
Under review as a conference paper at ICLR 2024

TSGM: REGULAR AND IRREGULAR TIME-SERIES GEN-
ERATION USING SCORE-BASED GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based generative models (SGMs) have demonstrated unparalleled sampling
quality and diversity in numerous fields, such as image generation, voice synthesis,
and tabular data synthesis, etc. Inspired by those outstanding results, we apply
SGMs to synthesize time-series by learning its conditional score function. To this
end, we present a conditional score network for time-series synthesis, deriving a
denoising score matching loss tailored for our purposes. In particular, our presented
denoising score matching loss is the first denoising score matching loss for time-
series synthesis. In addition, our framework is such flexible that both regular
and irregular time-series can be synthesized with minimal changes to our model
design. Finally, we obtain exceptional synthesis performance on various time-series
datasets, achieving state-of-the-art sampling diversity and quality.

1 INTRODUCTION

Time-series frequently occurs in our daily life, e.g., stock data, climate data, and so on. Especially,
time-series forecasting and classification are popular research topics in the field of machine learn-
ing Ahmed et al. (2010); Fu (2011); Ismail Fawaz et al. (2019). In many cases, however, time-series
samples are incomplete and/or the number of samples is insufficient, in which case training machine
learning models cannot be fulfilled in a robust way. To overcome the limitation, time-series synthesis
has been studied actively recently (Chen et al., 2018; Dash et al., 2020). These synthesis models have
been designed in various ways, including variational autoencoders (VAEs) and generative adversarial
networks (GANs) (Desai et al., 2021; Yoon et al., 2019; Jeon et al., 2022). In particular, real-world
time series is often irregular, i.e., the inter-arrival time between observations is not fixed and/or some
observations can be missing. In addition, datasets like Physionet (Silva et al., 2012) deliberately
obscure certain features to protect patient privacy, posing challenges for training and analyses. In
such a case, releasing synthesized time series is needed for alleviating privacy concerns, but it is
challenging to solve (Jeon et al., 2022).

Despite the previous efforts to generate time-series using GANs and VAEs, according to our survey,
there is no research using SGMs for this purpose. Therefore, we extend SGMs into the field of
time-series synthesis1. Unlike image generation, where each image can be generated independently,
in time-series generation, each time-series observation is generated in consideration of its previously
generated observations. To this end, we propose the method of Time-series generation using
conditional Score-based Generative Model (TSGM), which consists of three neural networks, i.e., an
encoder, a score network, and a decoder (see Figure 2).

Score-based time-series synthesis Our proposed method can be characterized by the following two
parts. First, we design a conditional score network on time-series, which learns the gradient of the
conditional log-likelihood with respect to the sequential order of time-series. Second, we also design
a denoising score matching loss for our conditional time-series generation and prove its correctness.

1There exist time-series diffusion models for forecasting and imputation (Rasul et al., 2021; Tashiro et al.,
2021). However, our time-series synthesis is technically different from i) time-series forecasting, which forecasts
future observations given past observations, and ii) time-series imputation, which given a time-series sample
with missing elements infers those missing ones. We discuss the differences in Appendix B and C.

1

Under review as a conference paper at ICLR 2024

Table 1: The table illustrates how many medals
each method gets across all datasets and eval-
uation metrics, based on the generation evalu-
ation scores presented in Table 3, Table 4, and
Table 16. Our method with the two specific
types, TSGM-VP and TSGM-subVP, achieves
superior generation performance compared to
baselines.

Method
Olympic Rankings

Gold Silver Bronze
Regular Irregular R I R I

TSGM-VP 4 11 4 11 0 1
TSGM-subVP 6 16 1 7 1 0

TimeGAN 1 0 0 0 1 0
TimeVAE 0 0 0 0 1 4
GT-GAN 0 1 1 1 2 16

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Data Value

0

1

2

3

4

5

6

Da
ta

 D
en

sit
y

Air
Original
TimeVAE
TimeGAN
GTGAN
TSGM−VP

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Data Value
0.0

0.5

1.0

1.5

2.0

2.5

AI4I
Original
TimeVAE
TimeGAN
GTGAN
TSGM−VP

Figure 1: The KDE plots show the estimated dis-
tributions of original data and ones generated by
several methods in the Air and AI4I datasets —
we ignore time stamps for drawing these distribu-
tions. Unlike baseline methods, the distribution of
TSGM-VP is almost identical to the original one.
These figures provide an evidence of the excellent
generation quality and diversity of our method. For
TSGM-subVP, similar results are observed. Refer
to Appendix L for additional visualizations

Regular vs. irregular time-series synthesis In addition, our method is such flexible that both
regular and irregular time-series samples can be synthesized with minimal changes to our model
design. For synthesizing regular time series, we use a recurrent neural network-based encoder and
decoder. Continuous-time methods, such as neural controlled differential equations (Kidger et al.,
2020) and GRU-ODE (Brouwer et al., 2019), can be used as our encoder and decoder for synthesizing
irregular time series (see Section 3.2 and Appendix I).

