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Abstract

Efficient exploration in contextual bandits is crucial due to their large action space,1

where uninformed exploration can lead to computational and statistical inefficien-2

cies. However, the rewards of actions are often correlated, which can be leveraged3

for more efficient exploration. In this work, we use pre-trained diffusion model pri-4

ors to capture these correlations and develop diffusion Thompson sampling (dTS).5

We establish both theoretical and algorithmic foundations for dTS. Specifically,6

we derive efficient posterior approximations (required by dTS) under a diffusion7

model prior, which are of independent interest beyond bandits and reinforcement8

learning. We analyze dTS in linear instances and provide a Bayes regret bound9

highlighting the benefits of using diffusion models as priors. Our experiments10

validate our theory and demonstrate dTS’s favorable performance.11

1 Introduction12

A contextual bandit is a popular and practical framework for online learning under uncertainty [Li13

et al., 2010]. In each round, an agent observes a context, takes an action, and receives a reward based14

on the context and action. The goal is to maximize the expected cumulative reward over n rounds,15

striking a balance between exploiting actions with high estimated rewards from available data and16

exploring other actions to improve current estimates. This trade-off is often addressed using either17

upper confidence bound (UCB) [Auer et al., 2002] or Thompson sampling (TS) [Scott, 2010].18

The action space in contextual bandits is often large, resulting in less-than-optimal performance19

with standard exploration strategies. Luckily, actions usually exhibit correlations, making efficient20

exploration possible as one action may inform the agent about other actions. In particular, Thompson21

sampling offers remarkable flexibility, allowing its integration with informative priors [Hong et al.,22

2022b] that capture these correlations. Inspired by the achievements of diffusion models [Sohl-23

Dickstein et al., 2015, Ho et al., 2020], which effectively approximate complex distributions [Dhariwal24

and Nichol, 2021, Rombach et al., 2022], this work captures action correlations by employing25

diffusion models as priors in contextual Thompson sampling.26

We illustrate the idea using video streaming. The objective is to optimize watch time for a user j27

by selecting a video i from a catalog of K videos. Users j and videos i are associated with context28

vectors xj and unknown video parameters θi, respectively. User j’s expected watch time for video i29

is linear as x⊤j θi. Then, a natural strategy is to independently learn video parameters θi using LinTS30

or LinUCB [Agrawal and Goyal, 2013a, Abbasi-Yadkori et al., 2011], but this proves statistically31

inefficient for largerK. Fortunately, the reward when recommending a movie can provide informative32

insights into other movies. To capture this, we leverage offline estimates of video parameters denoted33

by θ̂i and build a diffusion model on them. This diffusion model approximates the video parameter34

distribution, capturing their dependencies. This model enriches contextual Thompson sampling as a35

prior, effectively capturing complex video dependencies while ensuring computational efficiency.36
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We introduce a framework for contextual bandits with diffusion model priors, upon which we develop37

diffusion Thompson sampling (dTS) that is both computationally and statistically efficient. dTS38

requires fast updates of the posterior and fast sampling from the posterior, both of which are achieved39

through our novel efficient posterior approximations. These approximations become exact when40

both the diffusion model and likelihood are linear. We establish a bound on dTS’s Bayes regret for41

this specific case, highlighting the advantages of using diffusion models as priors. Our empirical42

evaluations validate our theory and demonstrate dTS’s strong performance across various settings.43

Diffusion models were applied in offline decision-making [Ajay et al., 2022, Janner et al., 2022, Wang44

et al., 2022], but their use in online learning was only recently explored by Hsieh et al. [2023], who45

focused on multi-armed bandits without theoretical guarantees. Our work extends Hsieh et al. [2023]46

in two ways. First, we apply the concept to the broader contextual bandit, which is more practical and47

realistic. Second, we demonstrate that with diffusion models parametrized by linear score functions48

and linear rewards, we can derive exact closed-form posteriors without approximations. These exact49

posteriors are valuable as they enable theoretical analysis (unlike Hsieh et al. [2023], who did not50

provide theoretical guarantees) and motivate efficient approximations for non-linear score functions51

in contextual bandits, addressing gaps in Hsieh et al. [2023]’s focus on multi-armed bandits.52

A key contribution, beyond applying diffusion models in contextual bandits, is the efficient com-53

putation and sampling of the posterior distribution of a d-dimensional parameter θ | Ht, with Ht54

representing the data, when using a diffusion model prior on θ. This is relevant not only to bandits55

and reinforcement learning but also to a broader range of applications [Chung et al., 2022]. To56

motivate our approximations, we start with exact closed-form solutions for cases where both the57

score functions of the diffusion model and the likelihood are linear. These solutions form the basis for58

our approximations for non-linear score functions, demonstrating both strong empirical performance59

and computational efficiency. Our approach avoids the computational burden of heavy approximate60

sampling algorithms required for each latent parameter. For a detailed comparison with existing61

studies, see Appendix A, where we discuss diffusion models in decision-making, structured bandits,62

approximate posteriors, and more.63

2 Setting64

The agent interacts with a contextual bandit over n rounds. In round t ∈ [n], the agent observes a65

context Xt ∈ X , where X ⊆ Rd is a context space, it takes an action At ∈ [K], and then receives a66

stochastic reward Yt ∈ R that depends on both the context Xt and the taken action At. Each action67

i ∈ [K] is associated with an unknown action parameter θ∗,i ∈ Rd, so that the reward received in68

round t is Yt ∼ P (· | Xt; θ∗,At
), where P (· | x; θ∗,i) is the reward distribution of action i in context69

x. Throughout the paper, we assume that the reward distribution is parametrized as a generalized70

linear model (GLM) [McCullagh and Nelder, 1989]. That is, for any x ∈ X , P (· | x; θ∗,i) is an71

exponential-family distribution with mean g(x⊤θ∗,i), where g is the mean function. For example, we72

recover linear bandits when P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2) where σ > 0 is the observation noise.73

Similarly, we recover logistic bandits [Filippi et al., 2010] if we let g(u) = (1 + exp(−u))−1 and74

P (· | x; θ∗,i) = Ber(g(x⊤θ∗,i)), where Ber(p) be the Bernoulli distribution with mean p.75

We consider the Bayesian bandit setting [Russo and Van Roy, 2014, Hong et al., 2022b], where the76

action parameters θ∗,i are assumed to be sampled from a known prior distribution. We proceed to77

define this prior distribution using a diffusion model. The correlations between the action parameters78

θ∗,i are captured through a diffusion model, where they share a set of L consecutive unknown latent79

parameters ψ∗,ℓ ∈ Rd for ℓ ∈ [L]. Precisely, the action parameter θ∗,i depends on the L-th latent80

parameter ψ∗,L as θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1), where the score function f1 : Rd → Rd is known.81

Also, the ℓ−1-th latent parameter ψ∗,ℓ−1 depends on the ℓ-th latent parameter ψ∗,ℓ as ψ∗,ℓ−1 | ψ∗,ℓ ∼82

N (fℓ(ψ∗,ℓ),Σℓ), where the score function fℓ : Rd → Rd is known. Finally, the L-th latent parameter83

ψ∗,L is sampled as ψ∗,L ∼ N (0,ΣL+1). We summarize this model in (1) and its graph in Fig. 1.84

: taken action
in round 

Figure 1: Graphical model of (1).

85

ψ∗,L ∼ N (0,ΣL+1) , (1)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] .
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The model in (1) represents a Bayesian bandit, where the agent interacts with a bandit instance86

defined by θ∗,i over n rounds (4-th line in (1)). These action parameters θ∗,i are drawn from the87

generative process in the first 3 lines of (1). In practice, (1) can be built by pre-training a diffusion88

model on offline estimates of the action parameters θ∗,i [Hsieh et al., 2023].89

A natural goal for the agent in this Bayesian framework is to minimize its Bayes regret [Russo and Van90

Roy, 2014] that measures the expected performance across multiple bandit instances θ∗ = (θ∗,i)i∈[K],91

BR(n) = E
[ n∑
t=1

r(Xt, At,∗; θ∗)− r(Xt, At; θ∗)
]
, (2)

where the expectation in (2) is taken over all random variables in (1). Here92

r(x, i; θ∗) = EY∼P (·|x;θ∗,i) [Y ] is the expected reward of action i in context x and At,∗ =93

argmaxi∈[K] r(Xt, i; θ∗) is the optimal action in round t. The Bayes regret is known to capture the94

benefits of using informative priors, and hence it is suitable for our problem.95

3 Diffusion contextual Thompson sampling96

We design Thompson sampling that samples the latent and action parameters hierarchically [Lindley97

and Smith, 1972]. Precisely, let Ht = (Xk, Ak, Yk)k∈[t−1] be the history of all interactions up to98

round t and let Ht,i = (Xk, Ak, Yk){k∈[t−1];Ak=i} be the history of interactions with action i up to99

round t. To motivate our algorithm, we decompose the posterior P (θ∗,i = θ |Ht) recursively as100

P (θ∗,i = θ |Ht) =

∫
ψ1:L

Qt,L(ψL)

L∏
ℓ=2

Qt,ℓ−1(ψℓ−1 | ψℓ)Pt,i(θ | ψ1) dψ1:L , where (3)

Qt,L(ψL) = P (ψ∗,L = ψL |Ht) is the latent-posterior density of ψ∗,L | Ht. Moreover, for any101

ℓ ∈ [2 : L], Qt,ℓ−1(ψℓ−1 | ψℓ) = P (ψ∗,ℓ−1 = ψℓ−1 |Ht, ψ∗,ℓ = ψℓ) is the conditional latent-102

posterior density of ψ∗,ℓ−1 | Ht, ψ∗,ℓ = ψℓ. Finally, for any action i ∈ [K], Pt,i(θ | ψ1) =103

P (θ∗,i = θ |Ht,i, ψ∗,1 = ψ1) is the conditional action-posterior density of θ∗,i | Ht,i, ψ∗,1 = ψ1.104

The decomposition in (3) inspires hierarchical sampling. In round t, we initially sample the L-th105

latent parameter as ψt,L ∼ Qt,L(·). Then, for ℓ ∈ [L]/{1}, we sample the ℓ− 1-th latent parameter106

given that ψ∗,ℓ = ψt,ℓ, as ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ). Lastly, given that ψ∗,1 = ψt,1, each action107

parameter is sampled individually as θt,i ∼ Pt,i(θ | ψt,1). This is possible because action parameters108

θ∗,i are conditionally independent given ψ∗,1. This leads to Algorithm 1, named diffusion Thompson109

Sampling (dTS). dTS requires sampling from the K + L posteriors Pt,i and Qt,ℓ. Thus we start by110

providing an efficient recursive scheme to express these posteriors using known quantities. We note111

that these expressions do not necessarily lead to closed-form posteriors and approximation might be112

needed. First, the conditional action-posterior Pt,i(· | ψ1) can be written as113

Pt,i(θ | ψ1) ∝
∏
k∈St,i

P (Yk | Xk; θ)N (θ; f1(ψ1),Σ1) , (4)

where St,i = {ℓ ∈ [t − 1], Aℓ = i} are the rounds where the agent takes action i up to round t.114

Moreover, let Lℓ(ψℓ) = P (Ht |ψ∗,ℓ = ψℓ) be the likelihood of observations up to round t given that115

ψ∗,ℓ = ψℓ. Then, for any ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior Qt,ℓ−1(· | ψℓ) is116

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ Lℓ−1(ψℓ−1)N (ψℓ−1, fℓ(ψℓ),Σℓ) , (5)
and Qt,L(ψL) ∝ LL(ψL)N (ψL, 0,ΣL+1). All the terms above are known, except the likelihoods117

Lℓ(ψℓ) for ℓ ∈ [L]. These are computed recursively as follows. First, the basis of the recursion is118

L1(ψ1) =

K∏
i=1

∫
θi

∏
k∈St,i

P (Yk | Xk; θi)N (θi; f1(ψ1),Σ1) dθi. (6)

Then for ℓ ∈ [L]/{1}, the recursive step is Lℓ(ψℓ) =
∫
ψℓ−1

Lℓ−1(ψℓ−1)N (ψℓ−1; fℓ(ψℓ),Σℓ) dψℓ−1.119

All posterior expressions above use known quantities (fℓ,Σℓ, P (y | x; θ)). However, these expres-120

sions typically need to be approximated, except when the score functions fℓ are linear and the reward121

distribution P (· | x; θ) is linear-Gaussian, where closed-form solutions can be obtained with careful122

derivations. These approximations are not trivial, and prior studies often rely on computationally123

intensive approximate sampling algorithms. In the following sections, we explain how we derive our124

efficient approximations which are motivated by the closed-form solutions of linear instances.125
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Algorithm 1 dTS: diffusion Thompson Sampling
Input: Prior: fℓ, ℓ ∈ [L], Σℓ, ℓ ∈ [L+ 1], and P .
for t = 1, . . . , n do

Sample ψt,L ∼ Qt,L (requires fast approximate posterior update and sampling)
for ℓ = L, . . . , 2 do

Sample ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ) (requires fast approximate posterior update and sampling)
for i = 1, . . . ,K do

Sample θt,i ∼ Pt,i(· | ψt,1) (requires fast approximate posterior update and sampling)
Take action At = argmaxi∈[K]r(Xt, i; θt), where θt = (θt,i)i∈[K]

Receive reward Yt ∼ P (· | Xt; θ∗,At
) and update posteriors Qt+1,ℓ and Pt+1,i.

