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Abstract

Metric distortion in social choice provides a framework for assessing how well1

voting rules minimize social cost in scenarios where voters and candidates exist2

in a shared metric space, with voters submitting rankings and the rule outputting3

a single winner. We expand this framework to include probabilistic voting. Our4

extension encompasses a broad range of probability functions, including widely5

studied models like Plackett-Luce (PL) and Bradley-Terry, and a novel "pairwise6

quantal voting" model inspired by quantal response theory. We demonstrate that7

distortion results under probabilistic voting better correspond with conventional8

intuitions regarding popular voting rules such as Plurality, Copeland, and Random9

Dictator (RD) than those under deterministic voting. For example, in the PL model10

with candidate strength inversely proportional to the square of their metric distance,11

we show that Copeland’s distortion is at most 2, whereas that of RD is Ω(
√
m) in12

large elections, where m is the number of candidates. This contrasts sharply with13

the classical model, where RD beats Copeland with a distortion of 3 versus 5 [1].14

1 Introduction15

Societies must make decisions collectively; different agents often have conflicting interests, and the16

choice of the mechanism used for combining everyone’s opinions often makes a big difference to the17

outcome. The machine learning community has applied social choice principles for AI alignment18

[2, 3], algorithmic fairness [4, 5], and preference modelling [6, 7]. Over the last century, there has19

been increasing interest in using computational tools to analyse and design voting rules [8–11]. One20

prominent framework for evaluating voting rules is that of distortion [12], where the voting rule has21

access to only the ordinal preferences of the voters. However, the figure of merit is the sum of all22

voters’ cardinal utilities (or costs). The distortion of a voting rule is the worst-case ratio of the cost of23

the alternative it selects and the cost of the truly optimal alternative.24

An additional assumption is imposed in metric distortion [1] – that the voters and candidates all lie in25

a shared (unknown) metric space, and costs are given by distances (thus satisfying non-negativity26

and triangular inequality). This model is a generalization of a commonly studied spatial model of27

voting in the Economics literature [13, 14], and has a natural interpretation of voters liking candidates28

with a similar ideological position across many dimensions. While metric distortion is a powerful29

framework and has led to the discovery and re-discovery of interesting voting rules (e.g. Plurality30

Veto [15] and the study of Maximal Lotteries [16] for metric distortion by Charikar et al. [17]), its31

outcomes sometimes do not correspond with traditional wisdom around popular voting rules. For32

example, the overly simple Random Dictator (RD) rule (where the winner is the top choice of a33

uniform randomly selected voter) beats the Copeland rule (which satisfies the Condorcet Criterion34

[10] and other desirable properties) with a metric distortion of 3 versus 5 [1].35

While not yet adopted in the metric distortion framework, there is a mature line of work on36

Probabilistic voting (PV) [18–20]. Here, the focus is on the behavioural modelling of voters and37

accounting for the randomness of their votes. Two sources of this randomness often cited in the38

literature are the boundedness of the voters’ rationality and the noise in their estimates of candidates’39

positions. A popular model for this behaviour is based on the Quantal Response Theory [20]. Another40

closely related line of work is on Random Utility Models (RUMs) [21–23] in social choice where41
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the hypothesis is that the candidates have ground-truth strengths. Voters make noisy observations of42

these strengths and vote accordingly. We adopt these models of voting behaviour and study it within43

the metric distortion framework. The questions we ask are:44

Given a model of probabilistic voting, what is the metric distortion of popular voting rules?45

How does this differ (qualitatively and quantitatively) from the deterministic model?46

1.1 Preliminaries and Notation47

Let N be a set of n voters and A be the set of m candidates. Let S be the set of total orders on A.48

Each voter i ∈ N has a preference ranking σi ∈ S. A vote profile is a set of preference rankings49

σN = (σ1, ..., σn) ∈ Sn for all voters. The tuple (N ,A, σN ) defines an instance of an election. Let50

∆(A) denote the set of all probability distributions over the set of candidates.51

Definition 1 (Voting Rule). A voting rule f : Sn → ∆(A) takes a vote profile σN and outputs a52

probability distribution p over the alternatives.53

For deterministic voting rules, we overload notation by saying that the rule’s output is a candidate54

and not a distribution. We now define some voting rules [10]. Let I denote the indicator function.55

Random Dictator Rule: Select a voter uniformly at random and output their top choice, i.e.,56

RD(σN ) = p such that pj = 1
n

∑
i∈N I(σi,1 = j).57

Plurality Rule: Choose the candidate who is the top choice of the most voters, i.e., PLU(σN ) =58

argmaxj∈A
∑

i∈N I(σi,1 = j). Ties are broken arbitrarily.59

Copeland Rule: Choose the candidate who wins the most pairwise comparisons, i.e., COP(σN ) =60

argmaxj∈A
∑

j′∈A\{j} I
(∑

i∈N I(j ≻σi j
′) > n

2

)
. Ties are broken arbitrarily.61

Distance function d : (N ∪A)2 → R≥0 satisfies triangular inequality (d(x, y) ≤ d(x, z) + d(z, y))62

and symmetry (d(x, y) = d(y, x)). The distance between voter i ∈ N and candidate j ∈ A is also63

referred to as the cost of j for i. We consider the most commonly studied social cost function, which64

is the sum of the costs of all voters. SC(j, d) :=
∑

i∈N d(i, j).65

In deterministic voting, the preference ranking σi of voter i is consistent with the distances. That is,66

d(i, j) > d(i, j′) =⇒ j′ ≻σi
j for all voters i ∈ N and candidates j, j′ ∈ A. Let ρ(σN ) be the set67

of distance functions d consistent with vote profile σN . The metric distortion of a voting rule is:68

Definition 2 (Metric Distortion). DIST(f) = sup
N ,A,σN

sup
d∈ρ(σN )

E[SC(f(σN ),d)]
min
j∈A

SC(j,d) .69

1.2 Our Contributions70

We extend the study of metric distortion to probabilistic voting (Definition 4). This extension is useful71

since voters, in practice, have been shown to vote randomly [20]. We define axiomatic properties72

of models of probabilistic voting which are suitable for studying metric distortion. These are scale-73

freeness with distances (Axiom 1), pairwise order probabilities being independent of other candidates74

(Axiom 2), and strict monotonicity of pairwise order probabilities in distances (Axiom 3).75

All our results apply to a broad class of models of probabilistic models, as explained in § 2. We76

provide distortion bounds for all n ≥ 3 and m ≥ 2, which are most salient in the limit n → ∞. For77

large elections (m fixed, n → ∞), we provide matching upper and lower bounds on the distortion of78

Plurality, an upper bound for Copeland, and a lower bound for RD. The distortion of plurality grows79

linearly in m. The distortion upper bound of Copeland is constant. The distortion lower bound for80

RD increases sublinearly in m where this rate depends on the probabilistic model. Crucially, our81

results match those in deterministic voting in the limit where the randomness goes to zero.82

The technique is as follows. For the problem of maximizing the distortion, we establish a critical83

threshold of the expected fraction of votes on pairwise comparisons on all edges on a directed path84

from a winner to the “true optimal" candidate for Copeland and Plurality. This path is one or two hops85

for Copeland and one for Plurality. We then formulate a linear-fractional program which incorporates86

this critical threshold. We linearize this program via the sub-level sets technique [24], and find a87

feasible solution of the dual problem. Concentration inequalities on this solution provide an upper88

bound on the distortion. We find a matching lower bound for Plurality by construction.89
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1.3 Related Work90

Metric distortion Anshelevich et al. [1] initiated the study of metric distortion and showed that91

any deterministic voting rule has a distortion of at least 3 and that Copeland has a distortion of 5.92

The Plurality Veto Rule attains the optimal distortion of 3 [15]. Charikar and Ramakrishnan [25]93

showed that any randomized voting rule has a distortion of at least 2.112. Charikar et al. [17] gave94

a randomized voting rule with a distortion of at most 2.753. Anshelevich et al. [26] gave a useful95

survey on distortion in social choice.96

Distortion with Additional Information Abramowitz et al. [27] showed that deterministic voting97

rules achieve a distortion of 2 when voters provide preference strengths as ratios of distances.98

Amanatidis et al. [28] demonstrated that even a few queries from each voter can significantly improve99

distortion in non-metric settings. Anshelevich et al. [29] examined threshold approval voting, where100

voters approve candidates with utilities above a threshold. Our work relates to these studies since in101

probabilistic voting, the likelihood of a voter switching the order of two candidates depends on the102

relative strength of their preference, often resulting in lower distortion than deterministic methods.103

Probabilisitc voting and random utility models (RUMs) Hinich [30] showed that the celebrated104

Median Voter Theorem of [31] does not hold under probabilistic voting. Classical work has focused105

on studying the equilibrium positions of voters and/or candidates in game-theoretic models of106

probabilistic voting [20, 32–35]. McKelvey and Patty [20] adopt the quantal response model, a107

popular way to model agents’ bounded rationality.108

RUMs have mostly been studied in social choice [21, 23, 36] with the hypothesis that candidates have109

universal ground-truth strengths, which voters make noisy observations of. Our model is the same as110

RUM regarding the voters’ behaviour; however, voters have independent costs from candidates. The111

Plackett-Luce (PL) model [37, 38] has been widely studied in social choice [39–41]. For probabilities112

on pairwise orders, PL reduces to the Bradley-Terry (BT) model [42]. These probabilities are113

proportional to candidates’ strengths (which we define as the inverse of powers of costs).114

The widely studied Mallows model [43], based on Condorcet [44], flips the order of each candidate115

pair (relative to a ground truth ranking) with a constant probability p ∈ (0, 1
2 ) [45, 46]. The process is116

repeated if a linear order is not attained. In the context of metric distortion, a limitation of this model117

is that it doesn’t account for the relative distance of candidates to the voter. For a comprehensive118

review of RUM models, see Marden [47]. Critchlow et al. [48] does an axiomatic study of RUM119

models; our axioms are grounded in metric distortion and are distinct from theirs.120