We conduct in-depth experiments with 4 real-world datasets under regular and irregular settings
— for the irregular settings, we randomly drop 30%, 50%, and 70% of observations from regular
time-series, which means our problem statement is only with respect to missing data in an otherwise
regularly sampled dataset. Therefore, we test with in total 16 different settings, i.e., 4 datasets for one
regular and three irregular settings. Our specific choices of 8 baselines include almost all existing
types of time-series generative paradigms, ranging from VAEs to GANs. In Table 1 and Figure 1, we
compare our method to the baselines, ranking methods by their evaluation scores and estimating data
distribution by kernel density estimation (KDE). We also visualize real and generated time-series
samples onto a latent space using t-SNE (van der Maaten & Hinton, 2008) in Figure 3. Our proposed
method shows the best generation quality in almost all cases. Furthermore, the t-SNE and KDE
visualization results provide intuitive evidence that our method’s generation diversity is also superior
to that of the baselines. Our contributions are summarized as follows:

1. We, for the first time, propose an SGM-based time-series synthesis method. Although
there exist diffusion-based time-series forecasting and imputation methods, our target
score function and its denoising score matching loss definition are totally different from
other baselines. We highlight the difference and inappropriateness of the forecasting and
imputation methods to our task in Section B.

2. We, therefore, derive our own denoising score matching loss considering the fully recur-
rent nature of our time-series generation, i.e., recursively generate complete time-series
observations from scratch.

3. We conduct comprehensive experiments with 4 real-world datasets and 8 baselines under
one regular and three irregular settings since our method supports both regular and irregular
time-series. Overall, our proposed method shows the best generation quality and diversity.

2 RELATED WORK AND PRELIMINARIES

2.1 SCORE-BASED GENERATIVE MODELS

SGMs offer several advantages over other generative models, including their higher generation quality
and diversity. SGMs follow a two-step process, wherein i) gaussian noises are continuously added to
a sample and ii) then removed to recover a new sample. These processes are known as the forward

2

Under review as a conference paper at ICLR 2024

and reverse processes, respectively. In this section, we provide a brief overview of the original SGMs
in Song et al. (2021), which will be adapted for the time-series generation tasks.

2.1.1 FORWARD AND REVERSE PROCESS

Table 2: Comparison of drift and diffusion terms. σ(s) means
positive noise values which are increasing, and β(s) denotes
noise values in [0,1], which are used in Song & Ermon
(2019); Ho et al. (2020)

SDE drift (f) diffusion (g)

VE 0
√

dσ2(s)
ds

VP − 1
2
β(s)xs

√
β(s)

subVP − 1
2
β(s)xs

√
β(s)(1− e−2

∫ s
0 β(t)dt)

At first, SGMs add noises with the fol-
lowing stochastic differential equation
(SDE):

dxs = f(s, xs)ds+g(s)dw, s ∈ [0, 1],
(1)

where w ∈ Rdim(x) is a multi-
dimensional Brownian motion,
f(s, ·) : Rdim(x) → Rdim(x) is
a vector-valued drift term, and
g : [0, 1] → R is a scalar-valued
diffusion function. Here after, we define xs as a noisy sample diffused at time s ∈ [0, 1] from an
original sample x ∈ Rdim(x). Therefore, xs can be understood as a stochastic process following the
SDE. There are several options for f and g: variance exploding(VE), variance preserving(VP), and
subVP. Song et al. (2021) proved that VE and VP are continuous generalizations of the two discrete
diffusion methods: one in Song & Ermon (2019) and the other in Sohl-Dickstein et al. (2015); Ho
et al. (2020). The subVP method shows, in general, better negative log-likelihood (NLL) according
to Song et al. (2021). We describe the exact form of each SDE in Table 2 with detailed explanation in
Appendix N. Note that we only use the VP and subVP-based TSGM in our experiments and exclude
the VE-based one for its inferiority for time series synthesis in our experiments.