3.1 Linear diffusion model126

Assume the score functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where Wℓ ∈ Rd×d127

are known mixing matrices. Then, (1) becomes a linear Gaussian system (LGS) [Bishop, 2006] in128

this case. This model is important, both in theory and practice. For theory, it leads to closed-form129

posteriors when the reward distribution is linear-Gaussian as P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2). This130

allows bounding the Bayes regret of dTS. For practice, the posterior expressions are used to motivate131

efficient approximations for the general case in (1) as we show in Section 3.2.132

The reward distribution is parameterized as a generalized linear model (GLM) [McCullagh and133

Nelder, 1989], allowing for non-linear rewards. Thus, we need posterior approximation despite134

linearity in score functions. Since this non-linearity arises solely from the reward distribution, we135

approximate it by a Gaussian and propagate this approximation to the latent parameters. This results136

in efficient posterior approximations that are exact when the reward function is Gaussian (a special137

case of the GLM model). Specifically, the reward distribution P (· | x; θ) is an exponential family138

distribution with a mean function denoted by g. Then, we approximate the corresponding likelihood139

as P (Ht,i | θ∗,i = θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i and Ĝt,i are the maximum likelihood estimate140

(MLE) and the Hessian of the negative log-likelihood, respectively, and they are defined as141

B̂t,i = argmaxθ∈Rd logP (Ht,i | θ∗,i = θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (7)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} represents the rounds where the agent takes action i up to142

round t. This simple approximation makes all posteriors Gaussian. Specifically, the conditional143

action-posterior is Gaussian and is given by Pt,i(· | ψ1) = N (·; µ̂t,i, Σ̂t,i), where µ̂t,i and Σ̂t,i are144

computed using B̂t,i and Ĝt,i in (7). Moreover, for ℓ ∈ [L−1], the ℓ-th conditional latent-posterior is145

also Gaussian, Qt,ℓ(· | ψℓ+1) = N (·; µ̄t,ℓ, Σ̄t,ℓ), where µ̄t,ℓ and Σ̄t,ℓ are computed recursively. The146

recursion starts with µ̄t,1 and Σ̄t,1, which are calculated using B̂t,i and Ĝt,i in (7). Full expressions are147

provided in Appendix B.1. The only approximation made is P (Ht,i | θ∗,i = θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
,148

and we propagated it to latent posteriors. Thus, these posterior approximations become exact when149

the reward distribution follows a linear-Gaussian model, P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2).150

3.2 Non-linear diffusion model151

After deriving the posteriors for linear score functions, we return to the general model in (1).152

Approximation is needed since both the score functions and rewards can be non-linear. To avoid153

computational challenges, we use a simple and intuitive approximation, where all posteriors Pt,i154

and Qt,ℓ are approximated by Gaussians that are computed recursively. First, the conditional action-155

posterior is approximated by a Gaussian distribution as Pt,i(· | ψ1) = N (·; µ̂t,i, Σ̂t,i), where156

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 f1(ψ1) + Ĝt,iB̂t,i
)
. (8)

In the absence of samples, Gt,i = 0d×d. Thus, the approximate action posterior in (8) matches157

precisely the term N (f1(ψ1),Σ1) in the diffusion prior (1). Moreover, as more data is accumulated,158

Gt,i increases, and the influence of the prior diminishes as Ĝt,iB̂t,i will dominate the prior term159

Σ−1
1 f1(ψ1). Similarly, for ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is approximated by160
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a Gaussian distribution as Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1), where161

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ fℓ(ψℓ) + B̄t,ℓ−1

)
, (9)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),162

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (10)

Here, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are163

Ḡt,1 =
∑K
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
, B̄t,1 = Σ−1

1

∑K
i=1 Σ̂t,iĜt,iB̂t,i . (11)

Then, the recursive step for ℓ ∈ [L]/{1} is,164

Ḡt,ℓ = Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ , B̄t,ℓ = Σ−1

ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (12)

Similarly, in the absence of samples, Qt,ℓ−1 in (9) precisely matches the term N (fℓ(ψ1),Σℓ) in the165

diffusion prior (1). As more data is accumulated, the influence of this prior diminishes. Therefore,166

this approximation retains a key attribute of exact posteriors: they match the prior when there is no167

data, and the prior’s effect diminishes as data accumulates.168

4 Analysis169

We analyze dTS under the linear diffusion model in Section 3.1 with linear rewards P (· | x; θ∗,a) =170

N (·;x⊤θ∗,a, σ2). This assumption leads to a structure with L layers of linear Gaussian relationships,171

allowing for theory inspired by linear bandits [Agrawal and Goyal, 2013a, Abbasi-Yadkori et al.,172

2011]. However, proofs are not the same, and technical challenges remain (explained in Appendix D).173

Although our result holds for milder assumptions, we make some simplifications for clarity and174

interpretability. We assume that (A1) Contexts satisfy ∥Xt∥22 = 1 for any t ∈ [n]. (A2) Mixing175

matrices and covariances satisfy λ1(W⊤
ℓ Wℓ) = 1 for any ℓ ∈ [L] and Σℓ = σ2

ℓ Id for any ℓ ∈ [L+1].176

Note that (A1) can be relaxed to any contexts Xt with bounded norms ∥Xt∥2. Also, (A2) can be177

relaxed to positive definite covariances Σℓ and arbitrary mixing matrices Wℓ. In this section, we178

write Õ for the big-O notation up to polylogarithmic factors. We start by stating our bound for dTS.179

Theorem 4.1. Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of dTS under180

Section 3.1 with linear rewards, (A1) and (A2) is bounded as181

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 RLAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant and, (13)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, RLAT

ℓ = cℓd log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

,

(13) holds for any δ ∈ (0, 1). In particular, the term cnδ is constant when δ = 1/n. Then, the182

bound is Õ(
√
n), and this dependence on the horizon n aligns with prior Bayes regret bounds. The183

bound comprises L+ 1 main terms, RACT(n) and RLAT
ℓ for ℓ ∈ [L]. First, RACT(n) relates to action184

parameters learning, conforming to a standard form [Lu and Van Roy, 2019]. Similarly, RLAT
ℓ is185

associated with learning the ℓ-th latent parameter. Roughly speaking, our bound captures that our186

problem can be seen as L+ 1 sequential linear bandit instances stacked upon each other.187

Technical contributions. dTS uses hierarchical sampling. Thus the marginal posterior distribution of188

θ∗,i | Ht is not explicitly defined. The first contribution is deriving θ∗,i | Ht using the total covariance189

decomposition combined with an induction proof, as our posteriors in Section 3.1 were derived190

recursively. Unlike standard analyses where the posterior distribution of θ∗,i | Ht is predetermined191

due to the absence of latent parameters, our method necessitates this recursive total covariance192

decomposition. Moreover, in standard proofs, we need to quantify the increase in posterior precision193

for the action taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this.194

We not only quantify the posterior information gain for the taken action but also for every latent195

parameter, since they are also learned. To elaborate, we use the recursive formulas in Section 3.1 that196

connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance of the posterior197

action parameters θ∗,i. This allows us to propagate the information gain associated with the action198
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taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. Finally, we carefully bound199

the resulting terms so that the constants reflect the parameters of the linear diffusion model. More200

technical details are provided in Appendix D.201

To include more structure, we propose the sparsity assumption (A3) Wℓ = (W̄ℓ, 0d,d−dℓ), where202

W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L]. Note that (A3) is not an assumption when dℓ = d for any ℓ ∈ [L].203

Notably, (A3) incorporates a plausible structural characteristic that a diffusion model could capture.204

Proposition 4.2 (Sparsity). Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of205

dTS under Section 3.1 with linear rewards, (A1), (A2) and (A3) is bounded as206

BR(n) ≤
√

2n
(
RACT(n) +

∑L
ℓ=1 R̃LAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant, (14)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, R̃LAT

ℓ = cℓdℓ log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

.

From Proposition 4.2, our bounds scales as BR(n) = Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+1σ

2ℓ
MAX)

)
. The207

Bayes regret bound has a clear interpretation: if the true environment parameters are drawn from208

the prior, then the expected regret of an algorithm stays below that bound. Consequently, a less209

informative prior (such as high variance) leads to a more challenging problem and thus a higher210

bound. Then, smaller values of K, L, d or dℓ translate to fewer parameters to learn, leading to lower211

regret. The regret also decreases when the initial variances σ2
ℓ decrease. These dependencies are212

common in Bayesian analysis, and empirical results match them. The reader might question the213

dependence of our bound on both L and K. We will address this next.214

Why the bound increases with K? This arises due to our conditional learning of θ∗,i given215

ψ∗,1. Rather than assuming deterministic linearity, θ∗,i = W1ψ∗,1, we account for stochasticity by216

modeling θ∗,i ∼ N (W1ψ∗,1, σ
2
1Id). This makes dTS robust to misspecification scenarios where θ∗,i217

is not perfectly linear with respect to ψ∗,1, at the cost of additional learning of θ∗,i | ψ∗,1. If we were218

to assume deterministic linearity (σ1 = 0), our regret bound would scale with L only.219

Why the bound increases with L? This is because increasing the number of layers L adds more220

initial uncertainty due to the additional covariance introduced by the extra layers. However, this does221

not imply that we should always use L = 1 (the minimum possible L). While a higher L complicates222

online learning and increases regret bound, it also enables the capture of a more complex prior223

distribution through offline pre-training of the diffusion model. Thus, a trade-off exists in practice.224

A smaller L results in faster computation and easier learning for dTS, but the learned prior might225

deviate from reality, potentially violating the "true prior assumption" used to derive the regret bound.226

On the other hand, a larger L allows for better modeling of complex action distributions, producing a227

prior that more accurately reflects reality and strengthens the validity of the bound.228

4.1 Discussion229

Computational benefits. Action correlations prompt an intuitive approach: marginalize all latent230

parameters and maintain a joint posterior of (θ∗,i)i∈[K] | Ht. Unfortunately, this is computationally231

inefficient for large action spaces. To illustrate, suppose that all posteriors are multivariate Gaussians232

(Section 3.1). Then maintaining the joint posterior (θ∗,i)i∈[K] | Ht necessitates converting and233

storing its dK × dK-dimensional covariance matrix. Then the time and space complexities are234

O(K3d3) and O(K2d2). In contrast, the time and space complexities of dTS are O
((
L +K

)
d3
)

235

and O
((
L+K

)
d2
)
. This is because dTS requires converting and storing L+K covariance matrices,236

each being d × d-dimensional. The improvement is huge when K ≫ L, which is common in237

practice. Certainly, a more straightforward way to enhance computational efficiency is to discard238

latent parameters and maintainK individual posteriors, each relating to an action parameter θ∗,i ∈ Rd239

