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ABSTRACT

Language models have shown significant promise in complex reasoning and cod-
ing tasks. However, coding for machine learning engineering presents unique
challenges due to the iterative nature of development, long execution times, and
the need for continuous self-improvement. In this paper, we introduce MLE-RL
trained with reinforcement learning to address these challenges. Our approach
reframes the learning process by breaking down long-horizon trajectories into
single-step optimizations. We employ a reinforcement learning strategy that se-
lectively learns from the most informative attempts, optimizing the policy on valu-
able steps. In addition, to overcome context limitations, our agent uses a scaffold
with a memory module to store and recall high-performing past solutions, facili-
tating cumulative learning. The evaluation on the MLE-Bench demonstrates that
our MLE-RL-32B achieves 4.9% improvement over the baseline model in the
competition ranking on ML tasks and achieves competitive performance against
state-of-the-art open-source models like DeepSeek-R1-0528.
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Figure 1: Left: Overview of agent-environment interaction in MLE tasks. The agent receives a task
description and dataset from the environment, generates and submits solutions, which a grader eval-
uates to access a performance score for iterative optimization. Middle: MLE-RL-32B consistently
outperforms baseline methods. Right: The performance throughout the evaluation time period.

1 INTRODUCTION

Language models (LMs) have demonstrated excellent performance on reasoning (Luo et al., 2025;
Wang et al., 2024a) and coding (Hui et al., 2024; Zhu et al., 2024) tasks, and tool-augmented LM
agents already handle complex tasks, from software engineering (SWE) (Jimenez et al., 2024; Yang
et al., 2024) to scientific workflows (Ghafarollahi & Buehler, 2025; Novikov et al., 2025). Unlike
traditional single-shot code-generation tasks like coding competitions (Li et al., 2022) or software
engineering, machine learning engineering (MLE) focuses on improving system performance over
extended periods with limited time budgets (Chan et al., 2025) but no restriction on attempt times.
Figure 1(left) illustrates how an LLM handles MLE tasks as an agentic loop: plan the pipeline,
write/run code, inspect results, then iterate, tuning features and hyperparameters, swapping models,
fixing errors, using the score as continuous feedback, while retaining the best artifacts and stopping
when the budget is exhausted. Since each submission requires code execution, which may take
hours, a 12 or 24-hour time window is typically necessary to support adequate iterative experimen-
tation. For example, MLE-Bench (Chan et al., 2025) evaluates LLM’s on their best performance
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on ML tasks within 24 hours. This creates challenges in accurately attributing the sources of im-
provement, managing heterogeneous reward scales, and leveraging prior work to optimize future
experiments. These properties demand LLMs with self-improvement – the ability to accumulate
experience, retain/adapt prior solutions, and refine strategies across iterations.

Previous works generally focus on scaling up test-time compute with workflow designs (Liu et al.,
2025; Nam et al., 2025), yet few works have paid attention to how to optimize the self-improvement
of LLM through training. An MLE task has an associated description, dataset, and a public test
set. It is more feasible to evaluate the quality of a solution from an LLM than to obtain proprietary,
state-of-the-art solutions. For such easy-to-verify tasks, reinforcement learning has emerged as a
powerful and effective strategy. (DeepSeek-AI, 2025; AlphaProof & teams, 2024)

However, the model must iteratively refine its solutions to attain higher performance, introducing
additional challenges. 1) Unlike existing reasoning tasks, e.g., math, optimized for single-shot
correctness, MLE seeks the best solution within a time budget and tolerates failures. Prioritizing
informative and best-performing attempts over training on all attempts is more crucial. 2) Credit
assignment is an inherent problem for a multi-step improvement process. 3) While continuous im-
provement over past experiences is expected, the limited context length of LLMs restricts access to
past experiences in multi-turn scenarios.

Contributions. To overcome the challenges, we propose MLE-RL, a reinforcement learning frame-
work to foster continuous self-improvement in machine learning engineering (MLE) tasks. MLE-RL
trains LLM to learn from valuable past experiences and operates within an agentic scaffold equipped
with a memory module. Our contributions are as follows:

First, we propose a reinforcement learning strategy that learns from informative attempts rather than
all attempts. To address the credit assignment problem inherent in multi-step interactions, we re-
frame the task by splitting long-horizon trajectories into single-step optimization units. This enables
a more precise attribution of rewards and allows us to apply a curated data selection strategy, opti-
mizing the policy on only the most valuable and informative steps. This entire process is embedded
within an asynchronous training framework, enabling efficient and robust policy learning consider-
ing the overlong execution time and latency.

