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Abstract

Previous works of context-dependent text-001
to-SQL semantic parsing leverage context-002
dependence information either from interac-003
tion history utterances or the previous predicted004
SQL queries but fail in taking advantage of005
both since of the mismatch between natural lan-006
guage and logic-form SQL. In this work, we007
propose a History Information Enhanced text-008
to-SQL model (HIE-SQL) to exploit context-009
dependence information from both history ut-010
terances and the last predicted SQL query. In011
view of the mismatch, we treat natural language012
and SQL as two modalities and propose a bi-013
modal pre-trained model to bridge the gap be-014
tween them. Besides, we design a schema-015
linking graph to enhance connections from ut-016
terances and the SQL query to the database017
schema. We achieve new state-of-the-art re-018
sults on the two context-dependent text-to-SQL019
benchmarks, SparC and CoSQL, at the writing020
time.021

1 Introduction022

Conversation user interfaces to databases have023

launched a new research hotspot in text-to-SQL024

semantic parsing (Zhang et al., 2019; Guo et al.,025

2019; Wang et al., 2020; Lin et al., 2020; Xu026

et al., 2021; Cao et al., 2021; Hui et al., 2021; Yu027

et al., 2021b). Most previous works focus on the028

context-independent text-to-SQL task. Some mod-029

els (Wang et al., 2020; Scholak et al., 2021) even030

surprisingly work well on the context-dependent031

text-to-SQL task by just appending the interac-032

tion history utterances to the input. Especially,033

PICARD (Scholak et al., 2021) achieves state-of-the-034

art performances both in Spider (Yu et al., 2018),035

a cross-domain context-independent text-to-SQL036

benchmark, and CoSQL (Yu et al., 2019a), a cross-037

domain context-dependent text-to-SQL benchmark,038

before our work. However, every coin has two039

sides. That implies underachievement of the explo-040

ration of context information in context-dependent041

Figure 1: An example of context-dependent text-to-SQL
interaction in CoSQL where Ui is the utterance of turn
i and Si is the corresponding SQL query for Ui. The
tokens with red color are the history information that
should be considered in later predictions.

text-to-SQL semantic parsing. 042

Compared with context-independent text-to- 043

SQL semantic parsing, context-dependent text-to- 044

SQL semantic parsing are more challenging since 045

of the various types of context dependence which 046

make models vulnerable to parsing errors. As 047

R2SQL (Hui et al., 2021) considers, different con- 048

text dependencies between two adjacent utterances 049

require the model to establish dynamic connec- 050

tions between utterances and database schema care- 051

fully. Besides long-range dependence is also the 052

case as the prediction of S3 depends on "the name 053

of the teachers and the courses" in U1 in Fig- 054

ure 1. A workable proposition for that is to inherit 055

context information from previous predicted SQL 056

queries(Zhang et al., 2019; Wang et al., 2021). But 057

it is not a piece of cake since of the mismatch be- 058

tween natural language and logic-form SQL. As 059

Liu et al. (2020) conclude, roughly encoding the 060

last predicted SQL query and utterances takes the 061

wooden spoon in their evaluation of 13 existing 062

context modeling methods. 063

In this paper, we propose HIE-SQL to make full 064

use of both history interactive utterances and the 065
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last predicted SQL query. We first treat the logic-066