(LinTS). This improves time and space complexity to O
(
Kd3

)
and O

(
Kd2

)
, respectively. However,240

LinTS maintains independent posteriors and fails to capture the correlations among actions; it only241

models θ∗,i | Ht,i rather than θ∗,i | Ht as done by dTS. Consequently, LinTS incurs higher regret242

due to the information loss caused by unused interactions of similar actions. Our regret bound and243

empirical results reflect this aspect.244

Statistical benefits. We do not provide a matching lower bound. The only Bayesian lower bound245

that we know of is Ω(log2(n)) for a much simpler K-armed bandit [Lai, 1987, Theorem 3]. All246
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seminal works on Bayesian bandits do not match it and providing such lower bounds on Bayes regret247

is still relatively unexplored (even in standard settings) compared to the frequentist one. Therefore,248

we argue that our bound reflects the overall structure of the problem by comparing dTS to algorithms249

that only partially use the structure or do not use it at all as follows.250

The linear diffusion model in Section 3.1 can be transformed into a Bayesian linear model (LinTS)251

by marginalizing out the latent parameters; in which case the prior on action parameters becomes252

θ∗,i ∼ N (0, Σ), with the θ∗,i being not necessarily independent, and Σ is the marginal initial253

covariance of action parameters and it writes Σ = σ2
1Id +

∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ with Bℓ =

∏ℓ
k=1 Wk.254

Then, it is tempting to directly apply LinTS to solve our problem. This approach will induce255

higher regret because the additional uncertainty of the latent parameters is accounted for in Σ256

despite integrating them. This causes the marginal action uncertainty Σ to be much higher than the257

conditional action uncertainty σ2
1Id in (3.1), since we have Σ = σ2

1Id +
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ ≽ σ2

1Id.258

This discrepancy leads to higher regret, especially when K is large. This is due to LinTS needing to259

learn K independent d-dimensional parameters, each with a considerably higher initial covariance Σ.260

This is also reflected by our regret bound. To simply comparisons, suppose that σ ≥ maxℓ∈[L+1] σℓ261

so that σ2
MAX ≤ 2. Then the regret bounds of dTS (where we bound σ2ℓ

MAX by 2ℓ) and LinTS read262

dTS : Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+12

ℓ)
)
, LinTS : Õ

(√
ndK(σ2

1 +
∑L
ℓ=1 σ

2
ℓ+1)

)
.

Then regret improvements are captured by the variances σℓ and the sparsity dimensions dℓ, and we263

proceed to illustrate this through the following scenarios.264

(I) Decreasing variances. Assume that σℓ = 2ℓ for any ℓ ∈ [L+ 1]. Then, the regrets become265

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ4

ℓ))
)
, LinTS : Õ

(√
ndK2L)

)
Now to see the order of gain, assume the problem is high-dimensional (d≫ 1), and set L = log2(d)266

and dℓ = ⌊ d
2ℓ
⌋. Then the regret of dTS becomes Õ

(√
nd(K + L))

)
, and hence the multiplicative267

factor 2L in LinTS is removed and replaced with a smaller additive factor L.268

(II) Constant variances. Assume that σℓ = 1 for any ℓ ∈ [L+ 1]. Then, the regrets become269

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ2

ℓ))
)
, LinTS : Õ

(√
ndKL)

)
Similarly, let L = log2(d), and dℓ = ⌊ d

2ℓ
⌋. Then dTS’s regret is Õ

(√
nd(K + L)

)
. Thus the270

multiplicative factor L in LinTS is removed and replaced with the additive factor L. By comparing271

this to (I), the gain with decreasing variances is greater than with constant ones. In general, diffusion272

models use decreasing variances [Ho et al., 2020] and hence we expect great gains in practice.273

All observed improvements in this section could become even more pronounced when employing274

non-linear diffusion models. In our current analysis, we used linear diffusion models, and yet we can275

already discern substantial differences. Moreover, under non-linear diffusion (1), the latent parameters276

cannot be analytically marginalized, making LinTS with exact marginalization inapplicable. Finally,277

Appendix D.7 provide an additional comparison and connection to hierarchies with two levels.278

Large action space aspect. dTS’s regret bound scales with Kσ2
1 instead of K

∑
ℓ σ

2
ℓ , particularly279

beneficial when σ1 is small, as often seen in diffusion models. Our regret bound and experiments280

show that dTS outperforms LinTS more distinctly when the action space becomes larger. Prior281

studies [Foster et al., 2020, Xu and Zeevi, 2020, Zhu et al., 2022] proposed bandit algorithms that282

do not scale with K. However, our setting differs significantly from theirs, explaining our inherent283

dependency onK when σ1 > 0. Precisely, they assume a reward function of r(x, i; θ∗) = ϕ(x, i)⊤θ∗,284

with a shared θ∗ ∈ Rd and a known mapping ϕ. In contrast, we consider r(x, i; θ∗) = x⊤θ∗,i, with285

θ∗ = (θ∗,i)i∈[K] ∈ RdK , requiring the learning of K separate d-dimensional action parameters.286

In their setting, with the availability of ϕ, the regret of dTS would similarly be independent of287

K. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate complex288

context-action dependencies. Notably, our setting reflects a common practical scenario, such as in289

recommendation systems where each product is often represented by its unique embedding.290

5 Experiments291

We evaluate dTS using synthetic data, to validate our theory and test dTS in large action spaces. We292

omit semi-synthetic data [Riquelme et al., 2018] as they often result in small action spaces. This293
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Figure 2: Regret of dTS with varying diffusion and reward models and varying parameters d, K, L.

choice is further justified by the fact that Hsieh et al. [2023] has already demonstrated the advantages294

of diffusion models in multi-armed bandits using such data, without theoretical guarantees.295

5.1 Settings and baselines296

We run 50 random simulations and plot the average regret with its standard error. We consider both297

linear and non-linear rewards. The distribution of linear rewards is P (· | x; θa) = N (x⊤θa, σ
2) with298

σ = 1. The non-linear rewards are binary and generated from P (· | x; θa) = Ber(g(x⊤θa))), where299

g is the sigmoid function. The covariances are Σℓ = Id, and the context Xt is uniformly drawn from300

[−1, 1]d. We vary d ∈ {5, 20}, L ∈ {2, 4} and K ∈ {102, 104}. We set the horizon n = 5000.301

Linear diffusion. We consider the linear diffusion model in (3.1) where score functions are linear as302

fℓ(ψ) = Wℓψ where Wℓ are uniformly drawn from [−1, 1]d×d. To introduce sparsity, we zero out303

the last dℓ columns of Wℓ, resulting in Wℓ = (W̄ℓ, 0d,d−dℓ), where (d1, d2) = (5, 2) when d = 5304

and L = 2 and (d1, d2, d3, d4) = (20, 10, 5, 2) when d = 20 and L = 4.305

Non-linear diffusion. We consider the general diffusion model in (1) with score functions fℓ defined306

by two-layer neural networks with random weights in [−1, 1], ReLU activation, and a hidden layer307

dimension of h = 20 when d = 5 and h = 60 when d = 20.308

Baselines. When rewards are linear, we use LinUCB [Abbasi-Yadkori et al., 2011], LinTS [Agrawal309

and Goyal, 2013a], and HierTS [Hong et al., 2022b] that marginalizes out all latent parameters310

except ψ∗,L. This corresponds to HierTS-1 in Appendix D.7. When rewards are non-linear, we311

include UCB-GLM [Li et al., 2017], and GLM-TS [Chapelle and Li, 2012]. GLM-UCB [Filippi et al.,312

2010] induced high regret while HierTS was designed for linear rewards only and thus both are not313

included. We name dTS for each setting as dTS-dr, where the suffix d indicates the type of diffusion;314

L for linear and N for non-linear. The suffix r indicates the type of rewards; L for linear and N for315

non-linear. For instance, dTS-LL signifies dTS in linear diffusion (Section 3.1) with linear rewards.316

5.2 Results and interpretations317

Results are shown in Fig. 2 and we make the following observations:318

1) dTS has better performance. dTS outperforms the baselines. First, when both the diffusion and319

rewards are linear, dTS-LL consistently outperforms all baselines that disregard the latent structure320

(LinTS and LinUCB) or incorporate it only partially (HierTS). Second, when the diffusion is linear321

and rewards are non-linear, dTS-LN surpasses all baselines. Third, when the diffusion is non-linear322

and rewards are linear, dTS-NL demonstrates significant performance gains compared to both LinTS323

and LinUCB. With non-linear diffusion and rewards, dTS-NN surpasses both GLM-TS and UCB-GLM.324

2) Latent diffusion structure may be more important than the reward distribution. When325

rewards are non-linear (second and fourth columns in Fig. 2), we included variants of dTS that use326

the correct diffusion prior but the wrong reward distribution, employing linear-Gaussian instead of327

logistic-Bernoulli (dTS-LL in the second column and dTS-NL in the fourth column). In both cases,328

despite the misspecification of the reward distribution, these variants outperform models that use the329

correct reward distribution but neglect the latent diffusion structure, such as GLM-TS and UCB-GLM.330
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This underscores the significance of accounting for the latent structure, which can sometimes be more331

crucial than having an accurate reward distribution. Also, the performance gap between dTS-NL332

(non-linear diffusion) and GLM-TS and UCB-GLM is even more pronounced compared to the gap333

between dTS-LL (linear diffusion) and these baselines, possibly due to the increased complexity of334

the latent structure, in the non-linear diffusion, overshadowing the impact of the reward model itself.335
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Figure 3: Prior misspecification effect.

3) Prior misspecification (Fig. 3). We consider a scenario336

where the prior used by dTS does not match the true prior.337

To simulate this, we use our setting with linear diffusion338

and rewards above, but the true parameters Wℓ and Σℓ are339

replaced by misspecified parameters Wℓ+ ϵ1 and Σℓ+ ϵ2.340

Here, ϵ1 and ϵ2 are sampled uniformly from [v, v+0.5]d×d,341

with v controlling the level of misspecification. The higher342

the value of v, the greater the misspecification. We vary343

v ∈ {0.5, 1, 1.5} and analyze its impact on dTS’s perfor-344

mance. For comparison, we include the well-specified345

dTS-LL and the most competitive baseline, HierTS. Re-346

sults are shown in Fig. 3. As expected, dTS’s performance347

decreases with increasing misspecification. However, even348

with misspecification, dTS outperforms the most competitive baseline, except when v = 1.5, where349

their performances are comparable. Note that the entries of the true parameters Wℓ and Σℓ are smaller350

than 1, so values of v ∈ {0.5, 1, 1.5} can lead to significant parameter misspecification. Yet, the351

performance of dTS with misspecified prior parameters remains favorable, suggesting that even an352

imperfect pre-trained diffusion model can be beneficial when used as prior.353
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Figure 4: dTS-LL’s regret scaling.

4) Regret scaling with K, d and L matches our theory354

(Fig. 4). We verify the impact of the number of actions355

K, the context dimension d, and the diffusion depth L356

on the regret of dTS. We maintain the same experimental357

setup with linear diffusion and rewards, for which we have358

derived a Bayes regret upper bound. In Fig. 4, we plot359

the regret of dTS-LL across varying values of these pa-360

rameters: K ∈ {10, 100, 500, 1000}, d ∈ {5, 10, 15, 20},361

and L ∈ {2, 4, 5, 6}. As anticipated and aligned with our362

theory, the empirical regret increases as the values of K, d,363

or L grow. This trend arises because larger values of K, d,364

or L result in problem instances that are more challenging365

to learn, consequently leading to higher regret.366
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Figure 5: Regret of dTS-LL and LinTS
with varying K.

