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Abstract
Recent advances in large multimodal models
(LMMs) have recognized fine-grained grounding
as an imperative factor of visual understanding
and dialogue. However, the benefits of such rep-
resentation in LMMs are limited to the natural
image domain, and these models perform poorly
for remote sensing (RS). The distinct overhead
viewpoint, scale variation, and presence of small
objects in high-resolution RS imagery present
a unique challenge in region-level comprehen-
sion. Moreover, the development of the ground-
ing conversation capability of LMMs within RS
is hindered by the lack of granular, RS domain-
specific grounded data. Addressing these lim-
itations, we propose GeoPixel - the first end-
to-end high-resolution RS-LMM that supports
pixel-level grounding. This capability allows fine-
grained visual perception by generating inter-
leaved masks in conversation. GeoPixel supports
up to 4K HD resolution in any aspect ratio, ideal
for high-precision RS image analysis. To sup-
port the grounded conversation generation (GCG)
in RS imagery, we curate a visually grounded
dataset GeoPixelD through a semi-automated
pipeline that utilizes set-of-marks prompting and
spatial priors tailored for RS data to methodically
control the data generation process. GeoPixel
demonstrates superior performance in pixel-level
comprehension, surpassing existing LMMs in
both single-target and multi-target segmentation
tasks. Our methodological ablation studies val-
idate the effectiveness of each component in the
overall architecture. https://github.com/mbzuai-
oryx/GeoPixel.
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The image is an aerial view of a sports
complex featuring a running track and a
swimming pool. The track has multiple
lanes, and the field is marked for
various sports. The surrounding area
includes roads, buildings, and green
spaces. The ground track field at the
center is a large athletic venue with a
multi lane running track encircling a
grassy field marked for various sports.
The swimming pool at the top is large,
rectangular, and filled with a blue
substance, likely water. Numerous small
vehicles can be seen at different
locations. A soccer field within the
sports complex features a rectangular
pitch with goals at each end, surrounded
by a running track. The image gives a
static and undisturbed appearance as no
people or moving objects are visible.

Can you give a thorough description of this image, including interleaved 
segmentation masks to highlight key objects?

Figure 1. An example of visually grounded detailed descriptions
generated by the proposed GeoPixel, highlighting its ability to in-
terpret and segment high-resolution remote sensing imagery with
fine-grained precision. The model applies distinct masks to key
objects (ground track field, swimming pool, soccer field) and se-
mantic mask to smaller objects (vehicles). It effectively identifies
spatial positions (center, top) and relationships (within the sports
complex) while distinguishing between the global context (build-
ings, roads, green spaces) and localized structures.

1. Introduction
Recent large multimodal models (LMMs) (Liu et al., 2024a;
Dai et al., 2023; Bai et al., 2023b; Chen et al., 2024b)
have utilized the foundational capabilities of Large Lan-
guage Models (LLMs) (Touvron et al., 2023; Chiang et al.,
2023; Javaheripi et al.; Bai et al., 2023a) and success-
fully expanded their horizon to the visual modality with
promising capabilities. These LMMs can not only per-
form visual recognition, but also excel in advanced per-
ception and reasoning required for vision-language tasks
such as visual question answers, image captioning, visual
grounding, and referring expression segmentation. Ground-
ing LMMs (Rasheed et al., 2024; Ma et al., 2025; Zhao
et al., 2023) have further advanced the fine-grained context-
aware interpretation of complex visual information by allow-
ing textual outputs to be associated with object instances.
Facilitated by large-scale data in the natural images do-
main, grounding multimodal models pre-trained on exten-
sive datasets have shown impressive capabilities, achieving
performance levels comparable to specialist models.

However, with increasing granularity of vision and language
understanding, these general domain models exhibit signif-
icant limitations in adequately supporting complex earth
observation tasks. The performance degradation is influ-
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Table 1. Comparison of remote sensing large multimodal models
(RS-LMMs), focusing on their grounding capabilities. The ‘Re-
gion Output’ column highlights the model’s ability to associate
objects with specific spatial regions. Existing models primarily
utilize LLMs to generate bounding box coordinates for object
grounding. However, none of the current RS-LMMs possess the
capability for ‘pixel grounding’, i.e., generating detailed segmenta-
tion masks, which are crucial for fine-grained spatial interpretation.

MODELS RESOLUTION IMAGE
REGION REGION PIXEL

OUTPUT DECODER GROUNDING

RSGPT (HU ET AL., 2023) 224 × 224 ✓ × × ×
H2RSVLM (PANG ET AL., 2024) 336 × 336 ✓ × × ×
RS-LLAVA (BAZI ET AL., 2024) 336 × 336 ✓ × × ×
GEOCHAT (KUCKREJA ET AL., 2024) 504 × 504 ✓ ✓ × ×
SKYEYEGPT (ZHAN ET AL., 2024) 448 × 448 ✓ ✓ × ×
EARTHGPT (ZHANG ET AL., 2024C) - ✓ ✓ × ×
LHRS-BOT (MUHTAR ET AL., 2024) 224×224 ✓ ✓ × ×
SKYSENSEGPT (LUO ET AL., 2024) 504 × 504 ✓ ✓ × ×
GEOPIXEL DYNAMIC UPTO 4K ✓ ✓ ✓ ✓

enced not only by the unique vantage point inherent to re-
mote sensing (RS) images but also by large variations in the
objects’ size and orientation. Moreover, in high-resolution
(HR) remote sensing imagery, objects of interest may exhibit
challenging-to-segment spatial footprints, such as narrow
bridges that connect urban landscapes and play a critical
role in city traffic planning, adding further complexity to
the task.

Existing vision language models in RS (Luo et al., 2024;
Zhang et al., 2024b; Kuckreja et al., 2024) use quantized
coordinates in the form of bounding boxes to localize and
ground objects in their response. Such a representation
structure is not adequate to associate correct object seman-
tics and also adds a computational burden to the LLM that
scales with the number of distinguishable objects. More-
over, monitoring the geospatial environment and its entities
demands a broader spatial perspective, now increasingly
achievable through advancements in RS technologies that
provide HR imagery. However, despite the availability of
such rich data, current LMMs in RS struggle to fully ex-
ploit this spatial detail. These models often struggle with
suboptimal resolution capabilities, hindering their ability
to capture the intricate patterns present in high-resolution
RS images. In addition, existing RS datasets often lack
fine-grained spatial association between objects and their
corresponding linguistic descriptions.

To address these issues, we present GeoPixel, a model that
can generate a detailed natural language response for a high-
resolution RS image with corresponding geospatial object
segmentation masks. Our contributions are as follows:

• Our proposed LMM, GeoPixel, is explicitly designed
for high-resolution RS image analysis with advanced
multi-target pixel grounding capability. Our model
adaptively divides the input images into local and
global regions, enabling efficient encoding and analysis

by accommodating up to 4k resolution.

• We create GeoPixelD, a multi-modal grounded conver-
sation generation (GCG) dataset comprising 53,816
grounded phrases linked to 600,817 object masks,
specifically tailored for RS image understanding. Ex-
tensively granular annotations are created with seg-
mentation masks through a semi-automated, scalable
pipeline that integrates prior-informed visual prompt-
ing with state-of-the-art LMMs and ensures quality via
rigorous verification and filtering steps.