SGMs run the forward SDE with a sufficiently large number of steps to make sure that the diffused
sample converges to a Gaussian distribution at the final step. The score network Mθ(s, xs) learns the
gradient of the log-likelihood ∇xs log p(xs), which will be used in the reverse process.

For the forward SDE, there exists the following corresponding reverse SDE (Anderson, 1982):

dxs = [f(s, xs)− g2(s)∇xs log p(xs)]ds+ g(s)dw̄. (2)

The formula suggests that if knowing the score function, ∇xs log p(xs), we can recover real samples
from the prior distribution p1(x) ∼ N (µ, σ2), where µ, σ vary depending on the forward SDE type.

2.1.2 TRAINING PROCESS

In order for the model M to learn the score function, the model has to optimize the following loss
function:

L(θ) = Es{λ(s)Exs [∥Mθ(s, xs)−∇xs log p(xs)∥22]}, (3)
where s is uniformly sampled over [0, 1] with an appropriate weight function λ(s) : [0, 1] → R.
However, using the above formula is computationally prohibitive (Hyvärinen, 2005; Song et al.,
2019). Thanks to Vincent (2011), the loss can be substituted with the following denoising score
matching loss:

L∗(θ) = Es{λ(s)Ex0Exs|x0 [
∥∥Mθ(s, xs)−∇xs log p(xs|x0)

∥∥2
2
]}. (4)

Since SGMs use an affine drift term, the transition kernel p(xs|x0) follows a certain Gaussian
distribution (Särkkä & Solin, 2019) and therefore, ∇xs log p(xs|x0) can be analytically calculated.

2.2 TIME-SERIES GENERATION

Let x1:N be a time-series sample which consists of N observations. In order to synthesize time-
series x1:N , unlike other generation tasks, we must generate each observation xn at sequential order
n ∈ {2, ..., N} considering its previous history x1:n−1. One can train neural networks to learn the
conditional likelihood p(xn|x1:n−1) and generate each xn recursively using it. There are several
time-series generation papers, and we introduce their ideas.

TimeVAE (Desai et al., 2021) is a variational autoencoder to synthesize time-series data. This model
can provide interpretable results by reflecting temporal structures such as trend and seasonality in

3

Under review as a conference paper at ICLR 2024

Encoder Decoder

Forward Reverse

RNN assumption

Thm 3.1

Figure 2: The overall workflow of TSGM (see Section 3.3). Our original learning objective is
to approximate ∇ log p(xs1:n|x01:n−1), which is computationally prohibitive, with the conditional
score network Mθ(s, xs

1:n, x01:n−1) using an MSE loss. We then prove in Thm. 3.1 that learning
∇ log p(xs

1:n|x01:n) is equivalent to ∇ log p(xs
1:n|x01:n−1) for θ of Mθ in the MSE loss, i.e., their

optimal model parameter θ is identical. At the end, our score network Mθ(s,hs
n,h0

n−1) learns
∇ log p(hs

n|hn) since RNNs can encode x01:n and x0
1:n−1 into their hidden states h0

n and h0
n−1,

respectively.

the generation process. CTFP (Deng et al., 2020) is a well-known normalizing flow model. It can
treat both regular and irreugular time-series data by a deformation of the standard Wiener process.
TimeGAN (Yoon et al., 2019) uses a GAN architecture to generate time-series. First, it trains an
encoder and decoder, which transform a time-series sample x1:N into latent vectors h1:N and recover
them by using a recurrent neural network (RNN). Next, it trains a generator and discriminator pair
on latent space, by minimizing the discrepancy between an estimated and true distribution, i.e.
p̂(xn|x1:n−1) and p(xn|x1:n−1). Since it uses an RNN-based encoder, it can efficiently learn the
conditional likelihood p(xn|x1:n−1) by treating it as p(hn|hn−1), since hn ∼ x1:n under the regime
of RNNs. Therefore, it can generate each observation xn considering its previous history x1:n−1.
However, GAN-based generative models are vulnerable to the issue of mode collapse (Xiao et al.,
2022) and unstable behavior problems during training (Chu et al., 2020). GT-GAN (Jeon et al., 2022)
attempted to solve the problems by incorporating an invertible neural network-based generator into
its framework. There also exist GAN-based methods to generate other types of sequential data, e.g.,
video, sound, etc (Esteban et al., 2017; Mogren, 2016; Xu et al., 2020; Donahue et al., 2019). In our
experiments, we also use them as our baselines for thorough evaluations.