5) Performance gap between dTS and LinTS widens367

as K increases (Fig. 5). To showcase dTS’s improved368

scalability to larger action spaces, we examine its perfor-369

mance across a range of K values, from 10 to 50, 000,370

in our setting with linear diffusion and rewards. Fig. 5371

reports the final cumulative regret for varying values of K372

for both dTS-LL and LinTS, observing that the gap in the373

performance becomes larger as K increases.374

6 Conclusion375

Grappling with large action spaces in contextual bandits is challenging. Recognizing this, we focused376

on structured problems where action parameters are sampled from a diffusion model; upon which we377

built diffusion Thompson sampling (dTS). We developed both theoretical and algorithmic foundations378

for dTS in numerous practical settings. We identified several directions for future work. Exploring379

other approximations for non-linear diffusion models, both empirically and theoretically. From a380

theoretical perspective, future research could explore the advantages of non-linear diffusion models381

by deriving their Bayes regret bounds, akin to our analysis in Section 4. Empirically, investigating382

our and other approximations in complex tasks would be interesting. Additionally, exploring the383

extension of this work to offline (or off-policy) learning in contextual bandits [Swaminathan and384

Joachims, 2015, Aouali et al., 2023a] represents a promising avenue for future research.385
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Supplementary materials528

Notation. For any positive integer n, we define [n] = {1, 2, ..., n}. Let v1, . . . , vn ∈ Rd be n vectors,529

(vi)i∈[n] ∈ Rnd is the nd-dimensional vector obtained by concatenating v1, . . . , vn. For any matrix530

A ∈ Rd×d, λ1(A) and λd(A) denote the maximum and minimum eigenvalues of A, respectively.531

Finally, we write Õ for the big-O notation up to polylogarithmic factors.532

A Extended related work533

Thompson sampling (TS) operates within the Bayesian framework and it involves specifying a534

prior/likelihood model. In each round, the agent samples unknown model parameters from the535

current posterior distribution. The chosen action is the one that maximizes the resulting reward. TS536

is naturally randomized, particularly simple to implement, and has highly competitive empirical537

performance in both simulated and real-world problems [Russo and Van Roy, 2014, Chapelle and Li,538

2012]. Regret guarantees for the TS heuristic remained open for decades even for simple models.539

Recently, however, significant progress has been made. For standard multi-armed bandits, TS is540

optimal in the Beta-Bernoulli model [Kaufmann et al., 2012, Agrawal and Goyal, 2013b], Gaussian-541

Gaussian model [Agrawal and Goyal, 2013b], and in the exponential family using Jeffrey’s prior542

[Korda et al., 2013]. For linear bandits, TS is nearly-optimal [Russo and Van Roy, 2014, Agrawal and543

Goyal, 2017, Abeille and Lazaric, 2017]. In this work, we build TS upon complex diffusion priors544

and analyze the resulting Bayes regret [Russo and Van Roy, 2014] in the linear contextual bandit545

setting.546

Decision-making with diffusion models gained attention recently, especially in offline learning547

[Ajay et al., 2022, Janner et al., 2022, Wang et al., 2022]. However, their application in online548

learning was only examined by Hsieh et al. [2023], which focused on meta-learning in multi-armed549

bandits without theoretical guarantees. In this work, we expand the scope of Hsieh et al. [2023] to550

encompass the broader contextual bandit framework. In particular, we provide theoretical analysis for551

linear instances, effectively capturing the advantages of using diffusion models as priors in contextual552

Thompson sampling. These linear cases are particularly captivating due to closed-form posteriors,553

enabling both theoretical analysis and computational efficiency; an important practical consideration.554

Hierarchical Bayesian bandits [Bastani et al., 2019, Kveton et al., 2021, Basu et al., 2021, Sim-555

chowitz et al., 2021, Wan et al., 2021, Hong et al., 2022b, Peleg et al., 2022, Wan et al., 2022, Aouali556

et al., 2023b] applied TS to simple graphical models, wherein action parameters are generally sampled557

from a Gaussian distribution centered at a single latent parameter. These works mostly span meta-558

and multi-task learning for multi-armed bandits, except in cases such as Aouali et al. [2023b], Hong559

et al. [2022a] that consider the contextual bandit setting. Precisely, Aouali et al. [2023b] assume that560

action parameters are sampled from a Gaussian distribution centered at a linear mixture of multiple561

latent parameters. On the other hand, Hong et al. [2022a] applied TS to a graphical model represented562

by a tree. Our work can be seen as an extension of all these works to much more complex graphical563

models, for which both theoretical and algorithmic foundations are developed. Note that the settings564

in most of these works can be recovered with specific choices of the diffusion depth L and functions565

fℓ. This attests to the modeling power of dTS.566

Approximate Thompson sampling is a major problem in the Bayesian inference literature. This is567

because most posterior distributions are intractable, and thus practitioners must resort to sophisti-568

cated computational techniques such as Markov chain Monte Carlo [Kruschke, 2010]. Prior works569

[Riquelme et al., 2018, Chapelle and Li, 2012, Kveton et al., 2020] highlight the favorable empirical570

performance of approximate Thompson sampling. Particularly, [Kveton et al., 2020] provide the-571

oretical guarantees for Thompson sampling when using the Laplace approximation in generalized572

linear bandits (GLB). In our context, we incorporate approximate sampling when the reward exhibits573

non-linearity. While our approximation does not come with formal guarantees, it enjoys strong574

practical performance. An in-depth analysis of this approximation is left as a direction for future575

works. Similarly, approximating the posterior distribution when the diffusion model is non-linear as576

well as analyzing it is an interesting direction of future works.577

Bandits with underlying structure also align with our work, where we assume a structured relation-578

ship among actions, captured by a diffusion model. In latent bandits [Maillard and Mannor, 2014,579

Hong et al., 2020], a single latent variable indexes multiple candidate models. Within structured580
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finite-armed bandits [Lattimore and Munos, 2014, Gupta et al., 2018], each action is linked to a known581

mean function parameterized by a common latent parameter. This latent parameter is learned. TS582

was also applied to complex structures [Yu et al., 2020, Gopalan et al., 2014]. However, simultaneous583

computational and statistical efficiencies aren’t guaranteed. Meta- and multi-task learning with584

upper confidence bound (UCB) approaches have a long history in bandits [Azar et al., 2013, Gentile585

et al., 2014, Deshmukh et al., 2017, Cella et al., 2020]. These, however, often adopt a frequentist586

perspective, analyze a stronger form of regret, and sometimes result in conservative algorithms.587

In contrast, our approach is Bayesian, with analysis centered on Bayes regret. Remarkably, our588

algorithm, dTS, performs well as analyzed without necessitating additional tuning. Finally, Low-rank589

bandits [Hu et al., 2021, Cella et al., 2022, Yang et al., 2020] also relate to our linear diffusion model590

when L = 1. Broadly, there exist two key distinctions between these prior works and the special591

case of our model (linear diffusion model with L = 1). First, they assume θ∗,i = W1ψ∗,1, whereas592

we incorporate additional uncertainty in the covariance Σ1 to account for possible misspecification593

as θ∗,i = N (W1ψ∗,1,Σ1). Consequently, these algorithms might suffer linear regret due to model594

misalignment. Second, we assume that the mixing matrix W1 is available and pre-learned offline,595

whereas they learn it online. While this is more general, it leads to computationally expensive596

methods that are difficult to employ in a real-world online setting.597

Large action spaces. Roughly speaking, the regret bound of dTS scales with Kσ2
1 rather than598

K
∑
ℓ σ

2
ℓ . This is particularly beneficial when σ1 is small, a common scenario in diffusion models599

with decreasing variances. A notable case is when σ1 = 0, where the regret becomes independent of600

K. Also, our analysis (Section 4.1) indicates that the gap in performance between dTS and LinTS601

becomes more pronounced when the number of action increases, highlighting dTS’s suitability for602

large action spaces. Note that some prior works [Foster et al., 2020, Xu and Zeevi, 2020, Zhu et al.,603

2022] proposed bandit algorithms that do not scale with K. However, our setting differs significantly604

from theirs, explaining our inherent dependency on K when σ1 > 0. Precisely, they assume a605

reward function of r(x, i) = ϕ(x, i)⊤θ∗, with a shared θ∗ ∈ Rd across actions and a known mapping606

ϕ. In contrast, we consider r(x, i) = x⊤θ∗,i, requiring the learning of K separate d-dimensional607

action parameters. In their setting, with the availability of ϕ, the regret of dTS would similarly be608

independent ofK. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate609

complex context-action dependencies. Notably, our setting reflects a common practical scenario,610

such as in recommendation systems where each product is often represented by its embedding. In611

summary, the dependency on K is more related to our setting than the method itself, and dTS would612

scale with d only in their setting. Note that dTS is both computationally and statistically efficient613

(Section 4.1). This becomes particularly notable in large action spaces. Our empirical results in614

Fig. 2, notably with K = 104, demonstrate that dTS significantly outperforms the baselines. More615

importantly, the performance gap between dTS and these baselines is larger when the number of616

actions (K) increases, highlighting the improved scalability of dTS to large action spaces.617

B Posterior derivations for linear diffusion models618

Here, we assume the score functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where619

Wℓ ∈ Rd×d are known mixing matrices. Then, (1) becomes a linear Gaussian system (LGS) [Bishop,620

2006] and can be summarized as follows621

ψ∗,L ∼ N (0,ΣL+1) , (15)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (Wℓψ∗,ℓ,Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At ∼ P (· | Xt; θ∗,At) , ∀t ∈ [n] .

In this section, we derive theK+L posteriors Pt,i andQt,ℓ, for which we provide the full expressions622

in Appendix B.1. In our proofs, p(x) ∝ f(x) means that the probability density p satisfies p(x) =623
f(x)
Z for any x ∈ Rd, where Z is a normalization constant. In particular, we extensively use that if624

p(x) ∝ exp[− 1
2x

⊤Λx + x⊤m], where Λ is positive definite. Then p is the multivariate Gaussian625

density with covariance Σ = Λ−1 and mean µ = Σm. These are standard notations and techniques626

to manipulate Gaussian distributions [Koller and Friedman, 2009, Chapter 7].627
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B.1 Posterior expressions for linear diffusion models628

Recall that we posit that the reward distribution is parameterized as a generalized linear model (GLM)629

[McCullagh and Nelder, 1989], allowing for non-linear rewards. As a result, despite linearity in630

score functions, the non-linearity in rewards makes it challenging to obtain closed-form posteriors.631

However, since this non-linearity arises solely from the reward distribution, we approximate it using632

a Gaussian distribution. This leads to efficient posterior approximations that are exact in cases where633

the reward function is indeed Gaussian (a special case of the GLM model). Precisely, the reward634

distribution P (· | x; θ) is an exponential-family distribution. Therefore, the log-likelihoods write635

logP (Ht,i | θ∗,i = θ) =
∑
k∈St,i

YkX
⊤
k θ − A(X⊤

k θ) + C(Yk), where C is a real function, and A636

is a twice continuously differentiable function whose derivative is the mean function, Ȧ = g. Now637

we let B̂t,i and Ĝt,i be the maximum likelihood estimate (MLE) and the Hessian of the negative638

log-likelihood, respectively, defined as639

B̂t,i = argmax
θ∈Rd

logP (Ht,i | θ∗,i = θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (16)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} are the rounds where the agent takes action i up to round t.640

Then we approximation the respective likelihood as P (Ht,i | θ∗,i = θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
. This641

approximation makes all posteriors Gaussian. First, the conditional action-posterior reads Pt,i(· |642

ψ1) = N (·; µ̂t,i, Σ̂t,i),643

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 W1ψ1 + Ĝt,iB̂t,i
)
. (17)

For ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1),644

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (18)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),645

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (19)

Finally, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are646

Ḡt,1 = W⊤
1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 , B̄t,1 = W⊤

1 Σ
−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i . (20)

Then, the recursive step for ℓ ∈ [L]/{1} is,647

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ , B̄t,ℓ = W⊤

ℓ Σ
−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (21)

This concludes the derivation of our posterior approximation. Note that these approximations are exact648

when the reward distribution follows a linear-Gaussian model, P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2).649

B.2 Derivation of Action-Posteriors for Linear Diffusion Models650

To simplify derivations, we consider the case where the reward distribution is indeed linear-651

Gaussian as P (· | Xt; θ∗,At
) = N

(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when652

the rewards are non-linear. In this case, the likelihood approximation in (16) becomes exact as653

we have that P (Ht,i | θ∗,i = θ) ∝ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i is the corresponding MLE and654

Ĝt,i = σ−2
∑
k∈St,i

XkX
⊤
k in this case. Our derivations rely on the fact that the MLE B̂t,i in this655

linear-Gaussian case satisfies: Ĝt,iB̂t,i = v
∑
k∈St,i

XkY
⊤
k .656

Proposition B.1. Consider the following model, which corresponds to the last two layers in Eq. (15)657

θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) ,

Yt | Xt, θ∗,At ∼ N
(
X⊤
t θ∗,At , σ

2
)
, ∀t ∈ [n] .

