000

001

002 003 004

005

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

033

034

037

040

041 042

043

044

045

046

047

048

051

052

MLE-RL: REINFORCEMENT LEARNING FOR SELF-IMPROVEMENT IN MACHINE LEARNING AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Language models have shown significant promise in complex reasoning and coding tasks. However, coding for machine learning engineering presents unique challenges due to the iterative nature of development, long execution times, and the need for continuous self-improvement. In this paper, we introduce MLE-RL trained with reinforcement learning to address these challenges. Our approach reframes the learning process by breaking down long-horizon trajectories into single-step optimizations. We employ a reinforcement learning strategy that selectively learns from the most informative attempts, optimizing the policy on valuable steps. In addition, to overcome context limitations, our agent uses a scaffold with a memory module to store and recall high-performing past solutions, facilitating cumulative learning. The evaluation on the MLE-Bench demonstrates that our MLE-RL-32B achieves 4.9% improvement over the baseline model in the competition ranking on ML tasks and achieves competitive performance against state-of-the-art open-source models like DeepSeek-R1-0528.

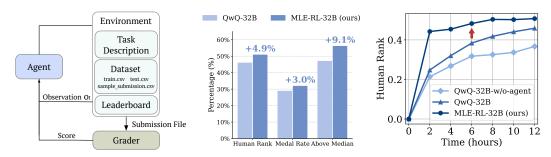


Figure 1: Left: Overview of agent-environment interaction in MLE tasks. The agent receives a task description and dataset from the environment, generates and submits solutions, which a grader evaluates to access a performance score for iterative optimization. *Middle*: MLE-RL-32B consistently outperforms baseline methods. Right: The performance throughout the evaluation time period.

Introduction

Language models (LMs) have demonstrated excellent performance on reasoning (Luo et al., 2025; Wang et al., 2024a) and coding (Hui et al., 2024; Zhu et al., 2024) tasks, and tool-augmented LM agents already handle complex tasks, from software engineering (SWE) (Jimenez et al., 2024; Yang et al., 2024) to scientific workflows (Ghafarollahi & Buehler, 2025; Novikov et al., 2025). Unlike traditional single-shot code-generation tasks like coding competitions (Li et al., 2022) or software engineering, machine learning engineering (MLE) focuses on improving system performance over extended periods with limited time budgets (Chan et al., 2025) but no restriction on attempt times. Figure 1(left) illustrates how an LLM handles MLE tasks as an agentic loop: plan the pipeline, write/run code, inspect results, then iterate, tuning features and hyperparameters, swapping models, fixing errors, using the score as continuous feedback, while retaining the best artifacts and stopping when the budget is exhausted. Since each submission requires code execution, which may take hours, a 12 or 24-hour time window is typically necessary to support adequate iterative experimentation. For example, MLE-Bench (Chan et al., 2025) evaluates LLM's on their best performance

on ML tasks within 24 hours. This creates challenges in accurately attributing the sources of improvement, managing heterogeneous reward scales, and leveraging prior work to optimize future experiments. These properties demand LLMs with self-improvement – the ability to accumulate experience, retain/adapt prior solutions, and refine strategies across iterations.

Previous works generally focus on scaling up test-time compute with workflow designs (Liu et al., 2025; Nam et al., 2025), yet few works have paid attention to how to optimize the self-improvement of LLM through training. An MLE task has an associated description, dataset, and a public test set. It is more feasible to evaluate the quality of a solution from an LLM than to obtain proprietary, state-of-the-art solutions. For such easy-to-verify tasks, reinforcement learning has emerged as a powerful and effective strategy. (DeepSeek-AI, 2025; AlphaProof & teams, 2024)

However, the model must iteratively refine its solutions to attain higher performance, introducing additional challenges. 1) Unlike existing reasoning tasks, e.g., math, optimized for single-shot correctness, MLE seeks the best solution within a time budget and tolerates failures. Prioritizing informative and best-performing attempts over training on all attempts is more crucial. 2) Credit assignment is an inherent problem for a multi-step improvement process. 3) While continuous improvement over past experiences is expected, the limited context length of LLMs restricts access to past experiences in multi-turn scenarios.

Contributions. To overcome the challenges, we propose MLE-RL, a reinforcement learning framework to foster continuous self-improvement in machine learning engineering (MLE) tasks. MLE-RL trains LLM to learn from valuable past experiences and operates within an agentic scaffold equipped with a memory module. Our contributions are as follows:

First, we propose a reinforcement learning strategy that learns from informative attempts rather than all attempts. To address the credit assignment problem inherent in multi-step interactions, we reframe the task by splitting long-horizon trajectories into single-step optimization units. This enables a more precise attribution of rewards and allows us to apply a curated data selection strategy, optimizing the policy on only the most valuable and informative steps. This entire process is embedded within an asynchronous training framework, enabling efficient and robust policy learning considering the overlong execution time and latency.

Second, to overcome context length limitations and enable the agent to learn from past successes, we introduce a memory module. This module stores high-performing solutions from the agent's history. By randomly selecting a past solution to inform its next attempt, the agent can build upon previous successful experiences that would otherwise be lost, allowing for knowledge accumulation and iterative improvement of its best solutions.

We evaluate MLE-RL on MLE-Bench (Chan et al., 2025), a comprehensive and challenging benchmark for ML agents. As shown in Figure 1, MLE-RL can significantly achieves 4.9% improvement over the baseline model in the competition ranking and 9.1% in above median on ML tasks. MLE-RL-32B also shows consistently better results at different timestamps in the evaluation stage. MLE-RL also demonstrates competitive performance to state-of-the-art open-source models.

