
Contrastive Training of Complex-Valued Autoencoders
for Object Discovery

Aleksandar Stanić1∗ Anand Gopalakrishnan1∗ Kazuki Irie2† Jürgen Schmidhuber1,3
1The Swiss AI Lab, IDSIA, USI & SUPSI, Lugano, Switzerland
2Center for Brain Science, Harvard University, Cambridge, USA

3AI Initiative, KAUST, Thuwal, Saudi Arabia
{aleksandar, anand, juergen}@idsia.ch kirie@fas.harvard.edu

Abstract

Current state-of-the-art object-centric models use slots and attention-based routing
for binding. However, this class of models has several conceptual limitations: the
number of slots is hardwired; all slots have equal capacity; training has high com-
putational cost; there are no object-level relational factors within slots. Synchrony-
based models in principle can address these limitations by using complex-valued
activations which store binding information in their phase components. However,
working examples of such synchrony-based models have been developed only very
recently, and are still limited to toy grayscale datasets and simultaneous storage of
less than three objects in practice. Here we introduce architectural modifications
and a novel contrastive learning method that greatly improve the state-of-the-art
synchrony-based model. For the first time, we obtain a class of synchrony-based
models capable of discovering objects in an unsupervised manner in multi-object
color datasets and simultaneously representing more than three objects.1

1 Introduction

The visual binding problem [1, 2] is of great importance to human perception [3] and cognition
[4–6]. It is fundamental to our visual capabilities to integrate several features together such as color,
shape, texture, etc., into a unified whole [7]. In recent years, there has been a growing interest in
deep learning models [8–19] capable of grouping visual inputs into a set of ‘meaningful’ entities
in a fully unsupervised fashion (often called object-centric learning). Such compositional object-
centric representations facilitate relational reasoning and generalization, thereby leading to better
performance on downstream tasks such as visual question-answering [20, 21], video game playing
[22–26], and robotics [27–29], compared to other monolithic representations of the visual input.

The current mainstream approach to implement such object binding mechanisms in artificial neural
networks is to maintain a set of separate activation vectors (so-called slots) [15]. Various segregation
mechanisms [30] are then used to route requisite information from the inputs to infer each slot in
a iterative fashion. Such slot-based approaches have several conceptual limitations. First, the binding
information (i.e., addresses) about object instances are maintained only by the constant number of
slots—a hard-wired component which cannot be adapted through learning. This restricts the ability
of slot-based models to flexibly represent varying number of objects with variable precision without
tuning the slot size, number of slots, number of iterations, etc. Second, the inductive bias used by the
grouping module strongly enforces independence among all pairs of slots. This restricts individual

∗Equal contribution.
†Work done at IDSIA.
1Official code repository: https://github.com/agopal42/ctcae

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/agopal42/ctcae

slots to store relational features at the object-level, and requires additional processing of slots using
a relational module, e.g., Graph Neural Networks [31, 32] or Transformer models [33–35]. Third,
binding based on iterative attention is in general computationally very demanding to train [36].
Additionally, the spatial broadcast decoder [37] (a necessary component in these models) requires
multiple forward/backward passes to render the slot-wise reconstruction and alpha masks, resulting
in a large memory overhead as well.

Recently, Löwe et al. [36] revived another class of neural object binding models [38–40] (synchrony-
based models) which are based on complex-valued neural networks. Synchrony-based models are
conceptually very promising. In principle they address most of the conceptual challenges faced by
slot-based models. The binding mechanism is implemented via constructive or destructive phase inter-
ference caused by addition of complex-valued activations. They store and process information about
object instances in the phases of complex activations which are more amenable to adaptation through
gradient-based learning. Further, they can in principle store a variable number of objects with variable
precision by partitioning the phase components of complex activations at varying levels of granularity.
Additionally, synchrony-based models can represent relational information directly in their distributed
representation, i.e., distance in phase space yields an implicit relational metric between object in-
stances (e.g., inferring part-whole hierarchy from distance in “tag” space [39]). Lastly, the training
of synchrony-based models is computationally more efficient by two orders of magnitude [36].

However, the true potential of synchrony-based models for object binding is yet to be explored;
the current state-of-the-art synchrony-based model, the Complex-valued AutoEncoder (CAE) [36],
still has several limitations. First, it is yet to be benchmarked on any multi-object datasets [41]
with color images (even simplisitic ones like Tetrominoes) due to limitations in the evaluation
method to extract discrete object identities from continuous phase maps [36]. Second, we empirically
observe that it shows low separability (Table 2) in the phase space, thereby leading to very poor
(near chance-level) grouping performance on dSprites and CLEVR. Lastly, CAE can simultaenously
represent at most 3 objects [36], making it infeasible for harder benchmark datasets [41, 42].

Our goal is to improve the state-of-art synchrony models by addressing these limitations of CAE [36].
First, we propose a few simple architectural changes to the CAE: i) remove the 1x1 convolution kernel
as well as the sigmoid activation in the output layer of decoder, and ii) use convolution and upsample
layers instead of transposed convolution in the decoder. These changes enable our improved CAE,
which we call CAE++, to achieve good grouping performance on the Tetrominoes dataset—a task on
which the original CAE completely fails. Further, we introduce a novel contrastive learning method to
increase separability in phase values of pixels (regions) belonging to two different objects. The result-
ing model, which we call Contrastively Trained Complex-valued AutoEncoders (CtCAE), is the first
kind of synchrony-based object binding models to achieve good grouping performance on multi-object
color datasets with more than three objects (Figure 2). Our contrastive learning method yields signifi-
cant gains in grouping performance over CAE++, consistently across three multi-object color datasets
(Tetrominoes, dSprites and CLEVR). Finally, we qualitatively and quantitatively evaluate the sep-
arability in phase space and generalization of CtCAE w.r.t. number of objects seen at train/test time.

2 Background

We briefly overview the CAE architecture [36] which forms the basis of our proposed models.
CAE performs binding through complex-valued activations which transmit two types of messages:
magnitudes of complex activations to represent the strength of a feature and phases to represent which
features must be processed together. The constructive or destructive interference through addition of
complex activations in every layer pressurizes the network to use similar phase values for all patches
belonging to the same object while separating those associated with different objects. Patches of the
same object contain a high amount of pointwise mutual information so their destructive interference
would degrade its reconstruction.

The CAE is an autoencoder with real-valued weights that manipulate complex-valued activations.
Let h and w denote positive integers. The input is a positive real-valued image x′ ∈ Rh×w×3 (height
h and width w, with 3 channels for color images). An artificial initial phase of zero is added to each
pixel of x′ (i.e., ϕ = 0 ∈ Rh×w×3) to obtain a complex-valued input x ∈ Ch×w×3:

x = x′ ⊙ eiϕ, where ⊙ denotes a Hadamard product (1)

2

Let din, dout and p denote positive integers. Every layer in the CAE transforms complex-valued input
x ∈ Cdin to complex-valued output z ∈ Cdout (where we simply denote input/output sizes as din and
dout which typically have multiple dimensions, e.g., h× w × 3 for the input layer), using a function
fw : Rdin → Rdout with real-valued trainable parameters w ∈ Rp. fw is typically a convolutional or
linear layer. First, fw is applied separately to the real and imaginary components of the input:

ψ = fw (Re(x)) + fw (Im(x)) i ∈ Cdout (2)

Note that both Re(x), Im(x) ∈ Rdin . Second, separate trainable bias vectors bm,bϕ ∈ Rdout are
applied to the magnitude and phase components of ψ ∈ Cdout :

mψ = |ψ|+ bm ∈ Rdout ; ϕψ = arg(ψ) + bϕ ∈ Rdout (3)

Third, the CAE uses an additional gating function proposed by Reichert and Serre [40] to further
transform this “intermediate” magnitude mψ ∈ Rdout . This gating function dampens the response
of an output unit as a function of the phase difference between two inputs. It is designed such that
the corresponding response curve approximates experimental recordings of the analogous curve
from a Hodgkin-Huxley model of a biological neuron [40]. Concretely, an intermediate activation
vector χ ∈ Rdout (called classic term [40]) is computed by applying fw to the magnitude of the input
x ∈ Cdin , and a convex combination of this classic term and the magnitude mψ (called synchrony
term [40]) from Eq. 3 is computed to yield “gated magnitudes” mz ∈ Rdout as follows:

χ = fw (|x|) + bm ∈ Rdout ; mz =
1

2
mψ +

1

2
χ ∈ Rdout (4)

Finally, the output of the layer z ∈ Cdout is obtained by applying non-linearities to this magnitude mz

(Eq. 4) while leaving the phase values ϕψ (Eq. 3) untouched:

z = ReLU(BatchNorm(mz))⊙ eiϕψ ∈ Cdout (5)

The ReLU activation ensures that the magnitude of z is positive, and any phase flips are prevented
by its application solely to the magnitude component mz. For more details of the CAE [36] and
gating function [40] we refer the readers to the respective papers. The final object grouping in CAE
is obtained through K-means clustering based on the phases at the output of the decoder; each pixel
is assigned to a cluster corresponding to an object [36].

