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Abstract

Attention-based architectures trained on internet-scale language data have demon-1

strated state of the art reasoning ability for various language-based tasks, such as2

logic problems and textual reasoning. Additionally, these Large Language Mod-3

els (LLMs) have exhibited the ability to perform few-shot prediction via in-context4

learning, in which input-output examples provided in the prompt are generalized5

to new inputs. This ability furthermore extends beyond standard language tasks,6

enabling few-shot learning for general patterns. In this work, we consider the7

application of in-context learning with pre-trained language models for dynamic8

manipulation. Dynamic manipulation introduces several crucial challenges, in-9

cluding increased dimensionality, complex dynamics, and partial observability.10

To address this, we take an iterative approach, and formulate our in-context learn-11

ing problem to predict adjustments to a parametric policy based on previous in-12

teractions. We show across several tasks in simulation and on a physical robot13

that utilizing in-context learning outperforms alternative methods in the low data14

regime.15

1 Introduction16

Transformer-based architectures trained on internet-scale data, Large Language Models (LLMs),17

have recently become a powerful tool for a variety of language and image-based tasks [29]. Recent18

works have proposed robotics methods that exploits the reasoning ability of these LLMs over textual19

and visual inputs to perform high-level planning [9], generate robot control code [12], and derive20

reward functions [8]. These methods all exploit in-weights learning, exploiting the information21

stored in the weights of the networks. But what if a task is not well reflected in textual inputs or22

even in visual information?23

Amongst the emergent abilities, these Large Language Models (LLMs) can perform few-shot learn-24

ing, in which a small number of input-output examples are provided in the prompt to the model,25

before being provided with a test input [2]. This form of learning has been dubbed in-context learn-26

ing. Curiously, this ability has been shown to extend to patterns that are not necessarily reflected27

in the training domain, suggesting that LLMs act as general pattern machines [17]. This invites an28

intriguing proposition: that large-scale language pre-training can enable few-shot learning in new29

domains. In this work, we explore how in-context learning can be applied for a class of robotic tasks30

which are not easy to reflect in textual and visual inputs alone: dynamic manipulation.31

Robotic manipulation that exploits dynamics can introduce several benefits over quasi-static sys-32

tems. Dynamic manipulation can increase the robot workspace [33, 32], improve task ef-33

ficiency [7, 27], and extend robot capabilities with new skills such as dynamic in-hand re-34

grasping [24]. Designing systems for dynamic manipulation introduces several challenges. First,35

the system dynamics are often dependent upon underlying physical properties that are not easy to36
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Figure 1: We investigate in-context learning for iteratively improving policy parameters for dynamic manip-
ulation tasks. We demonstrate across a variety of tasks, both in simulation and on a real robot, that utilizing
in-context learning with a pretrained Large Language Model (such as OpenAI’s gpt-4o), can learn to improve
dynamic manipulation policies interactively from a small (≤ 300) policy improvement dataset.

observe directly, including from vision, such as the mass of an object, friction of a surface, or density37

of a rope. These properties require dynamic interactions [28, 26] and/or additional sensing [24] to38

accurately observe. Second, the increased dimensionality of the system (such as deformable ma-39

nipulation [7, 5]) and the complexity of the dynamics (such as frictional contact interactions) have40

largely limited current systems to single-task solutions. These solutions generally involve collecting41

large datasets and training task-specific solutions [5, 28, 13].42

Humans performing dynamic manipulation may fail on a first attempt, but utilize their experience in-43

teracting with similar dynamical systems to iteratively improve their approach on a target system. In44

this work, we seek to enable robots that also can iteratively improve their interactions with a dynam-45

ical system. We investigate enabling a few-shot iterative policy improvement technique, utilizing46

in-context-learning with pre-trained LLMs. We formulate our problem as learning an improvement47

operator, which predicts adjustments to a parametric policy based on the results of previous inter-48

actions. Previous interactions are tokenized and fed as inputs along with policy parameters and49

in-context learning is utilized to output a change to the policy parameters that drives towards task50

success. We utilize a small dataset of improvement labels from interactions with similar tasks to51

form our in-context examples.52

We apply our method to a variety of dynamic manipulation tasks, in simulation and on a physical53

robot (Fig. 1). Our results indicate the novel ability of pre-trained LLMs to perform in-context policy54

improvement for dynamic manipulation tasks without requirement of any fine-tuning or training. We55

show that our proposed approach outperforms utilizing in-weights reasoning or alternative in-context56

policy approaches [17] and compares favorably to alternative policy optimization approaches (e.g.,57