Recently, there has been significant interest in smoothed analysis [49] of social choice. Here a small121

amount of randomness is added to problem instances and its effect is studied on the satisfiability of122

axioms [50–53] and the computational complexity of voting rules [54–56]. Baumeister et al. [50]123

term this model as being ‘towards reality,’ highlighting the need to study the randomness in the124

election instance generation processes. Unlike smoothed analysis where the voter and candidate125

positions are randomized, we consider these positions fixed, but the submitted votes are random given126

these positions. The technical difference appears in the benchmark (the “optimal" outcome in the127

denominator of the distortion is unchanged in our framework and changes in smoothed analysis).128

2 Axioms and Model129

Under probabilistic voting, the submitted preferences may no longer be consistent with the underlying130

distances. For a distribution P(d) over σN , let qP(d)(i, j, j′) denote the induced marginal probability131

that voter i ranks candidate j higher than j′. We focus on these marginal probabilities on pairwise132

orders and provide axioms for classifying which qP(d)(·) are suitable for studying distortion.133

Axiom 1 (Scale-Freeness (SF)). The probability qP(d)(·) must be invariant to scaling of d. That is,134

for any tuple (i, j, j′) and any constant κ > 0, we must have qP(d)(i, j, j′) = qP(κd)(i, j, j′).135

Note that the metric distortion (Definition 2) for deterministic voting is scale-free. We want to retain136

the same property in the probabilistic model as well. Conceptually, one may think of the voter’s137

preferences as being a function of the relative (and not absolute) distances to the candidates.138

Axiom 2 (Independence of Other Candidates (IOC)). The probability qP(d)(i, j, j′) must be139

independent of the distance of voter i to all ‘other’ candidates, i.e., those in A \ {j, j′}.140
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Table 1: Axioms satisfied by commonly studied models of probabilistic voting
Axiom 1: SF Axiom 2: IOC Axiom 3: Strict Monotonocity

Mallows ✓ × ×
PL/BT with exponential in d × ✓ ✓
PL/BT with powers of d ✓ ✓ ✓
PQV ✓ ✓ ✓

This axiom extends Luce’s choice axioms [38], defined for selecting the top choice, to entire rankings.141

IOC is reminiscent of the independence of irrelevant alternatives axiom for voting rules.142

Axiom 3 (Strict Monotonicity (SM)). For every tuple (i, j, j′), for fixed distance d(i, j) > 0, the143

probability qP(d)(i, j, j′) must be strictly increasing in d(i, j′) at all but at most finitely many points.144

The monotonicity in d(i, j) follows since qP(d)(i, j′, j) = 1− qP(d)(i, j, j′). This axiom is natural.145

In the Mallows model [43], qP(d)(·) was derived by Busa-Fekete et al. [57] and is as follows:146

Mallows: qP(d)(i, j, j′) = h(rj′ − rj + 1, ϕ)− h(rj′ − rj , ϕ). (1)

Here h(k, ϕ) = k
(1−ϕk)

. Whereas rj and rj′ are the positions of j and j′ in the ground-truth (noiseless)147

ranking, and the constant ϕ is a dispersion parameter. Observe that this model fails Axiom 2 since it148

depends on the number of candidates between j and j′ in the noiseless ranking. It also fails Axiom 3149

since it does not depend on the exact distances but only on the order of the distances.150

Plackett-Luce Model: The PL model [37, 38] is ‘sequential’ in the following way. For each voter151

i ∈ N , each candidate j ∈ A has a ‘strength’ si,j . In most of the literature on RUMs, a common152

assumption is that si,j is the same for all voters i. However, we choose this more general model to153

make it useful in the context of metric distortion. The voter chooses their top choice with probability154

proportional to the strengths. Similarly, for every subsequent rank, they choose a candidate from155

among the remaining ones with probabilities proportional to their strengths. In terms of the pairwise156

order probabilities, the PL model reduces to the Bradley-Terry (BT) model [42], that is:157

PL/BT: qP(d)(i, j, j′) =
si,j

si,j + si,j′
(2)

Prima facie, in the metric distortion framework, any decreasing function of distance d(i, j) would158

be a natural choice for si,j . However, not all such functions satisfy Axiom 1. The exponential159

function is a popular choice in the literature employing BT or PL models. However, in general,160

e−d(i,j)

e−d(i,j)+e−d(i,j′) ̸= e−2d(i,j)

e−2d(i,j)+e−2d(i,j′) , thus failing the Scale-Freeness Axiom 1.161

On the other hand, observe that all functions s = d−θ for any θ ∈ (0,∞) satisfy our axioms. We use162

the regime θ ∈ (1,∞) for technical simplicity in this work.163

We also define the following class of functions “PQV” for qP(d)(·) motivated by Quantal Response164

Theory [58] and its use in probabilistic voting [20]. Observe that PQV satisfies all our axioms.165

Definition 3 (Pairwise Quantal Voting (PQV)). Let the relative preference r(i, j, j′) be the ratio of166

distances, d(i,j′)
d(i,j) . For constant λ > 0, PQV is as follows: qP(d)(i, j, j′) = e−λ/r(i,j,j′)

e−λr(i,j,j′)+e−λ/r(i,j,j′) .167

We now define a general class of functions for pairwise order probabilities in terms of the relative168

preference (ratio of distances) r. Let G be a class of functions such that any G ∋ g : [0,∞)∪{∞} →169

[0, 1] has the following properties.170

1. g is continuous and twice-differentiable.171

2. g(0) = 0. Further, g′(r) > 0 ∀r ∈ (0,∞) i.e. g(r) is strictly increasing in [0,∞).172

3. Define 1
r as +∞ when r = 0. Then we must have g(r) + g( 1r ) = 1 ∀r ≥ 0.173

4. There ∃c ∈ [0,∞) s.t. g′′(r) > 0 ∀r ∈ (0, c) i.e. g is convex in the open interval (0, c).174

Observe that PL (with g(r) = rθ

1+rθ
, θ > 1) and PQV (with g(r) = e−λ/r

e−λr+e−λ/r , λ > 0) are in175

G. Construction of distributions (if any exists) on rankings σN which generate pairwise order176
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Figure 1: A 1-d Euclidean example of voting probabilities. There are two candidates at 0 and 1. The
figure on the left shows the voter position between 0 and 1. In the right figure, the voter is in positions
to the left of 0. As the distance grows, both candidates look similar to the voter in the probabilistic
model but not in deterministic voting. The case of voter positions to the right of 1 is symmetric.

probabilities qP(d)(i, j, j′) = g(d(i,j
′)

d(i,j) ) according to PQV is left for future work. We do not need it177

for our technical derivations. For PL, these distributions are known from prior work [40].178

We assume g ∈ G in the rest of the paper. Let M(N ∪A) denote the set of valid distance functions179

on (N ,A). For any g and d ∈ M(N ∪A) let P̂(g)(d) denote the set of probability distributions on180

σN for which the marginal pairwise order probabilities are g(d(i,j
′)

d(i,j) ). That is,181

∀P ∈ P̂(g)(d), σN ∼ P =⇒ P[A ≻i B] = g

(
d(i, B)

d(i, A)

)
. (3)

We assume that all voters vote independently of each other. We now define metric distortion under182

probabilistic voting as a function of g for a given m and n.183

Definition 4 (Metric Distortion under Probabilistic Voting).

DIST(g)(f, n,m) := sup
N :|N |=n
A:|A|=m

sup
d∈M(N∪A)

sup
P∈P̂(g)(d)

EσN∼P [SC(f(σN ), d)]

min
A∈A

SC(A, d)
. (4)

DIST(g)(f) = supn,m DIST(g)(f, n,m) by supremizing over all possible n and m.184

The expectation is both over the randomness in the votes and the voting rule f .185

Observe that the distortion is a supremum over all distributions in P̂(g)(d). Since we focus on large186

elections (with large n and relatively small m), we define DIST(g) as a function of m and n.187

As in Fig. 1, consider the 1-d Euclidean space with candidate X at the origin and Y at 1. Observe188

that g
(

x
1−x

)
and g

(
x

1+x

)
denote the probability that a voter located at a distance x from X votes189

for Y when the voter is to the left and right of X respectively. Interestingly, this 1-d intuition extends190

well for general metric spaces. Towards this, we define the following functions.191

gMID(x) := g

(
x

1− x

)
∀x ∈ (0, 1) and gOUT(x) := g

(
x

1 + x

)
∀x ∈ [0,∞). (5)

Lemma 1. gMID(x)
x and gOUT(x)

x have unique local maxima in (0, 1) and (0,∞) respectively.192

Denote the unique maximisers of gMID(x)
x and gOUT(x)

x by x∗
MID and x∗

OUT respectively.193

For simplifying notation, in the rest of the work, we use ĝMID for gMID(x
∗
MID)

x∗
MID

and ĝOUT for gOUT(x
∗
OUT)

x∗
OUT

.194

In the analysis in the rest of the paper, we will see ĝMID and ĝOUT appear many times, so we note these195

quantities for the PL and PQV models here. For the PL model with θ = 2, ĝMID =
√
2+1
2 ≈ 1.21 and196

ĝOUT =
√
2−1
2 ≈ 0.21. When θ = 4, ĝMID ≈ 1.42 and ĝOUT ≈ 0.06. When θ → ∞, ĝMID → 2 and197

ĝOUT → 0. This limit is where PL resembles deterministic voting.198

For PQV with λ = 1, ĝMID ≈ 1.25 and ĝOUT = 0.18. When λ → ∞, ĝMID → 2 and ĝOUT → 0.199

5



3 Distortion of Plurality Rule Under Probabilistic Voting200

In this section, we give upper and lower bounds on the distortion of the Plurality rule [59] (PLU).In201

the limit the number of voters n → ∞ (“large election"), our upper and lower bounds match and are202

linear in the number of candidates m. Let B represent the candidate that minimizes the social cost203

(referred to as ‘best’), and let {Aj}j∈[m−1] denote the set of other candidates.204

3.1 Upper bound on the distortion of Plurarity(PLU)205

Theorem 1. For every ϵ > 0 and m ≥ 2 and n ≥ m2 we have206

DIST(g)(PLU, n,m) ≤ m(m− 1) (ĝMID + ĝOUT) exp
( −n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
(6)

+max

(
mĝMID

(1− n−( 1
2−ϵ))

− 1,
mĝOUT

(1− n−( 1
2−ϵ))

+ 1

)
.