3 Method

We describe the architectural and contrastive training details used by our proposed CAE++ and
CtCAE models respectively below.

CAE++. We first propose some simple but crucial architectural modifications that enable the vanilla
CAE [36] to achieve good grouping performance on multi-object datasets such as Tetrominoes with
color images. These architectural modifications include — i) Remove the 1x1 convolution kernel and
associated sigmoid activation in the output layer (“fout” in Löwe et al. [36]) of the decoder, ii) Use
convolution and upsample layers in place of transposed convolution layers in the decoder (cf. “fdec”
architecture in Table 3 from Löwe et al. [36]). We term this improved CAE variant that adopts these
architectural modifications as CAE++. As we will show below in Table 1, these modifications allow
our CAE++ to consistently outperform the CAE across all 3 multi-object datasets with color images.

Contrastive Training of CAEs. Despite the improved grouping of CAE++ compared to CAE, we
still empirically observe that CAE++ shows poor separability2 (we also illustrate this in Section 4).
This motivates us to introduce an auxiliary training objective that explicitly encourages higher
separability in phase space. For that, we propose a contrastive learning method [43, 44] that modulates
the distance between pairs of distributed representations based on some notion of (dis)similarity
between them (which we define below). This design reflects the desired behavior to drive the phase
separation process between two different objects thereby facilitating better grouping performance.

Before describing our contrastive learning method mathematically below, here we explain its essential
ingredients (illustrated in Figure 1). For setting up the contrastive objective, we first (randomly)

2We define separability as the minimum angular distance of phase values between a pair of prototypical
points (centroids) that belong to different objects

3

Encoder

Decoder

M
a
g
n
it

u
d
e
s

P
h
a
se

s

Addresses

Features

Addresses

Features

Anchor
Address

Anchor
Feature

Magnitudes Addresses

Phases Features

Sample Negative Pairs Features

Sample Positive Pair Features

Anchor Features

+ _ _ _

Encoder
Phases

Encoder
Magnitudes

D
e
co

d
e
r

D
e
co

d
e
r

X

X

Figure 1: Sampling process of positive (green) and negative (red) pairs for one anchor (purple) in the
CtCAE model. The sampling process here is visualized only for the decoder output. Note that we
contrast the encoder output in an identical manner. Anchor address (the purple box marked with an
X) corresponds to the patch of magnitude values and the feature corresponds to the phase values. See
Contrastive Training of CAEs in Section 3 for more details.

Algorithm 1 Mining positive and negative pairs for a single anchor for the contrastive objective.
Scalar parameters are ktop — the number of candidates from which to sample one positive pair and
mbottom — the number of candidates from which to sample (M − 1) negative pairs.

Inputs: anchor_address ∈ Rdf , addresses ∈ Rh′×w′×df , features ∈ Rh′×w′×df .
Params: Scalars ktop,mbottom,M .

1: addresses ← Flatten(addresses, dims=(0,1))
2: features ← Flatten(features, dims=(0,1))
3: distances ← CosineDistance(addresses, anchor_address)
4: top_k_features ← features[argsort(distances, dim=0)[:ktop]]
5: bottom_m_features ← features[argsort(distances, dim=0)[−mbottom:]]
6: pos_pair_idx ∼ Uniform [0, ktop] ▷ sample 1 positive pair
7: neg_pair_idxs ∼ Uniform [0, mbottom]×(M − 1) ▷ M − 1 samples without replacement
8: positive_pair ← top_k_features[pos_pair_idx]
9: negative_pairs ← bottom_m_features[neg_pair_idxs]

10: return positive_pair, negative_pairs

sample “anchors” from a set of “datapoints”. The main idea of contrastive learning is to “contrast”
these anchors to their respective “positive” and “negative” examples in a certain representation space.
This requires us to define two representation spaces: one associated with the similarity measure to
define positive/negative examples given an anchor, and another one on which we effectively apply the
contrastive objective, itself defined as a certain distance function to be minimized. We use the term
addresses to refer to the representations used to measure similarity, and consequently extract positive
and negative pairs w.r.t. to the anchor. We use the term features to refer to the representations that are
contrasted. As outlined earlier, the goal of the contrastive objective is to facilitate separability of phase
values. It is then a natural choice to use the phase components of complex-valued outputs as features
and the magnitude components as addresses in the contrastive loss. This results in angular distance be-
tween phases (features) being modulated by the contrastive objective based on how (dis)similar their
corresponding magnitude components (addresses) are. Since the magnitude components of complex-
valued activations are used to reconstruct the image (Equation (7)), they capture requisite visual prop-
erties of objects. In short, the contrastive objective increases or decreases the angular distance of phase
components of points (pixels/image regions) in relation to how (dis)similar their visual properties are.

Our contrastive learning method works as follows. Let h′, w′, df, NA, and M denote positive
integers. Here we generically denote the dimension of the output of any CAE layer as h′ × w′ × df.
This results in a set of h′ × w′ “datapoints” of dimension df for our contrastive learning. From
this set of datapoints, we randomly sample NA anchors. We denote this set of anchors as a matrix
A ∈ RNA×df ; each anchor is thus denoted as Ak ∈ Rdf for all k ∈ {1, ..., NA}. Now by using

4

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 2: Unsupervised object discovery on Tetrominoes, dSprites and CLEVR with CtCAE.
“Phase Rad.” (col. 5) is the radial plot with the phase values from -π to π radians. “Phase” (col. 6),
are phase values (in radians) averaged over the 3 output channels as a heatmap (colors correspond to
those from “Phase Rad.”) and “Magnitude” (col. 7) is the magnitude component of the outputs.

Algorithm 1, we extract 1 positive and M − 1 negative examples for each anchor. We denote these
examples by a matrix Pk ∈ RM×df for each anchor k ∈ {1, ..., NA} arranged such that Pk

1 ∈ Rdf

is the positive example and all other rows Pk
j ∈ Rdf for j ∈ {2, ...,M} are negative ones. Finally,

our contrastive loss is an adaptation of the standard InfoNCE loss [44] which is defined as follows:

Lct =
1

NA

NA∑
k=1

log

(
exp

(
d
(
Ak;P

k
1

)
/τ
)∑M

j=1 exp
(
d
(
Ak;Pk

j

)
/τ
)) (6)

where NA is the number of anchors sampled for each input, d(xk;xl) refers to the cosine distance
between a pair of vectors xk,xl ∈ Rdf and τ ∈ R>0 is the softmax temperature.

We empirically observe that applying the contrastive loss on outputs of both encoder and decoder
is better than applying it on only either one (Table 5). We hypothesize that this is the case because
it utilizes both high-level, abstract and global features (on the encoder-side) as well as low-level
and local visual cues (on the decoder-side) that better capture visual (dis)similarity between positive
and negative pairs. We also observe that using magnitude components of complex outputs of both
the encoder and decoder as addresses for mining positive and negative pairs while using the phase
components of complex-valued outputs as the features for the contrastive loss performs the best
among all the other possible alternatives (Table 13). These ablations also support our initial intuitions
(described above) while designing the contrastive objective for improving separability in phase space.

