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Abstract. Autonomous vehicles rely on various sensors for environment
perception. The placement of the sensors turns out to be critical, as
their position determines which environmental information can be per-
ceived. In this paper, we investigate the influence of the position of three
front-oriented RGB cameras and a LiDAR sensor on the end-to-end au-
tonomous driving performance. Furthermore, we explore the effects of a
mismatch in positioning during training and test (i.e., vehicle operation).
In total, four sensor configurations are investigated. We employ the CARLA
simulator and the recently published TransFuser architecture for end-to-
end autonomous driving. To ensure comparability between runs despite
CARLA’s non-deterministic traffic manager, we collect the sensor data for
all configurations in a single simulation run. We discover that sensor po-
sitions close to and above the rear mirror excel both the roof center and
the very high (impractical) baseline position w.r.t. the overall driving
score. A sensor position mismatch between training and testing leads
to a drop in all performance metrics. However, multi-condition models
trained on a mix of sensor positions significantly regain performance re-
garding the infraction score, thereby improving the model’s robustness
against domain shifts caused by sensor mismatches during training and
test.
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1 Introduction

End-to-end approaches seek to solve the task of autonomous driving in a holistic
manner [29], in contrast to the modular approach, where a pipeline of intercon-
nected modules collaboratively solves the task, with each module being dedicated
to a specific sub-task [34]. While end-to-end approaches may lack interpretabil-
ity [29], they require less engineering effort [34].
The task of autonomous driving in an urban environment is complex, involving
challenging scenarios with numerous other traffic participants. In this environ-
ment, maintaining safety is critical [12]. In recent years, transformer-based imi-
tation learning approaches [8,25,27,28] have frequently achieved state-of-the-art
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Fig. 1: Investigated sensor positions

results on the CARLA Autonomous Driving Leaderboard [2] and other bench-
marks. Various works aim to optimize the training process of imitation learning
by enhancing the expert [37] or refining the selection of training data [19]. Other
studies explore the integration of RGB cameras and LiDAR, for instance, for
tasks such as object tracking [36] or risk analysis [35]. While many approaches
utilize a similar combination of one or several RGB cameras with RaDAR or
LiDAR, there is no universal concept for how to position these sensors. Recent
studies have shown that perception models are sensitive to changes in camera
viewpoints [18] and have also addressed issues by mitigating the impact of sensor
failures [13].
In this paper, we investigate how the position of RGB cameras and LiDAR
influences the driving performance of an end-to-end driving model, as sensor
positioning is a crucial decision for researchers and practitioners in automotive
industry. Our chosen sensor positions, along with the very high sensor positions
from the baseline [8], are illustrated in Figure 1, where in our setups the sensors
are placed in a practical manner close to the rearview mirror (RearMirror) or
in typical research positions higher in the front or center of the vehicle’s roof
(RoofBox and RoofCenter, respectively). Additionally, we explore the driving per-
formance in the case of a positional mismatch of the sensors between the training
and testing phases. The vehicle capturing data for model training may not nec-
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essarily have the exact same sensor setup as the testing vehicle, which can be
considered a domain shift for the models. Finally, we evaluate multi-condition
models on our three investigated setups, where data of all three different sensor
setups is used in training.

2 Related Work

This section provides a brief overview on end-to-end autonomous driving meth-
ods and sensor positions.

