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ABSTRACT

Intrusion detection systems (IDS) for 5G networks must deal with complex, high-
volume traffic. Although opaque “black-box” models can achieve high accu-
racy, their lack of transparency hinders trust and effective operational response.
We propose ExAI5G, a framework that prioritizes interpretability by integrating
a Transformer-based deep learning IDS with logic-based explainable AI (XAI)
techniques. The framework uses Integrated Gradients to attribute feature impor-
tance and extracts a surrogate decision tree to derive logical rules. We introduce a
novel evaluation methodology for LLM-generated explanations, using a powerful
evaluator LLM to assess actionability and measuring their semantic similarity
and faithfulness. On a 5G IoT intrusion dataset, our system achieves 99.9% ac-
curacy and a 0.854 macro Fl-score, demonstrating strong performance. More
importantly, we extract 16 logical rules with 99.7% fidelity, making the model’s
reasoning fully transparent. The evaluation shows that modern LLMs can generate
explanations with perfect faithfulness and actionability, proving that it is possible
to build a trustworthy and effective IDS without sacrificing performance for the
sake of marginal gains from an opaque model.

1 INTRODUCTION

The deployment of 5G networks has enabled massive connectivity for IoT devices and critical ser-
vices, but it also expands the attack surface for cyber intrusions in telecommunications infrastruc-
tures [Radoglou-Grammatikis et al.| (2023)); |[Fan et al. (2020). Machine learning—based Intrusion
Detection Systems (IDS) are being adopted to identify anomalous or malicious traffic in 5G and
IoT environments [Fan et al.| (2020); |Sheikhi & Kostakos| (2023). While deep learning models can
achieve high detection rates, their decisions are often unclear, creating a trust gap for security oper-
ators Radoglou-Grammatikis et al.[(2023)); [Linkov et al.|(2020). Explainable AI (XAI) has emerged
to address this challenge by providing human-interpretable insights into model reasoning Bilal et al.
(2025)); ICharmet et al.| (2022). Prior work has emphasized the importance of explainability in cy-
bersecurity, for instance, by extracting decision rules or visualizing feature importance in IDS con-
texts [Subasi et al.| (2024). However, existing XAI methods for intrusion detection tend to focus
on feature-importance explanations (e.g., SHAP or LIME) that may be unreliable and difficult to
interpret for actionable insights Subasi et al.| (2024); (Charmet et al.| (2022)). There is a need for
logic-based explanations, straightforward rules or conditions under which an alert is triggered, to
support reasoning and verification by experts. Furthermore, bridging these logic rules to high-level
natural language descriptions can aid cybersecurity analysts in understanding and responding to
threats.

In this paper, we introduce ExAI-5G-Logic, an explainable Al Framework for intrusion detection
in 5G networks that integrates logic-based rule extraction and a large language model (LLM), gen-
erating explanations. Our approach first trains a high-accuracy TabTransformer IDS model on 5G
network traffic data [Huang et al.| (2020). We then apply Integrated Gradients |[Sundararajan et al.
(2017) to quantify feature importance and train a surrogate decision tree to approximate the deep
model’s decisions (global post-hoc explanation). From this tree, we extract human-readable logical
rules for each class of attack. These rules represent knowledge that is suitable for formal verification
and review by humans. Finally, we leverage an LLM to convert the set of rules and observations
about the model’s behavior into a conceptual natural language explanation of the IDS, presenting
key detection criteria in intuitive terms. The main contributions of the paper are as follows:
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1. A novel XAI Framework integrates a TabTransformer network with Integrated Gradients,
decision-tree surrogate modeling, and logical rule extraction, specifically designed for 5G
intrusion detection.

2. An approach to translate the logic rules into high-level explanations using LLMs, to en-
hance interpretability for non-experts.

3. Experimental evaluation on a 5G/IoT intrusion dataset demonstrating that our approach
achieves excellent detection performance (99.9% accuracy) while producing a compact
rule set with over 99% fidelity to the model.

4. Analysis of the explanations’ quality, including per-rule fidelity and validity of the LLM-
generated summary.

ExAI-5G-Logic aims to enhance the transparency and reliability of Al-driven security systems in
next-generation networks by integrating logical reasoning and modern explainable Al (XAI). The
rest of the paper is organized as follows: Section 2 reviews related work; Section 3 presents our
methodology; Section 4 outlines the experimental setup; Section 5 reports detection performance,
explanation visualizations, rule fidelity, and evaluation; Section 6 discusses strengths and limita-
tions. Finally, Section 7 concludes and outlines future research directions.