Finally, the complete training objective function of CtCAE is:

L = Lmse + β · Lct ; Lmse = ||x′ − x̂||22 ; x̂ = |y| (7)

where L defines the loss for a single input image x′ ∈ Rh×w×3, and Lmse is the standard recon-
struction loss used by the CAE [36]. The reconstructed image x̂ ∈ Rh×w×3 is generated from the
complex-valued outputs of the decoder y ∈ Ch×w×3 by using its magnitude component. In practice,
we train all models by minimizing the training loss L over a batch of images. The CAE baseline
model and our proposed CAE++ variant are trained using only the reconstruction objective (i.e.
β = 0) whereas our proposed CtCAE model is trained using the complete training objective.

4 Results

Here we provide our experimental results. We first describe details of the datasets, baseline models,
training procedure and evaluation metrics. We then show results (always across 5 seeds) on grouping
of our CtCAE model compared to the baselines (CAE and our variant CAE++), separability in phase
space, generalization capabilities w.r.t to number of objects seen at train/test time and ablation studies
for each of our design choices. Finally, we comment on the limitations of our proposed method.

5

Table 1: MSE and ARI scores (mean ± standard deviation across 5 seeds) for CAE, CAE++ and
CtCAE models for Tetrominoes, dSprites and CLEVR on their respective full resolutions. For all
datasets, CtCAE vastly outperforms CAE++ which in turn outperforms the CAE baseline. Results for
32x32 dSprites and CLEVR are also provided, these follow closely the scores on the full resolutions.
SlotAttention results are from Emami et al. [45].

Dataset Model MSE ↓ ARI-FG ↑ ARI-FULL ↑
Tetrominoes CAE 4.57e-2 ± 1.08e-3 0.00 ± 0.00 0.12 ± 0.02

(32x32) CAE++ 5.07e-5 ± 2.80e-5 0.78 ± 0.07 0.84 ± 0.01

CtCAE 9.73e-5 ± 4.64e-5 0.84 ± 0.09 0.85 ± 0.01
SlotAttention – 0.99 ± 0.00 –

dSprites CAE 8.16e-3 ± 2.54e-5 0.05 ± 0.02 0.10 ± 0.02

(64x64) CAE++ 1.60e-3 ± 1.33e-3 0.51 ± 0.08 0.54 ± 0.14

CtCAE 1.56e-3 ± 1.58e-4 0.56 ± 0.11 0.90 ± 0.03
SlotAttention – 0.91 ± 0.01 –

CLEVR CAE 1.50e-3 ± 4.53e-4 0.04 ± 0.03 0.18 ± 0.06

(96x96) CAE++ 2.41e-4 ± 3.45e-5 0.27 ± 0.13 0.31 ± 0.07

CtCAE 3.39e-4 ± 3.65e-5 0.54 ± 0.02 0.68 ± 0.08
SlotAttention – 0.99 ± 0.01 –

dSprites CAE 7.24e-3 ± 8.45e-5 0.01 ± 0.00 0.05 ± 0.00

(32x32) CAE++ 8.67e-4 ± 1.92e-4 0.38 ± 0.05 0.49 ± 0.15

CtCAE 1.10e-3 ± 2.59e-4 0.48 ± 0.03 0.68 ± 0.13

CLEVR CAE 1.84e-3 ± 5.68e-4 0.11 ± 0.07 0.12 ± 0.11

(32x32) CAE++ 4.04e-4 ± 4.04e-4 0.22 ± 0.10 0.30 ± 0.18

CtCAE 9.88e-4 ± 1.42e-3 0.50 ± 0.05 0.69 ± 0.25

Datasets. We evaluate the models on three datasets from the Multi-Object datasets suite [41]
namely Tetrominoes, dSprites and CLEVR (Figure 2) used by prior work in object-centric learning
[14, 15, 45]. For CLEVR, we use the filtered version [45] which consists of images containing less
than seven objects. For the main evaluation, we use the same image resolution as Emami et al. [45],
i.e., 32x32 for Tetrominoes, 64x64 for dSprites and 96x96 for CLEVR (a center crop of 192x192
that is then resized to 96x96). For computational reasons, we perform all ablations and analysis
on 32x32 resolution. Performance of all models are ordered in the same way on 32x32 resolution
as the original resolution (see Table 1), but with significant training and evaluation speed up. In
Tetrominoes and dSprites the number of training images is 60K whereas in CLEVR it is 50K. All
three datasets have 320 test images on which we report all the evaluation metrics. For more details
about the datasets and preprocessing, please refer to Appendix A.

Models & Training Details. We compare our CtCAE model to the state-of-the-art synchrony-based
method for unsupervised object discovery (CAE [36]) as well as to our own improved version thereof
(CAE++) introduced in Section 3. For more details about the encoder and decoder architecture of all
models see Appendix A. We use the same architecture as CAE [36], except with increased number
of convolution channels (same across all models). We train models for 50K steps on Tetrominoes,
and 100K steps on dSprites and CLEVR with Adam optimizer [46] with a constant learning rate of
4e-4, i.e., no warmup schedules or annealing (all hyperparameter details are given in Appendix A).

Evaluation Metrics. We use the same evaluation protocol as prior work [14, 15, 45, 36] which
compares the grouping performance of models using the Adjusted Rand Index (ARI) [47, 48]. We
report two variants of the ARI score, i.e., ARI-FG and ARI-FULL consistent with Löwe et al. [36].
ARI-FG measures the ARI score only for the foreground and ARI-FULL takes into account all pixels.

Unsupervised Object Discovery. Table 1 shows the performance of our CAE++, CtCAE, and
the baseline CAE [36] on Tetrominoes, dSprites and CLEVR. We first observe that the CAE
baseline almost completely fails on all datasets as shown by its very low ARI-FG and ARI-FULL
scores. The MSE values in Table 1 indicate that CAE even struggles to reconstruct these color

6

Mask Phase Rad. Phase Img. Mask Phase Rad. Phase Img. Mask Phase Rad. Phase Img.

G
T
 M

a
sk

In
p

u
t

C
A

E
C

A
E
+

+
C

tC
A

E

G
T

M
a
sk

G
T
 M

a
sk

In
p

u
t

In
p

u
t

Tetrominoes dSprites CLEVR

Figure 3: CAE, CAE++ and CtCAE comparison on Tetrominoes (columns 1-3), dSprites
(columns 4-6) and CLEVR (columns 7-9). First row: ground truth masks and input images.

Table 2: Quantifying the Separability through inter- and intra-cluster metrics of the phase space. For
the inter-cluster metric, we report both the minimum and mean across clusters.

Dataset Model Inter-cluster (min) ↑ Inter-cluster (mean) ↑ Intra-cluster ↓
Tetrominoes CAE++ 0.14 ± 0.00 0.30 ± 0.02 0.022 ± 0.010

CtCAE 0.15 ± 0.01 0.31 ± 0.03 0.020 ± 0.010

dSprites CAE++ 0.13 ± 0.05 0.51 ± 0.05 0.034 ± 0.007

CtCAE 0.13 ± 0.03 0.39 ± 0.10 0.027 ± 0.009

CLEVR CAE++ 0.10 ± 0.06 0.53 ± 0.15 0.033 ± 0.013

CtCAE 0.12 ± 0.05 0.50 ± 0.12 0.024 ± 0.005

images. In contrast, CAE++ achieves significantly higher ARI scores, consistently across all three
datasets; this demonstrates the impact of the architectural modifications we propose. However, on
the most challenging CLEVR dataset, CAE++ still achieves relatively low ARI scores. Its contrastive
learning-augmented counterpart, CtCAE consistently outperforms CAE++ both in terms of ARI-FG
and ARI-FULL metrics. Notably, CtCAE achieves more than double the ARI scores of CAE++ on
the most challenging CLEVR dataset which highlights the benefits of our contrastive method. All these
results demonstrate that CtCAE is capable of object discovery (still far from perfect) on all datasets
which include color images and more than three objects per scene, unlike the exisiting state-of-the-art
synchrony-based model, CAE.