Further, lim
n→∞

DIST(g)(PLU, n,m) ≤ max (mĝMID − 1,mĝOUT + 1) .207

To prove this theorem, we first give a lemma which upper bounds SC(W,d)
SC(B,d) under the constraint208

that the expected number of voters that rank candidate W over B is given by α. This ratio will be209

useful to bound the contribution of non-optimal candidate W to the distortion of PLU. We state an210

optimization problem (7) below, which would be required to bound the ratio as a function of α.211

Eα =



min
b,w∈Rn

≥0

∑n
i=1 bi∑n
i=1 wi

s.t.
n∑

i=1

g

(
bi
wi

)
≥ α

max
i

|wi − bi| ≤ min
i
(wi + bi)

∀α ≥ 0 (7)

Lemma 2. For any two candidates W,B ∈ A which satisfy
n∑

i=1

P[W ≻i B] = α, we have212

SC(W,d)

SC(B, d)
≤ 1

opt(Eα)
≤ max

(n
α
ĝMID − 1,

n

α
ĝOUT + 1

)
. (8)

Our proof is via Lemmas 3 and 4. Lemma 3 shows that we can bound the ratio of social costs by the213

inverse of the optimum value of Eα and Lemma 4 gives a lower bound on the optimum value of Eα.214

Lemma 3. For any two candidates W,B ∈ A satisfying
∑n

i=1P[W ≻i B] = α, we have215

SC(W,d)

SC(B, d)
≤ 1

opt(Eα)
. (9)

Proof. bi and wi in (7) represent the distances d(i, B) and d(i,W ). The last constraint is the triangle216

inequality i.e. |d(i, B)− d(i,W )| ≤ d(B,W ) ≤ |d(i, B) + d(i,W )| for every voter i ∈ N .217

Consider the following linearized version of (7).218

Eµ,α =



min
w,b∈Rn

≥0

(
n∑

i=1

bi

)
− µ

(
n∑

i=1

wi

)

s.t.
n∑

i=1

g

(
bi
wi

)
≥ α

|bi − wi| ≤ 1 ∀i ∈ [n]

bi + wi ≥ 1 ∀i ∈ [n]

∀0 ≤ µ ≤ 1, α ≥ 0. (10)
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Lemma 4. opt(Eα) ≥ min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)
.219

Our proof uses Lemma 5 and is by solving a linearized version of (7) in (10). This is done by220

introducing an extra non-negative parameter µ ≤ 1. Note that it is sufficient to consider µ ≤ 1 since221

opt(Eα) ≤ 1 because B minimises the social cost by definition. We find the smallest µ ∈ (0, 1) such222

that its objective is non-negative.223

Lemma 5. If opt(Eµ,α) ≥ 0, then opt(Eα) ≥ µ.224

Further, opt(Eµ,α) ≥ 0 if µ = min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)

.225

The first part follows since scaling each term by a constant r satisfies the constraints and also yields the226

same objective. And thus we may replace the constraints by maxi |wi−bi| ≤ 1 and mini(wi+bi) ≥ 1227

in equation (10). Further, the objective function is linearized as (
∑n

i=1 bi)− µ (
∑n

i=1 wi).228

The proof of the second part is technical and has been moved to Appendix B. It involves introducing229

a Lagrangian multiplier λ and demonstrating that the objective function is non-negative for a suitably230

chosen λ. To establish this, we show that minimising the Lagrangian over the boundaries of the231

constraint set given by |bi − wi| = 1 and bi + wi = 1 is sufficient. This requires a careful analysis.232

The main technique used in proving Theorem 1 involves considering two cases for every non-optimal233

candidate Aj : one where the expected number of voters ranking candidate Aj above B (call it αj)234

exceeds a threshold of n
m − nϵ+1/2

m and one where it does not. In the first case, the ratio of social costs235

of Aj and B is bounded using Lemma 2 that naturally gives a bound on contribution of candidate Aj236

to the distortion. In the later case, we use Chernoff bound to bound the probability of Aj being the237

winner and multiply it with the ratio of social costs of Aj and B to bound the distortion. The proof of238

Theorem 1 is in Appendix C.239

3.2 Lower bound on the distortion of Plurality240

We now present a lower bound on the distortion of PLU for any m in the limit n tends to infinity. This241

lower bound matches the upper bound of Theorem 1 in the limit. A full proof is in Appendix D. Note242

that the proof has an adversarially chosen distribution over the rankings subject to the marginals on243

pairwise relationships satisfying g (as in the definition of distortion under probabilistic voting 4).244

This lower bound does not apply to the PL model, which has a specific distribution over rankings.245

Theorem 2. For every m ≥ 2, limn→∞ DIST(g)(PLU, n,m) ≥ max (mĝMID − 1,mĝOUT + 1) .246

Proof Sketch. The proof is by an example in an Euclidean metric space in R3. One candidate “C" is247

at (1, 0, 0). The other m− 1 candidates are “good" and are equidistantly placed on a circle of radius248

ϵ on the y − z plane centred at (0, 0, 0). We call them G := {G1, G2, . . . , Gm−1}.249

We present sketches of two constructions below for every ϵ, ζ > 0.250

Construction 1: Let qMID := g
(√

(x∗
MID)

2+ϵ2

1−x∗
MID

)
and aMID := 1

m−1

(
1 − 1+ζ

mqMID

)
. Each of the m −251

1 candidates in G has ⌊aMIDn⌋ voters overlapping with it. The remaining voters (we call them252

“ambivalent”) are placed at (x∗
MID, 0, 0). Clearly, each voter overlapping with a candidate votes for it253

as the most preferred candidate with probability one. Each of the ambivalent voters votes as follows.254

– With probability qMID, vote for candidate C as the top choice and uniformly randomly permute the255

other candidates in the rest of the vote.256

– With probability 1− qMID, vote for candidate C as the last choice and uniformly randomly permute257

the other candidates in the rest of the vote.258

We show that the probability that C wins tends to 1 as n → ∞ and the distortion is mĝMID − 1.259

Construction 2: We give a construction where the locations of the candidates are identical as in260

Construction 1, and some voters are located with the “good" candidates. The ambivalent voters are at261

(−x∗
OUT, 0, 0). We show that P[C wins] tends to 1 as n → ∞ and the distortion is mĝOUT + 1.262

This result establishes that the distortion of Plurality is bound to increase linearly with m even under263

probabilistic voting, and is therefore not a good choice when m is even moderately large.264
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4 Distortion of Copeland Rule Under Probabilistic Voting265

We now bound the distortion of the Copeland voting rule. We say that candidate W defeats candidate266

Y if more than half of the voters rank W above Y .267

Theorem 3. For every ϵ > 0,m ≥ 2 and n ≥ 4, we have268

DIST(g)(COP, n,m) ≤ 4m(m− 1) exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2

+max
(( 2ĝMID

1− n−( 1
2−ϵ)

− 1
)2

,
( 2ĝOUT

1− n−( 1
2−ϵ)

+ 1
)2)

.

For every m ≥ 2, we have lim
n→∞

DIST(g)(COP, n,m) ≤ max
(
(2ĝMID − 1)

2
, (2ĝOUT + 1)

2 )
.269

Proof Sketch. A Copeland winner belongs to the uncovered set in the tournament graph, as270

demonstrated in [1, Theorem 15]. Recall that B denotes the candidate with the least social cost. For271

a Copeland winner W , either W defeats B or it defeats a candidate Y who defeats B.272

We now consider two exhaustive cases on candidate Aj and define event Ej for every j ∈ [m− 1]273

by computing the expected fraction of votes on pairwise comparisons. The event Ej denotes the274

existence of an at-most two hop directed path from a candidate Aj to candidate B for Copeland such275

that the expected fraction of votes on all edges along that path exceed n
2 − n(1/2+ϵ)

2 .276

If Ej holds true, we upper bound the ratio of social cost of candidate Aj and social cost of candidate277

B using Lemma 2 which in-turn would give a bound on the distortion. Otherwise, we use union278

bound and Chernoff’s bound to upper bound the probability of Aj being the winner. Multiplying the279

probability bound with the ratio of social costs (one obtained from Lemma 2) leads to a bound on the280

distortion. A detailed proof is in Appendix E.281

5 Distortion of Random Dictator Rule Under Probabilistic Voting282

We first give an upper bound on the distortion of RD; the proof is in Appendix F.283

Theorem 4. DIST(g)(RD,m, n) ≤ (m− 1)ĝMID + 1.284

We now give a lower bound on the distortion of RD. We do this by constructing an example.285

Theorem 5. For m ≥ 3 and n ≥ 2, DIST(g)(RD,m, n) ≥ 2 + 1
g−1( 1

m−1 )
− 2

n .286

Proof. We have a 1-D Euclidean construction. Let B be at 0 and all other candidates A \ {B} be at287

1. m− 1 voters are at 0 and one voter V is at x̃ = g−1( 1
m−1 )/(1 + g−1( 1

m−1 )).288

The ranking for V is generated as follows: pick a candidate from A \ {B} as the top rank uniformly289

at random. Keep B on the second rank. Permute the remaining candidates uniformly at random for290

the remaining ranks. Observe that the marginal pairwise order probabilities are consistent with the291

distance of V from B and each candidate in A\{B}. In particular g( x̃
1−x̃ ) =

1
m−1 . The distortion for292

this instance is P[B wins]·1+P[B loses]· n−x̃
x̃ = n−1

n + 1
n

n−x̃
x̃ = 1+ 1

x̃−
2
n = 2+ 1

g−1( 1
m−1 )