3 PROPOSED METHOD

Our proposed TSGM consists of three networks: an encoder, a decoder, and a conditional score
network (cf. Fig. 2). Firstly, we train the encoder and the decoder to connect between time-series
samples and a latent space. Next, using the pre-trained encoder and decoder, we train the conditional
score network on the latent space. The conditional score network will be used for sampling fake
time-series on the latent space.

3.1 PROBLEM FORMULATION

Let X and H denote a data space and a latent space, respectively. We define x1:N as a time-series
sample with a sequential length of N , and xn is a multi-dimensional observation of x1:N at sequential
order n. Similarly, h1:N (resp. hn) denotes an embedded time series (resp. an embedded observation).

Each observation xn can be represented as a pair of time and features, i.e., xn = (tn,u(tn)), where
tn ∈ R≥0 is a time stamp of feature u(tn) ∈ Rdim(u), and dim(u) is a feature dimension. X can
be classified into two types: regular time-series and irregular time-series. For creating irregularly
sampled time-series, we randomly drop 30%, 50%, and 70% of observations from regular time-series,
which means our problem statement is only with respect to missing data in an otherwise regularly
sampled dataset.

4

Under review as a conference paper at ICLR 2024

3.2 ENCODER AND DECODER

The encoder and decoder have the task of mapping time-series data to a latent space and vice versa.
We define e and d as an encoding function mapping X to H and a decoding function mapping H to
X , respectively. In regular time-series generation, we assume RNN-based encoder and decoder. It is
hyperparameter to choose which RNN would be used to the encoder e and the decoder d, and we
utilize gated recurrent units (GRUs) as Yoon et al. (2019) did. Since we use RNNs, both e and d are
defined recursively as follows:

hn = e(hn−1,xn), x̂n = d(hn), (5)

where x̂n denotes a reconstructed time-series sample at sequential order n. In irregular time-series
generation, we suppose a Neural CDE-based encoder and a GRU-ODE-based decoder, which are
famous for dealing with irregular time-series (Kidger et al., 2020; Brouwer et al., 2019). We describe
details of how continuous-time methods can be used in Appendix I.

After embedding real time-series data onto a latent space, we can train the conditional score network
with its conditional log-likelihood, whose architecture is described in Appendix J.2. The encoder and
decoder are pre-trained before our main training.

3.3 TRAINING OBJECTIVE FUNCTION

To generate time-series, our score network has to learn the conditional score function as we mentioned
in Section 2.2. More precisely, given past observations x1:n−1, our goal is to learn the conditional
score function, ∇xs1:n log p(xs

1:n|x01:n−1) where s ∈ [0, 1] is a diffusion step. However, considering
the total sequence x1:n is computationally expensive, so we train an autoencoder to replace it with its
latent feature, i.e., hn ∼ x1:n, as previous works did (cf. Section 2.2). Therefore, our loss function is
composed of two parts: one for the autoencoder and the other for the score network.

Loss for autoencoder We use two training objective functions. First, we train the encoder and the
decoder using Led. Let x0

1:N and x̂0
1:N denote an real time-series sample and its reconstructed copy

by the encoder-decoder process, respectively. Each x0
1:N are selected from a probability distribution

p(x0
1:N). Then, Led denotes the following MSE loss between x0

1:N and its reconstructed copy x̂0
1:N :

Led = Ex0
1:N

[
∥∥x̂0

1:N − x0
1:N

∥∥2
2
]. (6)

Loss for score network Next, we define another loss LH
score in equation 12 to train the conditional

score network Mθ, which is one of our main contributions. In order to derive the training loss LH
score

from the initial loss definition L1, we describe its step-by-step derivation procedure. At sequential
order n in {1, ..., N}, we diffuse x0

1:n through a sufficiently large number of steps of the forward
SDE (1) to a Gaussian distribution. Let xs

1:n denotes a diffused sample at step s ∈ [0, 1] from x0
1:n.

Then the conditional score network Mθ(s,x
s
1:n,x

0
1:n−1) can be trained to learn the gradient of the

conditional log-likelihood with the following L1 loss:

L1 = EsEx01:N

[
N∑

n=1

λ(s)l1(n, s)

]
, (7)

where l1(n, s) = Exs1:n

[∥∥Mθ(s, xs
1:n, x0

1:n−1)− ∇xs1:n log p(xs
1:n|x0

1:n−1)
∥∥2

2

]
. (8)

In the above definition, ∇xs1:n log p(xs1:n|x0
1:n−1), where x0

i depends on x0
1:i−1 for each i ∈ {2, ..., n},

is designed specially for time-series generation. Note that for our training, xs
1:n is sampled from

p(xs1:n|x0
1:n−1), and s is uniformly sampled from [0, 1].