Second, to overcome context length limitations and enable the agent to learn from past successes,
we introduce a memory module. This module stores high-performing solutions from the agent’s
history. By randomly selecting a past solution to inform its next attempt, the agent can build upon
previous successful experiences that would otherwise be lost, allowing for knowledge accumulation
and iterative improvement of its best solutions.

We evaluate MLE-RL on MLE-Bench (Chan et al., 2025), a comprehensive and challenging bench-
mark for ML agents. As shown in Figure 1, MLE-RL can significantly achieves 4.9% improve-
ment over the baseline model in the competition ranking and 9.1% in above median on ML tasks.
MLE-RL-32B also shows consistently better results at different timestamps in the evaluation stage.
MLE-RL also demonstrates competitive performance to state-of-the-art open-source models.

2 RELATED WORK

Code Agents for LLMs. In recent years, the applications of code AI agents have attracted increas-
ing attention (Holt et al., 2024; Yang et al., 2024; Zhang et al., 2024a). For instance, LLM-based
code agents have been widely explored for software engineering (SWE) tasks, where systems such
as SWE-agent (Yang et al., 2024), AutoCodeRover (Zhang et al., 2024b), and OpenHands (Wang
et al., 2024b) provide frameworks that enable models to autonomously edit code and resolve is-
sues (Jimenez et al., 2024). Beyond agent scaffolds, increasing efforts have focused on improving
agent performance on SWE tasks through model training (Pan et al., 2024; Xie et al., 2025) or scale
RL-based LLM reasoning for real-world software engineering (Wei et al., 2025).

Machine learning engineering (MLE) has become an emerging domain for evaluating code agents.
Framework-driven methods including AIDE (Jiang et al., 2025), ML-Master (Liu et al., 2025), Au-
toMind (Ou et al., 2025), and MLE-STAR (Nam et al., 2025)employ tree-structured exploration,
while scaffolds such as MLAB (Huang et al., 2023) and OpenHands (Wang et al., 2024b) provide
general tool-use interfaces for automating ML tasks. Agentic loop systems (R&D Agent (Yang et al.,
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2025)) further incorporate iterative refinement through role separation. However, most existing ef-
forts are based on comprehensive prompting and scaffold design rather than end-to-end trainable
agents. Consequently, how to improve AI agents’ performance on MLE tasks through direct train-
ing still remains underexplored.

Reinforcement Learning for Language Models. Reinforcement learning (RL) has recently be-
come a central approach for enhancing reasoning abilities in large language models, demonstrat-
ing substantial gains to mathematical and coding tasks (DeepSeek-AI, 2025; Qwen, 2025; Hou
et al., 2025). Typical training paradigms treat generated attempts as approximately i.i.d. sam-
ples (DeepSeek-AI, 2025; Qwen, 2025), rely on verifiable answers or reward models to provide
supervision (Hou et al., 2025), and apply batch or group-level reward normalization to stabilize op-
timization (Shao et al., 2024). However, they fail to apply directly to ML tasks due to the non-i.i.d.
nature of interactions and the distinctiveness of the reward signal.

3 PRELIMINARY

Iterative Self-improvement for Machine Learning Tasks (MLE) Following MLE-Bench, the
input consists of a machine learning task description and a competition dataset D. The agent gen-
erates a solution s ∈ S , where S represents the solution space and the execution result yield a
performance score h(s) ∈ R (e.g., accuracy or loss) to reflect the solution’s effectiveness. The goal
is to find the optimal solution s∗ = argmaxs∈S h(s) within a given inference cost or time limit. To
achieve this objective, the search can be cast as direct code generation or as iterative, solution-level
self-improvement to make full use of the inference budget.

Formally, given a task, the policy πθ receives the prompt x and produces an initial answer s0. The
model then enters an iterative self-improvement process, where in step k, the model updates the
current solution from sk to sk+1. Throughout this process, the policy πθ conditions its generation
on the current solution sk, and potentially on the accumulated historical information, which may
include prior solutions s<k and relevant feedback signals ok (from the current step) and o<t (from
previous steps), such as execution traces. The historical information can comprise all or a subset
of previous attempts. For convenience, we define the state at step k as τk = (sk, s<k, ok, o<k).
The next iterated solution sk+1 is then sampled from the policy as: sk+1 ∼ πθ( · | τk, x). Given
a predefined time budget, the best solution is selected based on its performance score h(s) on a
held-out validation set.