2 Related Work

Code Agents for LLMs. In recent years, the applications of code AI agents have attracted increasing attention (Holt et al., 2024; Yang et al., 2024; Zhang et al., 2024a). For instance, LLM-based code agents have been widely explored for software engineering (SWE) tasks, where systems such as SWE-agent (Yang et al., 2024), AutoCodeRover (Zhang et al., 2024b), and OpenHands (Wang et al., 2024b) provide frameworks that enable models to autonomously edit code and resolve issues (Jimenez et al., 2024). Beyond agent scaffolds, increasing efforts have focused on improving agent performance on SWE tasks through model training (Pan et al., 2024; Xie et al., 2025) or scale RL-based LLM reasoning for real-world software engineering (Wei et al., 2025).

Machine learning engineering (MLE) has become an emerging domain for evaluating code agents. Framework-driven methods including AIDE (Jiang et al., 2025), ML-Master (Liu et al., 2025), AutoMind (Ou et al., 2025), and MLE-STAR (Nam et al., 2025)employ tree-structured exploration, while scaffolds such as MLAB (Huang et al., 2023) and OpenHands (Wang et al., 2024b) provide general tool-use interfaces for automating ML tasks. Agentic loop systems (R&D Agent (Yang et al.,

2025)) further incorporate iterative refinement through role separation. However, most existing efforts are based on comprehensive prompting and scaffold design rather than end-to-end trainable agents. Consequently, how to improve AI agents' performance on MLE tasks through direct training still remains underexplored.

Reinforcement Learning for Language Models. Reinforcement learning (RL) has recently become a central approach for enhancing reasoning abilities in large language models, demonstrating substantial gains to mathematical and coding tasks (DeepSeek-AI, 2025; Qwen, 2025; Hou et al., 2025). Typical training paradigms treat generated attempts as approximately i.i.d. samples (DeepSeek-AI, 2025; Qwen, 2025), rely on verifiable answers or reward models to provide supervision (Hou et al., 2025), and apply batch or group-level reward normalization to stabilize optimization (Shao et al., 2024). However, they fail to apply directly to ML tasks due to the non-i.i.d. nature of interactions and the distinctiveness of the reward signal.

3 Preliminary

Iterative Self-improvement for Machine Learning Tasks (MLE) Following MLE-Bench, the input consists of a machine learning task description and a competition dataset \mathcal{D} . The agent generates a solution $s \in \mathcal{S}$, where \mathcal{S} represents the solution space and the execution result yield a performance score $h(s) \in \mathcal{R}$ (e.g., accuracy or loss) to reflect the solution's effectiveness. The goal is to find the optimal solution $s^* = \arg\max_{s \in \mathcal{S}} h(s)$ within a given inference cost or time limit. To achieve this objective, the search can be cast as direct code generation or as iterative, solution-level self-improvement to make full use of the inference budget.

Formally, given a task, the policy π_{θ} receives the prompt x and produces an initial answer s_0 . The model then enters an iterative self-improvement process, where in step k, the model updates the current solution from s_k to s_{k+1} . Throughout this process, the policy π_{θ} conditions its generation on the current solution s_k , and potentially on the accumulated historical information, which may include prior solutions $s_{< k}$ and relevant feedback signals o_k (from the current step) and $o_{< t}$ (from previous steps), such as execution traces. The historical information can comprise all or a subset of previous attempts. For convenience, we define the state at step k as $\tau_k = (s_k, s_{< k}, o_k, o_{< k})$. The next iterated solution s_{k+1} is then sampled from the policy as: $s_{k+1} \sim \pi_{\theta}(\cdot | \tau_k, x)$. Given a predefined time budget, the best solution is selected based on its performance score h(s) on a held-out validation set.

Reinforcement Learning for LLMs. Reinforcement learning has been serving a critical role in advancing the reasoning and agent capabilities of LLMs. This paradigm allows LLMs to learn from self-exploration and optimize based on reward signals. In a typical RL process, the policy model π_{θ} generates a set of K responses, (y_1, \ldots, y_K) , for a given input x. Each response y_i is then assigned a scalar reward $r(x, y_i)$. The model π_{θ} is subsequently updated to maximize the expected reward, commonly via an objective function incorporating an advantage term:

$$\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}, \boldsymbol{y} \sim \pi_{\theta}} \frac{1}{K} \sum_{i}^{K} A(\boldsymbol{x}, \boldsymbol{y}_{i}) \log \pi_{\theta}(\boldsymbol{y}_{i} | \boldsymbol{x})$$
(1)

Here, $A(\cdot)$ represents the advantage function, often formulated as $A(\boldsymbol{x},\boldsymbol{y}_i) = \beta(r(\boldsymbol{x},\boldsymbol{y}_i)-b)$, where b is a crucial baseline that normalizes the reward signal. Group Relative Policy Optimization (GRPO)(Shao et al., 2024) is widely adopted to optimize LLM with RL. For a query x generating a group of responses $\{y_i\}_{i=1}^G$, GRPO defines the advantage \widehat{A}_i for each response y_i as:

$$\widehat{A}_{i} = \frac{r(x, y_{i}) - \operatorname{mean}\left(\{r(x, y_{i})\}_{i=1}^{G}\right)}{\operatorname{std}\left(\{r(x, y_{i})\}_{i=1}^{G}\right)}.$$
(2)

4 MLE-RL: RL FOR MACHINE LEARNING ENGINEERING

In this section, we present MLE-RL to advance the self-improvement capabilities of LLMs to solve machine learning engineering (MLE) tasks. The core idea of MLE-RL is to promote the exploration and effective use of past experiences in search and learn from informative and valuable attempts.