Quantitative Evaluation of Separability. To gain further insights into why our contrastive method
is beneficial, we quantitatively analyse the phase maps using two distance metrics: inter-cluster
and intra-cluster distances. In fact, in all CAE-family of models, final object grouping is obtained
through K-means clustering based on the phases at the output of the decoder; each pixel is assigned
to a cluster with the corresponding centroid. Inter-cluster distance measures the Euclidean distance
between centroids of each pair of clusters averaged over all such pairs. Larger inter-cluster distance
allows for easier discriminability during clustering to obtain object assignments from phase maps.
On the other hand, intra-cluster distance quantifies the “concentration” of points within a cluster,
and is computed as the average Euclidean distance between each point in the cluster and the cluster
centroid. Smaller intra-cluster distance results in an easier clustering task as the clusters are then
more condensed. We compute these distance metrics on a per-image basis before averaging over
all samples in the dataset. The results in Table 2 show that, the mean intra-cluster distance (last
column) is smaller for CtCAE than CAE++ on two (dSprites and CLEVR) of the three datasets. Also,
even though the average inter-cluster distance (fourth column) is sometimes higher for CAE++, the
minimum inter-cluster distance (third column)—which is a more relevant metric for separability—is

7

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 4: CtCAE on CLEVR is able to infer more than four objects, although it sometimes makes
mistakes, such as specular effects or grouping together based on color (two yellow objects).

Table 3: Object storage capacity: training on the full dSprites dataset and evaluating separately on
subsets containing images with 2, 3, 4 or 5 objects. Analogously, training on the full CLEVR dataset
and evaluating separately on subsets containing images with 3, 4, 5 or 6 objects.

ARI-FG ARI-FULL ARI-FG ARI-FULL ARI-FG ARI-FULL ARI-FG ARI-FULL

dSprites 2 objects 3 objects 4 objects 5 objects

CAE++ 0.29 ± 0.07 0.58 ± 0.15 0.39 ± 0.06 0.53 ± 0.15 0.43 ± 0.04 0.45 ± 0.13 0.45 ± 0.05 0.44 ± 0.11

CtCAE 0.45 ± 0.11 0.76 ± 0.07 0.48 ± 0.06 0.72 ± 0.11 0.48 ± 0.04 0.65 ± 0.13 0.48 ± 0.04 0.61 ± 0.13

CLEVR 3 objects 4 objects 5 objects 6 objects

CAE++ 0.32 ± 0.06 0.35 ± 0.29 0.33 ± 0.05 0.32 ± 0.26 0.31 ± 0.04 0.26 ± 0.20 0.32 ± 0.04 0.27 ± 0.18

CtCAE 0.53 ± 0.07 0.71 ± 0.20 0.52 ± 0.06 0.70 ± 0.21 0.47 ± 0.07 0.67 ± 0.21 0.45 ± 0.06 0.68 ± 0.20

larger for CtCAE. This confirms that compared to CAE++, CtCAE tends to have better phase map
properties for object grouping, as is originally motivated by our contrastive method.

Object Storage Capacity. Löwe et al. [36] note that the performance of CAE sharply decreases for
images with more than 3 objects. We report the performance of CtCAE and CAE++ on subsets of the
test set split by the number of objects, to measure how their grouping performance changes w.r.t. the
number of objects. In dSprites the images contain 2, 3, 4 or 5 objects, in CLEVR 3, 4, 5 or 6 objects.
Note that the models are trained on the entire training split of the respective datasets. Table 3 shows
that both methods perform well on images containing more than 3 objects (their performance does not
drop much on images with 4 or more objects). We also observe that the CtCAE consistently maintains
a significant lead over CAE in terms of ARI scores across different numbers of objects. In another
set of experiments (see Appendix B), we also show that CtCAE generalizes well to more objects (e.g.
5 or 6) when trained only on a subset of images containing less than this number of objects.

Table 4: Architectural ablations on Tetrominoes.

Model ARI-FG ↑ ARI-FULL ↑
CAE 0.00 ± 0.00 0.12 ± 0.02

CAE-(fout 1x1 conv) 0.00 ± 0.00 0.00 ± 0.00

CAE-(fout sigmoid) 0.12 ± 0.12 0.35 ± 0.36

CAE-transp.+upsamp. 0.10 ± 0.21 0.10 ± 0.22

CAE++ 0.78 ± 0.07 0.84 ± 0.01

CtCAE 0.84 ± 0.09 0.85 ± 0.01

Ablation on Architectural Modifications.
Table 4 shows an ablation study on the
proposed architectural modifications on
Tetrominoes (for similar findings on other
datasets, see Appendix B.2). We observe
that the sigmoid activation on the output
layer of the decoder significantly impedes
learning on color datasets. A significant per-
formance jump is also observed when replac-
ing transposed convolution layers [36] with
convolution and upsample layers. By applying all these modifications, we obtain our CAE++ model
that results in significantly better ARI scores on all datasets, therefore supporting our design choices.

Ablation on Feature Layers to Contrast. In CtCAE we contrast feature vectors both at the
output of the encoder and the output of the decoder. Table 5 justifies this choice; this default setting
(Enc+Dec) outperforms both other options where we apply the constrastive loss either only in the

8

encoder or the decoder output. We hypothesize that this is because these two contrastive strategies
are complementary: one uses low-level cues (dec) and the other high-level abstract features (enc).

Table 5: Contrastive loss ablation for
CtCAE on CLEVR.

Model ARI-FG ↑ ARI-FULL ↑
Enc-only 0.21 ± 0.11 0.29 ± 0.15

Dec-only 0.38 ± 0.17 0.69 ± 0.18

Enc+Dec 0.50 ± 0.05 0.69 ± 0.25

Qualitative Evaluation of Grouping. Finally, we
conduct some qualitative analyses of both successful
and failed grouping modes shown by CAE++ and
CtCAE models through visual inspection of representa-
tive samples. In Figure 3, Tetrominoes (columns 1-2),
we observe that CtCAE (row 4) exhibits better grouping
on scenes with multiple objects of the same color than
CAE++ (row 3). This is reflected in the radial phase
plots (column 2) which show better separability for CtCAE than CAE++. Further, on dSprites
(rows 3-4, columns 4-5) and CLEVR (rows 3-4, columns 7-8), CtCAE handles the increased number of
objects more gracefully while CAE++ struggles and groups several of them together. For the failure
cases, Figure 4 shows an example where CtCAE still has some difficulties in segregating objects of
the same color (row 2, yellow cube and ball) (also observed sometimes on dSprites, see Figure 14).
Further, we observe how the specular highlights on metallic objects (purple ball in row 1 and yellow
ball in row 2) form a separate sub-part from the object (additional grouping examples in Appendix C).

Discussion on the Evaluation Protocol. The reviewers raised some concerns about the validity
of our evaluation protocol3. The main point of contention was that the thresholding applied before
clustering the phase values may lead to a trivial separation of objects in RGB images based on their
color. While it is true that in our case certain color information may contribute to the separation
process, a trivial separation of objects based on solely their color cannot happen since CtCAE largely
outperforms CAE++ (see Table 1) despite both having near perfect reconstruction losses and with the
same evaluation protocol. This indicates that this potential issue only has a marginal effect in practice
in our case and separation in phase space learned by the model is still crucial. In fact, “pure” RGB
color tones (which allow such trivial separation) rarely occur in the datasets (dSprites and CLEVR)
used here. The percentage of pixels with a magnitude less than 0.1 are 0.44%, 0.88% and 9.25% in
CLEVR, dSprites and Tetrominoes respectively. While 9.25% in Tetrominoes is not marginal,
we observe that this does not pose an issue in practice, as many examples in Tetrominoes where
two or three blocks with the same color are separated by CAE++/CtCAE (e.g. three yellow blocks in
Figure 3 or two magenta blocks in Figure 8).