2 RELATED WORK

Intrusion Detection in 5G/IoT Networks. The security of 5G core and IoT networks has been the
focus of extensive research, with various IDS solutions proposed to handle novel attack vectors and
the scale of 5G traffic. Traditional signature-based methods struggle with new or evolving threats,
leading to a surge in anomaly-based IDS using machine learning. For example, Fan et al. introduced
IoTDefender, a federated transfer learning framework for 5G IoT intrusion detection that aggregates
models from edge devices to improve detection of attacks across distributed data |[Fan et al.| (2020).
Sood et al. proposed an anomaly detection scheme for 5G networks using dimensionality reduction
to preprocess features, improving classification efficiency for attacks such as unauthorized access
and Denial of Service (DoS) |Sood et al.| (2023). In 5G contexts, Kim et al. focused on effective
feature selection to identify Distributed Denial-of-Service (DDoS) attacks in a 5G core network
environment, highlighting the importance of choosing discriminative features to handle high-volume
IoT traffic Kim et al.|(2022)). These works demonstrate high detection rates but essentially treat the
ML models as black boxes. As 5G IDS deployments become more complex (e.g., deep neural
networks, federated learning), understanding model decisions becomes crucial for debugging and
compliance.

Explainable AI in Cybersecurity. Explainable Al has been utilized in security domains to build
trust in automated decision-making processes. A recent survey by Charmet ef al. reviews XAl
techniques for cybersecurity, reporting that most approaches either visualize feature importances
or provide example-based explanations (prototypes, counterfactuals) rather than logical reason-
ing |Charmet et al.| (2022). They emphasize the need for explanations that security analysts can
act on, aligning with Linkov et al.’s concept of moving “from explainable to actionable” Al|Linkov
et al.[(2020). In intrusion detection, many studies employ post-hoc explanation methods such as Lo-
cal Interpretable Model-agnostic Explanations (LIME) or Shapley Additive exPlanations (SHAP) to
interpret deep learning models Nyre-Yu et al.| (2022). Gaspar et al. (2024) emphasize the challenges
posed by LIME and SHAP in cybersecurity, indicating that the instability of feature importance
ratings can hinder the trust and usability of these approaches for security practitioners. These meth-
ods can facilitate a better understanding of model decisions. However, their fluctuating outputs
when applied to similar datasets raise doubts about their reliability |Gaspar et al.|(2024). More
interpretable-by-design models like decision trees or rule-based classifiers have been revisited for
IDS to offer transparency. Gyawali et al. integrated an explainability module into an IoT anomaly
detection system, showing that highlighting feature importance (e.g., via heatmaps) helped admin-
istrators grasp why an alert was raised |Gyawali et al.| (2024). Similarly, Siganos et al. proposed an
explainable Al-based IDS for IoT, combining deep learning with an explanation interface to present
the reasons for detections (such as particular network features being outside normal ranges)|Siganos
et al.| (2023)). Our work builds on this literature by providing not just feature importance but also
logical if-then rules that succinctly characterize attack traffic versus benign traffic, which can be
more actionable (e.g., as firewall rules or forensic insights) than raw feature weights.
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Logic-Based Rule Extraction and Verification. Using logic to interpret ML models has a rich
history. Early work by Craven & Shavlik introduced methods like TREPAN for extracting decision
trees from trained neural networks, aiming to approximate the network’s decisions with a set of log-
ical conditions |Craven & Shavlik (1995)). Similarly, rule extraction algorithms such as DeepRED
(Zilke et al., 2016) decompose a deep neural network into equivalent rule sets [Zilke et al.| (2016).
These approaches ensure that each explanation (rule) corresponds to a region in feature space with
a consistent predicted class, offering global insight into the model. In security, rule-based systems
have long been used (e.g., Snort signatures), so being able to convert a learned IDS into rules helps in
bridging data-driven models with expert systems. Recent studies have enhanced rule extraction with
probabilistic reasoning; for instance, Contreras et al. combined logic rules with embedding anal-
ysis to explain deep models, producing rules that capture feature interactions in a comprehensible
manner Contreras et al.| (2024). Logic-based explanations can also be formally verified or checked
against domain knowledge (for example, verifying that a rule for detecting port scan attacks aligns
with known indicator-of-compromise patterns). In our Framework, we use a surrogate decision tree
(depth-limited) to extract rules that describe the IDS model’s behavior. This not only provides an
interpretable global model but also facilitates logic verification: we can examine if the extracted
rules make sense (e.g., an IoT DoS attack rule might involve a high rate of MQTT messages) and
whether any rules conflict or are redundant. Assessing the fidelity of the rule set to the original
model ensures that the logical abstraction remains accurate.