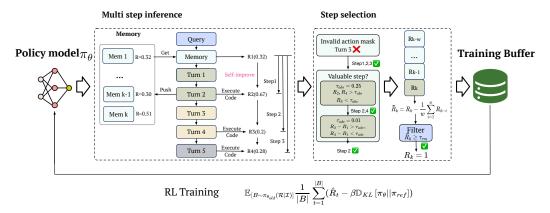


Figure 2: Overview of the MLE-RL framework. The policy model interacts with an agentic scaffold equipped with a memory module, which stores and reuses high-quality historical attempts. Data selection based on invalid mask, value selection, and relative improvement selection retains valuable samples, which are collected into a training buffer for policy optimization.

To achieve this, we first develop strategies to improve LLMs via reinforcement learning. The idea is to train the LLM to learn from informative attempts rather than the amount of low-value samples. Second, we design an agentic scaffold equipped with a memory module which stores excellent past experiences. The memory enables exploration for improvement based on best practices up to each step. The overview of MLE-RL is illustrated in Figure 2.

4.1 OPTIMIZING MLE WITH REINFORCEMENT LEARNING

In this part, we describe how to improve via reinforcement learning (RL). We first reframe the multistep self-improvement problem as a single-step optimization. For optimization, instead of training on all generated data in RL, we optimize the LLM to learn from the most informative steps of high rewards with curated data selection and reward designs.

Multi-step self-improvement as a single-step optimization. Following the design in MLE-Dojo (Qiang et al., 2025), we tackle the ML task as an agentenvironment interaction. At time t, the agent selects action $a_t \in A$ and receives observation $o_t \in O$. The observation can be the information of the problem, execution results of the code, or the evaluation metric of a machine learning problem. We meticulously select important primitives from the predefined action spaces: request_info, validate_code, and execute_code. The agent operates in a multi-turn loop, alternately proposing code or information requests and consuming execution feedback and metric scores. As shown in Table 6, this multi-turn interaction yields consistent gains over single-turn baselines, which allow only one submission per trace and thus preclude self-improvement.

With this multi-turn agent scaffold which allows for multiple submissions within a single trace, each associated with a distinct score. This presents a challenge for credit assignment, as evaluating the entire trace as a single unit makes it difficult to isolate the contribution of the actions that led to a specific submission. To enable a more precise attribution of reward for each successful attempt, we split a multi-turn trajectory into multiple interaction units for training.

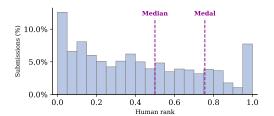
Specifically, Each multi-turn interaction can be denoted as a sequence:

$$S = \{x, a_1, o_1, ..., a_N, o_N\}$$
(3)

where x denotes the input problem, a_i the assistant's action at turn i, and o_i is the environment feedback. Corresponding to the description of action space in Section 4.1, we view actions between two *execute_code* actions that produces a valid submission as a *step*.

For each training instance at turn k ($1 \le k \le N$), the model is provided with the entire history up to the current turn. The resulting training sample is constructed as:

$$S_k = \left(x, (a_1^1, o_1^1, \dots a_1^{N_1}, o_1^{N_1}), \dots, (a_M^1, o_M^1, \dots a_M^{N_M}, o_M^{N_M})\right) \tag{4}$$



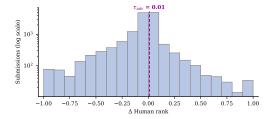


Figure 3: (a) Proportion of submissions at different human ranks, with lines denoting the median and the average medal-winning threshold across competitions. A considerable proportion falls below these lines. (b) Distribution of Δ Human Rank, defined as the reward improvement between the current and its previous submission for reset traces, and between the current and memory submission for memory traces. More than half of the submissions exhibit Δ Human Rank below the threshold $\tau_{adv}=0.01$, indicating limited performance improvement.

where $a_{i,j}$ denotes the j-th action of the i-th step. And $a_M^{N_M}$ is always $execute_code$.

Training with valuable steps. For MLE tasks, we propose to optimize the model with the most informative steps rather than all generated attempts. The overall target is to train the model to improve over the previous solutions and achieve superior performance. Figure 5 illustrates that a significant portion of solutions falls below the median and medal-winning thresholds, indicating the presence of many suboptimal solutions. And more than half of the attempts fail to achieve reasonable improvement over the previous ones. The results indicate that the generation in fact produces amount of low-value data (negative samples). Therefore, effective data selection is essential to prevent suboptimal and negatively optimized instances from destabilizing the learning process.

To improve training data quality and enhance training robustness by prioritizing high-quality solutions and mitigating suboptimal responses, we employ three specialized filters as follows:

- Mask invalid actions. We introduce a mask strategy to prevent the model from collapsing into invalid tool-using output. Instead of assigning a negative reward to invalid format output, we mask the loss on agent responses that result in an invalid format (e.g., invoking incorrect tool calls or exceeding length limits) or an invalid submission. This allows the model to leverage the full contextual trajectory for learning without reinforcing erroneous outputs, thereby contributing to preventing the generation of undesirable behaviors.
- Valuable step selection. To select valuable steps that are beneficial to training, we retain valid submission that attain a reward exceeding a competition-specific threshold τ_{abs} . This threshold is carefully calibrated to retain approximately 30% of the highest-scoring data for training in each competition, thus preventing the model from repeatedly drawing on suboptimal solutions. In addition, The model is expected to iteratively refine solutions based on prior experience. However, as depicted in figure 5 (b), generated solutions constitute numerous negative optimizations. To steer the model to generate improved solutions than the reference ones and prevent negative optimization, we retain data points only if the relative reward improvement of the current submission surpasses a predefined threshold τ_{adv} . This reinforces substantive improvements over the initial solution in a given interaction.