form SQL query as another modality with natural067

language. We present SQLBERT, a bimodal pre-068

trained model which is able to capture the semantic069

connection and bridge the gap between SQL and070

natural language.071

Besides, we propose a history information en-072

hanced schema-linking graph to represent the rela-073

tions among current utterance, interaction history074

utterances, the last predicted query, and correspond-075

ing database schema. Considering it is weird to076

shift a topic back and forth in an interaction, we as-077

sume that the long-range dependence is successive.078

In that case, we can leverage the long-range de-079

pendence from the last predicted query. Therefore,080

unlike the previous schema-linking graph just with081

utterances and database schema (Hui et al., 2021),082

the last predicted query takes part in our graph.083

At the time of writing, our model ranks first084

on both two large-scale cross-domain context-085

dependent text-to-SQL leaderboards, SparC (Yu086

et al., 2019b) and CoSQL (Yu et al., 2019a).087

2 HIE-SQL088

2.1 Preliminaries089

Task Definition. Given the current user utterance090

uτ , interaction history hτ = [u1, u2, ..., uτ−1], the091

schema D = ⟨T,C⟩ of the target database such092

that the set of tables T = {t1, ..., t|T |} and the093

set of columns C = {c1, ..., c|C|}, our goal is to094

generate the corresponding SQL query sτ .095

Model Architecture. Figure 2 shows the frame-096

work of HIE-SQL. We will introduce it in four097

modules: Multimodal Encoder, SQL Encoder098

(SQLBERT), HIE-Layers, and Decoder.099

2.2 Multimodal Encoder100

Inspired by the efficiency of the works (Kiela101

et al., 2019; Tsimpoukelli et al., 2021) to solve the102

multimodal problems, we build an additional pre-103

trained Encoder named SQLBERT (we will detail it104

in the following section) to pre-encode SQL query.105

Then we learn weights W ∈ RN×M to project106

the N-dimensional SQL query embeddings to M-107

dimensional token input embedding space of the108

language model:109

S = Wf(sτ−1), (1)110

where f(·) is the last hidden state output of SQL-111

BERT.112

Figure 2: Structure and components of HIE-SQL. The
red arrows represent the direction of back propagation
during the training stage, witch means parameters of
SQL Encoder will not be updated during training. Lin-
ear represents one fully connected layer. And we use
SQLBERT as the SQL Encoder in the structure.

We arrange the input format of HIE-SQL as x = 113

([CLS],U ,[CLS],S,[SEP], T ,[SEP], C) in 114

which 115

U = (u1,[CLS], u2, ...,[CLS], uτ ),

T = (t1,[SEP], t2, ...,[SEP], t|T |),

C = (c1,[SEP], c2, ...,[SEP], c|C|).

(2) 116

All the special separator tokens and language word 117

tokens in x are converted to the word embedding by 118

embedding layer of the language model. Gathering 119

the embeddings of natural language and SQL, we 120

feed them to self-attention blocks in a language 121

model. In the training stage, we directly take the 122

golden SQL query of the last turn as an input SQL 123

query and set S to empty for the first turn. As 124

for the inference stage, we apply the SQL query 125

generated by HIE-SQL in the last turn. 126

2.3 SQLBERT 127

We propose SQLBERT, a bimodal pre-trained 128

model for natural language and SQL, and de- 129

velop it by using the same model architecture as 130

RoBERTaBASE (Liu et al., 2019). 131

Input Format. To alleviate the difficulty of 132

training and resolve inconsistencies between 133

natural language and schema, we append the 134

question-relevant database schema to the concate- 135

nation of SQL query and question. We represent 136

the whole input sequence into the format as x = ( 137

[CLS], s1, s2, ..., sn,[SEP], q1, ..., qm,[SEP], 138

t1 : c11, c12, ...,[SEP], t2 : c21, ...,[SEP], ...), 139

in which s, q, t, and c are the tokens of SQL query, 140

question, tables, and columns respectively. 141
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U H S

C
U−C−EM
U−C−PM
U−C−VM

H−C−EM
H−C−PM
H−C−VM

S−C−EC
S−C−UC

T
U−T−EM
U−T−PM

H−T−EM
H−T−PM

S−T−ET
S−T−UT

Table 1: Edge types between current utterance U , in-
teraction history H , SQL S, and database schema D
(Columns C and Tables T ). We set two match types
between the language tokens of U , H , and D: EM
for Exact Match, PM for Partial Match. When using
database contents, we set VM (Value Match) for exactly
matching the value of columns. As for SQL S, we sim-
ply match the words of tables and columns that appear
in it to the target database schema: EC (Equal Columns)
and UC (Unequal Columns) for columns, ET (Equal
Tables) and UT (Unequal Tables) for tables. And we
omit the pre-existing relations in schema such as the
foreign-key relation (C-C-FK) in the table.