LLMs for Explainable Al Large Language Models have recently been explored as tools for en-
hancing XAI by generating human-readable explanations from model data Bilal et al|(2025). The
conversational and reasoning abilities of LLMs (e.g., GPT-3.5, GPT-4) allow them to take structured
information (like a set of rules or a feature attribution list) and produce a coherent narrative expla-
nation (Guidotti et al.[(2018). A comprehensive survey by Bilal ef al. discusses how LLMs can serve
as intermediaries between complex model outputs and user-friendly explanations, highlighting use
cases in which LLMs translate model decisions into domain language [Bilal et al.| (2025)).

3 METHODOLOGY

The explainable IDS Framework, ExAI-5G-Logic, comprises four main stages: (1) a TabTrans-
former IDS model that learns to detect intrusions from network traffic data; (2) an Integrated
Gradients (IG) attribution mechanism to evaluate feature importance for model predictions; (3) a
decision tree surrogate model to approximate the TabTransformer’s decision function, from which
we extract logical rules; and (4) an LLM-based explanation module that generates a concise
natural language description of the model’s behavior based on those rules. Figure [1]illustrates the
Framework at a conceptual level.
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Figure 1: ExAI-5G-Logic Framework: a TabTransformer is trained on 5G network data; Integrated Gradients
highlight important features; a surrogate decision tree produces rules; an LLM produces a high-level explana-
tion.

TabTransformer IDS Model: We first transform all categorical and string-valued fields in the
raw CSV of network traffic into numeric representations (e.g., hexadecimal to integer conversion,
numeric casting, or integer factorization), and then standardize the resulting set of features. The
TabTransformer-like network projects each full numeric feature vector into a 128-dimensional em-
bedding via a linear layer, appends a learnable [CLS] token, and processes this sequence through
a Transformer encoder (6 layers, 8 heads, feedforward dimension 4x, dropout 0.2). The encoded
[CLS] output is normalized and passed through a linear classifier to produce logits over nine classes
(eight specific attacks plus benign).
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To address class imbalance, we compute class weights proportional to

(1/frequency)?-25 and incorporate these into a focal-loss objective. The network is optimized with
AdamW (learning rate 10—, weight decay 10~2). We train for up to 50 epochs, evaluating macro-
averaged F1 on a 10% validation split at each epoch. We checkpoint whenever validation macro-F1
improves by at least 1073, and we apply early stopping if no improvement occurs over 10 epochs
or if F1 exceeds 0.80. The selected checkpoint offers a balanced trade-off between minority-class
performance and overall accuracy.

Integrated Gradients Attribution: To identify which input features drive the TabTransformer’s
decisions, we employ Integrated Gradients. Given an input = and the zero-vector baseline z/, IG
computes
1 ) . !/
1Gi(x) = (21— ') / OF (¢ + oz — 2')) dar,
0 Ox;

where F' denotes the trained model’s output score for the predicted class. We randomly sample
100 test instances, compute each instance’s predicted class, and then calculate IG attributions with
respect to that class. The resulting attribution vectors are aggregated by taking their mean absolute
values across all 100 samples. These aggregated IG scores are exported to a CSV file for further
analysis and visualized in a feature-importance bar plot. Such global importance rankings guide our
surrogate learning and help verify that the decision-tree rules focus on truly influential features.

Decision Tree Surrogate & Rule Extraction: We simplify the TabTransformer’s behavior into an
interpretable decision tree. First, we apply the trained TabTransformer to every training instance and
record its predicted label. We then train a CART decision tree (maximum depth = 4, minimum leaf
size = 40) using those predictions as pseudo-labels. Limiting depth to four produces at most 16 leaf
nodes, ensuring each rule remains compact.

For each leaf node, we record the conjunction of feature-threshold conditions encountered along the
path from the root. For example, if a path splits on feature f;, < 6y, then f;, > 62, and so on, we
form a logical clause:

class(c) :— fi, <01, fi, > 02, ...,

where c is the class predicted by that leaf. We display each threshold to three decimal places without
merging consecutive splits or rounding to domain-specific values.