However, as the training goes on based on the designated scaffold with memory, the average performance would gradually grow up and thus a static data filtering strategy is problematic. To address the non-stationarity of execution outcomes arising from stochasticity and shifting data splits, we adopt a dynamic, competition-specific reward normalization coupled with significance-based filtering. For each instance with raw reward $r_i = \operatorname{Rank}_i$, we compute a running mean over a historical window \mathcal{H}_i containing the W most recent rewards from the same competition, prune outliers more than two standard deviations below the window mean, and obtain the normalized reward:

$$\bar{r}_i = r_i - \frac{1}{|\mathcal{H}_i'|} \sum_{j \in \mathcal{H}_i'} r_j, \quad \mathcal{H}_i' = \{ j \in \mathcal{H}_i \mid r_j \ge \mu_{\mathcal{H}_i} - 2\sigma_{\mathcal{H}_i} \}.$$

Notably, since traces utilizing memory benefit from accumulated past experiences, we maintain separate running mean windows for memory and reset traces to prevent bias against those starting from scratch. During RL training, we actually use $r_i=1$ if $\bar{r}_i>0$ else $r_i=0$. This implementation amplifies the contribution of positive samples and masks the gradient of all negative samples. This running filter helps that the training set emphasizes substantive solution changes and thereby supports robust policy learning under inevitable evaluation noise.

Asynchronous Training for RL. To address the challenge of high reward latency originating from code execution, we adopt a fully decoupled training and data generation framework. Specifically, data generation workers are asynchronously executed based on our scaffold, accumulating generated samples into a data pool. Once the number of samples reaches a predefined batch size B, the training process is triggered to update the model parameters using the latest batch of data. By decoupling training and data generation, we can flexibly scale up the number of data generators, allowing the throughput of data generation and training to be balanced, and thus mitigating the impact of slow reward feedback on overall training efficiency. For policy optimization, we employ REINFORCE (Williams, 1992) to optimize the target in Eq 1 with the reward designs stated above.

4.2 AGENTIC SCAFFOLD WITH MEMORY

Multi-step self-improvement in machine learning engineering learns from past iterations to find better solutions, but limited context length of LLM constrains the access to its history of attempts. Existing methods either discard all history when the context window fills, or restrict learning to only the prior iteration with pre-defined workflow, at the cost of agent design flexibility.

To enable the model to explore based on historical experiences and avoid context limitations, we introduce a memory module that stores valuable historical attempts. The module maintains a pool of high-scoring solutions together with metadata (score, step, trace identifier) and affords two operations: push and get:

- push: If a new solution s discovered by the policy model exceeds the pools minimum score, insert s into the pool or replace the lowest-scoring entry.
- get: Randomly sample a solution from the pool to condition the next trajectory.

When a new trace begins due to context limits, the agent calls get to warm-start from a good prior solution, refining rather than restarting from scratch. To preserve diversity and prevent mode collapse, we compute abstract syntax tree (AST) similarity between candidates and pool members, retaining only the highest-scoring solution among those whose similarity exceeds a threshold $T_{\rm ast}$. To encourage exploration, the agent also restarts from scratch with a small probability p. We denote traces restarting from scratch as *reset traces* and traces warm-starting from a memory solution as *memory traces*. Overall, the memory module balances exploitation of past successes with exploration of new strategies. The agent achieves an unbounded horizon of self-improvement: local iterations proceed within a trace, and global progress persists through memory-driven restarts.

5 EXPERIMENTS

5.1 SETUP

Training Details. Reinforcement learning (RL) training is conducted based on the QwQ-32B model (Qwen, 2025), with a KL coefficient β of 0, a learning rate of 1×10^{-6} , and a training batch size of 64. The maximum context lengths for inputs and responses are set to 65536 and 16384, respectively. The running mean is calculated over a window size of 8 to ensure filtering efficacy, and the rollout model parameters are synchronized with the latest policy model every 5 training steps.

For data generation, we set both temperature and top-p to 1 for sampling diversity. Each generation trace is constrained to a maximum of 15 turns. To manage the search process, we maintain the best-solution pool of 5 candidates for subsequent iterations. To foster exploration, we set the reset ratio p to 70%. To balance data yield and quality, we set the running mean filter threshold τ_{rm} to 0.03, filtering out approximately one-third of the generated data. Furthermore, we set the validation score filtering threshold τ_{val} to 0.1 and the advantage filter threshold τ_{adv} to 0.01.

Table 1: Experimental results on MLE-Bench-Lite. All baselines are evaluated with the agent scaffold without the memory module. The w/o agent setting operates under our agent scaffold but restricts models to a single submission per trace. All reported metrics are percentages (%).