To support our argument that using a threshold of 0.1 has no effect on the findings and conclusions,
we conduct additional evaluations with a threshold of 0 and no threshold at all. From Table 9 (see
Appendix B) we can see that using a threshold of 0 hardly change the ARI scores at all or in some
cases it even improves the scores slightly. Using no threshold results in marginally improved ARI
scores on CLEVR, near-identical scores on dSprites but worse scores on Tetrominoes (CtCAE
still widely outperforms CAE++). However, this is not due to a drawback in the evaluation or our
model. Instead, it stems from an inherent difficulty with estimating the phase of a zero-magnitude
complex number. The evaluation clusters pixels based on their phase values, and if a complex
number has a magnitude of exactly zero (or very small, e.g., order of 1e−5), the phase estimation
is ill-defined and will inherently be random as was also previously noted by Löwe et al. [36]. In
fact, filtering those pixels in the evaluation is crucial in their work [36] as they largely used datasets
with pure black background (exact zero pixel value). Evaluation of discrete object assignments from
continuous phase outputs in a model-agnostic way remains an open research question.

5 Related Work

Slot-based binding. A wide range of unsupervised models have been introduced to perform
perceptual grouping summarized well by Greff et al. [30]. They categorize models based on the
segregation (routing) mechanism used to break the symmetry in representations and infer latent
representations (i.e. slots). Models that use “instance slots” cast the routing problem as inference
in a mixture model whose solution is given by amortized variational inference [8, 14], Expectation-
Maximization [10] or other approximations (Soft K-means) thereof [15]. While others [9, 12, 49]
that use “sequential slots” solve the routing problem by imposing an ordering across time. These

3Discussion thread: https://openreview.net/forum?id=nF6X3u0FaA¬eId=5BeEERfCvI

9

https://openreview.net/forum?id=nF6X3u0FaA¬eId=5BeEERfCvI

models use recurrent neural networks and an attention mechanism to route information about a
different object into the same slot at every timestep. Some models [13, 17] combine the above
strategies and use recurrent attention only for routing but not for inferring slots. Other models break
the representational symmetry based on spatial coordinates [50, 16] (“spatial slots”) or based on
specific object types [51] (“category slots”). All these models still maintain the “separation” of
representations only at one latent layer (slot-level) but continue to “entangle” them at other layers.

Synchrony-based binding. Synchrony-based models use complex-valued activations to implement
binding by relying on their constructive or destructive phase interference phenomena. This class
of models have been sparsely explored with only few prior works that implement this conceptual
design for object binding [38–40, 36]. These methods differ based on whether they employ both
complex-valued weights and activations [38, 39] or complex-valued activations with real-valued
weights and a gating mechanism [40, 36]. They also differ in their reliance on explicit supervision for
grouping [38] or not [39, 40, 36]. Synchrony-based models in contrast to slot-based ones maintain
the “separation” of representations throughout the network in the phase components of their complex-
valued activations. However, none of these prior methods can group objects in color images with
up to 6 objects or visual realism of multi-object benchmarks in a fully unsupervised manner unlike
ours. Concurrent work [52] extends CAE by introducing new feature dimensions (“rotating features”;
RF) to the complex-valued activations. However, RF cannot be directly compared to CtCAE as it
relies on either depth masks to get instance grouping on simple colored Shapes or features from
powerful vision backbones (DINO [53]) to get largely semantic grouping on real-world images such
as multiple instances of cows/trains or bicycles in their Figures 2 and 20 respectively.

Binding in the brain. The temporal correlation hypothesis posits that the mammalian brain binds
together information emitted from groups of neurons that fire synchronously. According to this theory
[54, 55], biological neurons transmit information in two ways through their spikes. The spike ampli-
tude indicates the strength of presence of a feature while relative time between spikes indicates which
neuronal responses need to bound together during further processing. It also suggests candidate rhyth-
mic cycles in the brain such as Gamma that could play this role in binding [56, 57]. Synchrony-based
models functionally implement the same coding scheme [58–60] using complex-valued activations
where the relative phase plays the role of relative time between spikes. This abstracts away all aspects
of the spiking neuron model to allow easier reproduction on digital hardware.

Contrastive learning with object-centric models. Contrastive learning for object-centric
representations has not been extensively explored, with a few notable exceptions. The first method
[61] works only on toy images of up to 3 objects on a black background while the second [62] shows
results on more complex data, but requires complex hand-crafted data augmentation techniques to
contrast samples across a batch. Our method samples positive and negative pairs within a single
image and does not require any data augmentation. Most importantly, unlike ours, these models
still use slots and attention-based routing, and thereby inherit all of its conceptual limitations. Lastly,
ODIN [63] alternately refines the segmentation masks and representation of objects using two
networks that are jointly optimized by a contrastive objective that maximizes the similarity between
different views of the same object, while minimizing the similarity between different objects. To
obtain the segmentation masks for objects, they simply spatially group the features using K-means.
Their method relies on careful data augmentation techniques such as local or global crops, viewpoint
changes, color perturbations etc. which are applied to one object.

6 Conclusion

We propose several architectural improvements and a novel contrastive learning method to address
limitations of the current state-of-the-art synchrony-based model for object binding, the complex-
valued autoencoder (CAE [36]). Our improved architecture, CAE++, is the first synchrony-based
model capable of dealing with color images (e.g., Tetrominoes). Our contrastive learning method
further boosts CAE++ by improving its phase separation process. The resulting model, CtCAE,
largely outperforms CAE++ on the rather challenging CLEVR and dSprites datasets. Admittedly,
our synchrony-based models still lag behind the state-of-the-art slot-based models [15, 18], but this is
to be expected, as research on modern synchrony-based models is still in its infancy. We hope our
work will inspire the community to invest greater effort into such promising models.

10

Acknowledgments. We thank Sindy Löwe and Michael C. Mozer for insightful discussions
and valuable feedback. This research was funded by Swiss National Science Foundation grant:
200021_192356, project NEUSYM and the ERC Advanced grant no: 742870, AlgoRNN. This work
was also supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project
ID s1205 and d123. We also thank NVIDIA Corporation for donating DGX machines as part of the
Pioneers of AI Research Award.

References
[1] Anne Treisman. The binding problem. Current opinion in neurobiology, 6(2):171–178, 1996.

[2] Adina L Roskies. The binding problem. Neuron, 24(1):7–9, 1999.

[3] Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 14(1):29–56, 1990.

[4] Max Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische Forschung, 4(1):
301–350, 1923.

[5] Kurt Koffka. Principles of gestalt psychology. Philosophy and Scientific Method, 32(8), 1935.

[6] Wolfgang Köhler. Gestalt psychology. Psychologische Forschung, 31(1), 1967.

[7] Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files: Object-
specific integration of information. Cognitive psychology, 24(2):175–219, 1992.

[8] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber.
Tagger: Deep unsupervised perceptual grouping. In Advances in Neural Information Processing
Systems, volume 29, 2016.

[9] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. In
Advances in Neural Information Processing Systems, pages 3225–3233, 2016.

[10] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
In Proc. Advances in Neural Information Processing Systems (NIPS), pages 6691–6701, Long
Beach, CA, USA, December 2017.

[11] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational
neural expectation maximization: Unsupervised discovery of objects and their interactions. In
International Conference on Learning Representations, 2018.

[12] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer,
repeat: Generative modelling of moving objects. In Advances in Neural Information Processing
Systems, pages 8606–8616, 2018.

[13] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[14] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess,
Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object repre-
sentation learning with iterative variational inference. In Proc. Int. Conf. on Machine Learning
(ICML), pages 2424–2433, Long Beach, CA, USA, June 2019.

[15] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. In Proc. Advances in Neural Information Processing Systems (NeurIPS), Virtual
only, December 2020.

[16] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.

11

[17] Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Genera-
tive scene inference and sampling with object-centric latent representations. In International
Conference on Learning Representations, 2020.

[18] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALLE learns to compose. In Int. Conf.
on Learning Representations (ICLR), Virtual only, April 2022.