Reinforcement Learning for LLMs. Reinforcement learning has been serving a critical role in
advancing the reasoning and agent capabilities of LLMs. This paradigm allows LLMs to learn from
self-exploration and optimize based on reward signals. In a typical RL process, the policy model πθ

generates a set of K responses, (y1, . . . ,yK), for a given input x. Each response yi is then assigned
a scalar reward r(x,yi). The model πθ is subsequently updated to maximize the expected reward,
commonly via an objective function incorporating an advantage term:

E
x∼pdata,y∼πθ

1

K

K∑
i

A(x,yi) log πθ(yi|x) (1)

Here, A(·) represents the advantage function, often formulated as A(x,yi) = β(r(x,yi) − b),
where b is a crucial baseline that normalizes the reward signal. Group Relative Policy Optimization
(GRPO)(Shao et al., 2024) is widely adopted to optimize LLM with RL. For a query x generating a
group of responses {yi}Gi=1, GRPO defines the advantage Âi for each response yi as:

Âi =
r(x, yi)−mean

(
{r(x, yi)}Gi=1

)
std

(
{r(x, yi)}Gi=1

) . (2)

4 MLE-RL: RL FOR MACHINE LEARNING ENGINEERING

In this section, we present MLE-RL to advance the self-improvement capabilities of LLMs to solve
machine learning engineering (MLE) tasks. The core idea of MLE-RL is to promote the exploration
and effective use of past experiences in search and learn from informative and valuable attempts.
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Figure 2: Overview of the MLE-RL framework. The policy model interacts with an agentic scaffold
equipped with a memory module, which stores and reuses high-quality historical attempts. Data
selection based on invalid mask, value selection, and relative improvement selection retains valuable
samples, which are collected into a training buffer for policy optimization.

To achieve this, we first develop strategies to improve LLMs via reinforcement learning. The idea
is to train the LLM to learn from informative attempts rather than the amount of low-value samples.
Second, we design an agentic scaffold equipped with a memory module which stores excellent past
experiences. The memory enables exploration for improvement based on best practices up to each
step. The overview of MLE-RL is illustrated in Figure 2.

4.1 OPTIMIZING MLE WITH REINFORCEMENT LEARNING

In this part, we describe how to improve via reinforcement learning (RL). We first reframe the multi-
step self-improvement problem as a single-step optimization. For optimization, instead of training
on all generated data in RL, we optimize the LLM to learn from the most informative steps of high
rewards with curated data selection and reward designs.

Multi-step self-improvement as a single-step optimization. Following the design in MLE-
Dojo (Qiang et al., 2025), we tackle the ML task as an agentenvironment interaction. At time t,
the agent selects action at ∈ A and receives observation ot ∈ O. The observation can be the
information of the problem, execution results of the code, or the evaluation metric of a machine
learning problem. We meticulously select important primitives from the predefined action spaces:
request_info, validate_code, and execute_code. The agent operates in a multi-turn
loop, alternately proposing code or information requests and consuming execution feedback and met-
ric scores. As shown in Table 6, this multi-turn interaction yields consistent gains over single-turn
baselines, which allow only one submission per trace and thus preclude self-improvement.

With this multi-turn agent scaffold which allows for multiple submissions within a single trace, each
associated with a distinct score. This presents a challenge for credit assignment, as evaluating the
entire trace as a single unit makes it difficult to isolate the contribution of the actions that led to a
specific submission. To enable a more precise attribution of reward for each successful attempt, we
split a multi-turn trajectory into multiple interaction units for training.

Specifically, Each multi-turn interaction can be denoted as a sequence:

S = {x, a1, o1, ..., aN , oN} (3)

where x denotes the input problem, ai the assistant’s action at turn i, and oi is the environment
feedback. Corresponding to the description of action space in Section 4.1, we view actions between
two execute_code actions that produces a valid submission as a step.

For each training instance at turn k (1 ≤ k ≤ N), the model is provided with the entire history up
to the current turn. The resulting training sample is constructed as:

Sk =
(
x, (a11, o

1
1, . . . a

N1
1 , oN1

1 ), . . . , (a1M , o1M , . . . aNM

M , oNM

M )
)

(4)
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Figure 3: (a) Proportion of submissions at different human ranks, with lines denoting the median and
the average medal-winning threshold across competitions. A considerable proportion falls below
these lines. (b) Distribution of ∆Human Rank, defined as the reward improvement between the
current and its previous submission for reset traces, and between the current and memory submission
for memory traces. More than half of the submissions exhibit ∆Human Rank below the threshold
τadv = 0.01, indicating limited performance improvement.

where ai,j denotes the j-th action of the i-th step. And aNM

M is always execute_code.