Model	Human Rank	Above Median	Bronze	Silver	Gold	Any Medal
gpt-4o-2024-08-06	37.5±3.1	31.8±3.7	$3.0_{\pm 2.1}$	$3.0_{\pm 2.1}$	13.6 ± 0.0	19.7±2.1
DeepSeek-v3	$38.9_{\pm 1.3}$	36.4 ± 3.7	0.0 ± 0.0	$6.1{\scriptstyle\pm2.1}$	13.6 ± 3.7	$19.7{\scriptstyle\pm2.1}$
DeepSeek-R1-0528	53.3 ± 1.9	57.6 ± 2.1	$1.5_{\pm 2.1}$	$7.6_{\pm 2.1}$	$24.2{\scriptstyle\pm2.1}$	33.3 ± 2.1
Qwen3-235B-A32B	$40.5{\scriptstyle\pm1.1}$	$40.9{\scriptstyle\pm0.0}$	4.6 ± 3.7	4.6 ± 3.7	15.2 ± 4.3	$24.2_{\pm 2.1}$
Qwen3-32B	$42.4{\scriptstyle\pm4.2}$	$42.4{\scriptstyle\pm7.7}$	0.0 ± 0.0	$3.0{\scriptstyle\pm2.1}$	$19.7{\scriptstyle\pm2.1}$	$22.7{\scriptstyle\pm3.7}$
QwQ-32B (w/o agent)	33.7±3.1	30.3±4.3	3.0±2.1	6.1±2.1	13.6±3.7	22.7±0.0
QwQ-32B MLE-RL-32B (Ours)	$45.9_{\pm 4.2}$ $50.8_{\pm 1.0}$	$47.0_{\pm 4.3}$ $56.1_{\pm 2.1}$	$3.0{\pm}4.3$ $6.1{\pm}2.1$	$4.6_{\pm 0.0}$ $3.0_{\pm 2.1}$	$21.2{\pm}7.7$ $22.7{\pm}3.7$	28.8 ± 5.7 31.8 ± 3.7

During training, the selection of solutions for the memory module is based on their test set scores, even though these scores are not visible to the model during rollout. Conversely, during evaluation, all selections for the memory module exclusively utilize validation set scores to avoid data leakage.

Hardware Configurations. In our experimental setup, the agents execute within Ubuntu 20.04 Docker containers configured with the dataset and Python packages commonly employed in machine learning engineering. Computational resources include 128 vCPUs, 700 GB of memory, and NVIDIA A10 GPUs.

Evaluation setting. To assess model effectiveness on machine learning tasks, we perform a standardized evaluation on two benchmarks: the full 75-competition MLE-Bench and the 22-competition MLE-bench-Lite subset. The time budgets are 24 hours for the full benchmark and 12 hours for the subset. Our agent scaffold, configured with a 0.5 reset ratio and a memory size of 3, handles automated solution generation and submission. Performance is determined by ranking the results against human competitors on the official Kaggle leaderboards. Each experiment is repeated three times, and we report the average Human Rank and standard deviation.

5.2 EVALUATION RESULTS

Table 6 presents the performance comparison of various models and scaffolds on MLE-bench-Lite respectively. MLE-RL demonstrate consistent performance improvements over the QwQ-32B baseline across all evaluation metrics, including Human Rank(+4.9%), Above Median(+0.1%), and Any Medal(+3.0%) for MLE-Bench-Lite. Specifically, Human Rank measures the percentage of human competitors that the agent outperforms, calculated as $s=1-\frac{p}{N}$, where p is the agent's leaderboard position and N is the total number of human competitors, averaged across all competitions. Medal Rate denotes the proportion of competitions where the agent wins at least one medal. Similarly, Table 2 shows the performance on MLE-Bench. It can be observed that MLE-RL still achieves remarkable improvement over the baseline method, and also shows competitive performance to the strong open-source model DeepSeek-R1-0528 with only 32B parameters. These results indicate the effectiveness of our approach in improving task performance on MLE-Bench.

5.3 ABLATION STUDY

Ablation Study on Data Selection Strategies. Due to the computational intensity and slow convergence of RL, we evaluate the impact of different data selection strategies using SFT instead. To study the effectiveness of different data selection strategies, we perform SFT experiments on datasets derived directly from RL rollouts.

As shown in Table 4, model performance consistently improves as more comprehensive data selection strategies are adopted. Training with the full dataset, which includes samples exhibiting format errors and invalid submissions, leads to a decline in performance relative to the QwQ-32B baseline, indicating that exposure to error-prone data can negatively affect the model's ability to generalize

	Valid Submission	Above Median	Bronze	Silver	Gold	Any Medal
MLAB (Huang et al., 2	2024)					
gpt-4o-2024-08-06	44.3±2.6	1.9±0.7	0.0 ± 0.0	0.0 ± 0.0	0.8±0.5	0.8±0.5
OpenHands (Wang et	al., 2024b)					
gpt-4o-2024-08-06	52.0±3.3	7.1±1.7	$0.4_{\pm 0.4}$	1.3±0.8	2.7±1.1	4.4±1.4
AIDE (Jiang et al., 202	25)					
gpt-4o-2024-08-06 o1-preview	54.9±1.0 82.8±1.1	14.4±0.7 29.4±1.3	1.6±0.2 3.4±0.5	2.2±0.3 4.1±0.6	5.0±0.4 9.4±0.8	8.7±0.5 16.9±1.1
Deepseek-R1-0528	$78.6_{\pm 0.0}$	$34.6_{\pm 0.0}$	$2.7_{\pm 0.0}$	$4.0_{\pm 0.0}$	$8.0_{\pm 0.0}$	$14.7_{\pm 0.0}$
Agent Scaffold (Ours) QwQ-32B MLE-RL-32B (Ours)	63.3±0.7 67.3±2.0	$22.7_{\pm 0.0}$ $25.3_{\pm 2.7}$	$1.3_{\pm 0.0}$ $3.3_{\pm 0.7}$	$2.7_{\pm 0.0}$ $2.0_{\pm 0.7}$	8.0±1.3 8.7±0.7	12.0±1.3 14.0±0.7

Table 3: Experimental results of RL-trained and RL-extended self-distilled models. All reported metrics are percentages (%).