Bayesian Optimization) and other policy improvement operators in the low data regime.58

2 Related Work59

2.1 Large Language Models and In-Context Learning60

Large Language Models (LLMs), attention-based architectures [23] trained on internet-scale lan-61

guage data, have demonstrated remarkable ability in generating solutions to various language-based62

tasks such as logic problems and math puzzles [20, 22] and reasoning about joint visual and tex-63

tual inputs [29]. As model scale increased, LLMs were shown to be capable of few-shot learning,64

where input-output examples for an unseen problem are provided in the prompt, without the need65

for model updates [2]. LLMs thus exhibit two forms of learning: in-weights learning involves in-66

formation stored in the model weights via gradient updates on the training dataset, while in-context67

learning involves information provided only in the inputs at inference time (i.e., the prompt), with68

no weight updates. Recent work has shown that in-context learning can be applied outside of the69

training domain, suggesting that pre-trained LLMs can act as general pattern machines, capable of70

identifying input-output patterns in-context in new target domains [17].71
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In-context learning (ICL) emerges as a result of explicitly training on large contexts that cover multi-72

ple task examples [2] or implicitly due to distributional properties of the training data [3]. Some work73

suggests ICL is driven by induction heads, an attention mechanism which associates completions74

with previous, related completions in the prompt [19]. Behaviorally, transformers exhibit examplar-75

based generalization in-context, compared to rule-based generalization in-weights [4]. The phe-76

nomena is still not fully understood: [16] showed that for certain text-based tasks, randomizing the77

output labels in the context has little effect on performance, suggesting that exposure to input/output78

distributions and/or improved in-weights recall drives improvement, rather than learning from in-79

context labeled data. ICL has, however, been demonstrated on out of distribution tasks, suggesting80

labels are utilized in certain cases [3, 17].81

2.2 LLM for Robotics82

The majority of LLM-enabled robotics methods to date largely exploit in-weights reasoning. These83

systems utilize the reasoning capabilities of large pre-trained models to perform zero-shot (or few-84

shot) reasoning on a variety of robotics tasks by prompting LLMs to generate high-level plans [9,85

21], robot control code [12], value functions for trajectory optimization [8, 31], reward functions86

for Reinforcement Learning (RL) [25], and motion trajectories [10]. These methods demonstrate87

flexible systems that can be applied to broad classes of tasks, purely exploiting the knowledge and88

reasoning in the pretrained models. The tasks considered, however, are largely quasi-static and89

kinematic in nature, such as pick-and-place, opening/closing, and object retrieval. The emphasis90

on largely high-level reasoning tasks may result in more subject matter overlap in an LLM training91

corpus. Reasoning about low-level dynamics, however, is unlikely to appear in the training data as92

the relevant data is rarely presented explicitly, let alone in text. This motivates our investigation of93

ICL as an LLM mechanism applicable to dynamic manipulation.94

2.3 In-Context Learning for Robotics95

Most related to our work is the sequence improvement demonstrated in [17]. They propose a purely96

in-context method that improves a trajectory for tasks such as cartpole or a reaching task, where97

the trajectory/policy is tokenized and iteratively improved based on execution feedback. In contrast,98

our method uses a small number of examples to fit a policy improvement operator in context. Also99

related is Keypoint Action Tokens, which performs behavior cloning via in-context learning [6].100

Behavior cloning is difficult to apply to these dynamic manipulation tasks as the task parameters101

are not always available a priori. Finally, some work trains transformers from scratch for multi-task102

policy adaptation [30] or system identification [34]. This requires significant data and modeling103

effort. In contrast, our work relies solely on learning in-context using a pre-trained transformer.104

3 Problem Formulation105

We consider solving a dynamic manipulation task drawn from a task distribution τ ∼ P (τ). τ106

reflects the variation in the task, such as physical parameters of the system (e.g., friction or mass) or107

the desired goal for a goal-conditioned policy. We assume a parametric policy πθ. We have access108

to the environment through s1:T = Tτ (πθ, s0), where st is the state of the system at time t and s0 is109

the initial state. Finally, we have access to a task cost function Cτ (s1:T ) which evaluates the cost of110

a particular rollout. The objective is to identify the best policy parameters for the given task:111