Then we have that for any t ∈ [n] and i ∈ [K], Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) =658

N (θ; µ̂t,i, Σ̂t,i), where659

Σ̂−1
t,i = Ĝt,i +Σ−1

1 , µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ1

)
.
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Proof. Let v = σ−2 , Λ1 = Σ−1
1 . Then the action-posterior decomposes as660

Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) ,

∝ P (Ht,i |ψ∗,1 = ψ1, θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (Bayes rule)
= P (Ht,i | θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (given θ∗,i, Ht,i is independent of ψ∗,1)

=
∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)N (θ;W1ψ1,Σ1) ,

= exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2YkX

⊤
k θ + (X⊤

k θ)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+
(
W1ψ1

)⊤
Λ1

(
W1ψ1

))]
,

∝ exp
[
− 1

2

(
θ⊤(v

∑
k∈St,i

XkX
⊤
k + Λ1)θ − 2θ⊤

(
v

∑
k∈St,i

XkYk + Λ1W1ψ1

))]
,

∝ N
(
θ; µ̂t,i, Λ̂

−1
t,i

)
,

with Λ̂t,i = v
∑
k∈St,i

XkX
⊤
k + Λ1 , Λ̂t,iµ̂t,i = v

∑
k∈St,i

XkYk + Λ1W1ψ1. Using that, in this661

linear-Gaussian case, Ĝt,i = v
∑
k∈St,i

XkX
⊤
k and Ĝt,iB̂t,i = v

∑
k∈St,i

XkYk concludes the662

proof.663

The same proof applies when the reward distribution is not linear-Gaussian, with the approximation664

P (Ht,i | θ∗,i = θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations above leads to665

the same results.666

B.3 Derivation of recursive latent-posteriors for linear diffusion models667

Again, to simplify derivations, we consider the case where the reward distribution is indeed linear-668

Gaussian as P (· | Xt; θ∗,At
) = N

(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when the669

rewards are non-linear.670

Proposition B.2. For any ℓ ∈ [L]/{1}, the ℓ − 1-th conditional latent-posterior reads Qt,ℓ−1(· |671

ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1), with672

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (22)

and the L-th latent-posterior reads Qt,L(·) = N (µ̄t,L, Σ̄t,L), with673

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (23)

Proof. Let ℓ ∈ [L]/{1}. Then, Bayes rule yields that674

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1,Wℓψℓ,Σℓ) ,

But from Lemma B.3, we know that675

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
.

Therefore,676

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1,Wℓψℓ,Σℓ) ,

∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

− 1

2
(ψℓ−1 −Wℓψℓ)

⊤Σ−1
ℓ (ψℓ−1 −Wℓψℓ))

]
,

(i)
∝ exp

[
− 1

2
ψ⊤
ℓ−1(Ḡt,ℓ−1 +Σ−1

ℓ )ψℓ−1 + ψ⊤
ℓ−1(B̄t,ℓ−1 +Σ−1

ℓ Wℓψℓ)
]
,

(ii)
∝ N (ψℓ−1; µ̄t,ℓ−1, Σ̄t,ℓ−1) ,
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with Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 and µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
. In (i), we omit terms that677

are constant in ψℓ−1. In (ii), we complete the square. This concludes the proof for ℓ ∈ [L]/{1}. For678

Qt,L, we use Bayes rule to get679

Qt,L(ψL) ∝ P (Ht |ψ∗,L = ψL)N (ψL, 0,ΣL+1) .

Then from Lemma B.3, we know that680

P (Ht |ψ∗,L = ψL) ∝ exp
[
− 1

2
ψ⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
,

We then use the same derivations above to compute the product exp
[
− 1

2ψ
⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
×681

N (ψL, 0,ΣL+1), which concludes the proof.682

Lemma B.3. The following holds for any t ∈ [n] and ℓ ∈ [L],683

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where Ḡt,ℓ and B̄t,ℓ are defined by recursion in Section 3.1.684

Proof. We prove this result by induction. To reduce clutter, we let v = σ−2, and Λ1 = Σ−1
1 . We685

start with the base case of the induction when ℓ = 1.686

(I) Base case. Here we want to show that P (Ht |ψ∗,1 = ψ1) ∝ exp
[
− 1

2ψ
⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1
)]

,687

where Ḡt,1 and B̄t,1 are given in Eq. (20). First, we have that688

P (Ht |ψ∗,1 = ψ1)
(i)
=

∏
i∈[K]

P (Ht,i |ψ∗,1 = ψ1) =
∏
i∈[K]

∫
θ

P (Ht,i, θ∗,i = θ |ψ∗,1 = ψ1) dθ ,

=
∏
i∈[K]

∫
θ

P (Ht,i | θ∗,i = θ)N (θ;W1ψ1,Σ1) dθ ,

=
∏
i∈[K]

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ︸ ︷︷ ︸

hi(ψ1)

,

=
∏
i∈[K]

hi(ψ1) , (24)

where (i) follows from the fact that θ∗,i for i ∈ [K] are conditionally independent given689

ψ∗,1 = ψ1 and that given θ∗,i, Ht,i is independent of ψ∗,1. Now we compute hi(ψ1) =690 ∫
θ

(∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ as691

hi(ψ1) =

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ ,

∝
∫
θ

exp
[
− 1

2
v

∑
k∈St,i

(Yk −X⊤
k θ)

2 − 1

2
(θ −W1ψ1)

⊤Λ1(θ −W1ψ1)
]
dθ ,

=

∫
θ

exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2Ykθ

⊤Xk + (θ⊤Xk)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+ (W1ψ1)
⊤Λ1(W1ψ1)

)]
dθ ,

∝
∫
θ

exp
[
− 1

2

(
θ⊤

(
v

∑
k∈St,i

XkX
⊤
k + Λ1

)
θ − 2θ⊤

(
v

∑
k∈St,i

YkXk

+ Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ .
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But we know that Ĝt,i = v
∑
k∈St,i

XkX
⊤
k , and Ĝt,iB̂t,i = v

∑
k∈St,i

YkXk (because we assumed692

linear-Gaussian likelihood). To further simplify expressions, we also let693

V =
(
Ĝt,i + Λ1

)−1
, U = V −1 , β = V

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
.

We have that UV = V U = Id , and thus694

hi(ψ1) ∝
∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤UV

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
(θ − β)⊤U(θ − β)− β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

∝ exp

[
−1

2

(
−β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

,

= exp

[
−1

2

(
−
(
Ĝt,iB̂t,i + Λ1W1ψ1

)⊤
V
(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)

)]
,

∝ exp

[
−1

2

(
ψ⊤
1 W

⊤
1 (Λ1 − Λ1V Λ1)W1ψ1 − 2ψ⊤

1

(
W⊤

1 Λ1V Ĝt,iB̂t,i

))]
,

= exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

where695

Ωi = W⊤
1 (Λ1 − Λ1V Λ1)W1 = W⊤

1

(
Λ1 − Λ1(Ĝt,i + Λ1)

−1Λ1

)
W1 ,

mi = W⊤
1 Λ1V Ĝt,iB̂t,i = W⊤

1 Λ1(Ĝt,i + Λ1)
−1Ĝt,iB̂t,i . (25)

But notice that V = (Ĝt,i + Λ1)
−1 = Σ̂t,i and thus696

Ωi = W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 , mi = W⊤

1 Λ1Σ̂t,iĜt,iB̂t,i . (26)

Finally, we plug this result in Eq. (24) to get697

P (Ht |ψ∗,1 = ψ1) =
∏
i∈[K]

hi(ψ1) ∝
∏
i∈[K]

exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

= exp

−1

2
ψ⊤
1

∑
i∈[K]

Ωiψ1 + ψ⊤
1

∑
i∈[K]

mi

 ,

= exp

[
−1

2
ψ⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1

]
,

where698

Ḡt,1 =

K∑
i=1

Ωi =

K∑
i=1

W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 = W⊤

1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 ,

B̄t,1 =

K∑
i=1

mi =

K∑
i=1

Σ̂t,iĜt,iB̂t,i = W⊤
1 Σ

−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i .

This concludes the proof of the base case.699

(II) Induction step. Let ℓ ∈ [L]/{1}. Suppose that700

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp

[
−1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
. (27)
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Then we want to show that701

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where702

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ = W⊤

ℓ

(
Σ−1
ℓ − Σ−1

ℓ (Σ−1
ℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 = W⊤

ℓ Σ
−1
ℓ (Σ−1

ℓ + Ḡt,ℓ−1)
−1B̄t,ℓ−1 .

To achieve this, we start by expressing P (Ht |ψ∗,ℓ = ψℓ) in terms of P (Ht |ψ∗,ℓ−1 = ψℓ−1) as703

P (Ht |ψ∗,ℓ = ψℓ) =

∫
ψℓ−1

P (Ht, ψ∗,ℓ−1 = ψℓ−1 |ψ∗,ℓ = ψℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1, ψ∗,ℓ = ψℓ)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 .

Now let S = Ḡt,ℓ−1 + Λℓ and V = B̄t,ℓ−1 + ΛℓWℓψℓ. Then we have that,704

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1Sψℓ−1 − 2ψ⊤

ℓ−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)
+ ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1S(ψℓ−1 − 2S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V )

+ ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1.

In the second step, we omit constants in ψℓ and ψℓ−1. Thus705

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp

[
−1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1,

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
.
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It follows that706

P (Ht |ψ∗,ℓ = ψℓ)

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
,

= exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ −

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)⊤
S−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

))]
∝ exp

[
−1

2

(
ψ⊤
ℓ

(
W⊤
ℓ ΛℓWℓ −W⊤

ℓ ΛℓS
−1ΛℓWℓ

)
ψℓ − 2ψ⊤

ℓ W
⊤
ℓ ΛℓS

−1B̄t,ℓ−1

)]
,

= exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
.

In the last step, we omit constants in ψℓ and we set707

Ḡt,ℓ = W⊤
ℓ

(
Λℓ − ΛℓS

−1Λℓ
)
Wℓ = W⊤

ℓ

(
Λℓ − Λℓ(Λℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ Λℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ ΛℓS

−1B̄t,ℓ−1 = W⊤
ℓ Λℓ(Λℓ + Ḡt,ℓ−1)

−1B̄t,ℓ−1 .