Training with valuable steps. For MLE tasks, we propose to optimize the model with the most
informative steps rather than all generated attempts. The overall target is to train the model to
improve over the previous solutions and achieve superior performance. Figure 5 illustrates that a
significant portion of solutions falls below the median and medal-winning thresholds, indicating the
presence of many suboptimal solutions. And more than half of the attempts fail to achieve reasonable
improvement over the previous ones. The results indicate that the generation in fact produces amount
of low-value data (negative samples). Therefore, effective data selection is essential to prevent
suboptimal and negatively optimized instances from destabilizing the learning process.

To improve training data quality and enhance training robustness by prioritizing high-quality solu-
tions and mitigating suboptimal responses, we employ three specialized filters as follows:

• Mask invalid actions. We introduce a mask strategy to prevent the model from collaps-
ing into invalid tool-using output. Instead of assigning a negative reward to invalid format output,
we mask the loss on agent responses that result in an invalid format (e.g., invoking incorrect tool
calls or exceeding length limits) or an invalid submission. This allows the model to leverage the
full contextual trajectory for learning without reinforcing erroneous outputs, thereby contributing
to preventing the generation of undesirable behaviors.

• Valuable step selection. To select valuable steps that are beneficial to training, we
retain valid submission that attain a reward exceeding a competition-specific threshold τabs. This
threshold is carefully calibrated to retain approximately 30% of the highest-scoring data for train-
ing in each competition, thus preventing the model from repeatedly drawing on suboptimal solu-
tions. In addition, The model is expected to iteratively refine solutions based on prior experience.
However, as depicted in figure5 (b), generated solutions constitute numerous negative optimiza-
tions. To steer the model to generate improved solutions than the reference ones and prevent
negative optimization, we retain data points only if the relative reward improvement of the current
submission surpasses a predefined threshold τadv. This reinforces substantive improvements over
the initial solution in a given interaction.

However, as the training goes on based on the designated scaffold with memory, the average perfor-
mance would gradually grow up and thus a static data filtering strategy is problematic. To address
the non-stationarity of execution outcomes arising from stochasticity and shifting data splits, we
adopt a dynamic, competition-specific reward normalization coupled with significance-based filter-
ing. For each instance with raw reward ri = Ranki, we compute a running mean over a historical
window Hi containing the W most recent rewards from the same competition, prune outliers more
than two standard deviations below the window mean, and obtain the normalized reward:

r̄i = ri − 1

|H′
i|

∑
j∈H′

i

rj , H′
i = { j ∈ Hi | rj ≥ µHi − 2σHi }.
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Notably, since traces utilizing memory benefit from accumulated past experiences, we maintain sep-
arate running mean windows for memory and reset traces to prevent bias against those starting from
scratch. During RL training, we actually use ri = 1 if r̄i > 0 else ri = 0. This implementa-
tion amplifies the contribution of positive samples and masks the gradient of all negative samples.
This running filter helps that the training set emphasizes substantive solution changes and thereby
supports robust policy learning under inevitable evaluation noise.

Asynchronous Training for RL. To address the challenge of high reward latency originating from
code execution, we adopt a fully decoupled training and data generation framework. Specifically,
data generation workers are asynchronously executed based on our scaffold, accumulating generated
samples into a data pool. Once the number of samples reaches a predefined batch size B, the
training process is triggered to update the model parameters using the latest batch of data. By
decoupling training and data generation, we can flexibly scale up the number of data generators,
allowing the throughput of data generation and training to be balanced, and thus mitigating the
impact of slow reward feedback on overall training efficiency. For policy optimization, we employ
REINFORCE (Williams, 1992) to optimize the target in Eq 1 with the reward designs stated above.

4.2 AGENTIC SCAFFOLD WITH MEMORY

Multi-step self-improvement in machine learning engineering learns from past iterations to find
better solutions, but limited context length of LLM constrains the access to its history of attempts.
Existing methods either discard all history when the context window fills, or restrict learning to only
the prior iteration with pre-defined workflow, at the cost of agent design flexibility.