• We introduce a comprehensive benchmark for evalu-
ating RS LMMs in fine-grained visual understanding,
assessing models’ ability to interpret complex, spa-
tially grounded information. It comprises 5,427 manu-
ally validated referring expressions and segmentation
masks, covering 61,384 annotated objects.

2. Related Work
Large Multimodal Models (LMMs): LMMs build on the
success of LLMs to acquire vision capabilities. Pioneer
works such as LLaVA (Liu et al., 2024b), MiniGPT-4 (Zhu
et al., 2023), InstructBLIP (Dai et al., 2023) and mPLUG-
Owl (Ye et al., 2023b) aligned visual features with language
representations through a vision language connector, en-
hanced by instruction tuning to improve multimodal integra-
tion. Improving beyond image-level understanding, models
such as GPT4RoI (Zhang et al., 2023), InternGPT (Liu
et al., 2023b) and RegionGPT (Guo et al., 2024) introduce
regional understanding by allowing inputs such as points,
masks, and bounding boxes. Some models feed image co-
ordinates directly into the language model, while others
employ additional feature extraction modules to represent
specific image regions’ features effectively.

Grounding LMMs: Region-level comprehension is fur-
ther expanded by models such as Kosmos-2 (Peng et al.,
2024), Ferret (You et al., 2023), Shikra (Chen et al., 2023),
Pink (Xuan et al., 2024) and LION (Chen et al., 2024a)
that allow for the precise location of objects in their out-
puts based on textual descriptions, a capability known as
grounding. These models localize objects on a coarse scale
using bounding boxes. Recent models (Lai et al., 2024;
Rasheed et al., 2024; Xia et al., 2024; Ren et al., 2024;
Zhang et al., 2024d; Liu et al., 2023a) focus on achieving
more fine-grained visual and linguistic semantic alignment,
by exploring pixel grounding. LISA (Lai et al., 2024), Pix-
elLM (Ren et al., 2024) and GLaMM (Rasheed et al., 2024)
incorporate a [SEG] token into the LLM’s vocabulary, lever-
aging its corresponding token embedding as a conditioning
input for SAM (Kirillov et al., 2023) to enable segmentation.
Additionally, GSVA (Xia et al., 2024) introduces a [REJ]
token to explicitly learn to reject specified targets. Whereas
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Llava-plus (Liu et al., 2023a) employs LLMs as agents to
assign tasks to the segmentation expert.

Our work aligns with pixel-grounding approaches, such
as those in (Lai et al., 2024; Ren et al., 2024; Rasheed
et al., 2024). However, these models do not interpret the dis-
tinct top-down perspective and cannot differentiate complex
spatial arrangements of remote sensing (RS) imagery. In
addition, the models’ restricted input size, typically limited
to dimensions such as 224×224, exacerbates this issue by
constraining the field of view and spatial perception.

High-Resolution Understanding: Vision encoders, such
as CLIP ViT (Radford et al., 2021), are widely utilized
for various vision tasks but are typically constrained by
low resolution (e.g. 224×224) restricting their applicabil-
ity in HR scenarios. To address this limitation, some ap-
proaches (Dosovitskiy et al., 2021; Bai et al., 2023b; Li
et al., 2023) scale positional encodings within the CLIP
model through interpolation to accommodate larger input
sizes, while others such as CogAgent (Hong et al., 2024)
and Vary (Wei et al., 2025), employ an additional HR branch.
Models such as Monkey (Li et al., 2024b), SPHNIX (Lin
et al., 2023), Llava-Next (Liu et al., 2024a), IXC2.5 (Zhang
et al., 2024a), Textmonkey (Liu et al., 2024d) and Ure-
ader (Ye et al., 2023a) divide the image into grids to enhance
performance on HR text-centric tasks.

Remote Sensing (RS) LMMs: RSGPT (Hu et al., 2023)
pioneered RS-based natural language conversation and gen-
erated detailed captions, followed by GeoChat (Kuckreja
et al., 2024) which supported region-specific inputs and vi-
sual grounding through oriented bounding box coordinates.
SkyEyeGPT (Zhan et al., 2024) extended its functional-
ity to RS video captioning, while EarthGPT (Zhang et al.,
2024c) and EarthDial (Soni et al., 2024) integrated mul-
tisensor RS interpretation. RS-LLaVA (Bazi et al., 2024)
and H2RSVLM (Pang et al., 2024) further improved the RS
data interpretation, with H2RSVLM uniquely recognizing
and rejecting unanswerable questions. SkySenseGPT (Luo
et al., 2024) enables image-level scene graph generation
and relation reasoning, while LHRS-Bot (Muhtar et al.,
2024) enhances multilevel vision-language alignment and
TeoChat (Irvin et al., 2025) converses on temporal se-
quences. However, these models operate at low resolution
and lack pixel-level understanding and grounding.

GeoGround (Zhou et al., 2024), RSUniVLM (Liu & Lian,
2024), and GeoPix (Ou et al., 2025) are works concurrent
to ours and share similarities. GeoGround and RSUniVLM
support pixel-level grounding by converting masks into text
sequences, adding a computational burden to the LLM that
scales with the number of distinguishable objects. Whereas,
GeoPix incorporated both referring expressions segmenta-
tion and visual grounding/detection using box coordinates
in text, which leads to task confusion.

3. Method
In the current remote sensing landscape, LMMs face sig-
nificant limitations in terms of grounding and resolution
capabilities (as seen in Table 1). Specifically, the outputs
generated by these models lack precise spatial and semantic
association with the imagery, leading to either ungrounded
or only coarsely grounded text. Furthermore, most LMMs
operate on relatively low-resolution data, which restricts
their ability to perform fine-scale analysis essential for RS
tasks such as detailed land use and transportation network
extraction, infrastructure mapping, damage assessment, and
environmental monitoring. To address these limitations,
we present GeoPixel, a model designed to interpret high-
resolution remote sensing images and generate finely de-
tailed, pixel-grounded outputs that encompass multiple tar-
get objects.

3.1. GeoPixel Architecture Overview

GeoPixel primarily consists of 5 components (see Figure 2).
(1) Adaptive Image Divider (2) Vision Encoder (3) Large
Language Model (4) Grounding Vision Encoder (5) Pixel
Decoder. The first three components are discussed in Sec-
tion 3.2, while the latter two in Section 3.3. Jointly, these
modules enable high-resolution perception, fine-grained in-
terpretation, and grounding, as detailed below.

3.2. High Resolution Understanding

For high resolution, we adopt the dynamic image partition-
ing strategy of IXC-2.5 (Zhang et al., 2024a). Initially, the
adaptive image divider processes the input image ximg , with
dimensions [hi × wi], by up-scaling and padding it to align
with the closest grid size denoted as [gh × gw].

gh = k1 × B, gw = k2 × B, (1)

s.t., k1, k2 ∈ N, k1 × k2 ≤ P

where B is the base resolution of the vision encoder and P
is the number of maximum allowable image patches. Subse-
quently, the image is divided into k1 × k2 non-overlapping
patches xpi,j

, where p = 0, 1, 2, . . . , (k1 × k2 − 1), and i, j
denote the row and column indices of each patch in the grid.