2.1 End-to-End Autonomous Driving

In the task of end-to-end autonomous driving in an urban environment, two
major learning paradigms stand out: reinforcement learning (RL) and imitation
learning (IL).
Chen et al. [6] train an agent using maximum-entropy reinforcement learning.
The utilized latent space can be decoded into a semantic bird’s eye mask, pro-
viding interpretability. Toromanoff et al. [31] initially train a ResNet-18 en-
coder [16] to predict affordances, such as the traffic light state. In a subsequent
training step, these affordances are used as the RL state through a conditional
network [10] employing Rainbow IQN [30]. Liang et al. [21] introduced control-
lable imitative reinforcement learning (CIRL), which is a combination of IL and
RL. In a first stage, the model learns to imitate human driving behaviour based
on videos and commands. Subsequently, the model undergoes further optimiza-
tion in an RL stage. This helps to improve the model and to accelerate the RL
process. Zhang et al. [37] introduced a privileged RL expert to improve the IL
process that does not predict actions but action distributions.
Codevilla et al. [10] introduced conditional imitation learning (CIL), where a
command can be utilized either as an additional input or as a switch in a
branched architecture. Chen et al. [5] proposed a two-stage approach for IL: In
the first stage, a privileged agent learns to imitate expert actions. In the second
stage, a sensorimotor agent without privileged information mimics the privileged
agent. This offers the advantage that the privileged agent is interpretable and can
be used for online training. Utilizing transformers, Prakash et al. [25] introduced
the TransFuser, where RGB images and LiDAR pseudo-images are processed in
two different encoder branches and fused at several intermediate feature resolu-
tions. Chitta et al. [8] further enhanced the architecture by employing a different
backbone for the encoder branches and they incorporated multitask learning. An
improved version, TransFuser++, was introduced by Jaeger et al. [14] with mod-
ifications to the architecture and output representation. Wu et al. [33] proposed
a branched architecture named TCP (trajectory-guided control prediction). Im-
age encodings and encodings for navigational information and speed are shared
across two branches, which predict a future trajectory or direct vehicle controls,
respectively. The output of the trajectory branch is transformed into vehicle con-
trols using two PID controllers and fused with the output from the other branch
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in a weighted manner. Shao et al. [27] employ a single transformer and a safety
controller in their InterFuser architecture, which includes motion prediction
of other traffic participants and handcrafted safety constraints. It also utilizes
RGB images and LiDAR point clouds as inputs but is scalable to any number
of input modalities. However, its training is computationally expensive due to
the need of a large dataset. The ReasonNet by Shao et al. [28] holds the top
position on the CARLA Autonomous Driving Leaderboard [2]. It incorporates
modules to store and fuse temporal information about other objects, capturing
relationships and interactions among other objects and the environment. LAV
(learning from all vehicles) by Chen and Krähenbühl [4] comprises a perception
model that learns viewpoint-invariant information and a motion planner that
learns to predict future waypoints. TransFuser, TCP, InterFuser, ReasonNet,
and LAV all fall into the category of IL as they train with expert data.
We chose the TransFuser architecture from Chitta et al. [8] for our experiments,
as it is quickly trainable, and therefore allows to investigate the impact of various
different sensor positions on the driving performance.

2.2 Sensor Positions

With increasing autonomy, also the number of sensors in vehicles rises. Promi-
nent examples include cameras, RaDAR, and LiDAR. Cameras are a well estab-
lished technology and provide semantic understanding of traffic scenery. How-
ever, in the case of monocular cameras, a 3D understanding is difficult. There-
fore, RaDAR and LiDAR sensors are employed, both offering spatial information.
While LiDAR provides better resolution, it is more susceptible to external fac-
tors such as weather [38].
Full autonomy in terms of SAE level 5 [1] has not yet reached the consumer
market. In consumer cars of lower autonomy level, sensors are often discretely
placed, for example, in the bumper or behind the rearview mirror. Although
LiDAR is planned for integration into many new cars, its current cost is a hin-
drance to widespread adoption in the market. Thus, fully autonomous vehicles
are still only a research topic. The aim with sensors is to collect as much infor-
mation as necessary at the lowest cost possible. Many approaches position their
sensors on the front part of the vehicle’s roof [11,17,22,23]. Particularly, LiDAR
requires a high positioning for a full 360° view. In some cases, additional sensors
are mounted on the side mirrors [24] or the frontal bender [22]. Generally, there
is no fixed or dominant concept for the number and positioning of sensors.
Autonomous driving functions are developed and subject to first tests in simula-
tions such as CARLA [3]. In a simulation environment, sensors can be positioned
relatively freely without restrictions on realism. Additionally, often only 180° of
the LiDAR sensor is used [8, 27], allowing for a lower positioning.
Following the works of Chitta et al. [8] and Shao et al. [27], we chose three
front-oriented RGB cameras and one LiDAR sensor. These sensor types are
complementary to each other, which is a common approach both in simulation
and in real vehicles.
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3 Dataset Generation