θ∗ = argmin
θ

Cτ (Tτ (πθ, s0)) (1)

3.1 Tasks112

We consider five different tasks using three robot setups, two simulated and one physical robot.113

We describe in each case the task parameters, state definition, and policy parameterization. In ac-114

cordance with similar dynamic manipulation work, we utilize parametric motions as our policy,115

designed in accordance with each task [5]. The task setups are shown in Fig. 1.116
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3.1.1 Slide Task (slide)117

In this simulated task, a cylindrical puck is placed on a support surface in front of a Franka Emika118

Panda robot manipulator with a cylindrical end effector attachment. The task is to strike the puck119

with the robot end effector, causing it to slide along the surface to some goal configuration. In this120

task iteration, the start and goal location is fixed, while the physical parameters of the puck are121

adjusted. In particular, we adjust the puck radius τr and the surface friction coefficient τµ. The task122

parameters τr, τµ are unknown to the policy. Our state space st ∈ R2 is the location of the puck123

center at time t on the plane of the table. The goal τg ∈ R2 is a fixed location on the table. The task124

cost function is the distance to the goal configuration,125

Cslide
τ (s1:T ) = ||sT − τg||2 (2)

For this task, we use a 3-dimensional policy parameterization θ = (θα, θd, θt) which defines the126

robot motion. θα is the angle of the robot motion from start, with 0 degrees pushing straight forward.127

θd is the distance to move during the push. θt is the time to complete the push.128

3.1.2 Slide Goal-Conditioned Task (slide-gc)129

This is a goal-conditioned variation on the simulation slide task. We fix the puck radius and friction130

and instead adjust the goal configuration τg ∈ R2. We use the same task cost function as the slide131

task and change the policy parameterization slightly so that θα is the approach angle to the puck to132

ensure contact is made.133

3.1.3 Rope Swing Task (rope-swing)134

Our next task is the simulated rope swing task from Chi et al [5]. In the task, a rod is attached to135

the end of a UR5e robot manipulator, and a rope is attached to the end of the rod. The goal of the136

task is to swing the rope so that the tip of the rope passes through a particular location. In this task137

iteration, the goal location is fixed. We adjust the rod length τr and rope length τl, and both values138

are unknown to the policy. The state space st ∈ R2 is the location of the rope end in the Y-Z plane,139

in which the swing occurs. The goal τg ∈ R2 is a fixed location in the plane. The task cost function140

is the smallest distance from the state to the goal during the swing,141

Crope-swing
τ (s1:T ) = min

t
||st − τg||2 (3)

We use the same policy parameterization from Chi et al [5]. Namely, we use a 3-dimensional policy142

parameterization θ = (θv, θJ2 , θJ3), which defines the swing. θv is the angular velocity while θJ2143

and θJ3
defines the end motion of the second and third joints of the robot.144

3.1.4 Rope Swing Goal-Conditioned Task (rope-swing-gc)145

This is a goal-conditioned variation on the simulated rope swing task. We fix the rod and rope lengths146

and adjust the goal configuration τg ∈ R2. We use the same policy and task cost parameterization147

as the rope-swing task.148

3.1.5 Real Roll Goal-Conditioned Task (roll-gc-real)149

In this task we perform a goal-conditioned ball rolling task, using a real MELFA-Assista robot with150

a block end-effector for striking the ball. We place a billiards table in front of the robot and place the151

cue ball in a fixed position in front of the robot. The state space st ∈ R2 is the pixel location of the152

ball tracked in a top-down camera view. The task is to strike the ball causing it to roll to the sampled153

goal pixel location τg ∈ R2. We use the same task cost function and policy parameterization as the154

slide goal conditioned task (slide-gc).155

4 Method156

When performing a dynamic manipulation task, it is often not feasible to expect success on the first157

try, as important task parameters may not be readily observable a priori or due to the complexity of158

the task. Instead, several interactions with the system allow one to observe an outcome and correct159

course. For example, [28] uses exploratory interactions to understand physical parameters before160
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Figure 2: Overview of our proposed In-Context Policy Improvement (ICPI) method. We tokenize policy pa-
rameters and error of the current policy and provide it, along with examples from a small policy improvement
dataset to the LLM in the prompt. The LLM then outputs the delta policy parameters.

executing a dynamic manipulation task. In [5], the authors propose executing a task, then learning161

how to adjust the trajectory to improve performance. While these demonstrate the value of iterative162

reasoning for dynamic tasks, they require large training datasets and complex neural architectures.163