[19] Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C.
Mozer, and Thomas Kipf. SAVi++: Towards end-to-end object-centric learning from real-world
videos. In Advances in Neural Information Processing Systems, 2022.

[20] David Ding, Felix Hill, Adam Santoro, Malcolm Reynolds, and Matthew Botvinick. Atten-
tion over learned object embeddings enables complex visual reasoning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[21] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsuper-
vised visual dynamics simulation with object-centric models. In The Eleventh International
Conference on Learning Representations, 2023.

[22] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep
reinforcement learning with relational inductive biases. In International Conference on Learning
Representations, 2019.

[23] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds,
Andrew Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for
perception and control. Advances in neural information processing systems, 32, 2019.

[24] Anand Gopalakrishnan, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Unsupervised object
keypoint learning using local spatial predictability. In International Conference on Learning
Representations, 2021.

[25] Aleksandar Stanić, Yujin Tang, David Ha, and Jürgen Schmidhuber. Learning to generalize with
object-centric agents in the open world survival game crafter. ArXiv, abs/2208.03374, 2022.

[26] Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training
object-centric representations for reinforcement learning. arXiv preprint arXiv:2302.04419,
2023.

[27] Priyanka Mandikal and Kristen Grauman. Learning dexterous grasping with object-centric
visual affordances. In 2021 IEEE international conference on robotics and automation (ICRA),
pages 6169–6176. IEEE, 2021.

[28] Yizhe Wu, Oiwi Parker Jones, Martin Engelcke, and Ingmar Posner. Apex: Unsupervised,
object-centric scene segmentation and tracking for robot manipulation. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3375–3382, 2021.

[29] Mohit Sharma and Oliver Kroemer. Generalizing object-centric task-axes controllers using
keypoints. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
7548–7554, 2021.

[30] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in
artificial neural networks. Preprint arXiv:2012.05208, 2020.

[31] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. Advances in neural information
processing systems, 29, 2016.

[32] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272, 2017.

12

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural
Information Processing Systems (NIPS), pages 5998–6008, December 2017.

[34] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent
nets. Neural Computation, 4(1):131–139, 1992.

[35] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In Proc. Int. Conf. on Machine Learning (ICML), 2021.

[36] Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling. Complex-valued autoencoders
for object discovery. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

[37] Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial
broadcast decoder: A simple architecture for learning disentangled representations in VAEs. In
Learning from Limited Labeled Data (LLD) Workshop, ICLR, New Orleans, LA, USA, May
2019.

[38] Michael C Mozer, Richard Zemel, and Marlene Behrmann. Learning to segment images using
dynamic feature binding. Advances in Neural Information Processing Systems, 4, 1991.

[39] Michael C Mozer. A principle for unsupervised hierarchical decomposition of visual scenes. In
Advances in Neural Information Processing Systems, volume 11, 1998.

[40] David P Reichert and Thomas Serre. Neuronal synchrony in complex-valued deep networks. In
International Conference on Learning Representations, 2014.

[41] Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets. https://github.com/deepmind/multi-
object-datasets/, 2019.

[42] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour,
Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora,
Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric:
a scalable dataset generator. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[43] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 297–304, 2010.

[44] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[45] Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient iterative amortized
inference for learning symmetric and disentangled multi-object representations. In International
Conference on Machine Learning, pages 2970–2981. PMLR, 2021.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference for Learning Representations, 2015.

[47] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850, 1971.

[48] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218,
1985.

[49] Aleksandar Stanić and Jürgen Schmidhuber. R-sqair: Relational sequential attend, infer, repeat.
ArXiv, abs/1910.05231, 2019.

13

[50] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with con-
volutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

[51] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing. In
International Conference on Learning Representations, 2018.

[52] Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating features for object
discovery. arXiv preprint arXiv:2306.00600, 2023.

[53] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the International Conference on Computer Vision (ICCV), 2021.

[54] Christoph von der Malsburg. Binding in models of perception and brain function. Current
opinion in neurobiology, 5(4):520–526, 1995.

[55] Wolf Singer and Charles M Gray. Visual feature integration and the temporal correlation
hypothesis. Annual review of neuroscience, 18(1):555–586, 1995.

[56] John G.R Jefferys, Roger D Traub, and Miles A Whittington. Neuronal networks for induced
‘40 hz’ rhythms. Trends in Neurosciences, 19(5):202–208, 1996.

[57] Pascal Fries, Danko Nikolić, and Wolf Singer. The gamma cycle. Trends in neurosciences, 30
(7):309–316, 2007.

[58] Christoph von der Malsburg and Werner Schneider. A neural cocktail-party processor. Biological
cybernetics, 54(1):29–40, 1986.

[59] Christoph von der Malsburg and Joachim Buhmann. Sensory segmentation with coupled neural
oscillators. Biological cybernetics, 67(3):233–242, 1992.

[60] Andreas K Engel, Peter König, Andreas K Kreiter, Thomas B Schillen, and Wolf Singer.
Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends
in neurosciences, 15(6):218–226, 1992.

[61] Sindy Löwe, Klaus Greff, Rico Jonschkowski, Alexey Dosovitskiy, and Thomas Kipf. Learning
object-centric video models by contrasting sets. arXiv preprint arXiv:2011.10287, 2020.

[62] Federico Baldassarre and Hossein Azizpour. Towards self-supervised learning of global and
object-centric representations. arXiv preprint arXiv:2203.05997, 2022.

[63] Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew Jaegle, Andrew
Zisserman, João Carreira, and Relja Arandjelović. Object discovery and representation networks.
In European Conference on Computer Vision, pages 123–143, 2022.

14

A Experimental Details

Datasets. We evaluate all models (i.e., CAE, CAE++ and CtCAE) on a subset of Multi-Object
dataset [41] suite. We use three datasets: Tetrominoes which consists of colored tetris blocks on a
black background, dSprites with colored sprites of various shapes like heart, square, oval, etc., on a
grayscale background, and lastly, CLEVR, a dataset from a synthetic 3D environment. For CLEVR, we
use the filtered version [45] which consists of images containing less than seven objects sometimes
referred to as CLEVR6 as in Locatello et al. [15]. We normalize all input RGB images to have pixel
values in the range [0, 1] consistent with prior work [36].

Models. Table 6 shows the architecture specifications such as number of layers, kernel sizes, stride
lengths, number of filter channels, normalization layers, activations, etc., for the convolutional neural
networks used by the Encoder and Decoder modules in CAE, CAE++ and CtCAE.

Table 6: Encoder and Decoder architecture specifications for CAE, CAE++ and CtCAE models.
Encoder
3 × 3 conv, 128 channels, stride 2, ReLU, BatchNorm
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm

————————————————
For 64×64 and 96×96 inputs, 2 additional encoder layers:
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm

Linear Layer
Flatten
Linear, 256 ReLU units, LayerNorm

Decoder
For 64×64 and 96×96 inputs, 2 additional decoder layers:
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm

————————————————
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm
Bilinear upsample x2
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm

Output Layer (CAE only)
1 × 1 conv, 3 channels, stride 1, sigmoid

Training Details. Table 7 and Table 8 show the hyperparameter configurations used to train
CAE/CAE++ and to contrastively train the CtCAE model(s) respectively.

Computational Efficiency. We report the training and inference time (wall-clock) for our models
across the various image resolutions of the 3 multi-object datasets. First, we find that inference
time(s) is similar for all models, and it only depends on the image resolution and number of ground
truth clusters in the input image. Inference for the test set containing 320 images of 32x32 resolution
takes 25 seconds, for 64x64 images it takes 65 seconds and for the 96x96 images it takes 105 seconds.
Training time(s) on the other hand differs both across models and image resolutions. We report all

15

Table 7: General training hyperparameters.

Hyperparameter Tetrominoes dSprites CLEVR

Training Steps 50’000 100’000 100’000
Batch size 64 64 64
Learning rate 4e-4 4e-4 4e-4

Table 8: Contrastive learning hyperparameters for the CtCAE model.