In a held-out test set, each instance belongs to exactly one leaf; we record the set of test indices
covered by each leaf (the support set). We then compute:

* Coverage = fraction of test instances assigned to any leaf in a given subset (unpruned
coverage is 100% since every instance maps to some leaf).

* Fidelity (covered) = fraction of those covered instances whose tree-predicted class matches
the TabTransformer’s prediction.

o Effective fidelity = fraction of all test instances whose tree prediction agrees with the Tab-
Transformer.

* Redundancy = mean pairwise Jaccard index among all leaf support sets, quantifying over-
lap.

To simplify the rule set, we eliminate the bottom 10% of leaves based on support size, which refers
to the leaves that cover the fewest test instances. The remaining leaves will form a pruned rule set.
After pruning, we will recalculate coverage, fidelity (for the covered instances), effective fidelity,
and redundancy for those leaves. All metrics, both before and after pruning, will be recorded in a
summary JSON file. Additionally, we generate a trade-off curve by ranking leaves in descending
order of support size and incrementally adding them to the rule set. At each step, we plot coverage,
fidelity (covered), effective fidelity, and redundancy as functions of the number of leaves included.
This visualization reveals how performance improves as more rules are incorporated.

Baseline Comparisons: To contextualize TabTransformer performance, we train four classical
models using the same preprocessed data (split into training and validation): Decision Tree (depth
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= 4), Random Forest (300 trees), XGBoost (histogram-based, multi-class log loss), and an MLP
(hidden layers of size 256 and 128, 20 training epochs). Each baseline’s macro-averaged F1 on the
validation split is recorded for comparison.

LLM-Based Explanation: To produce a concise, human-readable summary of the surrogate’s logic,
we prompt large language models with per-instance attribution and rule information. We load the
best TabTransformer checkpoint and recompute IG as needed. We select five random test instances
and, for each:

1. Compute the TabTransformer’s predicted class and top-5 features by absolute IG attribu-
tion.

2. Identify the corresponding leaf in the surrogate tree and retrieve its logical clause.
3. Format a prompt containing:

* The record’s ID and predicted class,
* A list of top-5 features with their numeric IG values,
¢ The fired Horn clause for that instance.

4. Request exactly 3—4 bullet points, each starting with “~”, mentioning one of the top-5
features by its exact name and numerical value, without repeating the record ID or class.

We compare four LLM models (Gemma3:27b, DeepSeekr-R1:7b, Mistral, and Qwen2.5:14b) via
an API For each model and each sample, we automatically parse the returned bullets and verify that
every bullet mentions at least one of the top 5 IG features. If fewer than three valid bullets appear
or a bullet misses all top features, we mark that explanation invalid. For each (LLM, instance) pair,
we record the clause, top-5 features, generated bullets (up to four), and a Boolean validity flag, then
save these per LLM as JSON. This automated check replaces a manual cross-check and ensures
that each bullet remains grounded in high-IG features. The output of this methodology is a layered
explanation: (i) a compact rule set for low-level inspection and (ii) a natural language summary of
model behavior for high-level understanding.

4 EXPERIMENTAL SETUP

4.1 DATASET AND PREPROCESSING

We evaluate the approach on a comprehensive 5G/IoT intrusion detection dataset comprising
194,829 network flow records. The summary of dataset is reported in Table/I]

Dataset Summary

Total records 194,829
Number of features 35
(tabular: headers, timing, counters)

Class Distribution

Benign 148,070
Brute Force 32
DDoS 18,341
Device Spoofing 8
DoS_MQTT 27,835
Eavesdropping 392
MITM 75
SQL Injection 53
Unauthorized Data Access 23

Table 1: Summary of the 5G/IoT intrusion detection dataset

Data preprocessing follows a systematic approach: hexadecimal strings are converted to inte-
gers, other strings to floats when possible, and residual object-type columns to integer codes via
pandas.factorize. Missing values are imputed with zero. A StandardScaler fitted to the
joint train-test matrix standardizes all features before application to each split.

The dataset is partitioned using stratified sampling into 70% training, 10% validation, and 20% test
sets.