We investigate if a similar iterative policy approach can be achieved utilizing the in-context learning164

ability of LLMs pretrained on language data.165

4.1 Policy Improvement Operator166

Our goal is ultimately to solve the optimization in Eq. 1. We propose to solve this by attempting to167

iteratively improve our policy parameterization θ. To achieve this, we formulate a policy improve-168

ment operator f , as a mapping that takes in the current best policy parameterization estimate θi and169

state trajectory si1:T and outputs a change to the policy ∆θi:170

f(θi, si1:T ) → ∆θi (4)

The improved policy is then θi+1 = θi + ∆θi. To fit this operator, we assume access to a dataset171

D = {d1, d2, ..., dN} of policy improvement labels, di = (θi, si1:T ,∆θi). We discuss how this172

dataset can be collected in Sec. 4.4.173

In the typical approach to solving for this data-driven operator, f would be setup as a data-driven174

model, such as a neural network, which is trained using the dataset D. Here we instead propose to175

utilize in-context learning, leveraging pre-trained LLMs by inputting both our query and the dataset176

D into the LLM prompt:177

f(θi, si1:T ,D) → ∆θi (5)
The result is a sample-efficient method that requires no model design or training, but rather fits the178

operator all in the forward pass of the pre-trained model.179

We utilize the LLM by treating our policy improvement operator as a sequence-to-sequence comple-180

tion task. The input sequence is the current policy and state trajectory and the output sequence is the181

policy change. We use the provided dataset to feed example input-output sequences, and the LLM is182

instructed to complete the sequence for the current policy information to estimate the corresponding183

policy update:184

f({θDj , s
Dj

1:T ,∆θDj}kj=1, θ
i, si1:T ) → ∆θi (6)

We call our proposed method In-Context Policy Improvement (ICPI) (Fig. 2). Next, we highlight185

how we tokenize the policy and state trajectories for input to the LLM and discuss how examples186

are selected from the dataset to form our query.187

4.2 Tokenization188

To input our policy and state trajectory information, we must tokenize the information to text which189

the LLM can parse and reason over. Following existing in-context learning approaches [17, 6], we190

encode our policy and state information as numeric characters. For our policy and policy update191

values, θ and ∆θ, we simply tokenize each term as characters.192

For the state trajectory si1:T , we design a task-specific encoding to reflect the error of the execution.193

In many tasks, the relative change in an outcome is consistent even for differing task parameters. For194
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example, two pucks of different mass may behave differently, but if each is falling short of the goal,195

we want to push “harder” in both cases. Thus, correcting for similar relative errors may involve196

similar ∆θ. As such, we encode the state trajectory information as the relative error to the goal,197

si1:T → ei = sit − τg . t is selected according to the task. For the slide and roll tasks, t = T . For198

rope-swing, t = argmint ||st − τg||2. This relative error is then tokenized as characters.199

4.3 Dataset Example Selection200

To enable in-context learning, we select a set of example input-output sequences from our dataset201

D to be provided along with the current policy execution input. In order to limit the size of the202

inputs to the LLM and focus the examples on “useful” examples, we utilize a K-Nearest Neighbors203

(KNN) lookup to find similar examples. In particular, we construct a k-D Tree using the vector204

vDj = [θDj , eDj ], where we normalize the policy and error terms to have comparable scale along205

each dimension. For a query example vi = [θi, ei], we can then perform a KNN lookup to find the206

most similar examples in our dataset D. Following existing ICL work [17], we then provide these k207

examples in order of decreasing distance to the query example. In our experiments, we set k = 20.208

4.4 Dataset Construction209

Finally, we discuss the creation of our dataset D. For each task instance τ ∼ P (τ), let θ∗ be a210

solution to Eq. 1. For any nearby execution θ, we can construct the delta label ∆θ = θ∗ − θ. θ∗211

can be derived several different ways, including by demonstration or via some other algorithmic212

approach to solving Eq. 1, such as Reinforcement Learning or brute force search. Our method then213

learns to make adjustments based on the results of these laborious methods. This can be seen as a214

form of algorithm distillation [11], where we distill the progress of some other algorithm efficiently215

into our new sequence-to-sequence problem.216

In practice, we construct our training data on a per-task basis. For the simulated slide and217

rope-swing setups, we derive θ∗ using a brute-force search algorithm to find a solution θ∗. For our218

roll-gc-real task, executing a brute-force search on the real setup would be too slow. Since we219

are solving a goal conditioned task, we can assign goal labels in hindsight based on the final state of220

the policy rollout [15]. We can then generate our dataset by sampling alternative θ parameterizations,221

and computing the error to the final state of the “guiding” execution.222

5 Results223

5.1 Iterative Policy Improvement224

First, we investigate how our proposed ICPI method performs and provide comparison to baselines.225