For the generation of training datasets, we built upon the scripts provided by
Chitta et al. [8] for both sensor configuration and the employed route-based sce-
narios.
Data Structure: An expert policy with privileged information [8] is deployed
into CARLA v0.9.10, capturing observations along with corresponding actions
in the form of the next T = 4 waypoints wt+T

t+1 at a frame rate of 2 fps. The
observations contain multiple modalities: First, three RGB images with a resolu-
tion of 320 × 160 are captured by three front-facing cameras: one facing directly
forward at 0° and the other two angled 60° to each side, each covering a field
of view (FOV) of 60°. Additionally, depth and semantic segmentation images
with the same camera settings as the RGB images are provided by CARLA. Note
that during inference, an FOV of 120° and a resolution of 960 × 480 is used.
From this, a central section with a resolution of 320 × 160 is cropped to avoid
lens distortions at the image edges, as required by the official Leaderboard. This
guarantees same inputs in training and inference. Second, a LiDAR sensor with
a rotation frequency of 600 rpm (which resembles a frame rate of 10 fps), an
upper FOV of 10°, and a lower FOV of -30° captures a point cloud. Third, meta-
data, including top-down views, velocity, and bounding boxes, are also captured.
Only RGB, depth, semantic segmentation images, and the LiDAR point cloud
are dependent on the sensor position. We then mount all possible sensors, as
described in Section 4.1, on the expert vehicle to allow simultaneous capturing.
This results in four datasets with identical size and statistics, despite the non-
determinism of the CARLA version used, which allows for a fair comparison of the
investigated sensor setups. The expert vehicle is solely equipped with sensors for
capturing data; its underlying driving policy only operates based on privileged
information.
Route-Based Scenarios: The data is recorded within predefined route-based
scenarios. The expert follows routes defined by sparse goal locations, and once
the expert reaches a specific trigger point, a scenario begins. These scenarios
contain events such as control loss of the vehicle, left turns, encounters with
dynamic objects (e.g., a pedestrian), and even traffic rule violations by other
participants. Data collection occurs across routes in eight CARLA towns, featur-
ing seven distinct scenarios (a scenario for lane changing is not actively included
as it occurs naturally in some situations). In addition to standard scenarios, sup-
plementary scenarios involving lane changes on a highway are also captured. For
robustness against domain shifts due to weather variations, the weather changes
with each frame.

4 Methods and Metrics

In the following, we will describe the employed sensor positions and the concept
of sensor position mismatch, along with their roles in the training process. Fur-
thermore, we will provide details about the chosen model architecture and the
metrics used for evaluation.
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4.1 Sensor Positions

The positioning of sensors impacts the information available to the vehicle. It
requires finding a compromise that addresses blind spots close to the vehicle,
provides a comprehensive view of the traffic environment, and ensures practical-
ity.
In this paper, we investigate three setups where in each of them the RGB cam-
eras and the LiDAR sensor are positioned at the same location. This enables
that the sensors capture similar information and allows for future investigations
with less modalities. Figure 1 shows sensor positions investigated in this paper,
including ours and those from Chitta et al. [8]. Our RearMirror setup allocates
both the LiDAR sensor and the RGB cameras at the same location on the wind-
shield, directly above the rearview mirror, at a height of 1.35 m (blue sphere). It
is the most practical of the investigated setups as it positions the sensors close
to the vehicle. Other types of sensors are already positioned at this location in
vehicles, and advances in solid-state LiDAR, which is smaller and lighter than
conventional mechanical LiDAR [20], also allow for this positioning. Our Roof-
Box setup locates both sensor types precisely 50 cm above the aforementioned
setup (violet sphere). In our RoofCenter setup, the sensors are also positioned at
a height of 1.85 m, but at the center of the ego vehicle’s roof (orange sphere). The
latter two setups represent typical positions in current research on autonomous
driving [15, 23]. Finally, the sensor setup by Chitta et al. [8] places the RGB
cameras at a practically unrealistic height of 2.3 m (green cube) and the LiDAR
sensor at 2.5 m (green sphere).
To examine the influence of sensor positions on driving performance, models
based on the TransFuser [8] architecture are trained on datasets correspond-
ing to the respective sensor positions. For each sensor setup, three models are
trained with different random seeds. Subsequently, they are evaluated in B = 3
runs in ensembles of three on the Longest6 Benchmark [8].