We employ the scaled CLIP ViT-L/14 (Zhang et al., 2024a)
as our vision encoder (I), with a base resolution of B = 560,
facilitating large patches for enhanced visual representation.
Furthermore, a global view xglob is generated by resizing
ximg to a fixed dimension of 560 × 560, aligned with the
base resolution B. Feature embeddings of patches fpi,j

are
appended with a learnable token at the end of each row
before flattening and merging (Dong et al., 2024b). Finally,
global features fglob and patch features fp are concatenated
(||) with a special separator (sg) inserted between them
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Can you give a thorough 
description of this image, 

including interleaved 
segmentation masks to highlight 

key objects?

The image is an aerial view of a parking lot 
adjacent to a sports complex, showing the 
parking area filled with cars, indicating the 
facility's popularity or an event taking 
place. The sports fields are well maintained, 
with clear demarcations for different games, 
suggesting a focus on sports and community 
recreation. The soccer field at the top is 
characterized by its synthetic green turf, 
surrounded by a running track. The ground
track field at the top is a multi lane 
running track with a central infield area, 
likely used for athletic competitions. The 
baseball diamond at the bottom has a well 
maintained, circular infield with a visible 
diamond shape, surrounded by a larger grassy 
outfield. The baseball diamond at the bottom 
right has a well maintained, circular infield 
with a visible diamond shape, surrounded by a 
larger grassy outfield. A large vehicle is 
visible at the bottom left, and more than 
hundred small vehicles can be seen in 
different areas. The surrounding greenery 
provides a natural boundary and adds to the 
aesthetic appeal of the location.

Input Text

Grounded Conversation

Adaptive Image 
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Global Image
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Figure 2. Overview of GeoPixel Architecture: Left: High-resolution RS images are dynamically partitioned into local patches and a
resized global view, encoded by a frozen vision encoder. The encodings are projected into the language domain with separator tokens.
Middle: Vision tokens, combined with text, are input into the LLM, where pLoRA is applied to vision tokens for efficient and effective
multimodal alignment. Right: The corresponding embeddings for the [SEG] tokens are passed to a decoder through a text projector, along
with vision embeddings from the grounding vision encoders, to generate precise segmentation masks.

(Ding et al., 2019), effectively integrating global semantics
with fine-grained local details.

xv = Pv(fglob||sg||fp) (2)

s.t. fglob = I(xglob), fpi,j = I(xpi,j )

We project the final unified image features onto the LLM, In-
ternLM2 7B model (Cai et al., 2024), denoted as L, through
a two-layer MLP as a vision projector Pv . InternLM2 is an
LLM designed to process sequences of text tokens, where
its input consists of discrete embeddings derived from tex-
tual data. These embeddings correspond to either natural
language tokens or special placeholders inserted to represent
external modalities. The placeholder <IMAGE> in the input
text query xt is a special token that represents the position
of the image within the input sequence. When processing
multimodal input, this placeholder is replaced with visual
features xv, extracted from the image, and projected into
the same embedding space using Pv .

Partial Low-Rank Adaptation (LoRA) (Dong et al., 2024a)
is then applied to ensure efficient alignment of the vision
tokens. Partial LoRA is a modality-specific plug-in mod-
ule designed to align features from a new modality with
LLM, preserving the model’s inherent capabilities while
enriching it with modality-specific insights. By applying
low-rank adaptations selectively to visual tokens, Partial
LoRA enhances alignment efficiency while reducing the
computational cost. Formally, it introduces low-rank ma-
trices WA ∈ RCr×Cin and WB ∈ RCout×Cr within each
LLM linear layer, modifying the visual token outputs xv

without altering the language token outputs xt, thus achiev-
ing tailored cross-modal integration.

3.3. Pixel Grounding

To establish grounding in LMM, we initialize the ground-
ing vision encoder (Ig) with a pre-trained SAM-2 (Ravi
et al., 2024) encoder together with a dedicated pixel decoder
module (D). The SAM2 visual encoder is a Masked Au-
toencoder (MAE) (He et al., 2022) pre-trained Hiera (Ryali
et al., 2023) image encoder having a hierarchical structure
that allows the use of multiscale features during decoding.
The tokenizer’s vocabulary is expanded by incorporating an
additional <SEG> token, with its corresponding last-layer
embedding (E) mapped to the decoder through a text pro-
jection layer Pt. The text projection is a two-layer MLP
that receives embeddings of dimension 4096 and transforms
them into the input space of the pixel decoder, which has a
dimensionality of 256.

The pixel decoder processes the image features from the
frozen grounding vision encoder, along with projected LLM
embeddings, to generate segmentation masks (M ). The
grounding vision encoder (SAM-2) is already pre-trained on
large-scale datasets, making it highly effective at extracting
robust, generalized image features for segmentation. Freez-
ing the encoder ensures that these pretrained features are
preserved. However, the light-weight pixel decoder and pro-
jection layer are trained to adapt pretrained vision features
for segmentation tasks in GeoPixel.
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Holistic Image Annotation

Image Image + SOM Image + SOM + Priors

Cluster/Crowded 
Annotation

Individual Instance Annotation

Describe the image in four short sentences.

"The image is an aerial view of a sports complex with multiple courts. 
There are several tennis courts, one with a blue surface and others 
with green surfaces, indicating different types or purposes. A 
basketball court is also visible, with people playing on it. The 
surrounding area includes parking spaces and trees, suggesting the 
facility is part of a larger recreational or community park setting."

List down all the attributes of the {category_name} at the {pos} that is marked with number {mark_number} in one
short sentence. Do not mention the marked number in output.

category_name = basketball court,
pos = left, marker_number = 2

"The outdoor basketball court has 
a blue playing surface and white 
boundary lines. "

category_name = soccerball field,
pos = bottom, marker_number = 1

"A natural grass soccer field at 
the bottom, with a group of 
people gathered near one side."

category_name = tennis court, pos 
= top, marker_number = 4

"The central tennis court in the 
top row of courts is located next 
to the blue basketball court."

Give a brief, single-sentence
description of {cluster_info}
{category_name} at the {pos} in
the given aerial image, without
extra explanations.

cluster_info = numerous , 
category_name = small vehicles, 
pos = left side

"A row of small vehicles, likely 
personal cars, are parked along 
the curb on the left side of the 
image, adjacent to the sports 
facility."

Masks

Figure 3. The GeoPixelD Annotation Pipeline provides detailed multi-tier descriptions of remote sensing imagery with object phrases
aligned precisely with manually annotated masks. It begins with Holistic Image Annotation (bottom left), where an LMM generates
concise scene descriptions. Individual Instance Annotation (bottom right) uses spatial({pos}) and categorical ({catagorory name}) priors
with SOM ({mark number}) prompting to describe key objects. Cluster Annotation (top right) organizes smaller or dense objects using
refined grids for precise spatial analysis.

M = D[Ig(ximg),Pt(E)] (3)

Given the variable length of the input image tokens, result-
ing from adaptive image partitioning, the output embedding
mask for <SEG> tokens is dynamically adjusted to align
with these variations. This configuration ensures accurate
detection of the <SEG> token and its associated embedding.