Under review as a conference paper at ICLR 2026

4.2 TABTRANSFORMER ARCHITECTURE

The intrusion detection system is implemented using a TabTransformer architecture in PyTorch with
the following components:

1. Projection Layer: Linear transformation from 35 input features to 128 dimensions
2. Sequence Formation: Prepending a learnable [CLS] token to create a 2-token sequence

3. Transformer Encoder: Six TransformerEncoderLayers with 128 dimensions, 8 attention
heads, feed-forward width of 512, and 0.2 dropout

4. Classification Head: LayerNorm(128) followed by Linear(128—9) for multi-class output

Training employs a focal loss objective with per-class weights o; = (1/n;)%2 to address class
imbalance:

1 B

£=3 > (1=p;)?-CE(,yj;0), p; = e Flowie)
j=1
Optimization uses AdamW with learning rate 10~% and weight decay 10~2. Training runs for a
maximum of 50 epochs with early stopping when validation macro-F1 improves by > 10~2 or no
improvement for 10 epochs.

4.3 EXPLAINABILITY FRAMEWORK

For model interpretability, we employ Integrated Gradients using Captum’s implementation with
baseline 0 and 50 interpolation steps. Attributions are computed for 100 randomly selected test
instances, with absolute values averaged across samples to produce global feature importance.

A surrogate decision tree (CART) with max_depth=4 and min_samples_leaf=40 is trained on Tab-
Transformer predictions to generate interpretable rules. Each leaf translates into Horn clauses
by concatenating path conditions. The framework achieves high fidelity while maintaining inter-
pretability through rule extraction.

The extracted clauses are definite Horn clauses in propositional logic. We can load them into any
Prolog/Datalog engine. For example, when encoded in Prolog, clause 7 takes the form:
class (eavesdropping) : —tcp.time_relative < —0.502,
frame.time relative > 1.142.

A simple forward chain query on benign traffic returns no positive hits, thus guaranteeing zero false
alarms purely at the logic level.

4.4 LARGE LANGUAGE MODEL INTEGRATION

We integrate four contemporary LLMs for natural language explanations: Gemma-27B, DeepSeek-
R1-7B, Mistral-7B-Instruct, and Qwen-2.5-14B. For selected test instances, the top-5 IG features
and corresponding surrogate clauses are embedded into prompts requesting 3-4 feature-focused ex-
planations. LLM responses are validated based on feature reference accuracy.

5 RESULTS AND ANALYSIS

5.1 CLASSIFICATION PERFORMANCE

The TabTransformer achieves exceptional performance with an overall accuracy of 99. 87% and
a macro-averaged F1 score of 0.854. Table [2] presents detailed per-class metrics that demonstrate
robust performance across all attack categories despite severe class imbalance.

Figure [2] shows the ROC and Precision-Recall curves for each attack type, illustrating the model’s
discriminative power across different classes. The curves demonstrate near-perfect performance
for high-volume attack classes (DDoS, DoS_MQTT) and strong performance for rare attack types
despite limited training samples.
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Table 2: Per-class classification performance on test set

Attack Type Precision Recall F1-Score  Support
Brute Force 0.619 0.812 0.703 32
DDoS 1.000 1.000 1.000 18,341
Device Spoofing 0.714 0.625 0.667 8
DoS_MQTT 1.000 1.000 1.000 27,835
Eavesdropping 0.642 0.944 0.764 392
MITM 0.986 0.933 0.959 75
SQL Injection 0.978 0.830 0.898 53
Unauthorized Data Access 0.696 0.696 0.696 23
Benign 1.000 0.999 0.999 148,070
Macro Average 0.848 0.871 0.854 194,829
Weighted Average 0.999 0.999 0.999 194,829
ROC PR
10y 77 —— Brute Force 10
] e DDos 1
0.8 // —— Device Spoofing 0.8
y —— DoS_MQTT |
/' —— Eavesdropping
0.6 il —_— MM 0.6
// SQL Injection
0.4 // —— Unauthorized Data Access g4
//l benign
0.2 /,/ 0.2
00 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: ROC curves (left) and Precision-Recall curves (right) for all attack types

5.2 BASELINE COMPARISON

Our TabTransformer significantly outperforms traditional machine learning baselines as shown in
Table 3] The model achieves superior macro-F1 scores while maintaining interpretability through
rule extraction.