4.2 Sensor Position Mismatch

In addition to the positioning itself, the behavior of an autonomous vehicle in
case of a mismatch between sensor positioning in training and test is crucial. The
sensor positioning used during training data acquisition may not necessarily per-
fectly align with the sensor positioning in the test vehicle. A small disparity in
sensor positions should ideally not result in poor driving performance. In our
experimental setup, however, we explore how much the performance declines, if
training and test positions are clearly different.
In another plausible scenario, an autonomous vehicle can also be trained on
a diverse training dataset from various sources, encompassing different sensor
setups. This multi-condition approach may offer the advantage of increased ro-
bustness versus (slight) deviations in sensor positions between training and test.
However, it presents a challenge for the autonomous vehicle as it needs to learn
a sensor position-invariant representation of the traffic scenery.
To explore the impact of a sensor position mismatch between the training and
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test phases, the models trained on one sensor setup (cf. Section 4.1) are again
evaluated in B = 3 runs in ensembles of three on the Longest6 Benchmark [8],
but with a different sensor setup in test as compared to training.
To examine the performance of a multi-condition so-called Mixed model, train-
ing is performed on the setups RearMirror, RoofBox, and RoofCenter jointly. The
evaluation is conducted in ensembles of three models in B = 3 runs on the
Longest6 Benchmark [8].

4.3 Model & Training

Task Description: The investigated general task is point-to-point navigation
in an urban environment [7,8,19,27]. For navigation, the model is given a num-
ber of G 2D sparse goal locations uG

1 = (u1, ..., ug, ..., uG), with ug ∈ R2,
and u1 representing the starting point and uG the endpoint. Along these routes,
the model must cope with various scenarios, some of which may be hazardous.
Input Processing: We selected the TransFuser architecture [8] for our exper-
iments. At each discrete time step t, the model receives observations previously
captured by the expert. The RGB images from the three front-oriented cameras
are merged, resulting in a single RGB image xt ∈ IH×W ×C with height H = 160,
width W = 960, C = 3 RGB channels, and a FOV of 180°, see examples in Fig-
ure 2 (a)-(c). The input image is cropped to a resolution of 160 × 704 × 3 at
a horizontal position corresponding to a randomly selected angle for augmenta-
tion. To maintain consistency between the various input and output modalities,
the LiDAR point cloud and ground truth data are adjusted accordingly to reflect
the change in viewpoint. Each RGB image (a, b, c) corresponds to one LiDAR
visualization (A, B, C, respectively), while all images portray the exact same
traffic scene. In the (a) RearMirror setup, occlusions from the ego vehicle are
visible, while the (c) RoofCenter setup provides the best overall view. The (b)
RoofBox setup is a compromise between the (a) RearMirror and (c) RoofCenter
setups with no occlusions from the ego vehicle but a slightly worse overview
than the (c) RoofCenter setup. For a LiDAR pseudo-image, only the points 32 m
in front of the sensor and 16 m to the sides are considered. This point cloud
is then transformed into a histogram with C ′ = 2 bins, one bin above and one
below the ground plane. The grid is further divided into 0.125 m × 0.125 m
patches, resulting in a LiDAR pseudo-image vt ∈ IH′×W ′×C′ with height and
width H ′ = W ′ = 256. Visualizations of LiDAR point cloud examples can be
seen in Figure 2 (A)-(C), where not the pseudo-images vt are shown but the
projection of the point clouds onto the ground plane for (A) the RearMirror, (B)
RoofBox, and (C) RoofCenter setups. The visualizations cover the same range
as the pseudo-images. Occlusions stemming from the ego vehicle are visible in
both the (A) RearMirror and (C) RoofCenter setups. These setups also exhibit
large blind spots due to shading from the ego vehicle. In the (B) RoofBox setup,
there are no occlusions from the ego vehicle due to its sensor positioning higher
than the (A) RearMirror setup and more in the front part of the vehicle than the
(C) RoofCenter setup. With the current velocity νt and the next goal location
ug=g(t), this yields in measurements Xt = {xt, vt, νt, ug=g(t)}. The depth and
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(a)

(b)

(c)

(A) (B) (C)