− 2
n .293

For g(r) = rθ

1+rθ
, we have g−1(t) = ( t

1−t )
1
θ . Then g−1( 1

m−1 ) = (m−2)−
1
θ , and the distortion lower294

bound is DIST(g)(RD,m, n) ≥ 2+(m−2)
1
θ − 2

n , and limn→∞ DIST(g)(RD,m, n) ≥ 2+(m−2)
1
θ .295

However, note that this result does not apply to the PL model! This is because the PL model has296

a specific distribution on the rankings. In contrast, the above result is obtained by choosing an297

adversarial distribution on rankings subject to the constraint that its marginals on pairwise relations298

are given by g. In the PL model, P[Aj is top-ranked in σi] =
d(i,Aj)

−θ∑
Ak∈A d(i,Ak)−θ [45]. We have the299

following result for the PL model. A proof via a similar construction as Theorem 5 is in Appendix G.300

Theorem 6. Let DISTθ
PL(RD,m, n) denote the distortion when the voters’ rankings are generated301

per the PL model with parameter θ. We have limn→∞ DISTθ
PL(RD,m, n) ≥ 1 + (m−1)1/θ

2 .302
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6 Numerical Evaluations303
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Figure 2: Here, we illustrate how the distortion bounds on different voting rules vary with m and
with the randomness parameters of the two models, PL and PQV, in the limit n → ∞. Both the x and
y axes are on the log scale. We plot the upper bound for Copeland (Theorem 3), the lower bound for
RD (Theorem 5), and the matching bounds for Plurality (Theorem 1).

Recall that higher values of θ and λ correspond to lower randomness. From Figure 2, we observe that304

under sufficient randomness, the more intricate voting rule Copeland outshines the simpler rule RD,305

which only looks at a voter’s top choice. Moreover, its distortion is independent of m in the limit306

n → ∞. This is in sharp contrast to RD, where the distortion is Ω(m1/θ) in the PL model, a sharp307

rate of increase in m for low values of θ. The distortion of Plurality increases linearly in m.308

An important observation is regarding the asymptotics when θ or λ increases. The distortion of RD309

converges to its value under deterministic voting, i.e., 3. The distortion of Plurality also converges to310

2m− 1, the same as in deterministic voting. Since our bound on Copeland is not tight, it converges311

to 9 rather than 5. So far, in the study of metric distortion, the social choice community has looked312

only at these asymptotic; here, we present insights available from looking at the ‘complete’ picture.313

Interestingly, the distortion of RD increases with randomness, whereas that of Copeland decreases314

up to a certain point and then increases again. The reason for the increases in the high randomness315

regime is that the votes become too noisy to reveal the best candidate any more.316

Since these plots have no abrupt transitions, this figure hints that smoothened analysis [52] (typically317

done with small amounts of noise) is unlikely to give any new insights regarding metric distortion.318

7 Discussion and Future Work319

We extend the metric distortion framework in social choice in an important way – by capturing the320

bounded rationality and randomness in voters’ behaviour. Consideration of this randomness shows321

that, in general, the original metric distortion framework is too pessimistic on important voting rules,322

most notably on Copeland. On the other hand, the simplistic voting rule Random Dictator, which323

attains a distortion of 3 (at least as good as any deterministic rule [1]), is not so good when we look at324

the full picture – its distortion increases with the number of candidates in our model. Our framework325

opens up opportunities to revisit the metric distortion problem with a closer-to-reality view of voters.326

It may hopefully lead to the development of new voting rules that consider the randomness of voters’327

behaviour. For example, Liu and Moitra [46] take a learning theory approach to design voting rules328

under the assumption of random voting per the Mallows model. However, technical analysis in our329

framework may be challenging because of the interplay of the geometric structure of voters’ positions330

and the probabilistic nature of their votes.331

Future Work An interesting extension would be to other tournament graph-based voting rules332

(weighted or unweighted). Our techniques are well-suited for this class of rules since it is based on333

the expected weights of the edges of the tournament graph. Closing the gap for the distortion of334

Copeland would be useful for getting deeper insights. Another open problem is the characterization335

of the set of distributions on rankings that induce the pairwise probabilities per PQV.336
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A Proof of Lemma 1476

Lemma (Restatement of Lemma 1). gMID(x)
x and gOUT(x)

x have unique local maxima in (0, 1) and (0,∞) respectively.477

To prove Lemma 1, we first state and prove Lemma 6 which shows that gMID(x) and gOUT(x) change from convex to478

concave in intervals (0, 1) and (0,∞) respectively.479

Lemma 6. • There ∃c1 ∈ [0, 1] s.t. gMID(x) is convex in [0, c1] and concave in [c1, 1].480

• There ∃c2 ∈ [0,∞) s.t. gOUT(x) is convex in [0, c2] and concave in [c2,∞).481

Proof. Observe that g′′(x) < 0 for x ≥ 1.482

Recall that gMID(x) = g
(

x
1−x

)
thus, g′MID(x) = g′

(
x

1−x

)
1

(1−x)2 and gMID(x) + gMID(1 − x) = 1 Thus, g′′MID(x) =483

g′
(

x
1−x

)
2

(1−x)3 + g′′
(

x
1−x

)
1

(1−x)4 . Observe that g′′MID(0) > 0 which implies limx→1 g
′′
MID(x) < 0 and thus, there484

must exist a c ∈ (0, 1) such that g′′MID(c) = 0.485

Now we show that there cannot exist two distinct c1, c2 ∈ (0, 1) such that g′′MID(c1) = 0 and g′′MID(c2) = 0. We prove486

this statement by contradiction assuming the contrary which implies that g′′MID(x) must have changed its sign twice.487

However, since g′
(

x
1−x

)
> 0 we must have g′′( x

1−x ) changing its sign twice which is a contradiction since g′′(r) > 0488

for r ∈ (0, c) and g′′(r) < 0 for r ∈ (c,∞).489

Now consider gOUT(x) = g
(

x
1+x

)
we have g′OUT(x) = g′

(
x

1+x

)
1

(1+x)2 . Thus, g′′OUT(x) = −g′
(

x
1+x

)
2

(1+x)3 +490

g′′
(

x
1+x

)
1

(1+x)4 . Using a similar approach, we can also prove the second point in the Lemma.491

Using Lemma 6, we now prove Lemma 1 showing the existence of unique maximas of gMID(x)
x and gOUT(x)

x .492

Proof of Lemma 1. Recall from Lemma 6 that gMID(x) is convex in [0, c1] and concave in [c1, 1].493

Since the first derivative equals zero at every local maxima, we must have xg′MID(x)− g(x) = 0 for any local maxima494

x. We now argue that such a maxima cannot exist in [0, c1]. Suppose such a maxima exists in that case, we must have495

g′MID(x) =
gMID(x)−gMID(0)

x−0 for some x ∈ (0, c1). Applying LMVT in the interval [0, x]1, we must have some t ∈ (0, x)496

s.t. g′MID(t) =
gMID(x)−gMID(0)

x−0 , thus implying g′MID(x) = g′(t) contradicting the fact that g′MID(r) is strictly increasing in497

[0, c1].498

Observe that gMID(t)− t gMID(c1)
c1

is zero at t = 0 and t = c1 and thus, by Rolle’s theorem, we have g′MID(x) =
gMID(c1)

c1
for499

some x ∈ (0, c1). Since, g′MID(x) is increasing in [0, c1], we must have g′MID(c1) >
gMID(c1)

c1
. Observe limt→1

gMID(t)
t = 1500

and gMID(c1)
c1

> 1. Also, we have d
dt

(
gMID(t)

t

)∣∣∣
t=c1

> 0 since c1g
′
MID(c1) > gMID(c1) implying gMID(t)/t is increasing501

at t = c1. Thus, gMID(t)/t must have at least one local maxima x∗ in the open interval (c1,∞) and no local maxima502

elsewhere.503

We now argue that this local maxima x∗ is unique. Suppose we have two distinct local maximas at x1, x2 ∈ (c1,∞)504

and thus, we have x1g
′
MID(x1)− gMID(x1) = 0 and x2g

′
MID(x2)− gMID(x2) = 0. Rolle’s theorem would imply that there505

exists t ∈ (x1, x2)
2 s.t. tg′′MID(t) = 0 which is a contradiction since g′′MID(x) < 0 in (c1,∞).506

Similarly, we can prove the result on the existence and uniqueness of maxima of the function
g( x

x+1 )
x .507

B Proof of Lemma 5508

Lemma (Restatement of Lemma 5). If opt(Eµ,α) ≥ 0, then opt(Eα) ≥ µ.509

Further, opt(Eµ,α) ≥ 0 if µ = min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)

.510

1Observe that g(x)/x has a removable discontinuity at 0 since the limit is defined.
2W.L.O.G, we assume x1 < x2
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Proof. To lower bound the optimal value of Eµ,α, we first pre-multiply the first constraint by λ (and substitute511
bi
wi

= ri ∀i ∈ [n]) and thus define,512

F (r,b, λ) =

(
n∑

i=1

bi

)
− µ

(
n∑

i=1

bi
ri

)
− λ

(
n∑

i=1

g(ri)− α

)
. (11)

Further, we define the set which satisfies the last two constraints in Eµ,α by C as513

C := {(r,b) ∈ (Rn
≥0,Rn

≥0) : bi(1 + 1/ri) ≥ 1; |bi(1/ri − 1)| ≤ 1 ∀i ∈ [n]}. (12)

From the theory of Lagrangian, we have the following514

opt(Eµ,α) ≥ min
(r,b)∈C

max
λ≥0

F (r,b, λ) ≥ max
λ≥0

min
(r,b)∈C

F (r,b, λ). (13)

Now for a fixed λ > 0, we minimise F (r,b, λ) over (r,b) ∈ C. Observe that for every i ∈ [n], it is sufficient to515

minimise h(ri, bi) defined as follows.516

h(ri, bi) := bi(1− µ/ri)− λ
(
g(ri)−

α

n

)
. (14)