Model	Human Rank	Above Median	Bronze	Silver	Gold	Any Medal
MLE-Bench-Lite						
MLE-RL-32B MLE-RL-32B-S	50.8±1.0 51.7 ±2.5	56.1±2.1 53.0±7.7	6.1±2.1 7.6±2.1	3.0±2.1 7.6±4.3	22.7±3.7 18.2±3.7	31.8±3.7 33.3±4.3
MLE-Bench						
MLE-RL-32B MLE-RL-32B-S	23.1±0.8 26.9 ±0.8	$25.3_{\pm 2.7} \ 26.2_{\pm 0.6}$	3.3±0.7 2.2±1.7	2.0±0.7 3.6±1.7	$8.7{\scriptstyle \pm 0.7}\atop 10.7{\scriptstyle \pm 0.0}$	14.0±0.7 16.5 ±1.7

and solve ML tasks. Employing format selection results in a clear improvement, confirming that basic filtering to remove invalid submissions is beneficial. Building upon this, value selection yields the best overall performance, suggesting that concentrating training on high-quality samples further enhances model capability.

Ablation study on RL training data. In Section 4.1, we utilize a running filter to exclude samples that yield a negative reward after normalization, while assigning a reward of 1 to all positive samples. To analyze the impact of this technique, we perform an ablation study where the original normalized rewards are used directly for the RL training. Table 5 presents the effects of the running filter on RL training. Training without the running filter, which incorporates both positive and negative examples, exhibits a decrease in performance metrics compared to our primary approach. This degradation suggests that while including negative examples offers a broader learning signal, it introduces increased noise into the training data, leading to less effective policy optimization.

Table 4: Ablation study on different data selection strategies.

	# Data	Human Rank (%)	Above Median (%)	Medal Rate (%)
QwQ-32B	-	$45.9{\scriptstyle\pm4.2}$	$47.0{\scriptstyle\pm4.3}$	$28.8{\scriptstyle\pm5.7}$
All data + format selection + value selection	100% 62.1% 16.2%	$\begin{array}{c} 43.1{\scriptstyle \pm 0.8} \\ 48.5{\scriptstyle \pm 2.3} \\ 49.2{\scriptstyle \pm 2.7} \end{array}$	$47.0{\scriptstyle\pm5.7}\atop 54.6{\scriptstyle\pm3.7}\atop 48.5{\scriptstyle\pm4.3}$	$\begin{array}{c} 25.8 \pm 2.1 \\ 30.3 \pm 4.3 \\ 31.8 \pm 3.7 \end{array}$

Table 5: Ablation study on effects of running filter for RL training.

Agent	Human Rank (%)	Above Median(%)	Medal Rate (%)
MLE-RL-32B MLE-RL-32B (w/o runnning filter)	$50.8{\scriptstyle\pm2.0}\atop46.3{\scriptstyle\pm2.1}$	$56.1_{\pm 2.1} \ 52.3_{\pm 4.5}$	$31.8{\scriptstyle\pm3.2\atop27.3{\scriptstyle\pm0.00}}$

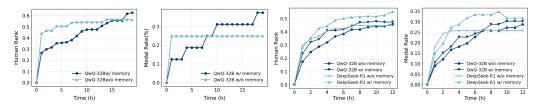


Figure 4: (a) Performance comparison of memory trace and reset trace over time within one QwQ-32B evaluation run, with memory traces eventually outperforming reset traces. (b) Performance of QwQ-32B and DeepSeek-R1-0528 w/ and w/o memory module. Both models benefit from memory design, with DeepSeek-R1-0528 exhibiting larger gains.

5.4 ANALYSIS

Effects of agent memory. To assess the memory module's impact on the agent's self-improvement, we evaluated QwQ-32B with a 0.5 reset ratio, ensuring a balanced distribution of memory and reset traces. For a fair comparison, we only analyzed competitions where both trace types produced at least one valid submission.

As shown in Figure 4(a), reset traces quickly plateau after exhausting the benefits of random exploration. In contrast, memory traces show continuous improvement. Although initially delayed while the memory populates with solutions from the reset traces, they leverage these stored solutions to achieve sustained improvement and ultimately outperform their randomly-initialized counterparts. Furthermore, a 12-hour evaluation illustrated in Figure 4(b) shows that both DeepSeek-R1-0528 and QwQ-32B benefit from the memory pool, achieving higher Human Rank and Medal Rates. The more substantial gain in DeepSeek-R1-0528 suggests that models with stronger reasoning abilities are better equipped to leverage historical solutions from memory.

Effects of self-distillation. We further conducted a self-distillation experiment. We collected rollout data across multiple runs of our RL experiments and build a self-distillation dataset consisting of a large number of high-quality samples from these runs. The resulting dataset can be equally viewed as the product of a single, long-running experiment. We finetune QwQ-32B using the dataset with offline SFT, leading to MLE-RL-32B-S. As is shown in Table 3, the self-distillation shows even better performance over single-run RL across both MLE-Bench-Lite and MLE-Bench. This suggests that data aggregated from multiple RL runs offers a richer and more diverse signal for supervised finetuning, akin to the effect of scaling up inference compute with prolonged RL training.