Fig. 2: RGB images (a-c) and LiDAR visualizations (A-C) for investigated
sensor setups: (a, A) RearMirror, (b, B) RoofBox, (c, C) RoofCenter

semantic segmentation images undergo processing in the same manner as the
RGB images. Along with an HD map extracted from the top-down view and the
bounding boxes, this yields auxiliary measurements Yt. Each of the four datasets
used in training includes a total of 3040 routes in 225k frames.
End-to-End Driving Model: The model policy DNN π in Figures 3 and 4
reads in the measurements Xt. The RGB image xt and the LiDAR pseudo-image
vt undergo internal processing in two separate branches, each containing multi-
ple RegNet encoders [26]. At four intermediate feature resolutions, information
from the two branches is exchanged using attention modules [32], and the output
is fed back into the corresponding branches through element-wise summation.
The outputs x′

t and v′
t of the two branches are then combined via element-wise

summation, resulting in a 512-dimensional feature vector. This feature is further
compressed using an MLP, yielding a 64-dimensional feature vector. The re-
sulting vector undergoes additional processing in a GRU-based decoder [9] that
calculates the T = 4 future waypoints wt+T

t+1 in an autoregressive manner. For
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Xt

measurements

wt+T
t+1

expert waypoints

Waypoint
Loss
(2)

Model
Policy
DNN

π

wt+T
t+1

Fig. 3: Open-loop training with waypoint loss (2): For each measurement Xt in
each time step t, the model policy DNN π learns via error backpropagation to minimize
the distance between its predicted waypoints wt+T

t+1 and the waypoints wt+T
t+1 from the

expert. Further auxiliary losses are omitted here for clarity.

further details about the architecture, the interested reader is referred to [8].
Training by Imitation Learning: Imitation learning aims to find a model
policy DNN π that best mimics an expert policy π (utilized for training data
collection). As shown in Figure 3, the model policy π produces waypoints wt+T

t+1
based on the measurements Xt, which can be described by

π(Xt) = wt+T
t+1 . (1)

During training, the distance between the waypoints wt+T
t+1 (1) and the ground

truth waypoints wt+T
t+1 produced by the expert policy π is minimized and stored

for training purposes using the mean absolute error (i.e., the waypoint L1 loss)

JWP
t = JWP (π(Xt), π(Xt)) =

T∑
τ=1

||wt+τ − wt+τ ||1. (2)

In addition to waypoint prediction, auxiliary tasks are employed to enhance
model optimization. The output x′

t of the RGB image branch serves as input
for two decoders based on auto-regressive image-based waypoint prediction with
multi task (AIM-MT) [7], predicting depth and semantic segmentation images. The
output v′

t of the LiDAR branch is utilized as input for a convolutional decoder
and a CenterNet decoder [39], predicting the HD map and bounding boxes, re-
spectively. These decoders do not affect the driving itself. Their purpose is purely
for model optimization during training and interpretability during testing. The
training is in analogy to Figure 3 with different losses and the auxiliary measure-
ments Yt as the ground truth from the expert. For detailed information about
the auxiliary tasks and the corresponding losses, we refer the reader to [8]. The
training is conducted for 31 epochs for the setups from Chitta et al. [8], RearMir-
ror, RoofBox, and RoofCenter. For fairness of comparison, the models for the
Mixed setup are trained for 10 epochs only, as they see three times the training
material in one epoch compared to a single sensor setup model. Here, we change
the sensor setup in training with every batch. The used batch size is 96 for all
methods.
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Agent
(= Model

Policy
DNN π)

Environment
(CARLA)

T PID

wt+T
t+1

ctXt+1

Xt

Fig. 4: Closed-loop test: At each time step t, the agent DNN π generates T = 4
waypoints wt+T

t+1 , which are subsequently transformed into vehicle control commands
ct by two PID controllers (depicted as one for simplicity). Subsequently, based on these
commands, the environment outputs new measurements Xt+1 to the agent.