4. GeoPixelD-RS Pixel Grounding Dataset
Remote sensing imagery captures intricate semantic infor-
mation and complex inter-object relationships across di-
verse spatial scales. To enable LMMs to acquire a detailed
comprehension ability, it is essential to integrate broad
contextual views with object-level distinction. Address-
ing the current deficit in datasets capable of facilitating a
fine-grained understanding of top-down perspectives, we
introduce GeoPixelD, a dataset established to provide hier-
archical descriptions derived through automated multilevel
image analysis. GeoPixelD structures its descriptions at
three primary levels: (1) holistic scene representation, (2)
individual instance observations, and (3) densely populated
object groups annotations (as depicted in Figure 3).

4.1. Holistic Image Annotation

Initially, we generated descriptive captions for RS im-
ages using a robust open source model, IXC (Zhang
et al., 2024a), to capture comprehensive and diverse
image details. We chose the IXC model (Zhang
et al., 2024a) based on a comparative study con-
ducted with other state-of-the-art vision language mod-

els, where IXC consistently outperformed its counterparts
in terms of qualitative performance. Open-ended de-
scriptions are restricted to a limited length, integrated in
prompts like "<image> Describe the image in
four short sentences" (Figure 3 (bottom left)).
Thus, redundancy is effectively minimized in subsequent
annotations, and the model is driven to provide a holistic,
context-rich depiction of each image.

4.2. Individual Instance Annotation

Next, we identify key objects for depiction and employ set-
of-mark (SOM) prompting (Yang et al., 2023), which over-
lays distinct visual markers over specific image regions, to
provide auxiliary information for visually grounded output.
However, directly employing this method for aerial imagery,
characterized by expansive views and diverse objects within
a single frame, poses challenges such as hallucinated mark-
ers and incorrectly associated details (see Figure 7). To
enhance object description accuracy in complex RS images,
we spatially guide the model by introducing prior knowl-
edge in the query in the form of category name and location,
along with a marked number. Thus, effectively guiding the
model to generate a precise and comprehensive description.

Specifically, we partition each image into a 3×3 grid and lo-
calize the objects by measuring their overlap with the quad-
rants to determine their positional reference. This quadrant-
based localization, combined with categorical labels and
marked numbers, serves as positional and categorical priors
for LMM, enhancing focus on the target objects, a process
that proves effective given the densely packed and spatially
complex nature of RS imagery, where objects often vary in
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scale, orientation, and proximity.

We evaluated various open-source and proprietary models
for prior-informed SOM prompting in RS imagery (see
Figure 8), comparing combined and individual querying
approaches. ChatGPT (OpenAI, 2023) generated detailed
descriptions with inferred information, while Gemini (Team
et al., 2023) and InternVL (Chen et al., 2024b) exhibited
repetitive output as the target objects increased. InternLM-
XComposer (Zhang et al., 2024a) achieved performance
comparable to ChatGPT in terms of accuracy and diversity.

4.3. Cluster/Crowd Annotation

After identifying and annotating prominent large objects, the
remaining objects are grouped or identified along with their
spatial properties through a structured three-stage positional
analysis. First, the image is divided into a 3×3 grid, with
each grid cell assigned a unique identifier. To enhance
alignment with human perceptual tendencies, the central
region of the grid is given a larger spatial weight. Next, a
2×2 grid is considered for the localization of more dispersed
objects. Finally, a half-image grid (1×2 and 2×1) assigns
broader positional information. This gridding provides a
systematic framework for the localization of clusters as well
as large groups of objects. LMM then describes the group
attributes using quantitative and positional information.

4.4. Unifying Annotations and Language Marking

For the preprocessed iSAID (Waqas Zamir et al., 2019) train
dataset (Appendix A), we derive 16,795 holistic, 36,793
instance, and 17,023 group annotations, collectively encom-
passing 600,817 objects. The annotations were rigorously
filtered to eliminate aerial perspective inconsistencies, arti-
facts such as marker identifiers, fore/background references,
depth cues, and inconsistent descriptors.

The key noun chunk corresponding to the object category
in individual- and group-level annotations is tagged with
unique identifiers (’phrase-number’), each linked to an in-
stance or semantic mask, a process termed text marking.
These marked annotations are combined with holistic scene
representations into a single descriptive narrative. We em-
ploy a Llama-3.1-instruct 8B (Dubey et al., 2024) LLM to
paraphrase concatenated annotations while preserving their
semantic integrity (see Figure 9). The LLM processes the
concatenated text under strict constraints to retain all marked
phrases unchanged, ensuring a consistent link to associated
visual masks. The outputs undergo iterative paraphrasing
if any marked phrases are not preserved. By adopting this
language marking strategy, the GeoPixelD dataset achieves
a robust framework to generate high-quality, context-rich
GCG descriptions precisely aligned with visual elements.

Following similar procedures, test set GCG descriptions

(utilzing iSAID validation set images) undergoes meticu-
lous manual curation, requiring ˜350 man-hours to ensure
annotation completeness. We employed a robust validation
protocol where each gcg description in the test set was metic-
ulously verified by expert annotators. The process includes
correcting for any omissions, inaccuracies, or partial annota-
tions, including adjustments to object attributes that do not
align with the corresponding image, thereby establishing a
high-quality evaluation benchmark.

5. Experiments
Here, we explain the implementation details, present a com-
parative performance analysis on Remote Sensing Grounded
Conversation Generation (RS-GCG) and Referring Remote
Sensing Image Segmentation (RRSIS), and include an abla-
tion study to assess the impact of key components.

5.1. Implementation Details

The model is initialized with pre-trained InternLM-
XComposer-2.5 model (IXC-2.5) with 7B parameters, using
LoRA for efficient fine-tuning. A fixed CLIP ViT-L vision
encoder with a resolution of 560×560 is employed, along
with a grounded vision encoder initialized from SAM2
weights. The trainable components include a pixel decoder
(D), LoRA parameters (α = 8), a vision projector Pv, and
a language projector Pt. The adaptive image divider uses a
maximum patch number P to 9 for training. In our training
process, with an effective batch size of 20 over 10 epochs,
the learning rate increases linearly to a maximum value of
3× 10−4 over the initial 100 training steps, followed by a
gradual cosine decay. We train GeoPixel on the GeoPixelD
dataset for the GCG task on two NVIDIA A6000-48GB
GPUs, which takes around 3 days.

5.2. Baselines

To rigorously evaluate the efficacy of GeoPixel, we intro-
duce three robust baselines for comparative analysis on the
GeoPixelD benchmark. First baseline LISA†, an enhanced
LISA (Lai et al., 2024) model, incorporates multitarget seg-
mentation masks within its output pipeline and an updated
tokenizer that includes phrase tokens (<p> and </p>)
for the GCG task. The second baseline PixelLM†, derived
from PixelLM (Ren et al., 2024), is configured without the
SAM encoder, the codebook image feature scaling factor of
2, three segmentation tokens, and the vision tower resize pa-
rameter of 448. Phrase tokens are added, and <SEG> token
is replaced with multiple codebook tokens. The third base-
line, GLaMM, specifically GLaMM-GCG, a model tailored
for the GCG task. LISA†, PixelLM† and GLaMM-ft mod-
els are initialized from pretrained LISA-7B-v1, PixelLM-
7B and GLaMM-GCG (7B), respectively, and additionally
trained on GeoPixelD data.
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Table 2. Performance Comparison on RS-GCG task. LISA† and PixelLM† denote the pretrained LISA and PixelLM models adopted for
RS-GCG and finetuned on GeoPixelD training data. GLaMM represents the zero-shot performance, whereas GLaMM-FT refers to the
pretrained model finetuned on GeoPixelD. GeoPixel outperforms other models across all metrics.