Observe that the constraints in C can be written as bi ≥ ri
1+ri

and bi ≤ ri
|1−ri| .517

Observe that for a given ri, the function h(ri, bi) is monotonic in bi and thus the optimum point must lie on the boundary518

and first optimize over bi(1 + 1/ri) = 1 (call it CMID
i ) and |bi(1− 1/ri)| = 1 (call it COUT

i ) respectively.519

Recall from Lemma 6 that there exists c1, c2 s.t. gMID(x) is convex in (0, c1) and concave in (c1, 1) and gOUT(x) is520

convex in (0, c2) and concave in (c2,∞).521

• Minimisation of h(ri, bi) over bi(1 + 1/ri) = 1.522

We first substitute 1/ri = 1/bi − 1 in the function and thus, can write the function h(bi) = bi(µ + 1) − µ −523

λ
(
g
(

bi
1−bi

)
− α

n

)
= bi(µ+ 1)− µ− λ

(
gMID(bi)− α

n

)
.524

Observe that on optimizing over bi, we obtain two local minima, one at bi = 0 and the other at bi = x̃MID(λ) ∈ (c1,∞)525

where x̃MID(λ) satisfies the following equations if λ ≥ 1+µ
g′

MID(c1)
. Otherwise, we have a unique minima at bi = 0. 3526

g′MID(x̃
MID(λ)) = max

(
1 + µ

λ
, g′MID(1

−)

)
and g′′MID(x̃

MID(λ)) < 0. (15)

Observe x̃MID(λ) > c1 since gMID is concave only in [c1, 1]. Also observe that since g′MID(x) is monotonically527

increasing, x̃MID(λ) is monotonically increasing in λ.528

• Minimisation of h(ri, bi) over bi|(1− 1/ri)| = 1.529

On substituting, we write the function530

h(bi) =

(1− µ)bi − µ− λ
(
g
(

bi
1+bi

)
− α

n

)
= (1− µ)bi − µ− λ

(
gOUT(bi)− α

n

)
if ri ≥ 1

(1− µ)bi + µ− λ
(
g
(

bi
bi−1

)
− α

n

)
(a)
= (1− µ)bi + µ− λ+ λ

(
gOUT(bi − 1) + α

n

)
otherwise

(16)

(a) follows from the fact that g(r) + g(1/r) = 1.531

Since the second function has only a single minima at bi = 1, it is sufficient to consider only the first function in the532

case ri ≥ 1.533

Observe that on optimizing over bi, we obtain two local minima one at bi = 0 and one at bi = x̃OUT(λ) ∈ (c2,∞)534

where x̃OUT(λ) satisfies the equations if λ ≥ 1−µ
g′

OUT(c2)
. Otherwise, we have a unique minima at bi = 0. 4535

g′OUT(x̃
OUT(λ)) =

(
1− µ

λ

)
and g′′OUT(x̃

OUT(λ)) < 0. (17)

Thus, we have x̃OUT(λ) > c2 since gOUT is concave only in [c2,∞). Also observe that since g′OUT(x) is monotonic,536

x̃OUT(λ) is monotonic in λ.537

3This follows from the fact that gMID(x) is monotonically decreasing in [c1, 1) and monotonically increasing in [0, c1).
4This follows from the fact that gOUT(x) is monotonically decreasing in [c2,∞) and monotonically increasing in [0, c2). Since

g′OUT(∞) = 0, the solution to (17) exists for every λ ∈
(

1−µ
g′OUT(c2)

,∞
)

.
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Since, this argument is true for every i ∈ [n], we obtain538

min
(r,b)

F (r,b, λ) = n ·min

(
−µ+ λ

α

n
,(µ+ 1)x̃MID(λ)− µ− λ

(
gMID(x̃

MID(λ))− α

n

)
,

(1− µ)x̃OUT(λ)− µ− λ
(
gOUT(x̃

OUT(λ))− α

n

))
. (18)

Since x∗
MID is the local maximiser of gMID(x)

x , we have539

gMID(x
∗
MID) = x∗

MIDĝMID and x∗
MID > c1. (19)

Similarly,540

gOUT(x
∗
OUT) = x∗

OUTĝOUT and x∗
OUT > c2. (20)

For the purpose of this analysis, we define two functions δMID(λ) and δOUT(λ) below.541

δMID(λ) = (µ+ 1)x̃MID(λ)− µ− λ
(
gMID(x̃

MID(λ))− α

n

)
. (21)

542

δOUT(λ) = (1− µ)x̃OUT(λ)− µ− λ
(
gOUT(x̃

OUT(λ))− α

n

)
. (22)

We also define543

µ∗ : =min

((n
α
ĝMID − 1

)−1

,
(n
α
ĝOUT + 1

)−1
)
, and λ∗ := µ∗ n

α
. (23)

Recall that we aim to show opt(Eµ,α) ≥ 0 when µ = µ∗ and thus substitute µ = µ∗ in every subsequent544

equation. Observe that it is sufficient to show δMID(λ∗) and δOUT(λ∗) are non-negative since this would imply that545

maxλ≥0 min(r,b)∈C F (r,b, λ) is non-negative.546

We now consider the following two exhaustive cases.547

• Case 1: ĝMID − α
n > ĝOUT +

α
n . Observe from Equation (15),548

g′MID(x̃
MID(λ∗)) = max

(
n

α

(
1

µ∗ + 1

)
, g′MID(1

−)

)
= g′MID(x

∗
MID)

(d)
=⇒ x̃MID(λ∗) = x∗

MID. (24)

(d) follows from the fact that both x̃MID(λ∗) and x∗
MID exceed c1 and g′MID(x) is monotonically decreasing for x ≥ c1.549

δMID(λ∗) = (µ∗ + 1)x̃MID(λ∗)− µ∗ − λ∗
(
gMID(x̃

MID(λ∗))− α

n

)
(b)

≥ (−µ∗ + λ∗α/n) + λ∗ (x̃MID(λ∗)g′MID(x̃
MID(λ∗))− gMID(x̃

MID(λ∗)))
(c)

≥ 0. (25)

(b) follows from g′MID(x̃
MID(λ∗)) = 1+µ∗

λ∗
5 as stated in Equation (15).550

(c) follows from x̃MID(λ∗) = x∗
MID (in Equation (24)) and gMID(x

∗
MID) = x∗

MIDĝMID (in Equation (19)) and the fact that551

µ∗ = λ∗ α
n . Now consider,552

ĝOUT
(d)
=

gOUT(x
∗
OUT)

x∗
OUT

(e)

≤ gMID(x
∗
MID)

x∗
MID

− 2α/n
(g)
=

1− µ

λ∗
(h)
=⇒ g′OUT(x

∗
OUT) ≤ g′OUT(x̃

OUT(λ∗))
(i)
=⇒ x∗

OUT ≥ x̃OUT(λ∗).

(d) follows from the fact that x∗
OUT is the local maximiser of gOUT(x)/x,553

(e) follows from the fact that ĝMID − α
n > ĝOUT +

α
n in Case 1.554

(g) follows from the definition of λ∗ and that µ = λ∗ α
n .555

(h) follows from the constraint in (17).556

5This follows from the fact that 1+µ∗

λ∗ = ĝMID = g′(x∗
MID) ≥ g′MID(1

−)
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(i) follows from the fact that g′OUT(x) is monotonically decreasing in x in [c2,∞).557

δOUT(λ∗) = (1− µ)x̃OUT(λ∗)− µ− λ∗
(
gOUT(x̃

OUT(λ∗))− α

n

)
(j)
=
(
−µ+ λ∗α

n

)
+ λ∗(x̃OUT(λ∗)g′OUT(x̃

OUT(λ∗))− gOUT(x̃
OUT(λ∗)))

(k)

≥ 0 + 0 ≥ 0. (26)

(j) follows from g′OUT(x̃
OUT(λ)) = 1−µ

λ as stated in Equation (17), and558

(k) follows from the following reasons:559

– Observe that xg′OUT(x)−gOUT(x) is monotonically decreasing in [c2,∞) as gOUT is concave in this region. However,
since x∗

OUT ≥ x̃OUT(λ∗) ≥ c2, we have

(x̃OUT(λ∗)g′OUT(x̃
OUT(λ∗))− gOUT(x̃

OUT(λ∗))) ≥ x∗
OUTĝOUT − gOUT(x

∗
OUT) = 0

– λ∗ = µ∗ n
α follows from the definition of λ∗.560

Thus, using (25) and (26) we show that for the chosen value of λ∗ = µ∗ n
α , we have561

min(r,w)∈C F (r,w, λ∗) ≥ 0 implying from (13) that opt(Eµ,α) ≥ 0.562

• Case 2: ĝMID − α
n ≤ ĝOUT +

α
n563

Choosing λ∗ = µ∗ n
α , we can prove opt(Eµ,α) ≥ 0 in a very similar manner whenever µ = µ∗.564

C Proof of Theorem 1565

Theorem (Restatement of Theorem 1). For every ϵ > 0 and m ≥ 2 and n ≥ m2 we have566

DIST(g)(PLU, n,m) ≤ m(m− 1) (ĝMID + ĝOUT) exp
( −n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
(27)

+max

(
mĝMID

(1− n−( 1
2−ϵ))

− 1,
mĝOUT

(1− n−( 1
2−ϵ))

+ 1

)
.