Testing with a PID Controller: As shown in Figure 4, the test is conducted
in a closed-loop manner, where the model is deployed into CARLA as an agent.
Unlike during training, the model in the test actively interacts with the envi-
ronment and performs driving tasks. The T = 4 waypoints wt+T

t+1 predicted by
the GRU-based decoder need to be transformed into vehicle control commands
ct = (cste

t , cthr
t , cbra

t ). For this purpose, two PID controllers are utilized. The lat-
eral PID controller calculates the steering command cste

t ∈ (−1, 1) based on the
midpoint of waypoints wt+1 and wt+2. The longitudinal PID controller gener-
ates throttle cthr

t ∈ (0, 1) and brake commands cbra
t ∈ (0, 1) based on a velocity

parameter γt = 1
∆t ∥wt+2 − wt+1∥2 with ∆t = 1. Further details can be found

in [8] and its supplementary.

4.4 Metrics

To address non-determinism in the trainings and in test, we report the mean
and sample standard deviation for all of the three following metrics.
Route completion RC ∈ [0, 100] serves as an efficiency measure for an au-
tonomous vehicle, representing the percentage of the entire route that has ac-
tually been travelled. It naturally decreases if the vehicle encounters blockages,
timeouts, or drives off-road or outside the designated route, as there is a limit
on the maximum time to reach the goal. The route completion over all B = 3
runs

RC = 1
B · N

∑
b∈B

∑
n∈N

RCb,n (3)

is defined as an average of single route completions RCb,n with run index b ∈
B = {1, ..., B} and route index n ∈ N = {1, 2, ..., N}.
The infraction score IS ∈ [0, 1] is defined as a safety measure for the autonomous
vehicle. The IS decreases once collisions happen or when there are violations of
traffic lights and stop signs. The IS is calculated as
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IS = 1
B · N

∑
b∈B

∑
n∈N

ISb,n, (4)

where ISb,n is the infraction multiplier for a single run and route described as

ISb,n =
∏
j∈J

p
cj,b,n

j . (5)

Here, pj is the specific penalty for an infraction type (e.g., collision with a pedes-
trian) j ∈ J = {1, 2, ..., J} and cj,b,n represents the number of type j infractions
in run b on route n. Specific penalties for the infraction types can be found in [2].
The driving score DS ∈ [0, 100] is the primary metric as the product of the RC
and IS, thereby considering both efficiency and safety. It is calculated as

DS = 1
B · N

∑
b∈B

∑
n∈N

RCb,n · ISb,n. (6)

Unlike the training setup shown in Figure 3, where the loss is calculated on a
frame (or batch) basis, the evaluation metrics are calculated on a route basis.
Further details about the computation of the metrics, particularly the reported
sample standard deviations, can be found in the supplementary Section A.

5 Results and Discussion

Table 1 displays the results of the test runs on the Longest6 Benchmark. The
mean and standard deviation of B = 3 test runs are reported for the metrics
DS (6), RC (3), and IS (4). The upper segment of Table 1 presents the out-
comes when sensor setups for training and test are matched, while the lower
segment of Table 1 shows the results for mismatched setups. We mark best val-
ues in bold font and second-best by underlining. However, as we also report
the sample standard deviation, some of the setups do not turn out to deviate
significantly in performance. Accordingly, for each metric (column), we denote
statistically equivalent performing setups by the colors green—blue—gray—
red in performance-descending order. Values that fall into several statistically
equivalent ranges are marked with hatched patterns in the corresponding colors.
Values that fall significantly below this scale, which are not necessarily statisti-
cally equivalent, are marked in violet.
Matched Setups: We start with discussing the matched sensor setups in Ta-
ble 1 (upper segment). In terms of route completion (RC), the setup from
Chitta et al. [8] performs worst (75.10, gray). The RearMirror setup, with an
RC of 83.22 (blue), performs better, while the RoofCenter setup, with an RC of
87.28 (green), turns out to be best. Note that the RoofBox setup, with an RC
of 84.69 (green/blue hatched), is statistically equivalent to both. Independent
of sensor height, route completion seems to be better the more the sensors are
mounted towards the rear of the vehicle (oversight!).
Regarding the infraction score (IS), the setup from Chitta et al. [8], as well as
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Models Performance Metrics
(Training Setup) Test Setup DS ↑ RC ↑ IS ↑