To enable the model to explore based on historical experiences and avoid context limitations, we
introduce a memory module that stores valuable historical attempts. The module maintains a pool
of high-scoring solutions together with metadata (score, step, trace identifier) and affords two oper-
ations: push and get:

• push: If a new solution s discovered by the policy model exceeds the pools minimum score,
insert s into the pool or replace the lowest-scoring entry.

• get: Randomly sample a solution from the pool to condition the next trajectory.

When a new trace begins due to context limits, the agent calls get to warm-start from a good
prior solution, refining rather than restarting from scratch. To preserve diversity and prevent mode
collapse, we compute abstract syntax tree (AST) similarity between candidates and pool members,
retaining only the highest-scoring solution among those whose similarity exceeds a threshold Tast.
To encourage exploration, the agent also restarts from scratch with a small probability p. We de-
note traces restarting from scratch as reset traces and traces warm-starting from a memory solution
as memory traces. Overall, the memory module balances exploitation of past successes with ex-
ploration of new strategies. The agent achieves an unbounded horizon of self-improvement: local
iterations proceed within a trace, and global progress persists through memory-driven restarts.

5 EXPERIMENTS

5.1 SETUP

Training Details. Reinforcement learning (RL) training is conducted based on the QwQ-32B
model (Qwen, 2025), with a KL coefficient β of 0, a learning rate of 1 × 10−6, and a training
batch size of 64. The maximum context lengths for inputs and responses are set to 65536 and 16384,
respectively. The running mean is calculated over a window size of 8 to ensure filtering efficacy, and
the rollout model parameters are synchronized with the latest policy model every 5 training steps.

For data generation, we set both temperature and top-p to 1 for sampling diversity. Each generation
trace is constrained to a maximum of 15 turns. To manage the search process, we maintain the best-
solution pool of 5 candidates for subsequent iterations. To foster exploration, we set the reset ratio
p to 70%. To balance data yield and quality, we set the running mean filter threshold τrm to 0.03,
filtering out approximately one-third of the generated data. Furthermore, we set the validation score
filtering threshold τval to 0.1 and the advantage filter threshold τadv to 0.01.
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Table 1: Experimental results on MLE-Bench-Lite. All baselines are evaluated with the agent scaf-
fold without the memory module. The w/o agent setting operates under our agent scaffold but
restricts models to a single submission per trace. All reported metrics are percentages (%).

Model Human
Rank

Above
Median Bronze Silver Gold Any Medal

gpt-4o-2024-08-06 37.5±3.1 31.8±3.7 3.0±2.1 3.0±2.1 13.6±0.0 19.7±2.1

DeepSeek-v3 38.9±1.3 36.4±3.7 0.0±0.0 6.1±2.1 13.6±3.7 19.7±2.1

DeepSeek-R1-0528 53.3±1.9 57.6±2.1 1.5±2.1 7.6±2.1 24.2±2.1 33.3±2.1

Qwen3-235B-A32B 40.5±1.1 40.9±0.0 4.6±3.7 4.6±3.7 15.2±4.3 24.2±2.1

Qwen3-32B 42.4±4.2 42.4±7.7 0.0±0.0 3.0±2.1 19.7±2.1 22.7±3.7

QwQ-32B (w/o agent) 33.7±3.1 30.3±4.3 3.0±2.1 6.1±2.1 13.6±3.7 22.7±0.0

QwQ-32B 45.9±4.2 47.0±4.3 3.0±4.3 4.6±0.0 21.2±7.7 28.8±5.7

MLE-RL-32B (Ours) 50.8±1.0 56.1±2.1 6.1±2.1 3.0±2.1 22.7±3.7 31.8±3.7

During training, the selection of solutions for the memory module is based on their test set scores,
even though these scores are not visible to the model during rollout. Conversely, during evaluation,
all selections for the memory module exclusively utilize validation set scores to avoid data leakage.

Hardware Configurations. In our experimental setup, the agents execute within Ubuntu 20.04
Docker containers configured with the dataset and Python packages commonly employed in ma-
chine learning engineering. Computational resources include 128 vCPUs, 700 GB of memory, and
NVIDIA A10 GPUs.

Evaluation setting. To assess model effectiveness on machine learning tasks, we perform a standard-
ized evaluation on two benchmarks: the full 75-competition MLE-Bench and the 22-competition
MLE-bench-Lite subset. The time budgets are 24 hours for the full benchmark and 12 hours for
the subset. Our agent scaffold, configured with a 0.5 reset ratio and a memory size of 3, handles
automated solution generation and submission. Performance is determined by ranking the results
against human competitors on the official Kaggle leaderboards. Each experiment is repeated three
times, and we report the average Human Rank and standard deviation.