6 Conclusion

This work presents MLE-RL, a LLM agent trained with reinforcement learning(RL) to solve machine learning engineering(MLE) tasks. By reframing long-horizon iterative trajectories into single-step optimizations and selectively learning from informative attempts, our RL strategy achieves consistent improvements in task performance. Furthermore, the integration of a memory module enables agents to retain and reuse high-quality solutions, facilitating sustained self-improvement beyond context length limitations. These findings highlight the effectiveness and potential of our approach for training ML agents to advance autonomous ML research.

REFERENCES

- AlphaProof and AlphaGeometry teams. All achieves silver-medal standard solving international mathematical olympiad problems. https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/, 2024.
- Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLEbench: Evaluating machine learning agents on machine learning engineering. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=6s5uXNWGIh.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
- Alireza Ghafarollahi and Markus J Buehler. Sciagents: automating scientific discovery through bioinspired multi-agent intelligent graph reasoning. *Advanced Materials*, 37(22):2413523, 2025.
- Samuel Holt, Max Ruiz Luyten, and Mihaela van der Schaar. L2MAC: Large language model automatic computer for unbounded code generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=EhrzQwsV4K.
- Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong. Advancing language model reasoning through reinforcement learning and inference scaling. *CoRR*, abs/2501.11651, 2025. doi: 10.48550/ARXIV.2501.11651. URL https://doi.org/10.48550/arXiv.2501.11651.
- Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents on machine learning experimentation. *arXiv preprint arXiv:2310.03302*, 2023.
- Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents on machine learning experimentation. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=1Fs1LvjYQW.
- Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*, 2024.
- Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang Wu. Aide: Ai-driven exploration in the space of code. 2025. URL https://arxiv.org/abs/2502.13138.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=VTF8yNQM66.
- Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode. *Science*, 378(6624):1092–1097, 2022.
- Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. *arXiv* preprint arXiv:2506.16499, 2025.
- Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.*OpenReview.net, 2025. URL https://openreview.net/forum?id=mMPMHWOdOy.

Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö Arık, and Tomas Pfister. Mlestar: Machine learning engineering agent via search and targeted refinement. *arXiv preprint arXiv:2506.15692*, 2025.

- Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*, 2025.
- Yixin Ou, Yujie Luo, Jingsheng Zheng, Lanning Wei, Shuofei Qiao, Jintian Zhang, Da Zheng, Huajun Chen, and Ningyu Zhang. Automind: Adaptive knowledgeable agent for automated data science. *arXiv preprint arXiv:2506.10974*, 2025.
- Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. Training software engineering agents and verifiers with swe-gym. *CoRR*, abs/2412.21139, 2024. doi: 10.48550/ARXIV.2412.21139. URL https://doi.org/10.48550/arXiv.2412.21139.
- Rushi Qiang, Yuchen Zhuang, Yinghao Li, Rongzhi Zhang, Changhao Li, Ian Shu-Hei Wong, Sherry Yang, Percy Liang, Chao Zhang, Bo Dai, et al. Mle-dojo: Interactive environments for empowering llm agents in machine learning engineering. *arXiv preprint arXiv:2505.07782*, 2025.
- Qwen. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https://qwenlm.github.io/blog/qwq-32b/.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 9426–9439. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.510. URL https://doi.org/10.18653/v1/2024.acl-long.510.
- Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software Developers as Generalist Agents, 2024b. URL https://arxiv.org/abs/2407.16741.
- Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via reinforcement learning on open software evolution. *arXiv* preprint arXiv:2502.18449, 2025.
- Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Mach. Learn.*, 8:229–256, 1992. doi: 10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.
- Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swefixer: Training open-source llms for effective and efficient github issue resolution. *CoRR*, abs/2501.05040, 2025. doi: 10.48550/ARXIV.2501.05040. URL https://doi.org/10.48550/arXiv.2501.05040.
- John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. In Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/5a7c947568c1b1328ccc5230172e1e7c-Abstract-Conference.html.

Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan, Xinpeng Hong, Weiqing Liu, et al. R&d-agent: Automating data-driven ai solution building through llm-powered automated research, development, and evolution. *arXiv preprint arXiv:2505.14738*, 2025.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with tool-integrated agent systems for real-world repo-level coding challenges. In *Proceedings* of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 13643–13658. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.737. URL https://doi.org/10.18653/v1/2024.acl-long.737.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous program improvement. In Maria Christakis and Michael Pradel (eds.), *Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2024, Vienna, Austria, September 16-20, 2024*, pp. 1592–1604. ACM, 2024b. doi: 10.1145/3650212.3680384. URL https://doi.org/10.1145/3650212.3680384.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence. *arXiv preprint arXiv:2406.11931*, 2024.

A USE OF LLMS

Large language models (LLMs) were used solely for language polishing and grammar refinement during manuscript preparation. All research ideas, methodologies, experiments, and analyses were independently conceived, designed, and validated by the authors.

B STEP-WISE ANALYSIS ON PROGRESSIVE IMPROVEMENT VIA MLE-RL REFINEMENT.

To better evaluate model performance and reduce the impact of code execution time variability across competitions, we analyze model results over valid submission steps. Specifically, we consider the first k valid submissions for each competition and take the mean performance across all competitions as the overall step k performance. Figure 4(c) compares step-wise performance of QwQ-32B and MLE-RL-32B. The improvement of MLE-RL-32B over QwQ-32B at step 1 indicates that training enhances the model's capability to directly generate a valid solution from scratch, while its continued improvement in later steps indicates enhanced iterative refinement capabilities.