Training Objective. The main training objective142

of SQLBERT is the masked language modeling143

(MLM). Specifically, we utilize a special objec-144

tive referenced span masking (Sun et al., 2019) by145

sampling 15% independent span in SQL clause146

except the reserved word (e.g., SELECT, FROM,147

WHERE). We describe the masked span prediction148

loss as149

L(θ) =
n∑

k=1

−logPθ(s
mask
k |s\mask, q, t, c), (3)150

where θ stands for the model parameters, smask
k151

is the masked span of SQL input, s\mask is the152

unmasked part. The detail of data we use to train153

SQLBERT is shown in Appendix A.154

2.4 HIE-Layers155

Schema-Linking Graph. To explicitly encode156

the complex relational database schema, we convert157

it to a directed graph G = ⟨V, E⟩, where V = C∪T158

and E represents the set of pre-existing relations159

within columns and tables such as the foreign-key160

relation. In addition, we also consider the unseen161

linking to the schema in the contexts. Specifically,162

we define the context-dependent schema-linking163

graph Gc = ⟨Vc, Ec⟩ where Vc = C ∪ T ∪ U ∪164

H ∪S and Ec = E ∪EU↔D ∪EH↔D ∪ES↔D. The165

additional relation edges are listed in Table 1. We166

show an example of the proposed schema-linking167

graph in Appendix B.168

Graph Encoding. We follow the work (Wang 169

et al., 2020) to encode schema-linking graph via 170

Relative Self-Attention Mechanism (Shaw et al., 171

2018). We show its details in Appendix C. 172

2.5 Decoder 173

To build the decoder of HIE-SQL, we apply 174

the same work as Wang et al. (2020) propose, 175

which generates SQL as an abstract syntax tree 176

via LSTM (Hochreiter and Schmidhuber, 1997). 177

We recommend the reader to refer to the work (Yin 178

and Neubig, 2017) for details. 179

3 Experiment 180

3.1 Setup 181

Setting. Since the weights of SCoRe (Yu et al., 182

2021b) have not been open sourced, we initialize 183

the weights of Language Model with GraPPa (Yu 184

et al., 2021a). We stack 8 HIE-layers on top of 185

the Language Model. And we use R-Drop (Liang 186

et al., 2021) as our regularization strategy in train- 187

ing. Specific hyper-parameters and training setting 188

are shown in Appendix D. 189

Datasets. We conduct experiments on two cross- 190

domain context-dependent text-to-SQL datasets, 191

SparC (Yu et al., 2019b) and CoSQL (Yu et al., 192

2019a). The statistic details of the datasets can be 193

obtained in Appendix E. 194

Evaluation Metrics. The main metric we used to 195

measure model performance in SparC and CoSQL 196

is interaction match (IM), which requires all output 197

SQL queries in the whole round of interaction to 198

be correct. We also use question match (QM) to 199

evaluate the accuracy of every single question. 200

3.2 Experiment Result 201

Results of our proposed HIE-SQL model are 202

shown in Table 2. In terms of interaction match, 203

our model achieves state-of-the-art performances 204

on both SparC and CoSQL. For CoSQL, compared 205

with the previous state-of-the-art (Scholak et al., 206

2021), a rule-based auto-regressive method based 207

on the large pre-trained model-T5-3B (Raffel et al., 208

2020) which contains 2.8 billion parameters, HIE- 209

SQL improves IM of development set by 4.5% and 210

IM of the test set by 0.9% with only 580M param- 211

eters. Besides, HIE-SQL surpasses RAT-SQL + 212

SCoRe in all metrics of SparC and CoSQL. This 213

demonstrates that properly integrating interaction 214
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Model SparC Dev SparC Test CoSQL Dev CoSQL Test

QM IM QM IM QM IM QM IM
EditSQL + BERT (Zhang et al., 2019) 47.2 29.5 47.9 25.3 39.9 12.3 40.8 13.7
IGSQL + BERT (Cai and Wan, 2020) 50.7 32.5 51.2 29.5 44.1 15.8 42.5 15.0
IST-SQL + BERT (Wang et al., 2021) - - - - 44.4 14.7 41.8 15.2
R2SQL + BERT (Hui et al., 2021) 54.1 35.2 55.8 30.8 45.7 19.5 46.8 17.0
RAT-SQL† + SCoRe (Yu et al., 2021b) 62.2 42.5 62.4 38.1 52.1 22.0 51.6 21.2
T5-3B + PICARD† (Scholak et al., 2021) - - - - 56.9 24.2 54.6 23.7

HIE-SQL + GraPPa (ours) 64.7 45.0 64.6 42.9 56.4 28.7 53.9 24.6

Table 2: Performances of various models in SparC and CoSQL. QM and IM stand for question match and interaction
match respectively. The models with † are proposed for the context-independent text-to-SQL task and applied to the
context-dependent text-to-SQL task by just appending interaction history utterances to the input.

SparC CoSQL

Model QM IM QM IM
HIE-SQL 64.7 45.0 56.4 28.7

w/o SQL query 65.8 44.3 56.5 23.9
w/o SQLBERT 63.9 44.7 54.8 26.3
w/o EH↔D 64.0 44.3 56.0 26.3

Table 3: Ablation study of HIE-SQL in development
sets of SparC and CoSQL. As for ablation on SQL query,
we drop the SQL query and only feed utterances and
database schema to the model. As for ablation on SQL-
BERT, we directly concatenate the tokens of SQL query
and other context tokens for the input of the language
model. And w/o EH↔D means we treat historical utter-
ances like the current utterance in our schema-linking.