While more sophisticated modeling and learning techniques are state-of-the-art for dynamic ma-226

nipulation, these methods generally require large-scale datasets, e.g. 54 million examples for rope227

swing in [5] or ∼5000 steps for Reinforcement Learning of puck sliding in [14]. As such, we focus228

our comparison to data-efficient baselines and alternate LLM-based methods.229

5.1.1 Baselines230

Random Shooting: we set up a random shooting method that samples a change to the current policy231

θi by sampling a randomized offset ∆θi ∼ N (0; 0.5 · ci ·∆θmax), where ∆θmax = θmax − θmin.232

Bayes Opt: this baseline seeks to directly solve Eq. 1 as a Bayesian optimization problem [18].233

KNN-k: this baseline solves the policy iteration by performing only the KNN lookup within D as234

described in Sec. 4.3 and takes the average of the k closest labels. We set k = 5.235

Linear KNN-k: this baseline performs the KNN lookup as described in Sec. 4.3 and fits a linear236

model to the k closest input-output labels, and inputs vi to the linear model. This forms a piece-wise237

linear model of the policy improvement operator. We match ICPI and set k = 20.238

In-Context Sequence-Improvement (ICSI): This method is based on Sequence Improvement tech-239

nique introduced by [17]. In this method, they use cost conditioning to prompt a LLM to improve240

over previous iterations. We apply their method here by pairing policy parameters θi with their cost241
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Method slide slide-gc rope-swing rope-swing-gc roll-gc-real

Rand. Shooting 0.037 (0.050) 0.077 (0.055) 0.007 (0.022) 0.004 (0.009) -
Bayes Opt 0.054 (0.065) 0.087 (0.052) 0.019 (0.018) 0.014 (0.012) -

KNN-5 0.106 (0.085) 0.071 (0.043) 0.020 (0.023) 0.010 (0.015) -
Lin. KNN-20 0.053 (0.060) 0.022 (0.017) 0.042 (0.076) 0.006 (0.017) 33.824 (28.031)

ICSI [17] 0.030 (0.055) 0.107 (0.058) 0.042 (0.067) 0.021 (0.035) -
In-Weights 0.029 (0.055) 0.102 (0.060) 0.027 (0.062) 0.022 (0.037) -

ICPI (Ours) 0.013 (0.014) 0.025 (0.026) 0.007 (0.012) 0.002 (0.006) 17.107 (9.796)
Table 1: Final Best-Policy Mean Performance Comparison Ctask

τ (↓)

(a) slide (b) rope-swing-gc (c) roll-gc-real

Figure 3: Task Cost convergence plots for the best policy so far at each step across three of our tasks comparing
random shooting, piece-wise linear modeling, and our proposed method.

ci. We then query the LLM to generate a new policy conditioned on previous ci, θi examples, and242

prompting with an improved ci+1, asking the LLM to predict the corresponding improved θi+1.243

In-Weights Reasoning (IW): This method seeks to utilize the in-weights reasoning capability of244

LLMs for our tasks. For each task, we describe in natural language the task setup and action space.245

We also provide the previous executions as θi, ei. We then directly query the model to reason246

about the system and provide a better policy. This baseline seeks to determine how well in-weights247

reasoning performs on our target tasks.248

5.1.2 Policy Improvement Results249

We generate a dataset D of ∼300 policy improvement examples as described in Sec. 4.4. For our250

simulated tasks (slide, slide-gc, rope-swing, rope-swing-gc) we run each policy iteration251

method on 100 sampled tasks. For our real task (roll-gc-real) we execute 10 sampled tasks252

and only compare to the piece-wise linear method, as we found it was one of the most competitive253

methods in simulation. All methods are initialized with the same starting action for fair comparison.254