However, using the above formula, which is a naïve score matching on time-series, is computationally
prohibitive (Hyvärinen, 2005; Song et al., 2019). Thanks to the following theorem, the more efficient
denoising score loss L2 can be defined.
Theorem 3.1 (Denoising score matching on time-series). l1(n, s) can be replaced with the following
l2(n, s)

l2(n, s) = EX0
n
EXs

1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)− ∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
, (9)

5

Under review as a conference paper at ICLR 2024

where i) X0
n and Xs

1:n are sampled from p(X0
n|X0

1:n−1) and p(Xs
1:n|X0

1:n) to calculate the nested
expectations; ii) ∇xs1:n log p(Xs

1:n|X0
1:n−1) of L1 is changed to ∇Xs

1:n
log p(Xs

1:n|X0
1:n). Therefore, we

can use an alternative objective, L2 = EsEX0
1:N

[∑N
n=1 λ(s)l2(n, s)

]
instead of L1.

However, L2 still has a problem since it has to sample each x0
n using p(x0n|x01:n−1) every time and

therefore, we describe another corollary and thereby propose Lscore.
Corollary 3.2. Our target objective function, Lscore, is defined as follows:

Lscore = EsEX0
1:N

[
N∑

n=1

λ(s)l⋆2(n, s)

]
, (10)

where l⋆2(n, s) = EXs
1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)− ∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
. (11)

Then, L2 = Lscore is satisfied.

Note that the only difference between Lscore and L2 is the existence of expectation with respect to
x0n. As such, Lscore provides more amenable training procedures than L2 since it doesn’t need to
additionally sample each x0n. Moreover, they are equivalent according to the corollary.

Our pre-trained the encoder and decoder encode data autoregressively as Equation (5) shows, and it
is same in the irregular time-series case, too. So the encoder can embed x01:n into h0

n ∈ H. Ideally,
h0
n involves the entire information of x01:n. Therefore, Lscore can be re-written as follows with the

embeddings in the latent space:

LH
score = EsEh0

1:N

N∑
n=1

[λ(s)l3(n, s)] , (12)

with l3(n, s) = Ehsn

[∥∥Mθ(s, hs
n, h0

n−1)−∇hsn log p(hs
n|h0

n)
∥∥2

2

]
. LH

score is what we use for our experi-

ments (instead of Lscore). Until now, we introduced our target objective functions, Led and LH
score.

We note that we use exactly the same weight λ(s) as that in Song et al. (2021). Related proofs are
given in Appendix A.

3.4 TRAINING AND SAMPLING PROCEDURES

Training method We explain details of our training method. At first, we pre-train both the encoder
and decoder using Led. After pre-training them, we train the conditional score network. When
training the latter one, we use the embedded hidden vectors produced by the encoder. After encoding
an input x0

1:N , we obtain its latent vectors h0
1:N — we note that each hidden vector h0

n has all the
previous information from 1 to n for the RNN-based encoder’s autoregressive property as shown
in the Equation (5). We use the following forward process (Song et al., 2021), where n means the
sequence order of the input time-series, and s denotes the time (or step) of the diffusion step :

dhs
n = f(s,hs

n)ds+ g(s)dw, s ∈ [0, 1]. (13)

Note that we only use the VP and subVP-based TSGM in our experiments and exclude the VE-based
one for its inferiority for time series synthesis in our experiments. During the forward process,
the conditional score network reads the pair (s, hs

n, h0
n−1) as input and thereby, it can learn the

conditional score function ∇ log p(hs
n|h0

n−1) by using LH
score, where h0

0 = 0.

Sampling method After the training procedure, we use the following conditional reverse process:

dhs
n = [f(s,hs

n)− g2(s)∇hs
n
log p(hs

n|h
0
n−1)]ds+ g(s)dw̄, (14)

where s is uniformly distributed over [0, 1], theoretically. Although we assume the noises are added
continuously by following the forward SDE (1), we set 1000 steps for denoising procedure on
sampling, which is a default value same with Song et al. (2021), meaning s ∈ {0, 1 · 10−3, . . . , 1}.
Therefore, we uniformly choose s over [0, 1] on training and recover data by the above discrete
denoising steps. The conditional score function in this process can be replaced with the trained score
network Mθ(s,hs

n,h0
n−1). The detailed sampling method is as follows:

6

Under review as a conference paper at ICLR 2024

Table 3: Experimental results for the regular time-series with respect to the discriminative and
predictive scores. The best scores are in boldface.