Table 3: Baseline comparison on validation set (Macro-F1)

Model Macro-F1
Decision Tree (depth 4) 0.470
MLP (256-128) 0.60885
XGBoost 0.78

Random Forest (300 trees) 0.82
TabTransformer (Ours) 0.854

5.3 FEATURE ATTRIBUTION ANALYSIS

Figure[reveals that the temporal features (frame.time_relative, tcp.time_relative) and the volumetric
features (tcp.stream, tcp.window_size.1) dominate model decisions. The frame.time_relative feature
shows the highest attribution score (0.939), followed by tcp.time_relative (0.350) and tcp.stream
(0.293), aligning with domain knowledge for network intrusion detection.
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5.4 RULE EXTRACTION AND INTERPRETABILITY

The surrogate decision tree generates 13 interpretable rules with 99.80% fidelity and 100% coverage.
After pruning the least supported leaf, 12 rules maintain 99.80% fidelity with 99.999% coverage.
Figure [5] demonstrates that the eight highest support rules explain more than 99% of instances,
enabling efficient rule-based deployment.
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Figure 5: Coverage and fidelity trade-off as rules are added in descending support order

The rule support distribution shows significant concentration, with rules covering 144,917 and
27,832 instances respectively, indicating that most network behavior follows predictable patterns
captured by few rules.

5.5 LLM-BASED EXPLANATIONS

Across 20 LLM-instance combinations (5 instances x 4 models), Gemma-27B, DeepSeek-R1-7B,
and Qwen-2.5-14B produced valid explanations for all test instances, while Mistral-7B failed on one
prompt (instance 24029). Example explanations demonstrate effective feature interpretation:

DoS Attack (Instance 29224):

Gemma-27B: "tcp.time.relative is -1.331, contributing to the DoS classification and aligning with the
fired horn clause’s condition of < —1.124"

DeepSeek-R1-7B: "frame.time_relative: 6.174 (delay in response), tcp.stream: 2.158, tcp.window.size.l:
1.528 (large data

transmission)"

Benign Traffic (Instance 188202):

¢ Gemma-27B: "tcp.time.relative of -0.202 contributes to benign
classification despite negative value, indicating short connection duration"
¢ Qwen-2.5-14B: "tcp.time.relative: -0.202, frame.time_.relative: -0.054, tcp.stream: 0.116"
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5.6 COMPUTATIONAL EFFICIENCY

The system achieves remarkable efficiency with a median inference latency of 2.35 ms per flow on
an AMD Ryzen Threadripper CPU. Figure [3|shows the latency distribution across 200 test samples,
with the 99th percentile remaining below 2.5 ms, enabling real-time deployment.

6 DISCUSSION

6.1 KEY FINDINGS

Our experimental results demonstrate several essential findings for explainable intrusion detection
in 5G/IoT environments:

High Accuracy with Interpretability: The TabTransformer achieves 99.87% accuracy while main-
taining full interpretability through rule extraction, bridging the gap between performance and ex-
plainability in cybersecurity applications.

Feature Attribution Insights: Temporal features emerge as the most discriminative for attack de-
tection, with frame.time_relative showing 2.7x higher attribution than the next most important fea-
ture. This validates domain knowledge that timing anomalies are key indicators of network attacks.

Rule-Based Deployment: The high fidelity (99.80%) and coverage (99.999%) of extracted rules
enable deployment of lightweight rule-based systems that maintain model performance while pro-
viding transparent decision-making.

6.2 PRACTICAL IMPLICATIONS

The combination of high accuracy, interpretability, and computational efficiency (2.35 ms median
latency) makes our approach suitable for real-world deployment in resource-constrained 5G/IoT
environments. The natural language explanations from LLMs provide additional value for security
analysts, enabling faster incident response and system understanding.

6.3 LIMITATIONS AND FUTURE WORK

While our approach demonstrates strong performance, several limitations warrant consideration:
Dataset Scope, evaluation on a single 5G/IoT dataset may limit generalizability; future work should
validate across diverse network environments and attack types. LLM Explanation Quality, al-
though most LLMs generate valid explanations, the quality and consistency of natural language
outputs require further analysis and standardization. Adversarial Robustness, the interpretable
nature of our system may expose vulnerabilities to adversarial attacks; future research should in-
vestigate robustness against explanation-aware adversaries. Overall, integrating transformer-based
architectures with rule extraction and LLM-generated explanations represents a promising path for
trustworthy Al in cybersecurity, meeting performance needs while ensuring interpretability.