Matched
Setups

Chitta et al. [8] Chitta et al. [8] 44.66 ± 2.39 75.10 ± 3.38 0.62 ± 0.06
RearMirror RearMirror 51.64 ± 3.37 83.22 ± 0.82 0.60 ± 0.04
RoofBox RoofBox 52.87 ± 3.29 84.69 ± 3.33 0.61 ± 0.05

RoofCenter RoofCenter 45.52 ± 2.66 87.28 ± 2.12 0.51 ± 0.02

Mis-
matched
Setups

RearMirror RoofBox 21.41 ± 2.96 60.19 ± 2.92 0.36 ± 0.08
RearMirror RoofCenter 28.19 ± 2.99 69.52 ± 4.01 0.36 ± 0.02
RoofBox RearMirror 16.60 ± 1.82 43.30 ± 2.73 0.37 ± 0.04
RoofBox RoofCenter 38.37 ± 2.31 82.39 ± 3.75 0.47 ± 0.01

RoofCenter RearMirror 20.86 ± 3.30 55.64 ± 1.24 0.34 ± 0.03
RoofCenter RoofBox 24.28 ± 2.50 72.05 ± 5.50 0.37 ± 0.05

Mixed RearMirror 46.66 ± 3.11 81.40 ± 1.68 0.56 ± 0.03
Mixed RoofBox 41.06 ± 8.37 74.93 ± 4.38 0.57 ± 0.06
Mixed RoofCenter 42.84 ± 3.29 73.75 ± 3.27 0.57 ± 0.01

Table 1: Longest6 Benchmark results: The driving score (DS), route completion
(RC), and infraction score (IS) are reported with the mean and standard deviation of
three runs on the Longest6 Benchmark for each sensor setup. The upper table segment
shows setups that are matched in training and test, whereas the bottom segment shows
results for mismatches. The best values are bold, the second-best underlined. For each
metric (higher is better), we denote setups with statistically equivalent performance by
the colors green—blue—gray—red in performance-descending order. Values that fall
into several statistically equivalent ranges of values are marked with hatched patterns
in the corresponding colors. Values that fall below this scale, which are not necessarily
statistically equivalent, are marked in violet .