Method Disc. Pred.
Stocks Energy Air AI4I Stocks Energy Air AI4I

TSGM-VP .022±.005 .221±.025 .122±.014 .147±.005 .037±.000 .257±.000 .005±.000 .217±.000
TSGM-subVP .021±.008 .198±.025 .127±.010 .150±.010 .037±.000 .252±.000 .005±.000 .217±.000

T-Forcing .226±.035 .483±.004 .404±.020 .435±.025 .038±.001 .315±.005 .008±.000 .242±.001
P-Forcing .257±.026 .412±.006 .484±.007 .443±.026 .043±.001 .303±.006 .021±.000 .220±.000
TimeGAN .102±.031 .236±.012 .447±.017 .070±.009 .038±.001 .273±.004 .017±.004 .253±.002
RCGAN .196±.027 .336±.017 .459±.104 .234±.015 .040±.001 .292±.005 .043±.000 .224±.001

C-RNN-GAN .399±.028 .499±.001 .499±.000 .499±.001 .038±.000 .483±.005 .111±.000 .340±.006
TimeVAE .175±.031 .498±.006 .381±.037 .446±.024 .042±.002 .268±.004 .013±.002 .233±.010
COT-GAN .285±.030 .498±.000 .423±.001 .411±.018 .044±.000 .260±.000 .024±.001 .220±.000

CTFP .499±.000 .500±.000 .499±.000 .499±.001 .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .077±.031 .221±.068 .413±.001 .394±.090 .040±.000 .312±.002 .007±.000 .239±.000
Original N/A N/A N/A N/A .036±.001 .250±.003 .004±.000 .217±.000

1. At first, we sample z1 from a Gaussian prior distribution and set h1
1 = z1 and h0

0 = 0. We
then generates an initial observation ĥ

0

1 by denoising h1
1 following the conditional reverse

process with Mθ(s,hs
n,h

0
0) via the predictor-corrector method (Song et al., 2021).

2. We repeat the following computation for every 2 ≤ n ≤ N , i.e., recursive generation.
We sample zn from a Gaussian prior distribution and set h1

n = zn for n ∈ {2, ..., N}.

After reading the previously generated samples ĥ
0

n−1, we then denoise h1
n following the

conditional reverse process with Mθ(s,hs
n,h0

n−1) to generate ĥ
0

n via the predictor-corrector
method.

Once the sampling procedure is finished, we can reconstruct x̂01:N from ĥ
0

1:N using the trained decoder
at once.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENTS

4.1.1 BASELINES AND DATASETS

In the case of the regular time-series generation, we use 4 real-world datasets from various fields with
8 baselines. For the irregular time-series generation, we randomly remove some observations from
each time-series sample with 30%, 50%, and 70% missing rates, which means our problem statement
is only with respect to missing data in an otherwise regularly sampled dataset. Therefore, we totally
treat 16 datasets, i.e., 4 datasets with one regular and three irregular settings, and 8 baselines.

Our collection of baselines covers almost all existing types of time-series synthesis methods, ranging
from autoregressive generative models to normalizing flows, VAEs and GANs. For the baselines,
we reuse their released source codes in their official repositories and rely on their designed training
and model selection procedures. If a baseline does not support irregular time-series synthesis, we
replace its RNN encoder with GRU-D (Che et al., 2016) modified from GRUs to deal with irregular
time-series (see Appendix O for detailed explanation). For those that do not use an RNN-based
encoder, we add GRU-D in front of the encoder, such as TimeVAE and COT-GAN. Therefore, all
baselines are tested for the regular and irregular environments. We refer to Appendix E for the detailed
descriptions on our datasets, baselines, and Appendix G for other software/hardware environments.

4.1.2 EVALUATION METRICS

In the image generation domain, researchers have evaluated the fidelity and the diversity of models by
using the Fréchet inception distance (FID) and inception score (IS). On the other hand, to measure
the fidelity and the diversity of synthesized time-series samples, we use the following predictive
score and the discriminative score as in (Yoon et al., 2019; Jeon et al., 2022). We strictly follow the
evaluation protocol agreed by the time-series research community (Yoon et al., 2019; Jeon et al.,

7

Under review as a conference paper at ICLR 2024

Table 4: Experimental results for the irregular time-series with 30% missing rate. Results for higher
missing rates in Table 16 of Appendix K.