In Table 1, we show the average and standard deviation for the best policy cost after 20 iterations. We255

found that in most tasks, our proposed ICPI method outperformed the baselines, and was the only256

method that consistently performed well across all tasks. In Fig. 3, we compare the evolution of the257

best policy cost as a function of iteration step for random shooting, piece-wise linear (Lin. KNN-258

20), and our method. We see that ICPI consistently outperforms random samples and converges to259

a better result than the piece-wise linear approach, including on the real robot. Qualitative policy260

iteration results for ICPI are shown in Figs. 1 and 4.261

Our in-context method outperformed utilizing in-weights reasoning on our task. This highlights that262

while dynamic reasoning may not be readily available in LLMs, their in-context abilities can still be263

useful. ICPI also outperformed the ICSI approach [17], showing the value of our proposed policy264

improvement formulation for unlocking the benefits of in-context learning.265

5.2 Design Ablations266

We next investigate how design decisions impact ICPI performance. In particular, we look at two267

variations on our method. In the first variation, we exchange our tokenization method, and instead268
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Inputs LLM Model slide slide-gc rope-swing rope-swing-gc

θi, ei gpt-3.5-turbo 0.031 (0.045) 0.033 (0.026) 0.013 (0.019) 0.007 (0.014)
θi, ei gpt-4o-mini 0.026 (0.035) 0.039 (0.031) 0.010 (0.015) 0.009 (0.018)

θi, sit, τg gpt-4o 0.017 (0.022) 0.055 (0.050) 0.002 (0.002) 0.006 (0.012)

θi, ei gpt-4o 0.013 (0.014) 0.025 (0.026) 0.007 (0.012) 0.002 (0.006)
Table 2: ICPI Ablations on Final Best-Policy Mean Performance Comparison Ctask

τ (↓). Last row is settings
used for our experiments.

Figure 4: Qualitative examples of iterative in-context policy improvement using our proposed ICPI for the
slide and rope-swing-gc tasks.

of directly providing ei, we instead provide both sit, τg to the model. Second, we investigate how269

the choice in LLM affects our method performance. The comparisons across our simulated tasks are270

shown in Tab. 2. We find that model choice has a notable impact on in-context learning performance.271

While we are not privy to all model information, we notice that the newer, large-scale reasoning272

model (gpt-4o) seems to outperform older (gpt-3.5-turbo) and smaller (gpt-4o-mini) models.273

We also see that directly providing the relative error ei outperforms providing the state and goal sit, τg274

separately, even though both contain the same information.275

6 Discussion276

We proposed In-Context Policy Improvement (ICPI), utilizing pre-trained Large Language Models277

(LLMs) for sample-efficient dynamic manipulation policy improvement. We demonstrate that while278

LLMs struggle to apply in-weights reasoning to dynamic tasks, in-context learning outperforms279

alternative policy iteration methods, both in simulation and on a real robot. This work adds to a280

growing body of work showing the utility of in-context learning in robotics [17, 6], which we hope281

motivates further investigation, both utilizing non-robotics and robotics specific transformer models.282

6.1 Limitations283

A limitation of our proposed method is the overhead of utilizing large pretrained models. These284

models incur both computational, financial, and environmental overhead [1] and the low-level details285

of models are not available, which can make it difficult to understand model choice impact. Our286

method relies on a policy improvement dataset, which may be difficult to collect for complex tasks.287

Self-play [15] and demonstrations [6] could be utilized to ease the data collection burden.288

In this work, found that some amount of feature selection was important to task success (see drop in289

performance when providing si, τg vs. ei in Sec. 5.2). This seems to indicate that in-context learning290

may not yet be capable of the feature learning ubiquitous in modern machine learning. While signs291

indicate that in-context learning may continue to improve with improved LLMs (see gpt-4o vs.292

gpt-3.5-turbo in Sec. 5.2 and [17]), it is unclear if more advanced pattern-based reasoning will be293

achievable purely in-context. Additionally, we only investigated relatively low-dimensional input-294
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output formats; while low-dimensional parametric actions are common in dynamic manipulation,295

they can limit the dexterity of the system. Our results present sufficient features for our proposed296

tasks - we leave to future work an extensive study of task dimensionality and feature extraction for297

in-context learning.298
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A Appendix418

A.1 Example Prompts419

We provide example prompts and responses for our method along with the other LLM baselines.420

The examples provided are for the simulated slide task.421

A.1.1 In-Context Policy Improvement (Ours)422

See Sec. 4 for in-depth discussion of how we construct our prompts. We note the task-agnostic423

header, which is fixed across our experiments.424

Prompt:
You are a pattern generator machine. I will give you a series of patterns with
INPUTS and OUTPUTS as examples. Then you will receive a new INPUTS, and you have to
generate OUTPUTS following the pattern that appears in the data.