This completes the proof.708

Similarly, this same proof applies when the reward distribution is not linear-Gaussian, with the709

approximation P (Ht,i | θ∗,i = θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations710

above leads to the same results.711

C Posterior derivations for non-linear diffusion models712

After deriving the posteriors for linear score functions fℓ, we now get back to the general case in (1),713

where the score functions are potentially non-linear. Approximation is needed since both the score714

functions and rewards can be non-linear. To avoid any computational challenges, we use a simple715

and intuitive approximation, where all posteriors Pt,i and Qt,ℓ are approximated by the Gaussian716

distributions in Appendix B.1, with few changes. First, the terms Wℓψℓ in (18) are replaced by fℓ(ψℓ).717

This accounts for the fact that the prior mean is now fℓ(ψℓ) rather than Wℓψℓ, and this is the main718

difference between the linear diffusion model in (15) and the general, potentially non-linear, diffusion719

model in (1). Second, the matrix multiplications that involve the matrices Wℓ in (20) and (21) are720

simply removed. Despite being simple, this approximation is efficient and avoids the computational721

burden of heavy approximate sampling algorithms required for each latent parameter. This is why722

deriving the exact posterior for linear score functions was key beyond enabling theoretical analyses.723

Moreover, this approximation retains some key attributes of exact posteriors. Specifically, in the724

absence of data, it recovers precisely the prior in (1), and as more data is accumulated, the influence725

of the prior diminishes.726

D Regret proof and additional discussions727

D.1 Sketch of the proof728

We start with the following standard lemma upon which we build our analysis [Aouali et al., 2023b].729

Lemma D.1. Assume that P (θ∗,i = θ |Ht) = N (θ; µ̌t,i, Σ̌t,i) for any i ∈ [K], then for any δ ∈730

(0, 1),731

BR(n) ≤
√
2n log(1/δ)

√
E
[∑n

t=1 ∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (28)

Applying Lemma D.1 requires proving that the marginal action-posteriors P (θ∗,i = θ |Ht) in Eq. (3)732

are Gaussian and computing their covariances, while we only know the conditional action-posteriors733

Pt,i and latent-posteriors Qt,ℓ. This is achieved by leveraging the preservation properties of the734

family of Gaussian distributions [Koller and Friedman, 2009] and the total covariance decomposition735

[Weiss, 2005] which leads to the next lemma.736
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Lemma D.2. Let t ∈ [n] and i ∈ [K], then the marginal covariance matrix Σ̌t,i reads737

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L] Pi,ℓΣ̄t,ℓP

⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1. (29)

The marginal covariance matrix Σ̌t,i in Eq. (29) decomposes into L + 1 terms. The first term738

corresponds to the posterior uncertainty of θ∗,i | ψ∗,1. The remaining L terms capture the posterior739

uncertainties of ψ∗,L and ψ∗,ℓ−1 | ψ∗,ℓ for ℓ ∈ [L]/{1}. These are then used to quantify the posterior740

information gain of latent parameters after one round as follows.741

Lemma D.3 (Posterior information gain). Let t ∈ [n] and ℓ ∈ [L], then742

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓ

XtX
⊤
t PAt,ℓ , where σ2

MAX = maxℓ∈[L+1] 1 +
σ2
ℓ

σ2 . (30)

Finally, Lemma D.2 is used to decompose ∥Xt∥2Σ̌t,At

in Eq. (28) into L + 1 terms. Each term is743

bounded thanks to Lemma D.3. This results in the Bayes regret bound in Theorem 4.1.744

D.2 Technical contributions745

Our main technical contributions are the following.746

Lemma D.2. In dTS, sampling is done hierarchically, meaning the marginal posterior distribution of747

θ∗,i|Ht is not explicitly defined. Instead, we use the conditional posterior distribution of θ∗,i|Ht, ψ∗,1.748

The first contribution was deriving θ∗,i|Ht using the total covariance decomposition combined with749

an induction proof, as our posteriors in Section 3.1 were derived recursively. Unlike in Bayes750

regret analysis for standard Thompson sampling, where the posterior distribution of θ∗,i|Ht is751

predetermined due to the absence of latent parameters, our method necessitates this recursive total752

covariance decomposition, marking a first difference from the standard Bayesian proofs of Thompson753

sampling. Note that HierTS, which is developed for multi-task linear bandits, also employs total754

covariance decomposition, but it does so under the assumption of a single latent parameter; on which755

action parameters are centered. Our extension significantly differs as it is tailored for contextual756

bandits with multiple, successive levels of latent parameters, moving away from HierTS’s assumption757

of a 1-level structure. Roughly speaking, HierTS when applied to contextual would consider a single-758

level hierarchy, where θ∗,i|ψ∗,1 ∼ N (ψ∗,1,Σ1) with L = 1. In contrast, our model proposes a759

multi-level hierarchy, where the first level is θ∗,i|ψ∗,1 ∼ N (W1ψ∗,1,Σ1). This also introduces a new760

aspect to our approach – the use of a linear function W1ψ∗,1, as opposed to HierTS’s assumption761

where action parameters are centered directly on the latent parameter. Thus, while HierTS also762

uses the total covariance decomposition, our generalize it to multi-level hierarchies under L linear763

functions Wℓψ∗,ℓ, instead of a single-level hierarchy under a single identity function ψ∗,1.764

Lemma D.3. In Bayes regret proofs for standard Thompson sampling, we often quantify the posterior765

information gain. This is achieved by monitoring the increase in posterior precision for the action766

taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this. We not only767

quantify the posterior information gain for the taken action but also for every latent parameter, since768

they are also learned. This lemma addresses this aspect. To elaborate, we use the recursive formulas769

in Section 3.1 that connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance770

of the posterior action parameters θ∗,i. This allows us to propagate the information gain associated771

with the action taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. This is a772

novel contribution, as it is not a feature of Bayes regret analyses in standard Thompson sampling.773

Proposition 4.2. Building upon the insights of Theorem 4.1, we introduce the sparsity assumption774

(A3). Under this assumption, we demonstrate that the Bayes regret outlined in Theorem 4.1 can be775

significantly refined. Specifically, the regret becomes contingent on dimensions dℓ ≤ d, as opposed776

to relying on the entire dimension d. This sparsity assumption is both a novel and a key technical777

contribution to our work. Its underlying principle is straightforward: the Bayes regret is influenced778

by the quantity of parameters that require learning. With the sparsity assumption, this number is779

reduced to less than d for each latent parameter. To substantiate this claim, we revisit the proof of780

Theorem 4.1 and modify a crucial equality. This adjustment results in a more precise representation by781

partitioning the covariance matrix of each latent parameter ψ∗,ℓ into blocks. These blocks comprise782

a dℓ × dℓ segment corresponding to the learnable dℓ parameters of ψ∗,ℓ, and another block of size783

(d− dℓ)× (d− dℓ) that does not necessitate learning. This decomposition allows us to conclude that784

the final regret is solely dependent on dℓ, marking a significant refinement from the original theorem.785
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D.3 Proof of lemma D.2786

In this proof, we heavily rely on the total covariance decomposition [Weiss, 2005]. Also, refer to787

[Hong et al., 2022b, Section 5.2] for a brief introduction to this decomposition. Now, from Eq. (17),788

we have that789

cov [θ∗,i |Ht, ψ∗,1] = Σ̂t,i =
(
Ĝt,i +Σ−1

1

)−1

,

E [θ∗,i |Ht, ψ∗,1] = µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

)
.

First, given Ht, cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

is constant. Thus790

E [cov [θ∗,i |Ht, ψ∗,1] |Ht] = cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

= Σ̂t,i .

In addition, given Ht, Σ̂t,i, Ĝt,i and B̂t,i are constant. Thus791

cov [E [θ∗,i |Ht, ψ∗,1] |Ht] = cov
[
Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

) ∣∣∣Ht

]
,

= cov
[
Σ̂t,iΣ

−1
1 W1ψ∗,1

∣∣∣Ht

]
,

= Σ̂t,iΣ
−1
1 W1cov [ψ∗,1 |Ht]W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i ,

where ¯̄Σt,1 = cov [ψ∗,1 |Ht] is the marginal posterior covariance of ψ∗,1. Finally, the total covariance792

decomposition [Weiss, 2005, Hong et al., 2022b] yields that793

Σ̌t,i = cov [θ∗,i |Ht] = E [cov [θ∗,i |Ht, ψ∗,1] |Ht] + cov [E [θ∗,i |Ht, ψ∗,1] |Ht] ,

= Σ̂t,i + Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i , (31)

However, ¯̄Σt,1 = cov [ψ∗,1 |Ht] is different from Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] that we already derived794

in Eq. (18). Thus we do not know the expression of ¯̄Σt,1. But we can use the same total covariance795

decomposition trick to find it. Precisely, let ¯̄Σt,ℓ = cov [ψ∗,ℓ |Ht] for any ℓ ∈ [L]. Then we have that796

Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

,

µ̄t,1 = E [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

)
.

First, given Ht, cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

is constant. Thus797

E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1 .

In addition, given Ht, Σ̄t,1, Σ̃t,1 and B̄t,1 are constant. Thus798

cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov
[
Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

) ∣∣∣Ht

]
,

= cov
[
Σ̄t,1Σ

−1
2 W2ψ∗,2

∣∣Ht

]
,

= Σ̄t,1Σ
−1
2 W2cov [ψ∗,2 |Ht]W

⊤
2 Σ

−1
2 Σ̄t,1 ,

= Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Finally, total covariance decomposition [Weiss, 2005, Hong et al., 2022b] leads to799

¯̄Σt,1 = cov [ψ∗,1 |Ht] = E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] + cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] ,

= Σ̄t,1 + Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Now using the techniques, this can be generalized using the same technique as above to800

¯̄Σt,ℓ = Σ̄t,ℓ + Σ̄t,ℓΣ
−1
ℓ+1Wℓ+1

¯̄Σt,ℓ+1W
⊤
ℓ+1Σ

−1
ℓ+1Σ̄t,ℓ , ∀ℓ ∈ [L− 1] .
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Then, by induction, we get that801

¯̄Σt,1 =
∑
ℓ∈[L]

P̄ℓΣ̄t,ℓP̄
⊤
ℓ , ∀ℓ ∈ [L− 1] ,

where we use that by definition ¯̄Σt,L = cov [ψ∗,L |Ht] = Σ̄t,L and set P̄1 = Id and P̄ℓ =802 ∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1 for any ℓ ∈ [L]/{1}. Plugging this in Eq. (31) leads to803

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓP̄

⊤
ℓ W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓ(Σ̂t,iΣ

−1
1 W1)

⊤ ,

= Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ ,

where Pi,ℓ = Σ̂t,iΣ
−1
1 W1P̄ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1.804

D.4 Proof of lemma D.3805

We prove this result by induction. We start with the base case when ℓ = 1.806

(I) Base case. Let u = σ−1Σ̂
1
2

t,At
Xt From the expression of Σ̄t,1 in Eq. (18), we have that807

Σ̄−1
t+1,1 − Σ̄−1

t,1 = W⊤
1

(
Σ−1

1 − Σ−1
1 (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1Σ−1
1 − (Σ−1

1 − Σ−1
1 Σ̂t,AtΣ

−1
1 )

)
W1 ,

= W⊤
1

(
Σ−1

1 (Σ̂t,At − (Σ̂−1
t,At

+ σ−2XtX
⊤
t )

−1)Σ−1
1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + uu⊤)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(i)
= W⊤

1

(
Σ−1

1 Σ̂
1
2

t,At

uu⊤

1 + u⊤u
Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(ii)
= σ−2W⊤

1 Σ
−1
1 Σ̂t,At

XtX
⊤
t

1 + u⊤u
Σ̂t,At

Σ−1
1 W1 . (32)

In (i) we use the Sherman-Morrison formula. Note that (ii) says that Σ̄−1
t+1,1 − Σ̄−1

t,1 is one-rank808

which we will also need in induction step. Now, we have that ∥Xt∥2 = 1. Therefore,809

1 + u⊤u = 1 + σ−2X⊤
t Σ̂t,At

Xt ≤ 1 + σ−2λ1(Σ1)∥Xt∥2 = 1 + σ−2σ2
1 ≤ σ2

MAX ,

where we use that by definition of σ2
MAX in Lemma D.3, we have that σ2

MAX ≥ 1 + σ−2σ2
1 . Therefore,810

by taking the inverse, we get that 1
1+u⊤u

≥ σ−2
MAX. Combining this with Eq. (32) leads to811

Σ̄−1
t+1,1 − Σ̄−1

t,1 ⪰ σ−2σ−2
MAXW

⊤
1 Σ

−1
1 Σ̂t,At

XtX
⊤
t Σ̂t,At

Σ−1
1 W1

Noticing that PAt,1 = Σ̂t,AtΣ
−1
1 W1 concludes the proof of the base case when ℓ = 1.812

(II) Induction step. Let ℓ ∈ [L]/{1} and suppose that Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank and that it813

holds for ℓ− 1 that814

Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 ⪰ σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1 , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .

Then, we want to show that Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ is also one-rank and that it holds that815

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ , where σ−2
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ℓ∈[L]

1 + σ−2σ2
ℓ .
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This is achieved as follows. First, we notice that by the induction hypothesis, we have that Σ̃−1
t+1,ℓ−1−816

Ḡt,ℓ−1 = Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank. In addition, the matrix is positive semi-definite. Thus we817

can write it as Σ̃−1
t+1,ℓ−1 − Ḡt,ℓ−1 = uu⊤ where u ∈ Rd. Then, similarly to the base case, we have818
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ℓ
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−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ
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However, we it follows from the induction hypothesis that uu⊤ = Σ̃−1
t+1,ℓ−1 − Ḡt,ℓ−1 = Σ̄−1

t+1,ℓ−1 −819

Σ̄−1
t,ℓ−1 ⪰ σ−2σ

−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1. Therefore,820
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ℓ Σ̄t,ℓ−1
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1 + u⊤Σ̄t,ℓ−1u
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−1
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ℓ Σ

−1
ℓ Σ̄t,ℓ−1

σ−2σ
−2(ℓ−1)
MAX P⊤
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⊤
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ℓ Σ

−1
ℓ Σ̄t,ℓ−1P

⊤
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⊤
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σ−2σ

−2(ℓ−1)
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1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ .

Finally, we use that 1 + u⊤Σ̄t,ℓ−1u ≤ 1 + ∥u∥2λ1(Σ̄t,ℓ−1) ≤ 1 + σ−2σ2
ℓ . Here we use that821

∥u∥2 ≤ σ−2, which can also be proven by induction, and that λ1(Σ̄t,ℓ−1) ≤ σ2
ℓ , which follows from822

the expression of Σ̄t,ℓ−1 in Section 3.1. Therefore, we have that823

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ
−2(ℓ−1)
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1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ
−2(ℓ−1)
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1 + σ−2σ2
ℓ

P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ ,

where the last inequality follows from the definition of σ2
MAX = maxℓ∈[L] 1+ σ−2σ2

ℓ . This concludes824

the proof.825

D.5 Proof of theorem 4.1826

We start with the following standard result which we borrow from [Hong et al., 2022a, Aouali et al.,827

2023b],828

BR(n) ≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (33)
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Then we use Lemma D.2 and express the marginal covariance Σ̌t,At as829

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

ℓ−1∏
k=1

Σ̄t,kΣ
−1
k+1Wk+1. (34)

Therefore, we can decompose ∥Xt∥2Σ̌t,At

as830

∥Xt∥2Σ̌t,At
= σ2X

⊤
t Σ̌t,AtXt

σ2

(i)
= σ2

(
σ−2X⊤

t Σ̂t,AtXt + σ−2
∑
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X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt

)
,

(ii)

≤ c0 log(1 + σ−2X⊤
t Σ̂t,AtXt) +

∑
ℓ∈[L]

cℓ log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) , (35)

where (i) follows from Eq. (34), and we use the following inequality in (ii)831

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) ,

which holds for any x ∈ [0, u], where constants c0 and cℓ are derived as832

c0 =
σ2
1

log(1 +
σ2
1

σ2 )
, cℓ =

σ2
ℓ+1

log(1 +
σ2
ℓ+1

σ2 )
,with the convention that σL+1 = 1 .

The derivation of c0 uses that833

X⊤
t Σ̂t,At

Xt ≤ λ1(Σ̂t,At
)∥Xt∥2 ≤ λ−1

d (Σ−1
1 +Gt,At

) ≤ λ−1
d (Σ−1

1 ) = λ1(Σ1) = σ2
1 .

The derivation of cℓ follows from834
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⊤
At,ℓXt ≤ λ1(PAt,ℓP

⊤
At,ℓ)λ1(Σ̄t,ℓ)∥Xt∥2 ≤ σ2
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Therefore, from Eq. (35) and Eq. (33), we get that835
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E
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]) 1
2

+ cnδ (36)

Now we focus on bounding the logarithmic terms in Eq. (36).836

(I) First term in Eq. (36) We first rewrite this term as837
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t+1,At
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t,At
) ,

where (i) follows from the Weinstein–Aronszajn identity. Then we sum over all rounds t ∈ [n], and838

get a telescoping839
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where (i) follows from the fact that Σ̂1,i = Σ1. Now we use the inequality of arithmetic and840

geometric means and get841
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K∑
i=1

log det(Σ
1
2
1 Σ̂

−1
n+1,iΣ

1
2
1 ) ,

≤
K∑
i=1

d log
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1
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)
.

(II) Remaining terms in Eq. (36) Let ℓ ∈ [L]. Then we have that842
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where we use the Weinstein–Aronszajn identity in (i). Now we know from Lemma D.3 that the843

following inequality holds σ−2σ−2ℓ
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t,ℓ . As a result, we get that844
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)
,

Then we sum over all rounds t ∈ [n], and get a telescoping846
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where we use that Σ̄1,ℓ = Σℓ+1 in (i). Finally, we use the inequality of arithmetic and geometric847

means and get that848
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The last inequality follows from the expression of Σ̄−1
n+1,ℓ in Eq. (18) that leads to849
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since Ḡt,ℓ = W⊤
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where we use the assumption that λ1(W⊤
ℓ Wℓ) = 1 (A2) and that λ1(Σℓ+1) = σ2

ℓ+1 and λ1(Σ−1
ℓ ) =851

1/σ2
ℓ . This is because Σℓ = σ2

ℓ Id for any ℓ ∈ [L+1]. Finally, plugging Eqs. (37) and (38) in Eq. (36)852

concludes the proof.853

D.6 Proof of proposition 4.2854

We use exactly the same proof in Appendix D.5, with one change to account for the sparsity855

assumption (A3). The change corresponds to Eq. (38). First, recall that Eq. (38) writes856

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

where857
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where the second equality follows from the assumption that Σℓ+1 = σ2
ℓ+1Id. But notice that in858

our assumption, (A3), we assume that Wℓ = (W̄ℓ, 0d,d−dℓ), where W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L].859

Therefore, we have that for any d × d matrix B ∈ Rdd×d, the following holds, W⊤
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Therefore, plugging this in Eq. (41) yields that862

Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1 =

(
Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ 0dℓ,d−dℓ

0d−dℓ,dℓ Id−dℓ

)
. (43)

As a result, det(Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) = det(Idℓ +σ
2
ℓ+1W̄

⊤
ℓ

(
Σ−1
ℓ −Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ). This allows863

us to move the problem from a d-dimensional one to a dℓ-dimensional one. Then we use the inequality864
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of arithmetic and geometric means and get that865

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

= σ2ℓ
MAX log det(Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ) ,

≤ dℓσ
2ℓ
MAX log

(
1

dℓ
Tr(Idℓ + σ2

ℓ+1W̄
⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ)

)
,

≤ dℓσ
2ℓ
MAX log

(
1 +

σ2
ℓ+1

σ2
ℓ

)
. (44)

To get the last inequality, we use derivations similar to the ones we used in Eq. (40). Finally, the866

desired result in obtained by replacing Eq. (38) by Eq. (44) in the previous proof in Appendix D.5.867

D.7 Additional discussion: link to two-level hierarchies868

The linear diffusion (15) can be marginalized into a 2-level hierarchy using two different strategies.869

The first one yields,870

ψ∗,L ∼ N (0, σ2
L+1BLB

⊤
L ) , (45)

θ∗,i | ψ∗,L ∼ N (ψ∗,L, Ω1) , ∀i ∈ [K] ,

with Ω1 = σ2
1Id +

∑L−1
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ and Bℓ =

∏ℓ
k=1 Wk. The second strategy yields,871

ψ∗,1 ∼ N (0,Ω2) , (46)

θ∗,i | ψ∗,1 ∼ N (ψ∗,1, σ
2
1Id) , ∀i ∈ [K] ,

where Ω2 =
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ . Recently, HierTS [Hong et al., 2022b] was developed for such872

two-level graphical models, and we call HierTS under (45) by HierTS-1 and HierTS under (46)873

by HierTS-2. Then, we start by highlighting the differences between these two variants of HierTS.874

First, their regret bounds scale as875

HierTS-1 : Õ
(√

nd(K
∑L
ℓ=1 σ

2
ℓ + Lσ2

L+1

)
, HierTS-2 : Õ

(√
nd(Kσ2

1 +
∑L
ℓ=1 σ

2
ℓ+1)

)
.

When K ≈ L, the regret bounds of HierTS-1 and HierTS-2 are similar. However, when K > L,876

HierTS-2 outperforms HierTS-1. This is because HierTS-2 puts more uncertainty on a single877

d-dimensional latent parameter ψ∗,1, rather than K individual d-dimensional action parameters878

θ∗,i. More importantly, HierTS-1 implicitly assumes that action parameters θ∗,i are conditionally879

independent given ψ∗,L, which is not true. Consequently, HierTS-2 outperforms HierTS-1. Note880

that, under the linear diffusion model (15), dTS and HierTS-2 have roughly similar regret bounds.881

Specifically, their regret bounds dependency on K is identical, where both methods involve mul-882

tiplying K by σ2
1 , and both enjoy improved performance compared to HierTS-1. That said, note883

that Theorem 4.1 and Proposition 4.2 provide an understanding of how dTS’s regret scales under884

linear score functions fℓ, and do not say that using dTS is better than using HierTS when the score885

functions fℓ are linear since the latter can be obtained by a proper marginalization of latent parameters886

(i.e., HierTS-2 instead of HierTS-1). While such a comparison is not the goal of this work, we still887

provide it for completeness next.888

When the mixing matrices Wℓ are dense (i.e., assumption (A3) is not applicable), dTS and HierTS-2889

have comparable regret bounds and computational efficiency. However, under the sparsity assumption890

(A3) and with mixing matrices that allow for conditional independence of ψ∗,1 coordinates given891

ψ∗,2, dTS enjoys a computational advantage over HierTS-2. This advantage explains why works892

focusing on multi-level hierarchies typically benchmark their algorithms against two-level structures893

akin to HierTS-1, rather than the more competitive HierTS-2. This is also consistent with prior894

works in Bayesian bandits using multi-level hierarchies, such as Tree-based priors [Hong et al.,895

2022a], which compared their method to HierTS-1. In line with this, we also compared dTS with896

HierTS-1 in our experiments. But this is only given for completeness as this is not the aim of897

Theorem 4.1 and Proposition 4.2. More importantly, HierTS is inapplicable in the general case in (1)898

with non-linear score functions since the latent parameters cannot be analytically marginalized.899
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E Broader impact900

This work contributes to the development and analysis of practical algorithms for online learning to901

act under uncertainty. While our generic setting and algorithms have broad potential applications,902

the specific downstream social impacts are inherently dependent on the chosen application domain.903

Nevertheless, we acknowledge the crucial need to consider potential biases that may be present in904

pre-trained diffusion models, given that our method relies on them.905

F Limitations906

Our work investigated contextual bandits, laying the groundwork for future exploration into reinforce-907

ment learning. This exploration can be done from both practical (empirical) and theoretical angles.908

While our method, which approximates rewards using a Gaussian distribution, worked well for linear909

rewards and those following a generalized linear model, its effectiveness in real-world, complex910

scenarios needs further testing. Another interesting direction for future research is pre-training the911

diffusion model prior. Hsieh et al. [2023] proposed a method for this in multi-armed bandits, but its912

application to contextual bandits remains unexplored.913

G Amount of computation required914

Our experiments were conducted on internal machines with 30 CPUs and thus they required a moder-915

ate amount of computation. These experiments are also reproducible with minimal computational916

resources.917
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NeurIPS Paper Checklist918