Method Disc. Pred.
Stocks Energy Air AI4I Stocks Energy Air AI4I

TSGM-VP .062±.018 .294±.007 .190±.042 .142±.048 .012±.002 .049±.001 .042±.002 .067±.013
TSGM-subVP .025±.009 .326±.008 .240±.018 .121±.082 .012±.001 .049±.001 .044±.004 .061±.001
T-Forcing-D .409±.051 .347±.046 .458±.122 .493±.018 .027±.002 .090±.001 .112±.004 .147±.010
P-Forcing-D .480±.060 .491±.020 .494±.012 .430±.061 .079±.008 .147±.001 .101±.003 .134±.005
TimeGAN-D .411±.040 .479±.010 .500±.001 .500±.000 .105±.053 .248±.024 .325±.005 .251±.010
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000 .523±.020 .409±.020 .342±.018 .329±.037

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .450±.150 .345±.002 .440±.000 .354±.060 .400±.026
TimeVAE-D .423±.088 .382±.124 .373±.191 .384±.086 .207±.014 .139±.004 .105±.002 .144±.003
COT-GAN-D .499±.001 .500±.000 .500±.000 .500±.000 .274±.000 .427±.000 .451±.000 .570±.000

CTFP .500±.000 .500±.000 .500±.000 .499±.001 .070±.009 .499±.000 .060±.027 .424±.002
GT-GAN .251±.097 .333±.063 .454±.029 .435±.018 .077±.031 .221±.068 .064±.002 .087±.013
Original N/A N/A N/A N/A .011±.002 .045±.001 .044±.006 .059±.001

S
to
ck
s

A
ir

TSGM-VP TSGM-subVP TimeGAN TimeVAE GT-GAN

Figure 3: t-SNE plots for TSGM (1st and 2nd columns), TimeGAN (3rd columns), TimeVAE (4th
columns), GT-GAN (5th columns) in Stocks and Air datasets. Red and blue dots mean original and
synthesized samples, respectively. Refer to Appendix L for addition visualizations

2022). Both metrics are designed in a way that lower values are preferred. We run each generative
method 10 times with different seeds, and report its mean and standard deviation of the following
discriminative and predictive scores:

i) Predictive Score: We use the predictive score to evaluate whether a generative model can suc-
cessfully reproduce the temporal properties of the original data. To do this, we first train a popular
LSTM-based sequence model for time-series forecasting with synthesized samples. The performance
of this predictive model is measured as the mean absolute error (MAE) on the original test data. This
kind of evaluation paradigm is called as train-synthesized-test-real (TSTR) in the literature.

ii) Discriminative Score: In order to assess how similar the original and generated samples are, we
train a 2-layer LSTM model that classifies the real/fake samples into two classes, real or fake. We use
the performance of the trained classifier on the test data as the discriminative score. Therefore, lower
discriminator scores mean real and fake samples are similar.

4.2 EXPERIMENTAL RESULTS

At first, on the regular time-series generation, Table 3 shows that our method achieves remarkable
results, outperforming TimeGAN and GT-GAN except only for the discriminative score on AI4I.
Especially, for Stock, Energy, and Air, TSGM exhibits overwhelming performance by large margins
for the discriminative score. Moreover, for the predictive score, TSGM performs the best and obtains
almost the same scores as that of the original data, which indicates that generated samples from
TSGM preserve all the predictive characteristics of the original data.

Next, on the irregular time-series generation, we give the result with the 30% missing rate setting on
Table 4 and other results in Appendix K. TSGM also defeats almost all baselines by large margins on
both the discriminative and predictive scores. Interestingly, VP generates poorer data as the missing
rate grows up, while subVP synthesizes better one.

8

Under review as a conference paper at ICLR 2024

Table 5: Sensitivity results on the depth of Mθ and the number of sampling steps. Our default TSGM
has a depth of 4 and its number of sampling steps is 1,000. For other omitted datasets, we observe
similar patterns.

Method TSGM Depth of 3 500 steps 250 steps 100 steps
SDE VP subVP VP subVP VP subVP VP subVP VP subVP

D
is

c. Stocks .022±.005 .021±.008 .022±.004 .020±.007 .025±.005 .020±.004 .067±.009 .022±.009 .202±.013 .023±.005
Energy .221±.025 .198±.025 .175±.009 .182±.009 .259±.003 .248±.002 .250±.003 .247±.002 .325±.003 .237±.004

Pr
ed

. Stocks .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .039±.000 .037±.000
Energy .257±.000 .252±.000 .253±.000 .253±.000 .257±.000 .253±.000 .256±.000 .253±.000 .256±.000 .253±.000

We show t-SNE visualizations and KDE plots for the regular time-series generation in Figure 3 and
Figure 1. TimeGAN, GT-GAN, and TimeVAE are representative GAN or VAE-based baselines. In the
figures, unlike the baseline methods, the synthetic samples generated from TSGM consistently show
successful recall from the original data. Furthermore, TSGM generates diverse synthetic samples in
comparison with the three representative baselines in all cases. Especially, TSGM achieves much
higher diversity than the baseline models on Air.