Common Hyperparameters

Loss coefficient (in total loss sum) 1e-4
Temperature 0.05
Contrastive Learning Addresses Magnitude
Contrastive Learning Features Phase

Encoder Hyperparameters 32x32 64x64 96x96

Number of anchors 4 4 6
Number of positive pairs 1 1 1
Top-K to select positive pairs from 1 1 5
Number of negative pairs 2 2 6
Bottom-M to select negative pairs from 2 2 18

Decoder Hyperparameters 32x32 64x64 96x96

Patch Size 1 2 3
Number of anchors 100 100 100
Number of positive pairs 1 1 1
Top-K to select positive pairs from 5 5 5
Number of negative pairs 100 100 100
Bottom-M to select negative pairs from 500 500 500

training time(s) using a single Nvidia V100 GPU. CAE and CAE++ have similar training times:
for 32x32 images training for 100k steps takes 3.2 hours, for 64x64 images it takes 4.8 hours, and
for 96x96 images it takes 7 hours. CtCAE on the other hand takes 5 hours, 9.2 hours and 10.2
hours to train on dataset of 32x32, 64x64 and 96x96 images respectively. To reproduce all the
results/tables (mean and std-dev across 5 seeds) reported in this work we estimate the compute
requirement to be 840 GPU hours in total. Further, we estimate that the total compute used in this
project is approximately 5-10x more, including experiments with preliminary prototypes.

Object Assignments from Phase Maps. We describe the process of extracting discrete-valued
object assignments from continuous-valued phase components of decoder outputs y ∈ Ch×w×3.
First, the phase components of decoder outputs are mapped onto a unit circle and those phase values
are masked out whose magnitudes are below the threshold value of 0.1. After this normalization and
filtering step, the resultant phase values are converted from polar to Cartesian form on a per-channel
basis. Finally, we apply K-means clustering where the number of clusters K parameter is retrieved
from the ground-truth segmentation mask for each image. This extraction methodology of object
assignments from output phase maps is consistent with Löwe et al. [36].

B Additional results

We show some additional experimental results: generalization capabilities of CtCAE w.r.t. the number
of objects, and ablation studies on various design choices made in CAE++ and CtCAE models.

16

Table 9: Grouping results for CAE++ and CtCAE models with different threshold values applied to
post-process the continuous output phase maps.

Dataset Model Threshold=0.1 Threshold=0.0 No threshold
ARI-FG ↑ ARI-FULL ↑ ARI-FG ↑ ARI-FULL ↑ ARI-FG ↑ ARI-FULL ↑

Tetrominoes CAE++ 0.78 ± 0.07 0.84 ± 0.01 0.77 ± 0.07 0.79 ± 0.02 0.54 ± 0.09 0.21 ± 0.05

CtCAE 0.84 ± 0.09 0.85 ± 0.01 0.86 ± 0.05 0.82 ± 0.01 0.67 ± 0.11 0.26 ± 0.09

dSprites CAE++ 0.38 ± 0.05 0.49 ± 0.15 0.38 ± 0.05 0.49 ± 0.12 0.37 ± 0.05 0.49 ± 0.12

CtCAE 0.48 ± 0.03 0.68 ± 0.13 0.46 ± 0.07 0.69 ± 0.10 0.47 ± 0.06 0.69 ± 0.10

CLEVR CAE++ 0.22 ± 0.10 0.30 ± 0.18 0.33 ± 0.04 0.32 ± 0.25 0.34 ± 0.04 0.32 ± 0.25

CtCAE 0.50 ± 0.05 0.69 ± 0.25 0.52 ± 0.05 0.69 ± 0.20 0.52 ± 0.06 0.72 ± 0.21

Table 10: Generalization evaluation on the CLEVR dataset. Training only on a subset, but evaluating
on all possible subsets containing images with 3, 4, 5 or 6 objects.

Evaluation ARI-FG ↑ ARI-FULL ↑
Training Subset: 4 or less objects

3 objects 0.39 ± 0.20 0.53 ± 0.30

4 objects 0.41 ± 0.18 0.55 ± 0.29
5 objects 0.38 ± 0.15 0.54 ± 0.28

6 objects 0.38 ± 0.13 0.55 ± 0.24

All images 0.39 ± 0.04 0.54 ± 0.28

Training Subset: 5 or less objects

3 objects 0.49 ± 0.04 0.69 ± 0.25
4 objects 0.50 ± 0.03 0.66 ± 0.24

5 objects 0.46 ± 0.02 0.65 ± 0.24

6 objects 0.45 ± 0.03 0.64 ± 0.23

All images 0.48 ± 0.02 0.66 ± 0.24

B.1 Generalization to Higher Number of Objects

Here we evaluate generalization capabilities of CtCAE by training only on a subset of images
containing less than a certain number of objects, on CLEVR. We have two cases—training on subsets
with either up to 4 or up to 5 objects while the original trainig split contain between 3 and 6 objects.
The results in Table 10 show that CtCAE generalizes well. The performance drops only marginally
when trained on up to 4 objects and tested on 5 and 6 objects, or when trained on up to 5 objects and
tested on 6 objects. We also observe that training on 5 or less objects also consistently improves ARI
scores for every subset of less than 5 objects. We suspect that the reason for this, apart from having
more training data, is that the network has more pressure to separate objects in the phase space when
observing more objects, which in turn also helps for images with a smaller number of objects.

B.2 Architecture Modifications

Table 11 shows the results from the ablation study that measures the effect of applying each of our
proposed architectural modifications cumulatively to finally result in the CAE++ model. Across all
datasets, we consistently observe that, starting from the vanilla CAE baseline which completely fails,
grouping performance gradually improves as more components of the CAE++ model is added. Lastly,
our proposed contrastive objective used to train CtCAE further improves CAE++ across all 3 datasets.

B.3 Contrastive Learning Ablations

Table 12 shows an ablation study for the choice of layer(s) to which we apply our contrastive learning
method. Please note that all variants here always use magnitude components of complex-valued
activations as addresses and phase components as features to contrast. We observe that the variant

17

Table 11: Grouping metrics achieved by various model variants from our proposed architectural
modifications and resulting finally in the CAE++ model. Extends the results of Table 4 to all 3
multi-object datasets.

Dataset Model ARI-FG ↑ ARI-FULL ↑
Tetrominoes CAE 0.00 ± 0.00 0.12 ± 0.02

CAE-(fout 1x1 conv) 0.00 ± 0.00 0.00 ± 0.00

CAE-(fout sigmoid) 0.12 ± 0.12 0.35 ± 0.36

CAE-transp.+upsamp. 0.10 ± 0.21 0.10 ± 0.22

CAE++ (above combined) 0.78 ± 0.07 0.84 ± 0.01

CtCAE 0.84 ± 0.09 0.85 ± 0.01

dSprites CAE 0.02 ± 0.00 0.07 ± 0.01

CAE-(fout 1x1 conv) 0.06 ± 0.01 0.07 ± 0.07

CAE-(fout sigmoid) 0.02 ± 0.01 0.07 ± 0.01

CAE-transp.+upsamp. 0.19 ± 0.02 0.10 ± 0.04

CAE++ (above combined) 0.38 ± 0.05 0.49 ± 0.15

CtCAE 0.48 ± 0.03 0.68 ± 0.13

CLEVR CAE 0.09 ± 0.05 0.08 ± 0.06

CAE-(fout 1x1 conv) 0.05 ± 0.01 0.06 ± 0.01

CAE-(fout sigmoid) 0.06 ± 0.02 0.01 ± 0.02

CAE-transp.+upsamp. 0.19 ± 0.07 0.10 ± 0.11

CAE++ (above combined) 0.22 ± 0.10 0.30 ± 0.18

CtCAE 0.50 ± 0.05 0.69 ± 0.25

which applies the contrastive objective to both the outputs of the encoder and decoder (‘enc+dec’)
outperforms the others which apply it only to either one (‘enc-only’ or ‘dec-only’). This behavior
is consistent across Tetrominoes, dSprites and CLEVR. We hypothesize that this is because these
two contrastive strategies are complementary: one is on low-level cues (decoder) and the other one
based on high-level abstract features (encoder).