Patterns are provided per-line as: INPUTS;OUTPUTS

Only reply with an estimate for the OUTPUTS. OUTPUTS should be 3 values separated by
spaces.

-0.061 0.242 0.771 -0.001 -0.017;-0.022 0.002 -0.065
0.050 0.284 0.830 0.027 0.001;0.024 -0.007 -0.059
...
0.065 0.276 0.723 -0.086 0.002;0.009 0.001 0.049
-0.031 0.252 0.672 -0.076 -0.011;0.039 -0.036 -0.137

-0.016 0.269 0.780 -0.155 -0.004;

Response:
0.004 -0.011 -0.060

425

A.1.2 In-Context Sequence-Improvement [17]426

Following (author?) [17], we perform sequence improvement in-context. We follow their proposed427

cost prompting strategy of prompting with a randomly sampled improved cost.428

Prompt:
You are a pattern generator machine. I will give you a series of patterns with
INPUTS and OUTPUTS as examples. Then you will receive a new INPUTS, and you have to
generate OUTPUTS following the pattern that appears in the data.

Patterns are provided per-line as: INPUTS;OUTPUTS

Only reply with an estimate for the OUTPUTS. OUTPUTS should be 3 values separated by
spaces.

0.550;0.153 0.112 0.812
0.528;0.464 0.112 0.500
...
0.094;0.298 0.350 0.825
0.044;0.153 0.269 0.825

0.000;

Response:
0.153 0.112 0.825

429

A.1.3 In-Weights Reasoning430

Our final LLM baseline seeks to employ the in-weights capabilities of the model. As such, we431

provide a detailed description of each task, setting, and action space, along with previous interac-432
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tions. The descriptions for the other tasks are provided in similar specificity to attempt to ground the433

in-weights reasoning to the task.434

Prompt:
You are a planner responsible for providing an action for a robot to execute. You
should reason carefully about the physics of the scenario when planning. You may
receive a description of previous interactions with the target system and should
consider these previous interactions when deciding how to act. Each task is solved
via a single action execution - it does not take multiple actions to complete the
task.
Only reply with the action the robot should execute, as a space-separated list of
numbers.
A robot is positioned in front of a table. The robot has an arm which is
extended over the table. The tool connected to the robot is a cylinder, starting
perpendicular to the tabletop. In front of the robot arm on the table is a puck,
which is also a cylinder, and it can move freely on the tabletop. The task is to
use the robot arm to slide the puck on the table to a goal position. The robot tool
and the puck start so that planar motions over the tabletop will cause the two to
collide (i.e., no vertical motion of the robot tool is required). The robot has a
single action to complete the task - it cannot take multiple actions.
The robot tool starts at location (0.000, 0.000) on the tabletop. The puck starts
at location (0.100, 0.000) on the tabletop. The goal is to move the puck to (0.800,
0.000).
The action space of the robot is the polar coordinates for a planar motion of the
robot tool relative to its starting position and the time it takes to complete
the motion. The first term is the angle of motion, where 0 degrees moves straight
forward along the x dimension. The second term is the distance in that direction
the robot will move. The third term is the time it will take to complete the
motion.
The actions are bounded. The angle of motion must lie between -0.464 and 0.464
radians. The distance must be between 0.112 and 0.350 meters. The motion can take
between 0.500 and 5.000 seconds to complete. The provided actions will be clipped
into this range. The action is mapped to a dense set of tool locations via linear
interpolation and executed on the system.
The robot has already interacted with the system several times. You will receive
a set of descriptions of these interactions. You should consider the previous
interactions and how to improve upon them when selecting the next action to attempt.
The previous interactions will be provided with one interaction per line. Each line
will describe the interaction as the action taken and the final position of the puck
relative to the goal location, separated by a semi-colon. Each item is provided as
a space-separated list of values.

0.000 0.350 0.780;-0.654 -0.000
0.000 0.350 0.780;-0.654 -0.000
...
0.000 0.269 0.780;-0.162 -0.000
-0.016 0.269 0.780;-0.155 -0.004

Response:
0.000 0.350 0.780

435
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