1. Claims919

Question: Do the main claims made in the abstract and introduction accurately reflect the920

paper’s contributions and scope?921

Answer: [Yes]922

Justification: All claims are supported by the theory in Section 4 (with proofs provided in923

the appendix) and experiments in Section 5.924

Guidelines:925

• The answer NA means that the abstract and introduction do not include the claims926

made in the paper.927

• The abstract and/or introduction should clearly state the claims made, including the928

contributions made in the paper and important assumptions and limitations. A No or929

NA answer to this question will not be perceived well by the reviewers.930

• The claims made should match theoretical and experimental results, and reflect how931

much the results can be expected to generalize to other settings.932

• It is fine to include aspirational goals as motivation as long as it is clear that these goals933

are not attained by the paper.934

2. Limitations935

Question: Does the paper discuss the limitations of the work performed by the authors?936

Answer: [Yes]937

Justification: Limitations were discussed in Section 6 and Appendix F.938

Guidelines:939

• The answer NA means that the paper has no limitation while the answer No means that940

the paper has limitations, but those are not discussed in the paper.941

• The authors are encouraged to create a separate "Limitations" section in their paper.942

• The paper should point out any strong assumptions and how robust the results are to943

violations of these assumptions (e.g., independence assumptions, noiseless settings,944

model well-specification, asymptotic approximations only holding locally). The authors945

should reflect on how these assumptions might be violated in practice and what the946

implications would be.947

• The authors should reflect on the scope of the claims made, e.g., if the approach was948

only tested on a few datasets or with a few runs. In general, empirical results often949

depend on implicit assumptions, which should be articulated.950

• The authors should reflect on the factors that influence the performance of the approach.951

For example, a facial recognition algorithm may perform poorly when image resolution952

is low or images are taken in low lighting. Or a speech-to-text system might not be953

used reliably to provide closed captions for online lectures because it fails to handle954

technical jargon.955

• The authors should discuss the computational efficiency of the proposed algorithms956

and how they scale with dataset size.957

• If applicable, the authors should discuss possible limitations of their approach to958

address problems of privacy and fairness.959

• While the authors might fear that complete honesty about limitations might be used by960

reviewers as grounds for rejection, a worse outcome might be that reviewers discover961

limitations that aren’t acknowledged in the paper. The authors should use their best962

judgment and recognize that individual actions in favor of transparency play an impor-963

tant role in developing norms that preserve the integrity of the community. Reviewers964

will be specifically instructed to not penalize honesty concerning limitations.965

3. Theory Assumptions and Proofs966

Question: For each theoretical result, does the paper provide the full set of assumptions and967

a complete (and correct) proof?968

Answer: [Yes]969
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Justification: Assumptions are mentioned in the main text. Complete proofs are provided in970

the appendix.971

Guidelines:972

• The answer NA means that the paper does not include theoretical results.973

• All the theorems, formulas, and proofs in the paper should be numbered and cross-974

referenced.975

• All assumptions should be clearly stated or referenced in the statement of any theorems.976

• The proofs can either appear in the main paper or the supplemental material, but if977

they appear in the supplemental material, the authors are encouraged to provide a short978

proof sketch to provide intuition.979

• Inversely, any informal proof provided in the core of the paper should be complemented980

by formal proofs provided in appendix or supplemental material.981

• Theorems and Lemmas that the proof relies upon should be properly referenced.982

4. Experimental Result Reproducibility983

Question: Does the paper fully disclose all the information needed to reproduce the main ex-984

perimental results of the paper to the extent that it affects the main claims and/or conclusions985

of the paper (regardless of whether the code and data are provided or not)?986

Answer: [Yes]987

Justification: Information needed to reproduce the main experimental results of the paper is988

described in Section 5.989

Guidelines:990

• The answer NA means that the paper does not include experiments.991

• If the paper includes experiments, a No answer to this question will not be perceived992

well by the reviewers: Making the paper reproducible is important, regardless of993

whether the code and data are provided or not.994

• If the contribution is a dataset and/or model, the authors should describe the steps taken995

to make their results reproducible or verifiable.996

• Depending on the contribution, reproducibility can be accomplished in various ways.997

For example, if the contribution is a novel architecture, describing the architecture fully998

might suffice, or if the contribution is a specific model and empirical evaluation, it may999

be necessary to either make it possible for others to replicate the model with the same1000

dataset, or provide access to the model. In general. releasing code and data is often1001

one good way to accomplish this, but reproducibility can also be provided via detailed1002

instructions for how to replicate the results, access to a hosted model (e.g., in the case1003

of a large language model), releasing of a model checkpoint, or other means that are1004

appropriate to the research performed.1005

• While NeurIPS does not require releasing code, the conference does require all submis-1006

sions to provide some reasonable avenue for reproducibility, which may depend on the1007

nature of the contribution. For example1008

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1009

to reproduce that algorithm.1010

(b) If the contribution is primarily a new model architecture, the paper should describe1011

the architecture clearly and fully.1012

(c) If the contribution is a new model (e.g., a large language model), then there should1013

either be a way to access this model for reproducing the results or a way to reproduce1014

the model (e.g., with an open-source dataset or instructions for how to construct1015

the dataset).1016

(d) We recognize that reproducibility may be tricky in some cases, in which case1017

authors are welcome to describe the particular way they provide for reproducibility.1018

In the case of closed-source models, it may be that access to the model is limited in1019

some way (e.g., to registered users), but it should be possible for other researchers1020

to have some path to reproducing or verifying the results.1021

5. Open access to data and code1022
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1023

tions to faithfully reproduce the main experimental results, as described in supplemental1024

material?1025

Answer: [Yes]1026

Justification: The code for the main experiments is shared in the supplementary material.1027

Guidelines:1028

• The answer NA means that paper does not include experiments requiring code.1029

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1030

public/guides/CodeSubmissionPolicy) for more details.1031

• While we encourage the release of code and data, we understand that this might not be1032

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1033

including code, unless this is central to the contribution (e.g., for a new open-source1034

benchmark).1035

• The instructions should contain the exact command and environment needed to run to1036

reproduce the results. See the NeurIPS code and data submission guidelines (https:1037

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1038

• The authors should provide instructions on data access and preparation, including how1039

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1040

• The authors should provide scripts to reproduce all experimental results for the new1041

proposed method and baselines. If only a subset of experiments are reproducible, they1042

should state which ones are omitted from the script and why.1043

• At submission time, to preserve anonymity, the authors should release anonymized1044

versions (if applicable).1045

• Providing as much information as possible in supplemental material (appended to the1046

paper) is recommended, but including URLs to data and code is permitted.1047

6. Experimental Setting/Details1048

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1049

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1050

results?1051

Answer: [Yes]1052

Justification: All experimental details are described in Section 5.1053

Guidelines:1054

• The answer NA means that the paper does not include experiments.1055

• The experimental setting should be presented in the core of the paper to a level of detail1056

that is necessary to appreciate the results and make sense of them.1057

• The full details can be provided either with the code, in appendix, or as supplemental1058

material.1059

7. Experiment Statistical Significance1060

Question: Does the paper report error bars suitably and correctly defined or other appropriate1061

information about the statistical significance of the experiments?1062

Answer: [Yes]1063

Justification: Standard error bars are included in the figures.1064

Guidelines:1065

• The answer NA means that the paper does not include experiments.1066

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1067

dence intervals, or statistical significance tests, at least for the experiments that support1068

the main claims of the paper.1069

• The factors of variability that the error bars are capturing should be clearly stated (for1070

example, train/test split, initialization, random drawing of some parameter, or overall1071

run with given experimental conditions).1072

• The method for calculating the error bars should be explained (closed form formula,1073

call to a library function, bootstrap, etc.)1074
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• The assumptions made should be given (e.g., Normally distributed errors).1075

• It should be clear whether the error bar is the standard deviation or the standard error1076

of the mean.1077

• It is OK to report 1-sigma error bars, but one should state it. The authors should1078

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1079

of Normality of errors is not verified.1080

• For asymmetric distributions, the authors should be careful not to show in tables or1081

figures symmetric error bars that would yield results that are out of range (e.g. negative1082

error rates).1083

• If error bars are reported in tables or plots, The authors should explain in the text how1084

they were calculated and reference the corresponding figures or tables in the text.1085

8. Experiments Compute Resources1086

Question: For each experiment, does the paper provide sufficient information on the com-1087

puter resources (type of compute workers, memory, time of execution) needed to reproduce1088

the experiments?1089

Answer: [Yes]1090

Justification: As mentioned in Appendix G, our experiments were conducted on internal1091

machines with 30 CPUs and thus they required a moderate amount of computation. These1092

experiments are also reproducible with minimal computational resources.1093

Guidelines:1094

• The answer NA means that the paper does not include experiments.1095

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1096

or cloud provider, including relevant memory and storage.1097

• The paper should provide the amount of compute required for each of the individual1098

experimental runs as well as estimate the total compute.1099

• The paper should disclose whether the full research project required more compute1100

than the experiments reported in the paper (e.g., preliminary or failed experiments that1101

didn’t make it into the paper).1102

9. Code Of Ethics1103

Question: Does the research conducted in the paper conform, in every respect, with the1104

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1105

Answer: [Yes]1106

Justification: This work contributes to the development and theoretical analysis of online1107

learning to act under uncertainty and it adheres to the Neurips Code Of Ethics.1108

Guidelines:1109

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1110

• If the authors answer No, they should explain the special circumstances that require a1111

deviation from the Code of Ethics.1112

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1113

eration due to laws or regulations in their jurisdiction).1114

10. Broader Impacts1115

Question: Does the paper discuss both potential positive societal impacts and negative1116

societal impacts of the work performed?1117

Answer: [Yes]1118

Justification: Broader Impacts are discussed in Appendix E.1119
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• The answer NA means that there is no societal impact of the work performed.1121
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• Examples of negative societal impacts include potential malicious or unintended uses1124

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1125

(e.g., deployment of technologies that could make decisions that unfairly impact specific1126

groups), privacy considerations, and security considerations.1127

• The conference expects that many papers will be foundational research and not tied1128

to particular applications, let alone deployments. However, if there is a direct path to1129

any negative applications, the authors should point it out. For example, it is legitimate1130

to point out that an improvement in the quality of generative models could be used to1131

generate deepfakes for disinformation. On the other hand, it is not needed to point out1132
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models that generate Deepfakes faster.1134

• The authors should consider possible harms that could arise when the technology is1135

being used as intended and functioning correctly, harms that could arise when the1136

technology is being used as intended but gives incorrect results, and harms following1137

from (intentional or unintentional) misuse of the technology.1138

• If there are negative societal impacts, the authors could also discuss possible mitigation1139

strategies (e.g., gated release of models, providing defenses in addition to attacks,1140

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1141

feedback over time, improving the efficiency and accessibility of ML).1142

11. Safeguards1143
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release of data or models that have a high risk for misuse (e.g., pretrained language models,1145

image generators, or scraped datasets)?1146

Answer: [NA]1147
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believe that our work poses no such risks.1149
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• The answer NA means that the paper poses no such risks.1151

• Released models that have a high risk for misuse or dual-use should be released with1152
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faith effort.1160
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• We recognize that the procedures for this may vary significantly between institutions1227

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1228

guidelines for their institution.1229

• For initial submissions, do not include any information that would break anonymity (if1230

applicable), such as the institution conducting the review.1231

37


	Introduction
	Setting
	Diffusion contextual Thompson sampling
	Linear diffusion model
	Non-linear diffusion model

	Analysis
	Discussion

	Experiments
	Settings and baselines
	Results and interpretations

	Conclusion
	Extended related work
	Posterior derivations for linear diffusion models
	Posterior expressions for linear diffusion models
	Derivation of Action-Posteriors for Linear Diffusion Models
	Derivation of recursive latent-posteriors for linear diffusion models

	Posterior derivations for non-linear diffusion models
	Regret proof and additional discussions
	Sketch of the proof
	Technical contributions
	Proof of lemma D.2
	Proof of lemma D.3
	Proof of theorem 4.1
	Proof of proposition 4.2
	Additional discussion: link to two-level hierarchies

	Broader impact
	Limitations
	Amount of computation required