Further, lim
n→∞

DIST(g)(PLU, n,m) ≤ max (mĝMID − 1,mĝOUT + 1) .567

Proof. Recall that candidate B ∈ A minimises the social cost. The other candidates are denoted by {Aj}j∈[m−1].568

DIST(g)(PLU, n,m) = sup
d∈M(N∪A)

m−1∑
j=1

P[Aj wins]
SC(Aj , d)

SC(B, d)
+ P[B wins]

 (28)

For every j ∈ [m− 1], we now bound the probability of Aj being the winner. This event implies that at least n
m voters569

choose Aj as the top preference, implying that the same voters rank Aj over B. Further, we now define Bernoulli570

random variables {Yi,j}ni=1 each denoting the event that voter i ranks candidate Aj over B. Recall from Equation 3,571

Yi,j ∼ Bern
(
g
(

d(i,B)
d(i,Aj)

))
. Therefore,572

P[Aj wins] ≤ P

(
n∑

i=1

Yi,j ≥
n

m

)
. (29)

Let αj be the expectation of the random variable
∑n

i=1 Yi,j i.e. the expected number of voters ranking Aj over B.573

αj :=

n∑
i=1

E[Yi,j ] =

n∑
i=1

g

(
d(i, B)

d(i, Aj)

)
for every j ∈ [m− 1]. (30)
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Now we use Chernoff bounds on the sum of Bernoulli random variable for every j ∈ [m− 1] when αj ≤ n
m − n(1/2+ϵ)

m574

to bound the probability of Aj being the winner.575

If αj ≤
n

m
− n(1/2+ϵ)

m
we have,

P[Aj wins] ≤ P

(
n∑

i=1

Yi,j ≥
n

m

)
= P

(
n∑

i=1

Yi,j ≥ αj

(
1 +

n

mαj
− 1

))
(31)

(a)

≤

(
e
( n
mαj

−1)

( n
mαj

)n/mαj

)αj

(32)

=
(mαj

n

) n
m

e
n
m−αj (33)

≤ mαj

n

(
mαj

n
exp

(
− αj

n/m− 1

))( n
m−1)

e
n
m (34)

(c)

≤ mαj

n
e

n
m

(1− n−( 1
2−ϵ)

)
exp

−
n
m − n( 1

2
+ϵ)

m

n/m− 1

 n
m−1

(35)

=
mαj

n

(
1− n−( 1

2−ϵ)
)(n/m−1)

exp

(
n( 1

2+ϵ)

m

)
(36)

(d)

≤ mαj

n
exp

(
−2n−( 1

2−ϵ)(n/m− 1)

2− n−( 1
2−ϵ)

+
n( 1

2+ϵ)

m

)
(37)

=
mαj

n
exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
. (38)

(a) follows from applying the Chernoff bound. We restate the bound from [60] below.576

Suppose X1, X2, . . . , Xn be independent Bernoulli random variables with P(Xi) = µi for every i ∈ [n] and µ :=577 ∑n
i=1 µi, then we have578

P(
∑
i

Xi ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

(39)

(c) holds since xe−x is increasing in (0, 1) and because α
n/m−1 ≤ 1 and α ≤ n

m − n( 1
2
+ϵ)

m , the maxima is attained at579

α = n
m − n( 1

2
+ϵ)

m . (d) holds since log(1 + x) ≤ 2x
2+x for −1 < x ≤ 0.580

Let S := {j ∈ [m− 1] : αj <
n
m − n(1/2+ϵ)

m } i.e. S denotes the indices of candidates with αj less than n
m − n(1/2+ϵ)

m .581

Now using Lemma 2 and αj ≥ n
m − n(1/2+ϵ)

m for every j ∈ [m− 1] \ S, we have582

SC(Aj , d)

SC(B, d)
≤ max

(
mĝMID

(1− n−(1/2−ϵ))
− 1,

mĝOUT

(1− n−(1/2−ϵ))
+ 1

)
(40)

We now have583

DIST(g)(PLU, n,m)

= sup
d∈M(N∪A)

( ∑
j∈[m−1]\S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

)
+ P[B wins] +

∑
j∈S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

))
(a)

≤ max

(
max

j∈[m−1]\S

SC(Aj , d)

SC(B, d)
, 1

)
+
∑
j∈S

(
max

(
n

αj
ĝMID − 1,

n

αj
ĝOUT + 1

)
mαj

n
exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

))
(b)

≤ m(m− 1) (ĝMID + ĝOUT) exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
+max

(
mĝMID

(1− n−(1/2−ϵ))
− 1,

mĝOUT

(1− n−(1/2−ϵ))
+ 1

)
.
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(a) follows from the following observations.584

• Apply Lemma 2 to bound SC(Aj ,d)
SC(B,d) . Since αj ≤ n

m − n(1/2+ϵ)

m ∀j ∈ S, apply Equation (31) to bound P[Aj wins].585

•
∑

j∈[m−1]\S

(
P[Aj wins] SC(Aj ,d)

SC(B,d)

)
+ P[B wins] ≤ max

(
max

j∈[m−1]\S

SC(Aj ,d)
SC(B,d) , 1

)
.586

(b) follows from the fact that |S| ≤ m− 1 , max(a, b) ≤ a+ b, and applying Equation (40).587

D Proof of Theorem 2588

Theorem (Restatement of Theorem 2). For every m ≥ 2, limn→∞ DIST(g)(PLU, n,m) ≥589

max (mĝMID − 1,mĝOUT + 1) .590

Proof. The proof is by an example in an Euclidean metric space in R3. One candidate “C" is at (1, 0, 0). The other591

m− 1 candidates are “good" and are equidistantly placed on a circle of radius ϵ on the y − z plane centred at (0, 0, 0).592

We call them G := {G1, G2, . . . , Gm−1}.593

We present two constructions below for every ϵ, ζ > 0.594

Construction 1: Let qMID := g
(√

(x∗
MID)

2+ϵ2

1−x∗
MID

)
and aMID := 1

m−1

(
1− 1+ζ

mqMID

)
. Each of the m− 1 candidates in G has595

⌊aMIDn⌋ voters overlapping with it. The remaining voters (we call them “ambivalent”) are placed at (x∗
MID, 0, 0). Clearly,596

each voter overlapping with a candidate votes for it as the most preferred candidate with probability one. Each of the597

ambivalent voters votes as follows.598

– With probability qMID, vote for candidate C as the top choice and uniformly randomly permute the other candidates in599

the rest of the vote.600

– With probability 1−qMID, vote for candidate C as the last choice and uniformly randomly permute the other candidates601

in the rest of the vote.602

Observe that this satisfies the pairwise probability criterion in Equation 3. Since limn→∞⌊an⌋/n = a and that the603

distance of a candidate in G from any non-ambivalent voter is at most 2ϵ, we have that for every j ∈ [m− 1],604

lim
n→∞

SC(C, d)

SC(Gj , d)
≥ (1− x∗

MID)(1− (m− 1)aMID) + (m− 1)aMID

√
1 + ϵ2

(1− (m− 1)aMID)
√
(x∗

MID)
2 + ϵ2 + 2(m− 2)aMIDϵ

(41)

=
(mqMID − (1 + ζ))

√
1 + ϵ2 + (1 + ζ)(1− x∗

MID)

(1 + ζ)
√
(x∗

MID)
2 + ϵ2 + 2(m− 2)aMIDϵ

. (42)

Clearly every candidate in G minimises the social cost and now we show that lim
n→∞

P[C wins] = 1.605

Let Bernoulli random variables {Yi}ni=1 denote the events that voter i ∈ N ranks candidate C at the top. Here,∑n
i=1 P[Yi = 1] = qMID(n− (m− 1)⌊aMIDn⌋) and thus

lim
n→∞

n∑
i=1

P[Yi = 1]

n
=

1 + ζ

m
.

By the law of large numbers, we have that P[
∑

i Yi ≥ n
m ] = 1 as n → ∞. Since every candidate in G is equally likely606

to win, the event
∑

i Yi ≥ n
m implies the event that C is the winner and thus, limn→∞ P[C wins] = 1. Thus,607

lim
n→∞

DIST(g)(PLU, n,m) ≥ (mqMID − (1 + ζ))
√
1 + ϵ2 + (1 + ζ)(1− x∗

MID)

(1 + ζ)
√

(x∗
MID)

2 + ϵ2 + 2(m− 2)aMIDϵ
. (43)

Construction 2: Let qOUT := g

(√
(x∗

OUT)
2+ϵ2

1+x∗
OUT

)
and aOUT := 1

m−1

(
1− 1+ζ

mqOUT

)
. Each candidate in G has ⌊aOUTn⌋ voters608

overlapping with it, and the remaining “ambivalent" voters are at (−x∗
OUT, 0, 0).609

Clearly, each voter overlapping with a candidate votes for it as the most preferred candidate with probability one. Each610

of the ambivalent voters votes as follows.611
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• With probability qOUT, vote for candidate C as the top choice and uniformly randomly permute the other candidates in612

the rest of the vote.613

• With probability 1−qOUT, vote for candidate C as the last choice and uniformly randomly permute the other candidates614

in the rest of the vote.615

This satisfies the pairwise probability criterion in Equation 3. For every j ∈ [m− 1],616

lim
n→∞

SC(C, d)

SC(Gj , d)
≥ (1 + x∗

OUT)(1− (m− 1)aOUT) + (m− 1)aOUT

√
1 + ϵ2

(1− (m− 1)aOUT)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

(44)

=
(1 + ζ)(1 + x∗

OUT) + (mqOUT − (1 + ζ))
√
1 + ϵ2

(1 + ζ)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

. (45)

Clearly, every candidate in G minimises the social cost. Now, we show that lim
n→∞

P[C wins] = 1.617

LEt Bernoulli random variables {Yi}ni=1 denote the events that voter i ∈ N ranks candidate C at the top. We have618 ∑n
i=1 P[Yi = 1] = qMID(n− (m−1)⌊an⌋) and thus, limn→∞

∑n
i=1 P[Yi=1]

n = 1+ζ
m . Applying the law of large numbers,619

we get that P[
∑
i

Yi ≥ n
m ] = 1 as n tends to ∞. However since every candidate in G is equally likely to win, the event620 ∑

i Yi ≥ n
m corresponds to the event that C is the winner and thus, limn→∞ P[C wins] = 1. Therefore we have,621

lim
n→∞

DIST(g)(PLU, n,m) ≥ (mqOUT − (1 + ζ))
√
1 + ϵ2 + (1 + ζ)(1 + x∗

OUT)

(1 + ζ)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

. (46)

On applying the limit ϵ, ζ → 0 and substituting for qMID and qOUT, we get the desired lower bound by combining the622

results from the two constructions.623

E Proof of Theorem 3624

Theorem 7. Restatement of Theorem 3 For every ϵ > 0,m ≥ 2 and n ≥ 4, we have625

DIST(g)(COP, n,m) ≤ 4m(m− 1) exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2

+max
(( 2ĝMID

1− n−( 1
2−ϵ)

− 1
)2

,
( 2ĝOUT

1− n−( 1
2−ϵ)

+ 1
)2)

.