UNI-TARGET MULTI-TARGET OVERALL

MODEL CIDER METEOR CLAIR AP50 MIOU RECALL AP50 MIOU RECALL AP50 MIOU RECALL

GLAMM (CVPR’24) 0.1 5.8 43.11 1.2 18.1 14.8 0.5 16.5 6.3 0.5 16.9 7.1
LISA† (CVPR’24) 14.6 22.3 68.96 9.5 41.7 43.1 8.3 43.1 27.5 8.5 42.7 29.0
PIXELLM† (CVPR’24) 18.3 22.5 73.93 13.5 41.2 44.0 10.4 42.9 28.1 10.5 42.4 29.6
GLAMM-FT (CVPR’24) 15.7 23.0 71.74 18.8 44.4 48.5 12.4 47.1 31.1 12.5 46.4 32.8

GEOPIXEL 21.6 24.0 77.50 25.5 50.8 55.6 18.0 52.9 37.0 19.0 52.3 38.8

Table 3. Performance Comparison of GeoPixel in Referring Ex-
pression Segmentation on RRSIS-D dataset. The segmentation
accuracy based on referring expressions is expressed through the
Precision at IoU threshold of 0.5 (P@0.5), Overall Intersection-
over-Union (oIoU) and Mean Intersection-over-Union (mIoU).

VALIDATION SET TEST SET

METHOD P@0.5 OIOU MIOU P@0.5 OIOU MIOU

RRN (LI ET AL., 2018) 51.09 66.53 46.06 51.07 66.43 45.64
CSMA (YE ET AL., 2019) 55.68 69.68 48.85 55.32 69.39 48.54
LSCM (HUI ET AL., 2020) 57.12 69.28 50.36 56.02 69.05 49.92
CMPC (HUANG ET AL., 2020) 57.93 70.15 50.41 55.83 69.22 49.24
BRINET (HU ET AL., 2020) 58.79 70.73 51.14 56.90 69.88 49.65
CMPC+ (LIU ET AL., 2022) 59.19 70.14 51.41 57.65 68.64 50.24
LGCE (YUAN ET AL., 2024) 68.10 76.68 60.16 67.65 76.34 59.37
LAVT (YANG ET AL., 2024) 69.54 77.59 61.46 69.52 77.19 61.04
RMSIN (LIU ET AL., 2024C) 74.66 78.27 65.10 74.26 77.79 64.20

GEOPIXEL-FT 80.00 81.77 67.99 83.33 84.90 67.30

5.3. Results

Remote Sensing Grounded Conversation Generation: A
comparative analysis of the performance of various models
on the RS-GCG task is evaluated across different metrics,
including CIDEr, METEOR, CLAIR (Chan et al., 2023),
AP50, mIoU, and recall, segmented into Uni-Target, Multi-
Target, and Overall categories.CLAIR is an LLM-based sim-
ilarity metric (GPT-4o in our case) that better aligns with
human judgments. GeoPixel demonstrates superior perfor-
mance in all metrics compared to the baselines, showing bet-
ter fluency and text relevance in textual outputs while main-
taining strong performance in more complex multi-target
scenarios. In contrast, LISA† struggles with segmentation-
based tasks, as evidenced by its low AP50 scores in all
categories. PixelLM† shows a moderate improvement over
LISA†, benefiting from better image feature scaling and seg-
mentation token adjustments. GLaMM-ft exhibits improved
outcomes due to a dedicated grounding encoder and GCG
pre-training, however, its performance remains inferior to
that of GeoPixel (as detailed in Table 2). Qualitative results
are presented in Figure 4.

Referring Remote Sensing Image Segmentation: This
task focuses on segmenting specific regions in aerial

Table 4. Performance Comparison on Referring Expression De-
tection Task, reporting Acc@0.5 / Acc@0.7 across 3 categories:
unique, non-unique and overall. GeoPixel demonstrated substan-
tial gains over existing methods in referring expression detec-
tion/localization.

UNIQUE NON-UNIQUE OVERALL

MODEL ACC@0.5 ACC@0.7 ACC@0.5 ACC@0.7 ACC@0.5 ACC@0.7

MINIGPT-V2 40.7 18.9 32.4 15.2 35.8 16.8
LLAVA-1.5 51.1 16.4 34.8 11.5 41.6 13.6
MINI-GEMINI 41.1 9.6 22.3 4.9 30.1 6.8
GEOCHAT 57.4 22.6 44.5 18.0 49.8 19.9
GEOPIX 57.0 22.7 44.8 18.2 49.8 20.0

GEOPIXEL-FT 70.37 41.54 65.80 40.32 67.70 40.83

imagery guided by textual descriptions. The input prompt
used is: "Could you provide a segmentation
mask for {referring expression} in this
image?" The model generates the response, "Sure,
it is <SEG>." where the corresponding embeddings
of <SEG> token is subsequently decoded to produce the
segmentation mask. To address this task, we fine-tune the
GeoPixel model on the RRSIS-D (Liu et al., 2024c) dataset.
The resulting GeoPixel-ft model demonstrates superior
performance compared to recent approaches, as shown by
results on the RRSIS-D test and validation sets in Table 3.
The qualitative results are provided in Figure 5.

Referring Remote Sensing Image Detection: We for-
mulate referring expression detection (RED) as a post-
processing task on GeoPixel’s predictions, deriving horizon-
tal (HBBs) and oriented bounding boxes (OBBs) from out-
put masks, for consistent evaluation. Table 4 compares per-
formance on VRSBench (Li et al., 2024a), a dataset based
on DOTAv2 and DIOR. To prevent data leakage, GeoPixel
(trained on GeoPixelD) is finetuned on VRSBench with-
out using any data from RRSIS-D (DIOR-based dataset).
Moreover, GeoPixelD and VRSBench use DOTA’s training
set for training and validation set for testing. We further
compare GeoChat and GeoPixel using OBBs (Table 5) with
both models finetuned on VRSBench, highlighting the im-
portance of pixel alignment in LMMs. Figure 10 illustrates
the qualitative results.
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The image is an aerial view of a parking
lot with numerous cars parked in
designated spaces, arranged in orderly
rows, indicating a well organized
parking system. The parking lot appears
to be part of a larger facility,
possibly a commercial or industrial
complex, as suggested by the presence of
trees and other structures. The image
depicts a large parking area with
multiple large vehicles, including buses
and possibly coaches, parked in an
organized manner. There are multiple 
small vehicles scattered across various
regions. The absence of people in the
image could imply that the photo was
taken during a time of low activity or
from a high vantage point where
individuals are not easily discernible.

The image is an aerial photograph of a
rural area with a road cutting through
it, appearing to be a two lane highway
with vehicles traveling on it. The
surrounding landscape is predominantly
dry and sparsely vegetated, indicative
of a desert or arid environment. On the
road, there are four small vehicles .
The scene has a natural and undeveloped
appearance, with no visible buildings or
infrastructure other than the road
itself.