5.2 EVALUATION RESULTS

Table 6 presents the performance comparison of various models and scaffolds on MLE-bench-Lite
respectively. MLE-RL demonstrate consistent performance improvements over the QwQ-32B base-
line across all evaluation metrics, including Human Rank(+4.9%), Above Median(+0.1%), and Any
Medal(+3.0%) for MLE-Bench-Lite. Specifically, Human Rank measures the percentage of human
competitors that the agent outperforms, calculated as s = 1− p

N , where p is the agent’s leaderboard
position and N is the total number of human competitors, averaged across all competitions. Medal
Rate denotes the proportion of competitions where the agent wins at least one medal. Similarly,
Table 2 shows the performance on MLE-Bench. It can be observed that MLE-RL still achieves re-
markable improvement over the baseline method, and also shows competitive performance to the
strong open-source model DeepSeek-R1-0528 with only 32B parameters. These results indicate the
effectiveness of our approach in improving task performance on MLE-Bench.

5.3 ABLATION STUDY

Ablation Study on Data Selection Strategies. Due to the computational intensity and slow con-
vergence of RL, we evaluate the impact of different data selection strategies using SFT instead. To
study the effectiveness of different data selection strategies, we perform SFT experiments on datasets
derived directly from RL rollouts.

As shown in Table 4, model performance consistently improves as more comprehensive data selec-
tion strategies are adopted. Training with the full dataset, which includes samples exhibiting format
errors and invalid submissions, leads to a decline in performance relative to the QwQ-32B baseline,
indicating that exposure to error-prone data can negatively affect the model’s ability to generalize
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Table 2: Experimental results on MLE-Bench full set. All reported metrics are percentages (%).

Valid
Submission

Above
Median Bronze Silver Gold Any Medal

MLAB (Huang et al., 2024)

gpt-4o-2024-08-06 44.3±2.6 1.9±0.7 0.0±0.0 0.0±0.0 0.8±0.5 0.8±0.5

OpenHands (Wang et al., 2024b)

gpt-4o-2024-08-06 52.0±3.3 7.1±1.7 0.4±0.4 1.3±0.8 2.7±1.1 4.4±1.4

AIDE (Jiang et al., 2025)

gpt-4o-2024-08-06 54.9±1.0 14.4±0.7 1.6±0.2 2.2±0.3 5.0±0.4 8.7±0.5

o1-preview 82.8±1.1 29.4±1.3 3.4±0.5 4.1±0.6 9.4±0.8 16.9±1.1

Deepseek-R1-0528 78.6±0.0 34.6±0.0 2.7±0.0 4.0±0.0 8.0±0.0 14.7±0.0

Agent Scaffold (Ours)
QwQ-32B 63.3±0.7 22.7±0.0 1.3±0.0 2.7±0.0 8.0±1.3 12.0±1.3

MLE-RL-32B (Ours) 67.3±2.0 25.3±2.7 3.3±0.7 2.0±0.7 8.7±0.7 14.0±0.7

Table 3: Experimental results of RL-trained and RL-extended self-distilled models. All reported
metrics are percentages (%).

Model Human
Rank

Above
Median Bronze Silver Gold Any Medal

MLE-Bench-Lite
MLE-RL-32B 50.8±1.0 56.1±2.1 6.1±2.1 3.0±2.1 22.7±3.7 31.8±3.7

MLE-RL-32B-S 51.7±2.5 53.0±7.7 7.6±2.1 7.6±4.3 18.2±3.7 33.3±4.3

MLE-Bench
MLE-RL-32B 23.1±0.8 25.3±2.7 3.3±0.7 2.0±0.7 8.7±0.7 14.0±0.7

MLE-RL-32B-S 26.9±0.8 26.2±0.6 2.2±1.7 3.6±1.7 10.7±0.0 16.5±1.7

and solve ML tasks. Employing format selection results in a clear improvement, confirming that
basic filtering to remove invalid submissions is beneficial. Building upon this, value selection yields
the best overall performance, suggesting that concentrating training on high-quality samples further
enhances model capability.