Table 13 shows an ablation study for the choice of using magnitude or phase as addresses (and the
other one as features) in our contrastive learning method. As we apply contrastive learning to both the
decoder and encoder outputs, we can make this decision independently for each output (resulting in
four possible combinations). We observe that the variant which uses magnitude for both the encoder
and decoder (‘mg+mg’) outperforms other variants across all 3 multi-object datasets. These ablations
support our initial intuitions when designing our contrastive objective.

Table 12: Grouping metrics achieved by CtCAE model variants that apply the contrastive loss on
output features from only the encoder (enc-only) or only the decoder (dec-only) or both (enc+dec)
for all 3 multi-object datasets. Extends the results of Table 5 to all 3 multi-object datasets.

Dataset Model ARI-FG ↑ ARI-FULL ↑
Tetrominoes CtCAE (enc-only) 0.81 ± 0.06 0.85 ± 0.01

CtCAE (dec-only) 0.74 ± 0.04 0.86 ± 0.00
CtCAE (enc+dec) 0.84 ± 0.09 0.85 ± 0.01

dSprites CtCAE (enc-only) 0.40 ± 0.06 0.58 ± 0.05

CtCAE (dec-only) 0.48 ± 0.05 0.72 ± 0.07
CtCAE (enc+dec) 0.48 ± 0.03 0.68 ± 0.13

CLEVR CtCAE (enc-only) 0.21 ± 0.11 0.29 ± 0.15

CtCAE (dec-only) 0.38 ± 0.17 0.69 ± 0.18

CtCAE (enc+dec) 0.50 ± 0.05 0.69 ± 0.25

18

Table 13: Grouping metrics on all 3 multi-object datasets achieved by CtCAE model variants that use
either magnitude or phase components of the encoder/decoder outputs as the addresses for contrastive
learning. For example, ‘mg+ph’ means that magnitude components used as addresses of the encoder
outputs and phase components used as addresses of the decoder outputs (conversely, the phase
components of the encoder outputs are used as features and the magnitude components of the decoder
outputs are used as features).

Dataset Model ARI-FG ↑ ARI-FULL ↑
Tetrominoes CtCAE w/ mg+mg 0.84 ± 0.09 0.85 ± 0.01

CtCAE w/ ph+ph 0.85 ± 0.05 0.84 ± 0.01

CtCAE w/ mg+ph 0.86 ± 0.03 0.85 ± 0.02

CtCAE w/ ph+mg 0.77 ± 0.04 0.85 ± 0.01

dSprites CtCAE w/ mg+mg 0.48 ± 0.03 0.68 ± 0.13
CtCAE w/ ph+ph 0.38 ± 0.08 0.42 ± 0.16

CtCAE w/ mg+ph 0.36 ± 0.07 0.57 ± 0.13

CtCAE w/ ph+mg 0.45 ± 0.05 0.67 ± 0.18

CLEVR CtCAE w/ mg+mg 0.50 ± 0.05 0.69 ± 0.25
CtCAE w/ ph+ph 0.22 ± 0.06 0.22 ± 0.09

CtCAE w/ mg+ph 0.18 ± 0.08 0.28 ± 0.15

CtCAE w/ ph+mg 0.40 ± 0.15 0.65 ± 0.19

C Additional Visualizations

We show additional visualization samples of groupings from CAE, CAE++ and CtCAE on
Tetrominoes, dSprites and CLEVR, and qualitatively highlight both grouping failures and suc-
cesses of CAE, CAE++ and CtCAE.

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 5: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row 3) on the Tetrominoes
dataset example from Figure 3. We see that CtCAE achieves near perfect grouping (column 4) and
better separability in phase space (column 5) compared to our improved CAE++ variant which shows
significant grouping interference (parts of all three objects modelled by same group, e.g., orange
cluster). We also observe that the baseline CAE completely fails to reconstruct or group the image.

19

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 6: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row 3) on the dSprites
dataset example from Figure 3. We see that CtCAE successfully separates the 4 scene objects into 4
clusters while CAE++ mistakenly groups 2 scene objects into 1 cluster, i.e., the blue cluster (column
4). Again, the baseline CAE fails to reconstruct (no color) or group the image.

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 7: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row 3) on the CLEVR dataset
example from Figure 3. We see that the CtCAE in this example is able to separate the 4 scene objects
into 4 distinct clusters while our improved CAE++ fails (column 4). This good separation in phase
space is reflected in the continuous phase maps (column 6) where the pixel colors in the phase maps
are representative of their values/differences when comparing CtCAE and CAE++. Finally, we see
that although the CAE is able to reasonably reconstruct the image it shows very poor grouping of the
scene objects.

20

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 8: Visualization on grouping performance for CAE, CAE++ and CtCAE on images containing
same colored objects on Tetrominoes. CAE struggles to even reconstruct the images, whereas
CAE++ often groups objects with the same colour together. CtCAE on the other hand has no problem
separating objects of the same colour on Tetrominoes.

21

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 9: Visualization on grouping performance for CAE, CAE++ and CtCAE on Tetrominoes.
CtCAE shows a larger spread in phase values for different clusters (column 5) compared to CAE. We
hypothesize that this facilitates CtCAE to perform better grouping in the scenario of multiple object
instances with the same color.

22

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 10: Visualization on grouping performance for CAE, CAE++ and CtCAE on images containing
similar colored objects on dSprites. CAE has very poor grouping capability, whereas CAE++ often
groups objects with the same colour together For example, purple ellipse and square in the first
example (top panel) or red and brown hearts grouped together in the last example (bottom panel) are
grouped together. CtCAE on the other hand has significantly better performance, grouping correctly
objects with the same (or similar) colors, except in the first example (top panel) where it groups the
pink square and ellipse together.

23

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 11: Performance for CAE, CAE++ and CtCAE on images containing many objects on
dSprites. CAE shows poor grouping performance, as noted previously. CtCAE has no issues
grouping up to 5 objects in the same image, whereas CAE++ struggles, often grouping multiple
objects (typically of same or similar colors) together into the same cluster.

24

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 12: Visualization on grouping performance for CAE, CAE++ and CtCAE on CLEVR dataset.
We are particularly interested in the phase space spread (column 5) here. CAE has a very large spread
in phase values (column 5), but almost random object discovery performance, often grouping all
objects together. But if we see the actual phase values assigned to objects (column 6), we observe that
CAE tends to assign very similar phase values (e.g. all object phases’ are in shades of magenta seen
in column 6, rows 1, 4, and 7) to regions belonging to different objects whereas the corresponding
maps show better separation in CAE++ and much superior in CtCAE. This explains better grouping
performance (column 4) shown by CAE++ and CtCAE over the vanilla CAE.

25

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 13: Visualization on grouping performance for CAE, CAE++ and CtCAE on samples with
4, 5 and 6 objects from the CLEVR dataset. CAE consistently shows poor object discovery, often
grouping all objects together. CAE++ improves grouping substantially over the CAE baseline, but
also struggles in certain scenarios. For example, in the scene with 4 objects it groups two different
objects together, whereas for scenes with 5 and 6 objects on two samples here we see that it wrongly
groups two objects together. CtCAE improves on these grouping failures of CAE++. CtCAE correctly
discovers all objects in the scene with 4 and 5 objects, even though it makes an error grouping two
objects together in the hardest example scene containing 6 objects.

26

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 14: One of the limitations (failure modes) we observe is that in some images containing many
objects, with some of them having the same (or similar) colors, our CtCAE model groups two such
objects into the same cluster. Even in this example, CtCAE still clearly outperforms CAE++, which
in turn outperforms the CAE baseline.

27

	Introduction
	Background
	Method
	Results
	Related Work
	Conclusion
	Experimental Details
	Additional results
	Generalization to Higher Number of Objects
	Architecture Modifications
	Contrastive Learning Ablations

	Additional Visualizations