The image is an aerial photograph of a
residential area with several houses
surrounded by trees. It features two
prominent docks extending into a body of
water, suggesting proximity to a lake or
river. The layout of the roads and the
positioning of the houses indicate a
suburban setting, with a pier at the top
being elongated, straight, and extending
into the water with a perpendicular docking
area at its end. A  pier at the top is
elongated, straight, and extends from the
land into the water, with no visible
structures or objects on it. A  swimming 
pool at the bottom is rectangular, filled
with blue water, and surrounded by a dark
colored deck. A solitary small vehicle is
parked on a driveway at the bottom left of
the image, adjacent to a house with a dark
roof. The presence of greenery and the
absence of commercial buildings or high
density housing structures suggest that
this is a quiet, possibly affluent
neighborhood.

The image is a view of a sports complex,
featuring a running track with a red
running surface and green surrounding
areas that may be grassy fields or
additional sports facilities. The ground 
track field at the center is a well
defined athletic track with a curved
shape, surrounded by a grassy area with
trees, and the soccer field at the
bottom right is a well maintained grassy
area with visible markings for gameplay.
The structures, which could be seating
areas or other facilities, are visible
on one side of the track. The presence
of trees and open spaces suggests that
the complex is designed for outdoor
activities and possibly community
events, and the serene atmosphere is due
to the absence of people in the scene.

Figure 4. Qualitative results of GeoPixel on RS-GCG. Contextually rich descriptions of RS imagery with grounded object annotations.
Depending on object scale and density, it employs instance masks for precise delineation of individual objects (right and middle-right
images) while semantic masks capture broader categories, such as large clusters of vehicles or small objects (middle-left and left images).

Table 5. Visual grounding performance on VRSBench dataset us-
ing oriented bounding boxes for referring object localization. The
observed performance improvement underscores the critical role
of precise pixel-level alignment.

MODEL UNIQUE NON-UNIQUE OVERALL

ACC@0.5 ACC@0.7 ACC@0.5 ACC@0.7 ACC@0.5 ACC@0.7

GEOCHAT 32.3 12.6 18.5 5.7 24.3 8.6
GEOPIXEL-FT 54.48 24.87 60.51 30.97 58.00 28.42

5.4. Ablation Study

Inference Resolution Effect: Increasing inference patches
improves all evaluation metrics, reflecting better compre-
hension of visual content (Table 6). At P = 9, CIDEr
increases from 14.6 to 20.5, and METEOR improves from
23.1 to 24.3, indicating enhanced semantic understanding
as image tokens scale up. The moderate mAP and mIoU
gains suggest that while HR inference contributes to supe-
rior localization accuracy, competitive performance can still
be maintained at lower resolutions when the model is pre-
trained at HR. The superior results at (P = 9) underscore
the critical role of incorporating fine-grained spatial details
during the training phase for generalized feature learning.

Annotation Complexity Effect: GeoPixel adjusts its mask-
ing based on object size and distribution (Figure 4), using
instance masks for precise identification, while semantic
masks for broader categories (clusters/small objects). In
scenarios requiring both granularity and generalization, the
model employs hybrid annotations, blending instance-level

Table 6. Effect of Inference Resolution. Reported metrics show
the relationship between resolution and overall performance.

TRAINING INFERENCE CIDER METEOR AP50 MIOU RECALLPATCHES PATCHES

P = 9
P = 1 14.6 23.1 12.9 47.8 32.2
P = 4 17.7 23.9 16.6 51.8 37.1
P = 9 20.5 24.3 17.6 52.1 37.4

Table 7. Effect of Annotation Complexity. Avg. Len is the average
character length of captions.

DATA OBJECTS PHRASES AVG. LEN MIOU RECALL

INSTANCES ONLY 1,740 1,740 634 58.4 48.8
SEMANTIC ONLY 21,483 698 518 44.1 37.7
MIX DATA 38,161 2,989 737 50.9 33.3

and semantic mask representations(as seen in Figure 1).
Table 7 shows that this annotation complexity impacts per-
formance, with mixed annotations yielding the lowest recall.

Remote sensing images often contain visually similar ob-
jects with subtle variations in appearance, spatial layout,
and proximity, yet exhibit significant scale variations across
images. This complexity challenges the model’s ability to
distinguish between object presence, quantity, and the appro-
priate annotation type required (e.g., instance or semantic).
The challenge is pronounced in the semantic-only category,
where the model exhibits the lowest mIoU scores, indicat-
ing two key challenges: the model’s ability to ensure full
coverage of all instances within a category and grouping
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Could you provide a segmentation mask 
for a tennis court on the right
in this image?

Could you provide a segmentation mask 
for a red vehicle in this image?

Could you provide a segmentation mask 
for an oval ground track field in this 
image?

Could you provide a segmentation mask 
for a windmill on the lower right in 
this image?

Could you provide a segmentation mask 
for the baseball field on the lower 
right of the baseball field on the top
in this image?

Could you provide a segmentation mask 
for a ground track field above the 
airport in the middle in this image?

Figure 5. Qualitative results of GeoPixel’s capability in referring remote sensing expression segmentation. The figure highlights Geopixel’s
ability to interpret referring expressions of varying lengths and generate precise segmentation masks, adapting to scale variations, as
shown in the ground track fields. Spatial descriptors (e.g ”right”, ”lower right”), and object characteristics (e.g ”red”) are interpreted with
precision to achieve accurate segmentation.

Table 8. Effect of Data Complexity and Training Vision Projection
(VP) Layer. T stands for Trainable and F for Frozen.

TRAINING DATA VP CIDER METEOR AP50 MIOU RECALL
SET-1A SET-1B

✓ T 19.3 23.6 18.2 48.0 33.6
✓ ✓ T 20.5 24.0 17.8 51.7 36.7
✓ ✓ F 18.7 24.4 15.3 51.6 35.1

objects under a unified mask instead of individual instances.
The low mask recall in mixed data further suggests that gen-
eralizing masking decisions in dense scenes is difficult due
to scale and distributional variability of geospatial entities.

Role of Data Complexity: Table 8 compares GeoPixel’s
performance across data partitions with varying masking
complexity. Set-1A is less complex, with no intraclass
segmentation differences. Each instance of a single class is
individually masked or represented using a semantic mask.
Set-1B introduces a higher complexity by assigning instance
masks to larger objects while grouping smaller ones under a
semantic mask within the same class. For example, larger
boats may be individually described, while smaller boats
in the image could be grouped under a single semantic
description. This ablation evaluates the model’s ability to
handle varying levels of annotation granularity, providing

insights into its ability to generalize across different scales
and segmentation strategies. The results indicate that the
inclusion of more complex annotation (Set-1B) enhances
segmentation accuracy and descriptive detail, as the model
is trained with more diverse mask configurations.

Vision Projection: Next we study the effect of training the
vision projection layer by comparing the performance when
the vision projection layer is fixed or trainable during the
fine-tuning stage. Table 8 summarizes the results. Training
the vision projection layer results in an improvement in
some metrics, highlighting the role of feature alignment.