For every m ≥ 2, we have lim
n→∞

DIST(g)(COP, n,m) ≤ max
(
(2ĝMID − 1)

2
, (2ĝOUT + 1)

2 )
.626

Proof. Recall that B ∈ A minimises the social cost, and {Aj}j∈[m−1] denotes the set A \B.627

DIST(g)(COP, n,m) = sup
d∈M(N∪A)

m−1∑
j=1

P[Aj wins]
SC(Aj , d)

SC(B, d)
+ P[B wins]

 (47)

Consider a Copeland winner W . As noted by prior work [1], W must be in the uncovered set of the tournament graph,628

and one of the following two cases must be true.629

• W defeats B.630

• There exists a candidate Y ∈ A s.t. W defeats Y and Y defeats B.631

For every j ∈ [m − 1], we now bound the probability of Aj being the winner. For every j ∈ [m − 1], we define632

Bernoulli random variables {Yi,j}ni=1 denoting the event that voter i ranks candidate Aj over candidate B. From633

Equation 3, we have that Yi,j ∼ Bern
(
g
(

d(i,Aj)
d(i,B)

))
. For every distinct j, k ∈ [m− 1], we define Bernoulli random634

variables {Zi,j,k}ni=1 denoting the event that voter i ranks candidate Aj over Ak. Zi,j,k ∼ Bern(g
(

d(i,Ak)
d(i,Aj)

)
).635
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Observe that636

P[Aj wins] ≤ P

 n∑
i=1

Yi,j ≥
n

2

⋃
k∈[m−1]\{j}

(
n∑

i=1

Zi,j,k ≥ n

2
∩

n∑
i=1

Yi,k ≥ n

2

) . (48)

Let αj denote the expected value of the random variable
∑n

i=1 Yi,j , i.e., the expected number of voters who rank637

candidate Aj over B.638

αj :=

n∑
i=1

E[Yi,j ] =

n∑
i=1

g

(
d(i, B)

d(i, Aj)

)
for every j ∈ [m− 1]. (49)

Let βj,k denote the expected value of the random variable
∑n

i=1 Zi,j,k, i.e., the expected number of voters who rank639

candidate Aj over Ak.640

βj,k :=

n∑
i=1

E[Zi,j,k] =

n∑
i=1

g

(
d(i, Ak)

d(i, Aj)

)
for every j ∈ [m− 1]. (50)

Similar to Equation (31), we have the following bound:641

If αj ≤
n

2
− n(1/2+ϵ)

2
, we have

P

(
n∑

i=1

Yi,j ≥
n

2

)
= P

(
n∑

i=1

Yi,j ≥ αj

(
1 +

n

2αj
− 1

))
(51)

(a)

≤

(
e
( n
2αj

−1)

( n
2αj

)n/2αj

)αj

(52)

≤
(
2αj

n

)2(
mαj

n
exp

(
− αj

n/2− 2

))(n
2 −2)

e
n
m (53)

(c)

≤
(
2αj

n

)2

e
n
2

(1− n−( 1
2−ϵ)

)
exp

−
n
2 − n( 1

2
+ϵ)

2

n/2− 2

n
2 −2

(54)

=

(
2αj

n

)2 (
1− n−( 1

2−ϵ)
)(n/2−2)

exp

(
n( 1

2+ϵ)

2

)
(55)

(d)

≤
(
2αj

n

)2

exp

(
−2n−( 1

2−ϵ)(n/2− 2)

2− n−( 1
2−ϵ)

+
n( 1

2+ϵ)

2

)
(56)

=

(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

(2n( 1
2−ϵ) − 1)2

)
(57)

From Equation (31) in the proof of Theorem 1, we have642

P

(
n∑

i=1

Yi,j ≥
n

2

)
≤
(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if αj ≤

n

2
− n(1/2+ϵ)

2
. (58)

643

Similarly, P

(
n∑

i=1

Zi,j,k ≥ n

2

)
≤
(
2βj,k

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if βj,k ≤ n

2
− n(1/2+ϵ)

2
. (59)

Consider two exhaustive cases on candidate Aj and define an event Ej for every j ∈ [m− 1]. We compute the expected644

fraction of votes on pairwise comparisons. The event Ej denotes the existence of an at-most two hop directed path645

from a candidate Aj to candidate B for Copeland such that the expected fraction of votes on all edges along that path646

exceed n
2 − n(1/2+ϵ)

2 . Recall that we only considered one hop path for the case of PLU in the proof of Theorem 1.647
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Ej :=

(
αj ≥

n

2
− n(1/2+ϵ)

2

) ⋃
k∈[m−1]\{j}

((
βj,k ≥ n

2
− n(1/2+ϵ)

2

)⋂(
αk ≥ n

2
− n(1/2+ϵ)

2

))
. (60)

If Ej holds true, we can directly upper bound the ratio of the social cost of candidate Aj to the social cost of candidate648

B using Lemma 2, which in turn provides a bound on the distortion. If Ej does not hold, we apply the union bound and649

Chernoff’s bound to upper bound the probability of Aj being the winner. By multiplying this probability bound with650

the ratio of social costs obtained from Lemma 2, we derive a bound on the distortion.651

Define S := {j ∈ [m − 1] : Ej is not true}. Furthermore, we define K1(j) := {j ∈ [m − 1] : αk ≥ βj,k} and652

K2(j) := {j ∈ [m− 1] : αk < βj,k} denotes complement of K1(j) for every j ∈ [m].653

From Equations (58) and (59), both of the following conditions 1 and 2 are satisfied for every j ∈ S.654

1. P
(∑n

i=1 Yi,j ≥ n
2

)
≤
(

2αj

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
655

2. For every k ∈ [m− 1] \ {j},656

P
(∑n

i=1 Zi,j,k ≥ n
2

)
≤
(

2βj,k

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
if k ∈ K1(j)657

and, P
(∑n

i=1 Yi,k ≥ n
2

)
≤
(
2αk

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
if k ∈ K2(j).658

Furthermore, we define γj := max

(
max

k∈[m−1]\{j}
(min(αk, βj,k)) , αj

)
.659

Since, for every Copeland winner W , it must either defeat B or there exists a Y ∈ A s.t. W defeats Y and Y defeats B.660

Using union bound for every j ∈ S, we have661

P[Aj wins] ≤ P

[
n∑

i=1

Yi,j ≥
n

2

]
+

∑
k∈[m−1]\{j}

P

[(
n∑

i=1

Yi,k ≥ n

2

)
∩

(
n∑

i=1

Zi,j,k ≥ n

2

)]
if j ∈ S

≤
(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
+

∑
k∈K2(j)

(
2αk

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)

+
∑

k∈K1(j)

(
2βj,k

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if j ∈ S

≤m

(
2γj
n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if j ∈ S. (61)

The last inequality follows from the definition of γj .662

Furthermore from Lemma 2 and the definition of γj , 6 we have663

SC(Aj , d)

SC(B, d)
≤
(
max

(
n

γj
ĝMID − 1,

n

γj
ĝOUT + 1

))2

(62)

Using Equation (62) and (61) and applying max(a, b) ≤ a+ b, we have664

P[Aj wins]
SC(Aj , d)

SC(B, d)
≤ 4m exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2 if j ∈ S. (63)

6This follows on splitting SC(Aj ,d)

SC(B,d)
=

SC(Aj ,d)

SC(Ak,d)
× SC(Ak,d)

SC(B,d)
and applying the lemma separately. We further use the fact that

1
γ
= min

(
min

k∈[m−1]\{j}

(
max( 1

αk
, 1
βj,k

)
)
, 1
αj

)
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Recall that for every j ∈ [m− 1] \ S, Ej is satisfied. Let us further denote665

Êj := αj ≥
n

2
− n(1/2+ϵ)

2
and D̂j,k :=

(
βj,k ≥ n

2
− n(1/2+ϵ)

2

)
.

Observe that Ej being satisfied implies either a) Êj is satisfied or b) ∃k ∈ [m− 1] \ {j} s.t Êk and D̂j,k are satisfied.666

We consider both cases separately.667

Suppose Êj is satisfied for some j ∈ [m− 1] \ S. Then we have from Lemma 2,668

SC(Aj , d)

SC(B, d)
≤ max

(
2ĝMID

(1− n−(1/2−ϵ))
− 1,

2ĝOUT

(1− n−(1/2−ϵ))
+ 1

)
. (64)

Now we consider case (b) where Êk and D̂j,k are both satisfied for some k ∈ [m− 1] \ {j}. From Lemma 2 we have,669

SC(Aj , d)

SC(B, d)
≤ max

((
2ĝMID

(1− n−(1/2−ϵ))
− 1

)2

,

(
2ĝOUT

(1− n−(1/2−ϵ))
+ 1

)2
)
. (65)

Now combining Equations (63), (64), and (65), we have for any metric space d ∈ M(N ∪A),670

DIST(g)(COP, n,m) ≤

(∑
j∈S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

)
+ P[B wins] +

∑
j∈[m−1]\S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

))
(a)

≤ 4(m− 1)m exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT) + max

(
max

j∈[m−1]\S

SC(Aj , d)

SC(B, d)
, 1

)
(b)

≤ 4(m− 1)m exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT) + max

(( 2ĝMID

(1− n−(1/2−ϵ))
− 1
)2

,
( 2ĝOUT

(1− n−(1/2−ϵ))
+ 1
)2)

.