utterances and predicted SQL queries is an effec-215

tive way to enhance the model’s ability for Context-216

Dependent text-to-SQL Semantic Parsing. We test217

the robustness of HIE-SQL for the samples with218

different turn index and difficulty in Appendix F.219

3.3 Ablation Study220

We provide ablation studies to examine the221

contribution of each component of HIE-SQL. As222

shown in Table 3, Our full model achieves about 5223

points and 1 point improvement of IM in CoSQL224

and SparC respectively compared with the model225

without the last SQL query input. The pre-encoding226

SQL query by SQLBERT can further improve the227

performance. It confirms SQLBERT’s ability to228

efficiently represent SQL features. In addition,229

EH↔D also plays a positive role.230

It is worth noting that the last SQL query as input231

benefits the performance on IM which is converse232

Dataset Model T-F F-T T-T

SparC
HIE-SQL 125 88 383

w/o SQL query 132 104 379

CoSQL
HIE-SQL 140 106 278

w/o SQL query 161 128 254

Table 4: The counts of different switches in the pairs
of adjacent predicted SQL queries. T-F stands for the
match of the former predicted query and unmatch of the
later predicted query with golden queries. F-T stands
for the reverse case. T-T is the case of both matching.

on QM. Table 4 shows that our model with SQL 233

query has a higher rate of continuous match, but a 234

lower rate of switching from mismatch to match. It 235

illustrates that our model does use the SQL infor- 236

mation and is sensitive to the accuracy of the last 237

predicted SQL query. Since of the exposure bias 238

during inference, the matched last SQL query will 239

provide effective guidance for the model, but once 240

prediction goes wrong, the errors tend to persist. 241

We also offer some case study in Appendix G to 242

further demonstrate the superiority of HIE-SQL. 243

4 Conclusion 244

We present HIE-SQL which targets at explic- 245

itly capturing the context-dependence from both 246

interaction history utterances and the last pre- 247

dicted SQL query. With the help of SQLBERT 248

and the proposed schema-linking graph, HIE-SQL 249

bridges the gap between the utterances and pre- 250

dicted SQL. Taken together, HIE-SQL achieves 251

consistent improvements on the context-dependent 252

text-to-SQL task and achieves new state-of-the-art 253

results on two famous context-dependent text-to- 254

SQL datasets, SparC and CoSQL. 255
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A Training Datas for SQLBERT415

Figure 3: Input format and training objective of SQL-
BERT.

Unlike SCoRe (Yu et al., 2021b), which uses multiple416
open-source text-to-SQL datasets (WIKITABLES (Bhagavatula417
et al., 2015), WikiSQL (Zhong et al., 2017), Spider, SparC,418
and CoSQL) and data synthesis methods to obtain a large419
amount of pre-training data, we train SQLBERT only with420
the datasets including Spider, SparC and CoSQL. For each421
sample in Spider, we only use its question, SQL query, and the422
corresponding database schema. As for SparC and CoSQL,423
which is a context-dependent version, we simply concatenate424
the current utterance with the history utterances to build the425
question input. The size of the training data is about 34,000.426
A better understanding of the input format of SQLBERT can427
be obtained from Figure 3.428

B Schema-Linking Graph Example429

Figure 4: An example of the schema-linking graph for
the prediction of S2 in Figure 1.

As show in figure 4, the graph is a subgraph of the whole430
schema-linking graph. We only respectively choose one token431
in the history utterance (U1), the current utterance (U2), and432
the last predicted SQL query (S1) in the example. Besides,433
we omit all unequal relation edges (S-C-UC and S-T-UT).434

C Relative Self-Attention Mechanism435

Relative Self-Attention Mechanism rebuilds the calcula-436
tion of the self-attention module in the transformer layers as437
follows:438

eij =
xiW

Q(xjW
K + rKij )

T

√
dz

,

αij = softmax
j

{eij},

zi =

n∑
j=1

αij(xjW
V + rVij).