the RearMirror and RoofBox setups, perform statistically equivalent (green). The
RoofCenter setup performs worst with an IS of 0.51 (blue), falling significantly
behind the other three setups. Independent of sensor height, we observe higher
infraction scores for front-mounted sensors in the matched case.
When it comes to the overall driving score (DS), the setup from Chitta et al. ex-
hibits a DS of 44.66 (blue), which is slightly lower than in the corresponding
publication [8] (47.30). This difference is caused by the use of different datasets.
Given the standard deviations of both (5.72 [8] and 2.39 (our setup)), this dif-
ference shows no significance. Together with the RoofCenter setup (blue), which
performs statistically equivalent but slightly better on average, these two set-
ups show the lowest DS. The better performing RearMirror and RoofBox set-
ups (green), which are only 50 cm apart vertically, perform statistically equi-
valent regarding the DS, while the RoofBox setup has a higher mean DS.
Overall, both the setup from Chitta et al. [8] and the RoofCenter setup exhibit
imbalanced performance, with either RC or IS being poor. Only the RoofBox
setup performs best (green) or statistically equivalent to the best (green/blue
hatched) setup in all metrics in the matched case.
In summary for the upper segment of Table 1, the closer the sensors are posi-
tioned to the front part of the vehicle (from front to rear: Chitta et al. - RearMir-
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ror, RoofBox - RoofCenter), the better the mean IS performs, while the mean RC
deteriorates. Taking into account the standard deviation, the IS is equivalent for
setups where the sensors are mounted in the front part of the vehicle but declines
if mounted in the center part. Interestingly, on the other hand, there is no gen-
eral statement regarding the influence of the sensor’s height (from high to low:
Chitta et al. - RoofBox, RoofCenter - RearMirror) on the driving performance.
Investigating a bit deeper the second row of Table 1, the RC shows a small
standard deviation (0.82), while the DS and the IS show standard deviations
that can be considered normal across all setups (3.37 and 0.04, respectively).
This can happen since the computation of the standard deviation of the DS is
disentangled from the respective computations for the RC and IS. Each of the
three metrics is individually cumulated and averaged across all routes and test
runs. Additionally, if IS and RC deviate in the same direction from the mean
and not opposite, a small standard deviation in the RC in connection with a
normal standard deviation in the IS can cause a normal standard deviation in
the DS. Details about the computation of metrics, mean and standard deviation
can be found in the supplementary Section A.
Mismatched Setups (Default): Now let’s turn to the case of a mismatched
sensor setup between training and test (lower segments of Table 1). We observe
a steep decline in performance of nearly all models. Almost all model setups
show a statistically equivalent poor DS and IS performance (red). Again, the
models trained in the RoofBox setup and now tested in the RoofCenter setup
perform best with a DS of 38.37 (gray), and an RC of 82.39 (blue). Also, the IS
of this setup is best with 0.47 (gray), only slightly below the IS of the matched
RoofCenter setup (blue). The IS of the models trained on RoofBox and RoofBox
respectively, but tested on RoofBox, severely declines (violet).
In general, most metrics decline in the case of a mismatch of sensor setups be-
tween training and test. The models trained in the strongest setup (RoofBox)
and tested in the weakest setup (RoofCenter) perform the best among the inves-
tigated mismatched setups.
Interestingly, in some cases, the metrics of mismatched sensor setups are sta-
tistically equivalent to matched sensor setups: The RC of the models trained in
the RoofBox setup but tested in the RoofCenter setup is statistically equivalent
to the RCs of the matched RearMirror and RoofBox setups (blue). The RC of
the mismatched setup of RearMirror and RoofCenter, as well as the mismatched
setup of RoofCenter and RoofBox (gray), is also statistically equivalent to the
matched setup from Chitta et al.
Mismatched Setups (Mixed): Now we turn to the Mixed training setup (low-
est segment of Table 1): The same models were tested in three different sensor
setups. The IS of these models is almost identical for all three setups and even
statistically equivalent to the best-performing matched setups (green). The most
interesting observation is that the poor IS of 0.51 (blue) for the RoofCenter test
setup in the matched case could significantly be raised to 0.57 (green) by using
the obviously robust Mixed models. Regarding the RC, the Mixed models in the
RoofBox and RearMirror test setups are already statistically equivalent to the
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(blue) performance region. Although the mean DS of the RoofCenter test setup
(42.84) is better than that of the RoofBox test setup, the latter and the RearMir-
ror test setup (46.66) are statistically equivalent to the best-performing matched
setups (green). Compared to the matched training and test setting (upper seg-
ment of Table 1), the performance drops but remains closer across different test
setups. For the Mixed models, we can conclude that their multi-condition train-
ing helps to regain performance w.r.t. infraction score, particularly where sensor
positions (here: RoofCenter) are suboptimal.

6 Limitations

For the investigations in this paper, only sensor configurations and positions
from industry and existing literature are used. Exploring different, potentially
better sensor combinations and placements is left for future work. Additionally,
no quantitative analysis of the differences between sensor positions has been
conducted.
This paper relies solely on simulation for the investigations. We believe that the
results and conclusions are applicable to the real world under ideal conditions.
However, how environmental factors influence sensor performance depending on
their positions remains to be investigated.

7 Conclusions

We investigated the influence of different positions of RGB cameras and LiDAR
on the driving performance of an end-to-end autonomous driving approach. Cre-
ating sensor-specific datasets from the same simulation run, we trained and eval-
uated models for autonomous driving in CARLA. We find that the positions of
the aforementioned sensors have a significant impact on driving performance.
In a setup, where sensor positions in training and evaluation match, a position
above the rearview mirror outperforms other sensor positions including even
unrealistically high sensor positions in common baselines. In the case of a mis-
matched sensor setup between the training and evaluation phases, the overall
driving performance of models across all sensor setups decreases. In the case
of a multi-condition training using data from mixed sensor setups, robustness
against variations in the evaluation sensor setup improves. Also performance
remains consistent across various sensor setups in evaluation and improves com-
pared to the mismatched setups. Multi-condition training may significantly im-
prove infraction score performance for suboptimal sensor positions (which is the
typical case in practice!). Finally, we show that in the matched case, the infrac-
tion score is better for front-mounted sensor setups, while their route completion
suffers. Although there is a clear connection between those two metrics and the
horizontal sensor position, no trend is observed for the height of the sensors.
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