6. Conclusion
We present GeoPixel, a large multimodal model (LMM)
designed specifically for the unique challenges of high-
resolution remote sensing (RS) image analysis. GeoPixel in-
troduces a robust end-to-end architecture capable of adaptive
image partitioning and pixel-level grounding, enabling the
precise interpretation and generation of geospatially aware
descriptions in RS imagery. By addressing key limitations
of current LMMs, such as low-resolution constraints and
coarse object-grounding, GeoPixel provides a fine-grained
visual understanding that bridges the gap between language
and high-resolution RS data.
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Impact Statement
GeoPixel, a large multimodal model, is designed to enhance
the fine-grained spatial understanding of high-resolution
remote sensing (RS) imagery. Our work contributes to the
advancement of machine learning by improving pixel-level
object grounding, a critical capability for geospatial appli-
cations such as urban planning, environmental monitoring,
disaster response, and infrastructure assessment.

From an ethical perspective, GeoPixel operates on publicly
available remote sensing datasets, ensuring transparency
and reproducibility in research. However, the use of high-
resolution imagery raises privacy considerations, particu-
larly in applications that involve urban environments. Al-
though our model does not process personally identifi-
able information (PII) or real-time surveillance data, we
acknowledge that future extensions incorporating private
datasets should adhere to strict data governance and privacy-
preserving policies.

Regarding social impact, the ability of GeoPixel to gener-
ate detailed geospatially grounded descriptions can help in
disaster relief efforts by improving situational awareness
from satellite imagery. It can also improve climate change
monitoring by facilitating precise land use classification and
deforestation tracking. We emphasize that GeoPixel is devel-
oped for scientific and humanitarian purposes and encourage
ethical deployment in accordance with open research prin-
ciples. Overall, this work aligns with the broader goal of
advancing machine learning in remote sensing, promoting
open and responsible AI applications, and fostering positive
societal impact while remaining mindful of potential ethical
considerations.
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A. Limitations and Challenges
While GeoPixel has demonstrated significant advances in pixel-level grounding for high-resolution RS images, several
challenges remain. These challenges are particularly evident in the following failure cases (illustrated in Figure 6). The
model occasionally produces erroneous masks due to ambiguities in the masking strategy, particularly in determining object
presence and quantity, as well as deciding whether semantic segmentation or instance-level annotation is appropriate. An
incorrect decision in this regard can result in repetitive descriptions of visually similar objects, leading to inconsistencies in
the generated output. Furthermore, such errors may manifest as fragmented or overlapping masks, introducing confusion in
object delineation and undermining the overall segmentation quality. Moreover, the model often confuses instance masks
within the same spatial location, particularly in densely populated or crowded images.

Future work may focus on addressing these challenges by incorporating more robust masking strategies and dynamic
resolution adjustment techniques to improve segmentation accuracy in complex scenes. Additionally, extending GeoPixel’s
capabilities to integrate multimodal data, such as Synthetic Aperture Radar (SAR) or infrared imagery, could significantly
enhance its ability to analyze diverse remote sensing datasets. GeoPixel is a significant step forward in leveraging the
potential of LMMs for remote sensing, opening new avenues for research in this critical domain.

The image is a view of a cityscape,
showcasing a dense arrangement of
buildings and streets that are laid out
in a grid pattern, with various roof
colors and textures indicating a mix of
residential and possibly commercial
structures. The scene has a still and
quiet atmosphere due to the absence of
visible people or moving vehicles. A
large vehicle , likely a truck or bus, is
situated in the top right area,
positioned perpendicular to the nearby
buildings, while numerous small vehicles
are visible at different locations,
providing a comprehensive overview of the
urban environment's layout and design.

The image is a black and white aerial
photograph of an airport, showing
multiple airplanes parked on the tarmac,
with the layout including defined parking
areas and a clear runway. There are no
visible people or moving vehicles, giving
the scene a static and organized
appearance. Notably, the plane at the top
is a large commercial aircraft with
visible engines and a long fuselage,
positioned on the ground. Additionally,
the plane at the top, the plane at the
top, the plane at the right, the plane at
the right, the plane at the top, the 
plane at the right, the plane at the
bottom right, and the plane at the bottom
right are all large commercial aircraft
with distinct vertical stabilizers,
positioned on the ground with other
planes. Furthermore, the large vehicle at
the top right is characterized by its
large size, rectangular shape, and the
presence of what appears to be a flatbed
for cargo or large vehicles. A plane can
also be observed at the top left. The
absence of color and activity suggests
that the photo might be from an older
time or taken during a period of low
airport activity.

Figure 6. Failure case due to incorrect mask association (left) and wrong instance segmentation in the same spatial region (right).

B. GeoPixelD dataset
Preprocessing and Marking: We utilize the instance-level annotated dataset, iSAID (Waqas Zamir et al., 2019), to generate
grounded conversations through our annotation pipelines. The images undergo a preprocessing step in which they are
cropped into 800 x 800 pixel patches. Objects for instance annotations are selected based on an area threshold to ensure
their reasonable size, therefore preventing the marker from obscuring a significant portion of the object and maintaining its
distinguishability. A 14 x 14 pixels fixed size marker is used, regardless of the actual dimensions of the object. However,
the marker’s placement is determined based on the segmentation mask’s area and shape. For large objects, the marker is
positioned at the center of the mask if the calculated center falls within the mask boundaries; otherwise, it is adjusted to the
nearest point on the object’s border. For small objects, the center of the bounding box is aligned with a point on the polygon
mask boundary, which typically results in an average marker overlap of 50% with the object.

In addition, multiple marking techniques were explored, including bounding boxes, masks, contours, and numerical markers,
to determine their impact on accuracy and object fidelity. Our findings reveal that bounding boxes and contours add
superfluous visual information that can obscure the fine details of the object. In contrast, simple numerical markers placed
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directly on the object effectively signal its presence without compromising visual clarity or introducing noise, thereby
preserving the integrity of object details for enhanced model performance.

1. The roundabout at the center of the intersection is marked
with a red star-shaped sculpture, which serves as a focal
point for the traffic flow.

2. To the north of the roundabout, there is a multi-story
building with a flat roof, which appears to be an
institutional or commercial structure.

3. To the east of the roundabout, there is another multi-
story building with a similar architectural style to the
one in the north.

4. To the south of the roundabout, there is a smaller
building with a flat roof, which could be an office or a
service building.

5. To the west of the roundabout, there is a parking lot with
several cars, indicating the presence of a commercial or
public facility nearby.

6. There is a grassy area to the southeast of the roundabout,
which provides a green space amidst the urban environment.

Set-of-Mark Prompting without Prior

Describe the object/objects of given image marked by number
{markers_str} as if analyzing a map. The description should be
enumerated in the following format: 1. <description> 2.
<description> …

Set-of-Mark Prompting with Prior
List down all the attributes of the
{category_name} at the {pos} that is
marked with number {mark_number} in one
short sentence. Do not mention the marked
number in output.

1. The roundabout at the center is
marked by a distinctive red and
orange star pattern.

2. The vehicle at the top right is a
dark-colored sedan.

3. The vehicle at the top is a small,
dark-colored car.

4. The vehicle at the top right is a
dark-colored sedan.

5. The vehicle at the top right is a
small, dark-colored car parked
perpendicular to the curb, adjacent
to building number 4.

