Although PuLID-FLUX (Guo et al., 2024) and InfiniteYou (Jiang
et al., 2025) are strong baselines that preserve identity more reliably, they can lack fidelity in other
areas. PuLID-FLUX occasionally struggles with producing natural poses and expressions, while
InfiniteYou can produce results with a level of diversity that falls short in reflecting the input condition.
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864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
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895
896
897
898
899
900
901
902
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904
905
906
907
908
909
910
911
912
913
914
915
916
917
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In contrast, our method consistently achieves a higher degree of realism, excelling at preserving the
subject’s identity in a flexible way while seamlessly integrating them into the scene with appropriate
lighting, texture, and pose.

FLUX Kontext Overlay Kontext Qwen Image Edit Nano-Banana Ours Inputs

Table I: Supplementary results for 4P personalization
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918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
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UniPortrait StoryMaker UNO OmniGen2 Ours Inputs

Table II: Supplementary results for 2P personalization
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
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IPA-FLUX PuLID-FLUX InfiniteYou Ours Inputs

Table III: Supplementary results for 1P personalization
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