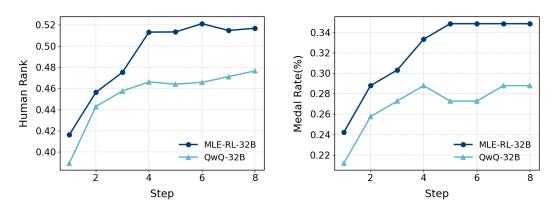


Figure 5: Step-wise performance for QwQ-32B and MLE-RL-32B.

Table 6: Experimental results on MLE-Bench-Lite of different scaffold.

Model	Human Rank	Above Median	Any Medal
QwQ-32B (w/o agent)	33.7	30.3	22.7
QwQ-32B (AIDE)	40.3	45.5	25.0
QwQ-32B	45.9	47.0	28.8
MLE-RL-32B (Ours)	50.8	56.1	31.8

C PERFORMANCE ACROSS COMPETITIONS

An analysis of the experimental results from the MLE-Bench-Lite benchmark reveals a clear, though not absolute, performance advantage for the MLE-RL-32B model over the QwQ-32B model, as shown in Table 7. Across the 22 evaluated machine learning competitions, MLE-RL-32B demonstrates superior capability by achieving a higher mean Human Rank (HR) in the majority of tasks, indicating its general effectiveness. This is particularly evident in challenges like histopathologic-cancer-detection, where it scored an impressive 99.1% HR compared to QwQ-32B's 49.5%, and in denoising-dirty-documents, with a 69.8% HR versus 41.4%. However, the QwQ-32B model proved to be a strong competitor, outperforming its counterpart in specific scenarios such as plant-pathology-2020-fgvc7 (98.5% vs. 90.1%) and aptos2019-blindness-detection (73.4% vs. 69.5%). Interestingly, the Medal Rate (MR) metric shows that QwQ-32B sometimes achieves greater consistency in reaching a baseline level of success, securing a 100% MR in tasks like nomad2018-predict-transparent-conductors where MLE-RL-32B's rate was lower. In some cases, such as dogs-

vs-cats-redux-kernels-edition, both models achieved perfect scores, while in others, like new-york-city-taxi-fare-prediction, both performed poorly. Overall, while the data supports the conclusion that MLE-RL-32B is the more advanced model, the varied results underscore the nuanced strengths and weaknesses of each approach against the diverse and complex challenges presented by the benchmark.

Tasks	QwQ	MLE-RL-32B		
	HR (%)	MR (%)	HR (%)	MR (%)
aerial-cactus-identification	79.1±21.4	33.3	87.7±0.0	-
aptos2019-blindness-detection	$\textbf{73.4} {\scriptstyle\pm 1.9}$	_	$69.5{\scriptstyle\pm4.6}$	_
denoising-dirty-documents	$41.4{\scriptstyle\pm13.9}$	_	$69.8 \scriptstyle{\pm 5.2}$	100.0
detecting-insults-in-social-commentary	$99.3{\scriptstyle\pm0.9}$	100.0	100.0±0.0	100.0
dog-breed-identification	$46.3{\scriptstyle\pm4.1}$	_	47.1±3.8	_
dogs-vs-cats-redux-kernels-edition	$100.0{\scriptstyle\pm0.0}$	100.0	100.0±0.0	100.0
histopathologic-cancer-detection	$49.5{\scriptstyle\pm49.5}$	50.0	99.1±0.0	100.0
jigsaw-toxic-comment-classification-challenge	$29.0 {\pm} 6.8$	_	$25.7{\scriptstyle\pm9.3}$	_
leaf-classification	$60.1{\scriptstyle\pm1.1}$	_	$61.0 {\scriptstyle \pm 4.7}$	_
mlsp-2013-birds	_	_	0.0 ± 0.0	_
new-york-city-taxi-fare-prediction	$0.1\pm$ 0.0	_	0.1±0.0	_
nomad2018-predict-transparent-conductors	$\textbf{58.8} {\pm} \textbf{2.8}$	100.0	55.6±5.2	66.7
plant-pathology-2020-fgvc7	$98.5 {\scriptstyle\pm1.0}$	100.0	90.1 ± 13.5	66.7
random-acts-of-pizza	$57.3{\scriptstyle\pm20.4}$	33.3	41.1±17.0	-
ranzcr-clip-catheter-line-classification	3.3 ± 3.3	_	6.4±6.4	_
siim-isic-melanoma-classification	_	_	23.8±17.0	_
spooky-author-identification	$48.0 {\pm} 7.6$	_	44.1 ± 18.4	_
tabular-playground-series-dec-2021	$100.0{\scriptstyle\pm0.0}$	100.0	100.0±0.0	100.0
tabular-playground-series-may-2022	$\textbf{41.4} {\scriptstyle\pm1.2}$	_	21.3±5.8	-
text-normalization-challenge-english-language	_	_	-	-
text-normalization-challenge-russian-language	$13.9{\scriptstyle\pm0.0}$	_	1.2±0.0	-
the-icml-2013-whale-challenge-right-whale-redux	$70.4{\scriptstyle\pm29.4}$	66.7	76.4±24.5	66.7

Table 7: Per-competition results on the 22 tasks from MLE-BENCH-LITE, comparing QwQ-32B with our MLE-RL-32B. Each entry reports the mean Human Rank (HR) and Medal Rate (MR) over three runs. Overall, MLE-RL-32B achieves generally higher HR than QwQ-32B.