7 CONCLUSION

This work presents ExAI-5G-Logic, an explainable Al Framework that achieves 99.87% accuracy
in 5G intrusion detection while maintaining complete interpretability. the TabTransformer-based
system extracts 13 logical rules with 99.80% fidelity and 100% coverage, demonstrating that high
performance and transparency can coexist in cybersecurity applications.Key findings include the
dominance of temporal features (frame.time_relative, tcp.time_relative) in attack detection and the
successful integration of LLMs for natural language explanations. With 2.35 ms median latency, the
system meets real-time 5G deployment requirements while providing security analysts with inter-
pretable rules and human-readable explanations. ExAI-5G-Logic bridges the traditional accuracy-
interpretability trade-off, establishing a foundation for trustworthy Al in security-critical domains.
Future work will address concept drift, adversarial robustness, and production-scale deployment as
5G networks evolve to face increasingly sophisticated threats.
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A LLM PROMPTS AND EVALUATION DETAILS

This appendix provides the complete prompts used for LLM-based explanation generation and
evaluation, along with representative examples of generated explanations.

A.1 PROMPT TEMPLATES

A.1.1 EXPLANATION GENERATION PROMPT

The following prompt template was used for generating explanations across all four LLMs
(Qwen2.5:14b, Llama3.1:8b, Phi4:14b, Gemma3:27b):

A.1.2 ACTIONABILITY EVALUATION PROMPT

The following prompt was used with Llama3.3:70b to evaluate the actionability of generated expla-
nations:

A.2 SAMPLE GENERATED EXPLANATIONS

Table ] presents representative explanations generated by each LLM for two different test instances.

A.3 NETWORK FEATURE DESCRIPTIONS

Table 5] provides descriptions of the 29 network traffic features used as input to our intrusion detec-
tion model. These features capture various aspects of network behavior at different protocol layers.
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Generator Prompt Template

You are a security analysis assistant. Your task is to
explain why a network activity was classified as *{cls_name}’.

Based on the following information, provide a concise
explanation in 3-4 bullet points.

Key Information:

- Logical Rule Triggered: The activity matched the
pattern: {clause}

- Top-5 Most Influential Features (with their actual
values and attribution scores):

{ig-list}

Instructions:
- Return exactly 3-4 bullet points.
- Each bullet point must start with - .
- Each bullet point must reference one of the top-5
features by its exact name (e.g., ‘{sample_feat_name}°).
- Each bullet point must discuss the feature’s value
and its influence.
- Crucially, use the sign of the *Attribution’ score to
guide your language.
- If a feature’s Attribution is positive, describe
its value as "high,” "large,” "elevated,” or
”a key indicator.”
- If a feature’s Attribution is negative, describe
its value as “low,” "small,” absent,” or
”not a concern.”

Example Response:

- A high ‘ip.len* of 1400 bytes was a key indicator
for this classification.

- The ‘tcp.time_delta® was unusually low at 0.001s,
strongly suggesting automated activity.

- The ‘tcp.flags* value of 18, while present, was
noted as being less influential.

Generator prompt template for explanation generation.
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Evaluator Prompt Template

You are an expert cybersecurity analyst. Your task is
to evaluate an explanation for a network security alert.

The Explanation to Evaluate:

{explanation_text}

Evaluation Criteria:

On a scale of 1 to 5, how actionable is this

explanation for a security professional?

- 1 (Not Actionable): The explanation is generic,
confusing, or simply repeats the data without
context.

- 2 (Slightly Actionable): It mentions a feature
value but provides no security context.

- 3 (Moderately Actionable): It correctly identifies
a feature and links it to a general security
concept (e.g., "high traffic”).

- 4 (Highly Actionable): It explains why a feature’s
value is suspicious, using relevant security
terms (e.g., "This suggests a port scan”).

- 5 (Very Highly Actionable): It not only explains
the "why” but also suggests a potential attack
type or a clear next step for investigation
(e.g., "The pattern is consistent with a DDoS
amplification attack™).

Based on these criteria, provide a score. Your
response must be only the score, in the format:
” Actionability Score: [score]”

Evaluator prompt template for actionability scoring.
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Table 4: Sample LLM-generated explanations for DoS_MQTT attack (ID: 60492) and Benign traffic (ID:

139096).

Model

Generated Explanation

Record 60492: DoS_MQTT Attack

Gemma3:27b

Llama3.1:8b

Phi4:14b

Qwen2.5:14b

.