(4)439

It consist of 8 transformer layers, whose self-attention mod-440
ules are described above. Specifically, we initialize a learned441
embedding for each type of edge defined above. For every442
input sample, we build a relation matrix R ⊆ (L×L) where L443
is the length of the input token. R(i,j) represents the relation444

type between i−th and j−th input tokens. While computing 445
the relative attention, we set the rKij = rVij = R(i,j)

e where 446

R(i,j)
e is the corresponding embedding of R(i,j). 447

D Training Setting 448

We use Adam optimizer to conduct the parameter learning 449
and set the learning rate of 1e−5 for fine-tuning GraPPa and 450
1e−4 for HIE-Layers and Decoder. The learning rate linearly 451
increases to the setting point at first max_steps/8 steps, then 452
decreases to 0 at max_steps = 50000 with 24 training batch- 453
size. As for SQLBERT, we fine-tune CodeBERTBASE (Feng 454
et al., 2020) on the dataset we described in Section A. We 455
set the learning rate as 1e−5, a batch size of 64, and train 456
SQLBERT for 10 epochs. The shape of learned weights of the 457
linear layer applied to the output of SQLBERT is 768× 1024. 458
We only need one V100 (32G) GPU to train our model. While 459
inferring, we set the beam size to 3. 460

E Details of SparC and CoSQL datasets. 461

Dataset CoSQL SparC

System Response " %
Interaction 3007 4298

Train 2164 3034
Dev 293 422
Test 551 842

User Questions 15598 12726
Vocab 9585 3794

Avg Turn 5.2 3.0

Table 5: Details of SparC and CoSQL datasets.

F Performances of HIE-SQL on Different 462

Turns 463

Figure 5: Performances of previous works and HIE-SQL
in different turns (left) and different difficulty levels
(right) on SparC.

We test the performance on different turns and at different 464
difficulty levels of utterances. As shown in Figure 5, with 465
the increase of turns, the lead of our model gets greater and 466
greater. When the indexes of turns are greater than or equal to 467
4, the accuracy of HIE-SQL is 17% higher than that of R2SQL. 468
It demonstrates that the main contribution of introducing SQL 469
query is to improve the robustness of the model to long inter- 470
action. HIE-SQL is also robust to the varying difficulty levels 471
of utterances. Our model performs equally in hard and extra 472
hard levels, and achieves 39.6% accuracy on the extra hard 473
level, which is 17.8% higher than that of R2SQL. 474

G Case Study 475
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Ua1 Which cartoon aired first?

HIE-SQL SELECT title FROM cartoon ORDER BY original_air_date asc LIMIT 1
RAT-SQL SELECT title FROM cartoon ORDER BY original_air_date asc LIMIT 1

Ua2 What was the last cartoon to air?

HIE-SQL SELECT title FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT title FROM cartoon ORDER BY original_air_date desc LIMIT 1

Ua3 What channel was it on?

HIE-SQL SELECT channel FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT channel FROM cartoon ORDER BY original_air_date desc LIMIT 1

Ua4 What is the production code?

HIE-SQL SELECT production_code FROM cartoon ORDER BY original_air_date desc LIMIT 1
RAT-SQL SELECT production_code FROM cartoon ORDER BY original_air_date asc LIMIT 1

Ub1 List the name of the teachers and the courses assigned for them to teach.

HIE-SQL SELECT Name, Course FROM ...
RAT-SQL SELECT Name, Course FROM ...

Ub2 Arrange this list with the teachers name in ascending order

HIE-SQL ELECT Name, Course FROM ... ORDER BY Name Asc
RAT-SQL ELECT Name, Course FROM ... ORDER BY Name Asc

Ub3 Include teachers ID in tha same list

HIE-SQL SELECT Name, Course, Teacher_ID FROM ... ORDER BY Name Asc
RAT-SQL SELECT Teacher_ID FROM ... ORDER BY Teacher_ID Asc

Uc1 What is the name of the poker player with the highest earnings?

HIE-SQL SELECT Name FROM ... ORDER BY Earnings Desc LIMIT 1
RAT-SQL SELECT Name FROM ... ORDER BY Earnings Desc LIMIT 1

Uc2 What about the poker player with the lowest earnings?

HIE-SQL
... FROM poker_player JOIN people ON People_ID = People_ID
ORDER BY Earnings Asc LIMIT 1

RAT-SQL
... FROM poker_player JOIN people ON People_ID = People_ID
ORDER BY Earnings Asc LIMIT 1

Ub3 What was his best finish?

HIE-SQL
SELECT Best_Finish FROM poker_player
JOIN people ON People_ID = People_ID ORDER BY ...

RAT-SQL SELECT Best_Finish FROM poker_player ORDER BY ...

Table 6: Examples in CoSQL. Uij is the input utterance of turn j of example i with corresponding predictions of
HIE-SQL and RAT-SQL following. All predictions of HIE-SQL are the ground truth queries in the case. As the
examples show, RAT-SQL fails to distinguish the right one from two long-range dependences in Ua1 and Ua2 in the
first example and fails to inherit the query information from Ub2 in Ub3. By contrast, HIE-SQL inherits the right
context-dependence from the last predicted query to avoid the confusion.
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