(a) follows from Equation (61) and the fact that
∑

j∈S

(
P[Aj wins] SC(Aj ,d)

SC(B,d)

)
+P[B wins] ≤ max

(
max
j∈S

SC(Aj ,d)
SC(B,d) , 1

)
.671

(b) follows from combining Equations (63), (64), and (65).672

F Proof of Theorem 4673

Theorem (Restatement of Theorem 4). DIST(g)(RD,m, n) ≤ (m− 1)ĝMID + 1.674

Proof. The probability of voter i voting for candidate W as its top candidate is upper bounded by g
(

d(i,B)
d(i,W )

)
which is675

the probability that W is ranked over B. Therefore, under RD, the probability of W winning satisfies:676

P[W wins] ≤ 1

n

(
n∑

i=1

g

(
d(i, B)

d(i,W )

))
. (66)

Recall that we define the set of candidates in A \ B as {A1, A2, . . . , Am−1}. In the rest of the analysis we denote677

d(i, Aj) by yi,j (for all j ∈ [m − 1]) and d(i, B) by bi for every i ∈ [n]. We also denote d(B,Aj) by zj for every678
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j ∈ [m− 1]. Now for every metric d, we bound the distortion as follows.679

DIST(g)(RD,m, n) ≤
m−1∑
j=1

(
P[Aj wins]

∑n
i=1 yi,j∑n
i=1 bi

)
+ (1−

m−1∑
j=1

P[Aj wins]) (67)

=

m−1∑
j=1

P[Aj wins]
(∑n

i=1 yi,j∑n
i=1 bi

− 1

)
+ 1 (68)

(a)

≤
m−1∑
j=1

1

n

(
n∑

i=1

g

(
bi
yi,j

)) ∑n
i=1(yi,j − bi)∑n

i=1 bi
+ 1 (69)

≤
m−1∑
j=1

1

n

(
n∑

i=1

g

(
bi/zj
yi,j/zj

)) ∑n
i=1(yi,j/zj − bi/zj)∑n

i=1 bi/zj
+ 1 (70)

(d)

≤
m−1∑
j=1

(∑n
i=1 g

(
bi/zj
yi,j/zj

))
∑n

i=1 bi/zj
+ 1 (71)

(e)

≤ (m− 1)
g
(

x∗
MID

1−x∗
MID

)
x∗

MID

+ 1 = (m− 1)ĝMID + 1. (72)

(a) follows from Equation (66).680

(d) follows from the fact that yi,j − bi ≤ zj which follows from triangle inequality.681

(e) follows from the following arguments by considering two cases namely bi
zj

≤ 1 and bi
zj

≥ 1.682

When bi
zj

≤ 1 and thus, yi,j

zj
≥ 1− bi

zj
from triangle inequality. Similarly, we have yi,j

zj
≥ bi

zj
− 1 when bi

zj
≥ 1. Thus,683

g
(

bi/zj
yi,j/zj

)
bi/zj

≤ max

(
sup

x∈(0,1)

g( x
1−x )

x
, sup
x∈(1,∞)

g( x
x−1 )

x

)
for every i ∈ [n] (73)

=⇒

∑n
i=1 g

(
bi/zj
yi,j/zj

)
∑n

i=1 bi/zj
≤ max

g
(

x∗
MID

1−x∗
MID

)
x∗

MID

, 1

 . (74)

The last inequality follows from the fact that
g( x

x−1 )

x ≤ 1 when x ≥ 1. Further, we have ĝMID ≥ 1 for all valid g.684

G Proof of Theorem 6685

Theorem (Restatement of Theorem 6). Let DISTθ
PL(RD,m, n) denote the distortion when the voters’ rankings are686

generated per the PL model with parameter θ. We have limn→∞ DISTθ
PL(RD,m, n) ≥ 1 + (m−1)1/θ

2 .687

Proof. We have a 1-D Euclidean construction. Let B be at 0 and all other candidates A\ {B} be at 1. m− 1 voters are688

at 0, and one voter is at t. We will set t later by optimizing for the distortion.689

The distortion for this instance is P[B wins] · 1 + P[B loses] · n−t
t = n−1

n + 1
n

t−θ

t−θ+(m−1)(1−t)−θ +690

1
n

(m−1)(1−t)−θ

t−θ+(m−1)(1−t)−θ
n−t
t . We drop the terms which are O(1/n) to obtain 1 + (m−1)(1−t)−θ

t(t−θ+(m−1)(1−t)−θ)
. This simplifies to691

1 + (m−1)tθ−1

(1−t)θ+(m−1)tθ
. This is lower bounded by 1 + (m−1)tθ−1

1+(m−1)tθ
. Setting t = (m− 1)−1/θ, we obtain a distortion lower692

bound of 1 + (m−1)1/θ

2 .693
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider,848

including relevant memory and storage.849

• The paper should provide the amount of compute required for each of the individual experimental runs as850

well as estimate the total compute.851

• The paper should disclose whether the full research project required more compute than the experiments852

reported in the paper (e.g., preliminary or failed experiments that didn’t make it into the paper).853

9. Code Of Ethics854

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of855

Ethics https://neurips.cc/public/EthicsGuidelines?856

Answer: [Yes]857

Justification: [NA]858

Guidelines:859

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.860

• If the authors answer No, they should explain the special circumstances that require a deviation from the861

Code of Ethics.862

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws863

or regulations in their jurisdiction).864

10. Broader Impacts865

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the866

work performed?867

Answer: [Yes]868

Justification: We have discussed the positive social impact of the design of voting rules and ways in which our869

paper can be instrumental towards it.870

Guidelines:871

• The answer NA means that there is no societal impact of the work performed.872

• If the authors answer NA or No, they should explain why their work has no societal impact or why the873

paper does not address societal impact.874

• Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation,875

generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could876

make decisions that unfairly impact specific groups), privacy considerations, and security considerations.877

• The conference expects that many papers will be foundational research and not tied to particular878

applications, let alone deployments. However, if there is a direct path to any negative applications,879

the authors should point it out. For example, it is legitimate to point out that an improvement in the880

quality of generative models could be used to generate deepfakes for disinformation. On the other hand,881

it is not needed to point out that a generic algorithm for optimizing neural networks could enable people882

to train models that generate Deepfakes faster.883

• The authors should consider possible harms that could arise when the technology is being used as intended884

and functioning correctly, harms that could arise when the technology is being used as intended but gives885

incorrect results, and harms following from (intentional or unintentional) misuse of the technology.886

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g.,887

gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse,888

mechanisms to monitor how a system learns from feedback over time, improving the efficiency and889

accessibility of ML).890

11. Safeguards891

Question: Does the paper describe safeguards that have been put in place for responsible release of data892

or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped893

datasets)?894

Answer: [NA]895

Justification: [NA]896

Guidelines:897

• The answer NA means that the paper poses no such risks.898

27

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with necessary safeguards899

to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or900

restrictions to access the model or implementing safety filters.901

• Datasets that have been scraped from the Internet could pose safety risks. The authors should describe902

how they avoided releasing unsafe images.903

• We recognize that providing effective safeguards is challenging, and many papers do not require this, but904

we encourage authors to take this into account and make a best faith effort.905

12. Licenses for existing assets906

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly907

credited and are the license and terms of use explicitly mentioned and properly respected?908

Answer: [NA]909

Justification: [NA]910

Guidelines:911

• The answer NA means that the paper does not use existing assets.912

• The authors should cite the original paper that produced the code package or dataset.913

• The authors should state which version of the asset is used and, if possible, include a URL.914

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.915

• For scraped data from a particular source (e.g., website), the copyright and terms of service of that source916

should be provided.917

• If assets are released, the license, copyright information, and terms of use in the package should be918

provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets.919

Their licensing guide can help determine the license of a dataset.920

• For existing datasets that are re-packaged, both the original license and the license of the derived asset (if921

it has changed) should be provided.922

• If this information is not available online, the authors are encouraged to reach out to the asset’s creators.923

13. New Assets924

Question: Are new assets introduced in the paper well documented and is the documentation provided925

alongside the assets?926

Answer: [NA]927

Justification: [NA]928

Guidelines:929

• The answer NA means that the paper does not release new assets.930

• Researchers should communicate the details of the dataset/code/model as part of their submissions via931

structured templates. This includes details about training, license, limitations, etc.932

• The paper should discuss whether and how consent was obtained from people whose asset is used.933

• At submission time, remember to anonymize your assets (if applicable). You can either create an934

anonymized URL or include an anonymized zip file.935

14. Crowdsourcing and Research with Human Subjects936

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full937

text of instructions given to participants and screenshots, if applicable, as well as details about compensation938

(if any)?939

Answer: [NA]940

Justification: [NA]941

Guidelines:942

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.943

• Including this information in the supplemental material is fine, but if the main contribution of the paper944

involves human subjects, then as much detail as possible should be included in the main paper.945

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor946

should be paid at least the minimum wage in the country of the data collector.947

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects948

28

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether such risks949

were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent950

approval/review based on the requirements of your country or institution) were obtained?951

Answer:[NA]952

Justification: [NA]953

Guidelines:954

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.955

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be required956

for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.957

• We recognize that the procedures for this may vary significantly between institutions and locations, and958

we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.959

• For initial submissions, do not include any information that would break anonymity (if applicable), such960

as the institution conducting the review.961

29


	Introduction
	Preliminaries and Notation
	Our Contributions
	Related Work

	Axioms and Model
	Distortion of Plurality Rule Under Probabilistic Voting
	Upper bound on the distortion of Plurarity(PLU)
	Lower bound on the distortion of Plurality

	Distortion of Copeland Rule Under Probabilistic Voting
	Distortion of Random Dictator Rule Under Probabilistic Voting
	Numerical Evaluations
	Discussion and Future Work
	Proof of Lemma 1
	Proof of Lemma 5
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6