Ablation study on RL training data. In Section 4.1, we utilize a running filter to exclude samples
that yield a negative reward after normalization, while assigning a reward of 1 to all positive samples.
To analyze the impact of this technique, we perform an ablation study where the original normalized
rewards are used directly for the RL training. Table 5 presents the effects of the running filter
on RL training. Training without the running filter, which incorporates both positive and negative
examples, exhibits a decrease in performance metrics compared to our primary approach. This
degradation suggests that while including negative examples offers a broader learning signal, it
introduces increased noise into the training data, leading to less effective policy optimization.

Table 4: Ablation study on different data selection strategies.

# Data Human Rank (%) Above Median (%) Medal Rate (%)

QwQ-32B - 45.9±4.2 47.0±4.3 28.8±5.7

All data 100% 43.1±0.8 47.0±5.7 25.8±2.1

+ format selection 62.1% 48.5±2.3 54.6±3.7 30.3±4.3

+ value selection 16.2% 49.2±2.7 48.5±4.3 31.8±3.7
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Table 5: Ablation study on effects of running filter for RL training.

Agent Human Rank (%) Above Median(%) Medal Rate (%)

MLE-RL-32B 50.8±2.0 56.1±2.1 31.8±3.2

MLE-RL-32B (w/o runnning filter) 46.3±2.1 52.3±4.5 27.3±0.00

Figure 4: (a) Performance comparison of memory trace and reset trace over time within one QwQ-
32B evaluation run, with memory traces eventually outperforming reset traces. (b) Performance of
QwQ-32B and DeepSeek-R1-0528 w/ and w/o memory module. Both models benefit from memory
design, with DeepSeek-R1-0528 exhibiting larger gains.

5.4 ANALYSIS

Effects of agent memory. To assess the memory module’s impact on the agent’s self-improvement,
we evaluated QwQ-32B with a 0.5 reset ratio, ensuring a balanced distribution of memory and reset
traces. For a fair comparison, we only analyzed competitions where both trace types produced at
least one valid submission.

As shown in Figure 4(a), reset traces quickly plateau after exhausting the benefits of random explo-
ration. In contrast, memory traces show continuous improvement. Although initially delayed while
the memory populates with solutions from the reset traces, they leverage these stored solutions to
achieve sustained improvement and ultimately outperform their randomly-initialized counterparts.
Furthermore, a 12-hour evaluation illustrated in Figure 4(b) shows that both DeepSeek-R1-0528
and QwQ-32B benefit from the memory pool, achieving higher Human Rank and Medal Rates. The
more substantial gain in DeepSeek-R1-0528 suggests that models with stronger reasoning abilities
are better equipped to leverage historical solutions from memory.

Effects of self-distillation. We further conducted a self-distillation experiment. We collected rollout
data across multiple runs of our RL experiments and build a self-distillation dataset consisting of a
large number of high-quality samples from these runs. The resulting dataset can be equally viewed
as the product of a single, long-running experiment. We finetune QwQ-32B using the dataset with
offline SFT, leading to MLE-RL-32B-S. As is shown in Table 3, the self-distillation shows even
better performance over single-run RL across both MLE-Bench-Lite and MLE-Bench. This suggests
that data aggregated from multiple RL runs offers a richer and more diverse signal for supervised
finetuning, akin to the effect of scaling up inference compute with prolonged RL training.

6 CONCLUSION

This work presents MLE-RL, a LLM agent trained with reinforcement learning(RL) to solve ma-
chine learning engineering(MLE) tasks. By reframing long-horizon iterative trajectories into single-
step optimizations and selectively learning from informative attempts, our RL strategy achieves
consistent improvements in task performance. Furthermore, the integration of a memory module
enables agents to retain and reuse high-quality solutions, facilitating sustained self-improvement
beyond context length limitations. These findings highlight the effectiveness and potential of our
approach for training ML agents to advance autonomous ML research.
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A USE OF LLMS

Large language models (LLMs) were used solely for language polishing and grammar refinement
during manuscript preparation. All research ideas, methodologies, experiments, and analyses were
independently conceived, designed, and validated by the authors.

B STEP-WISE ANALYSIS ON PROGRESSIVE IMPROVEMENT VIA MLE-RL
REFINEMENT.

To better evaluate model performance and reduce the impact of code execution time variability
across competitions, we analyze model results over valid submission steps. Specifically, we con-
sider the first k valid submissions for each competition and take the mean performance across all
competitions as the overall step k performance. Figure 4(c) compares step-wise performance of
QwQ-32B and MLE-RL-32B. The improvement of MLE-RL-32B over QwQ-32B at step 1 indi-
cates that training enhances the model’s capability to directly generate a valid solution from scratch,
while its continued improvement in later steps indicates enhanced iterative refinement capabilities.