6. The vehicle at the top is a blue car
parked in a designated parking spot.

Figure 7. Comparative effectiveness of SOM prompting methods, highlighting the critical role of priors. Without priors, SOM relies
solely on the VLM to detect and describe marked objects independently, resulting in inaccurate descriptions and hallucinated markers in
complex remote sensing scenes. In contrast, SOM with priors utilizes explicit marker positions ({pos}) and predefined object categories
({category name}) as priors, providing structured prompts that reduce ambiguity and guide the VLM to produce precise and reliable
descriptions. Incorrect parts are noted in red whereas correct parts are noted in green.

The vehicle on the left is blue, appears to be
a compact car, and is traveling on a curved
road adjacent to a parking lot or storage area
with shipping containers.

The vehicle is a white truck driving on a
curved road.

The vehicle at the left is a semi-truck with a
blue cab and an attached orange container.

The vehicle is a blue truck.

1.The plane at the center is white with
a red stripe and is parked at a gate.

2.The plane on the right is white with a
blue stripe and is parked at a gate.

3.The plane at the center is white with
a red stripe and is parked at a gate.

1.The plane at the center is a large
commercial aircraft with a
predominantly white body and blue
engines.

2.The plane at the right is a large
commercial aircraft with a
predominantly white body and blue
engines.

3.The plane at the center is a large
commercial aircraft with two engines
positioned on the tarmac facing a
terminal gate.

1.The plane in the center is parked at a gate, has a
white fuselage with wings extended, appears to be a
commercial airliner, and casts a shadow on the tarmac
due to sunlight from the top left.

2.The plane on the right is parked at a gate, has a white
fuselage with extended wings, appears to be a
commercial airliner, and casts a shadow to the lower
right side due to the sunlight from the top left.

3.The plane in the center is parked at a gate, has a
white fuselage with extended wings, appears to be a
commercial airliner, and casts a shadow toward the
lower left side due to sunlight coming from the upper
left.

1.The plane at the center is white and parked on a
tarmac.

2.The plane at the right is white and parked on a tarmac.
3.The plane at the center is white and parked on a

tarmac.

List down all the attributes of the vehicle at the left that is marked with number 1 in
one short sentence. Do not mention the marked number in the output.

Figure 8. Comparison of open-source and proprietary models for prior-informed set of marks (SOM) prompting for RS imagery. Incorrect
parts are noted in red whereas correct parts are noted in green.
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Prompt: Paraphrase the following description of an image
viewed from a satellite in a single paragraph while
ensuring that all the words enclosed in single quotes
are included and preserved exactly as they are. Remove
any mention of background, foreground, or camera
position. Image Description: The image is an aerial view
of a tennis court complex with multiple courts. The
courts are arranged in a grid pattern, each with its own
net and markings. The surrounding area includes
greenery, indicating the presence of trees or
landscaping. An aerial view of "eight-tennis-courts-1" 
with blue playing surfaces, marked for play, surrounded
by greenery and adjacent to a parking area. There are no
people visible on the courts, suggesting that play may
not be in session at the time the photo was taken.

Prompt Template: Paraphrase the following description of an image viewed from a satellite in a single paragraph while ensuring that all the words
enclosed in single quotes are included and preserved exactly as they are. Remove any mention of background, foreground, or camera position. Image
Description: {Holistic Image Annotation}{0:last} {Individual Instance Annotation} {Cluster/Crowded Annotation} {Holistic Image Annotation}{last}

GCG Description: The image is a view of "eight-tennis-
courts-1" with blue playing surfaces, marked for play,
surrounded by greenery and adjacent to a parking area.
It features multiple tennis courts arranged in a grid
pattern, each with its own net and markings, situated
amidst greenery, indicating the presence of trees or
landscaping.

Prompt: Paraphrase the following description of an
image viewed from a satellite in a single paragraph
while ensuring that all the words enclosed in single
quotes are included and preserved exactly as they are.
Remove any mention of background, foreground, or
camera position. Image Description: The image is an
aerial photograph of a residential area with docks and
boats. The water appears calm, and the docks are
equipped with vehicles, suggesting recreational or
transportation use. The surrounding land features
greenery and private property, indicating a peaceful,
possibly affluent neighborhood. The "pier-1" at the
center has a single boat docked to it, with a
structure that includes a roof and appears to be made
of wood. The "pier-2" at the right is equipped with a
boat and has a structure extending over the water,
connected to a docking area on land. The "pier-3" on
the left is elongated with a small structure at its
end, extending into the water and connected to the
shore by a wooden plank walkway. The "swimming-pool-4" 
is rectangular, has a clear blue surface, and is
surrounded by a deck area with lounge chairs. The
"swimming-pool-5" at the bottom left is rectangular,
filled with blue water, and surrounded by a deck area
with lounge chairs. The "boat-6" at the right is
white, appears to be a motor boat, and is docked at a
wooden pier. The "boat-7" at the right is white with a
blue stripe, appears to be a motor boat, and is docked
at a wooden pier. The "boat-8" at the center is a
small motor boat with a single outboard motor, docked
perpendicular to the pier. The "boat-9" at the right
is white with a single cabin and is docked at a wooden
pier. There is no visible activity, giving the scene a
tranquil atmosphere.

GCG Description: The aerial photograph of a residential
area features docks and boats, with calm water suggesting
recreational or transportation use. The land surrounding
the docks has greenery and private property, indicating a
peaceful, possibly affluent neighborhood. The "pier-1" at
the center has a single boat docked to it, with a
structure including a roof made of wood. Nearby, the
"pier-2" at the right is equipped with a boat and has a
structure extending over the water, connected to a docking
area on land. The "pier-3" on the left is elongated with a
small structure at its end, extending into the water and
connected to the shore by a wooden plank walkway. Two
swimming pools, "swimming-pool-4" and "swimming-pool-5", 
are rectangular and surrounded by deck areas with lounge
chairs. Various boats are visible at right, including a
white motor "boat-6", "boat-7", a white motor boat, and
"boat-9", a white boat with a single cabin, all docked at
wooden piers. A small motor "boat-8" with a single
outboard motor is also docked, perpendicular to the pier.
The scene is tranquil, with no visible activity.

Figure 9. Unifying Annotations through LLM Paraphrasing and Text Marking to track associated masks. Objects are indexed numerically
(e.g., ”object-N”), and holistic (blue), individual (teal), and cluster (green) annotations are concatenated into a single image description.
Paraphrasing instructions with combined description produce a concise, consistent GCG description that eliminates redundancy while
preserving object-mask associations, even with reordering.

Could you provide a segmentation mask for the 
small vehicle located at the top-middle part 
of the image?

Could you provide a segmentation mask for the 
tennis court partially cropped by the image 
frame at the middle-right side? 

Could you provide a segmentation mask for the 
ship at the bottom of the image extends 
beyond the visible border? 

Could you provide a segmentation mask for a 
windmill on the lower right in this image?

Could you provide a segmentation mask for the 
harbor located on the left side of the image?

Could you provide a segmentation mask for the 
small vehicle located in the bottom-left part 
of the image?

Figure 10. Qualitative results of GeoPixel’s capability in Referring Expression Detection on VRSBench. Segmentation masks generated
by GeoPixel are used to derive horizontal bounding boxes (shown in blue) and oriented bounding boxes (shown in red).
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