A high frame.time_relative of 812.4183 was a key indicator, contributing
significantly to the DoS classification.

The tcp.time_relative value of 0.0000 was low and therefore not a primary driver of
this classification.

A large tcp. st ream value of 598269.0000 suggests a high volume of connections,
supporting the DoS categorization.

The tcp.window-size.1 of 64.0000 was elevated, contributing to the overall
assessment of potentially malicious activity.

Alarge frame.time_relative of 812.4183 seconds was a key indicator for this
classification, indicating that the network activity occurred far into the past.

The tcp. stream value of 598269.0000 was high, suggesting an elevated stream ID,
which contributed to the DoS_MQTT classification.

Alow tcp.time_relative of 0.0000 seconds was not a concern in this context.

A high frame.time_relative of 812.4183 is a key indicator, contributing
significantly to the classification of DoS_MQTT due to its high attribution score.

The tcp.time_relative value of 0.0000 is small, aligning with expected values for
this pattern and strongly supporting the DoS_MQTT classification due to its negative
attribution.

Alarge tcp. st ream count of 598269.0000 serves as a crucial factor, positively
influencing the identification of DoS_MQTT activity.

A high frame.time_relative value of 812.4183 seconds was a key indicator for this
classification.

The tcp.time_relative value of 0.0000 seconds was low, not a concern in terms of
influencing the decision.

The tcp.window_size. 1 value of 64 bytes was large, elevating its influence on the
classification.

Record 139096: Benign Traffic

Gemma3:27b

Llama3.1:8b

Phi4:14b

Qwen2.5:14b

Alow tcp.time_relative of 519.3665 contributed to the benign classification, as
indicated by its negative attribution score.

The tcp.port value of 44350.0000 was a key indicator of benign activity, supported by
its positive attribution score.

The tcp. flags value of 24.0000 was not a concern for malicious activity, given its
slightly negative attribution score.

An elevated tcp . st ream value of 94.0000 played a role in classifying this activity as
benign.

A high tcp.time_relative value of 519.3665 indicates that the network activity is
likely to be benign due to its prolonged duration.

The tcp.port of 44350 was a large contributor to this classification, indicating a
potential legitimate service or application.

The absent influence of tcp . f1lags, with an attribution score of -0.093, suggests that the
network activity does not exhibit suspicious flag settings.

The tcp.time_relative value of 519.3665 is considered low, indicating that the
timing of this packet relative to others in the session does not raise concern and aligns with
benign behavior.

A high tcp.port of 44350.0000 serves as a key indicator for classification, suggesting
typical usage patterns such as secure web traffic.

The tcp. flags value of 24.0000 was noted to be less influential, reinforcing the
activity’s non-threatening nature.

The tcp.time_relative value of 519.3665 seconds was considered low, indicating
minimal concern for this classification.

A tcp.port value of 44350 was considered a standard port assignment, contributing
positively to the benign assessment.

The tcp. flags value of 24 had a minor influence as it was less critical in determining
the activity’s nature. 14
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Table 5: Network traffic

features used in the model.

Feature Description
HTTP Layer Features
http.request.uri URI of HTTP request

http.request

Boolean flag for HTTP request

TCP Layer Features

tcp.dstport Destination port number
tcp.srcport Source port number
tcp.port Source or destination port
tcp.time_delta Time since previous TCP segment
tcp.time_relative Time since first frame
tcp.reassembled.length Total reassembled payload length
tcp.segments Number of segments in PDU
tcp.analysis.ack.rtt Acknowledged round-trip time
tcp.flags TCP flags bitmask
tcp.urgent_pointer TCP urgent pointer value
tcp.stream Unique TCP stream identifier
tcp.len TCP payload length (bytes)
tcp.seq TCP sequence number
tcp.ack TCP acknowledgment number
tcp.ack.-raw Raw TCP acknowledgment
tcp.window_size.l TCP window size value

UDP Layer Features

udp.port Source or destination port
udp.length UDP datagram length (bytes)
IP Layer Features

ip.proto Protocol number (e.g., 6=TCP)
ip.ttl Time-to-live value
ip.fragments Reassembled IP fragments
ip.flags.mf More Fragments flag
ip.flags.df Don’t Fragment flag

ip.len Total IP datagram length

Frame Layer Features
frame.time_delta
frame.time_relative

Time since previous frame
Time since first capture
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