Figure 5: Step-wise performance for QwQ-32B and MLE-RL-32B.

Table 6: Experimental results on MLE-Bench-Lite of different scaffold.

Model Human Rank Above Median Any Medal
QwQ-32B (w/o agent) 33.7 30.3 22.7
QwQ-32B (AIDE) 40.3 45.5 25.0
QwQ-32B 45.9 47.0 28.8
MLE-RL-32B (Ours) 50.8 56.1 31.8

C PERFORMANCE ACROSS COMPETITIONS

An analysis of the experimental results from the MLE-Bench-Lite benchmark reveals a clear, though
not absolute, performance advantage for the MLE-RL-32B model over the QwQ-32B model, as
shown in Table 7. Across the 22 evaluated machine learning competitions, MLE-RL-32B demon-
strates superior capability by achieving a higher mean Human Rank (HR) in the majority of tasks,
indicating its general effectiveness. This is particularly evident in challenges like histopathologic-
cancer-detection, where it scored an impressive 99.1% HR compared to QwQ-32B’s 49.5%, and
in denoising-dirty-documents, with a 69.8% HR versus 41.4%. However, the QwQ-32B model
proved to be a strong competitor, outperforming its counterpart in specific scenarios such as plant-
pathology-2020-fgvc7 (98.5% vs. 90.1%) and aptos2019-blindness-detection (73.4% vs. 69.5%).
Interestingly, the Medal Rate (MR) metric shows that QwQ-32B sometimes achieves greater con-
sistency in reaching a baseline level of success, securing a 100% MR in tasks like nomad2018-
predict-transparent-conductors where MLE-RL-32B’s rate was lower. In some cases, such as dogs-
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vs-cats-redux-kernels-edition, both models achieved perfect scores, while in others, like new-york-
city-taxi-fare-prediction, both performed poorly. Overall, while the data supports the conclusion that
MLE-RL-32B is the more advanced model, the varied results underscore the nuanced strengths and
weaknesses of each approach against the diverse and complex challenges presented by the bench-
mark.

Tasks
QwQ-32B MLE-RL-32B

HR (%) MR (%) HR (%) MR (%)

aerial-cactus-identification 79.1±21.4 33.3 87.7±0.0 –

aptos2019-blindness-detection 73.4±1.9 – 69.5±4.6 –

denoising-dirty-documents 41.4±13.9 – 69.8±5.2 100.0

detecting-insults-in-social-commentary 99.3±0.9 100.0 100.0±0.0 100.0

dog-breed-identification 46.3±4.1 – 47.1±3.8 –

dogs-vs-cats-redux-kernels-edition 100.0±0.0 100.0 100.0±0.0 100.0

histopathologic-cancer-detection 49.5±49.5 50.0 99.1±0.0 100.0

jigsaw-toxic-comment-classification-challenge 29.0±6.8 – 25.7±9.3 –

leaf-classification 60.1±1.1 – 61.0±4.7 –

mlsp-2013-birds – – 0.0±0.0 –

new-york-city-taxi-fare-prediction 0.1±0.0 – 0.1±0.0 –

nomad2018-predict-transparent-conductors 58.8±2.8 100.0 55.6±5.2 66.7

plant-pathology-2020-fgvc7 98.5±1.0 100.0 90.1±13.5 66.7

random-acts-of-pizza 57.3±20.4 33.3 41.1±17.0 –

ranzcr-clip-catheter-line-classification 3.3±3.3 – 6.4±6.4 –

siim-isic-melanoma-classification – – 23.8±17.0 –

spooky-author-identification 48.0±7.6 – 44.1±18.4 –

tabular-playground-series-dec-2021 100.0±0.0 100.0 100.0±0.0 100.0

tabular-playground-series-may-2022 41.4±1.2 – 21.3±5.8 –

text-normalization-challenge-english-language – – – –

text-normalization-challenge-russian-language 13.9±0.0 – 1.2±0.0 –

the-icml-2013-whale-challenge-right-whale-redux 70.4±29.4 66.7 76.4±24.5 66.7

Table 7: Per-competition results on the 22 tasks from MLE-BENCH-LITE, comparing QwQ-32B
with our MLE-RL-32B. Each entry reports the mean Human Rank (HR) and Medal Rate (MR) over
three runs. Overall, MLE-RL-32B achieves generally higher HR than QwQ-32B.
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