4.3 SENSITIVITY AND ABLATION STUDIES

4.3.1 SENSITIVITY STUDIES

We conduct two sensitivity studies on regular time-series: i) reducing the depth of our score network,
ii) decreasing the sampling step numbers. The results are in Table 5.

At first, we modify the depth of our score network from 4 to 3 to check the performance of the lighter
conditional score network. Surprisingly, we achieve a better discriminative score with a slight loss on
the predictive score.

Next, we decrease the number of sampling steps for faster sampling from 1,000 steps to 500, 250,
and 100 steps, respectively. For VP, the case of 500 steps achieves almost the same results as that of
original TSGM. Surprisingly, in the case of subVP, we achieve good results until 100 steps.

4.3.2 ABLATION STUDIES

Table 6: Comparison between with and without pre-
training the autoencoder

Method SDE Stocks Energy

D
is

c. TSGM VP .022±.005 .221±.025
subVP .021±.008 .198±.025

w/o pre-training VP .022±.004 .322±.003
subVP .059±.006 .284±.004

Pr
ed

. TSGM VP .037±.000 .257±.000
subVP .037±.000 .252±.000

w/o pre-training VP .037±.000 .252±.000
subVP .037±.000 .251±.000

As an ablation study, we simultaneously
train the conditional score network, en-
coder, and decoder from scratch on reg-
ular time-series generation (i.e., without
the pre-training process). The results
are in Table 6. These ablation models
are worse than the full model, but they
still outperform many baselines. This
ablation study shows the efficacy of pre-
training our autoencoder. We also pro-
vide an additional ablation study in Ap-
pendix M.

5 CONCLUSIONS

We presented a score-based generative model framework for time-series generation. We combined
an autoencoder and our score network into a single framework to accomplish the goal — our
framework supports RNN-based or continuous-time method-based autoencoders. We also designed
an appropriate denoising score matching loss for our generation task and achieved state-of-the-art
results on various datasets in terms of the discriminative and predictive scores. In addition, we
conducted rigorous ablation and sensitivity studies to prove the efficacy of our model design.

Reproducibility. Our code is available in the supplementary material. We refer the readers to
Appendix E, F, G, and J for detail information for reproducibility such as baselines, datasets,
hyperparameters, and experimental environments.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Nesreen K. Ahmed, Amir F. Atiya, Neamat El Gayar, and Hisham El-Shishiny. An empirical
comparison of machine learning models for time series forecasting. Econometric Reviews, 29(5-6):
594–621, 2010.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. CoRR, abs/1905.12374, 2019. URL http:
//arxiv.org/abs/1905.12374.

Luis M. Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction models
of energy use of appliances in a low-energy house. Energy and Buildings, 140:81–97, 2017. ISSN
0378-7788.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. CoRR, abs/1606.01865, 2016.
URL http://arxiv.org/abs/1606.01865.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations, 2018. URL https://arxiv.org/abs/1806.07366.

Casey Chu, Kentaro Minami, and Kenji Fukumizu. Smoothness and stability in GANs. In Interna-
tional Conference on Learning Representations, 2020.

Saloni Dash, Andrew Yale, Isabelle Guyon, and Kristin P. Bennett. Medical time-series data
generation using generative adversarial networks. In Artificial Intelligence in Medicine: 18th
International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN,
USA, August 25–28, 2020, Proceedings, pp. 382–391, Berlin, Heidelberg, 2020. Springer-Verlag.
ISBN 978-3-030-59136-6. doi: 10.1007/978-3-030-59137-3_34. URL https://doi.org/
10.1007/978-3-030-59137-3_34.

S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia. On field calibration of an electronic
nose for benzene estimation in an urban pollution monitoring scenario. Sensors and Actuators B:
Chemical, 129(2):750–757, 2008. ISSN 0925-4005.

Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann. Mod-
eling continuous stochastic processes with dynamic normalizing flows. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 7805–7815. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. arXiv:2111.08095, 2021.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. In International
Conference on Learning Representations, 2019.

Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional GANs. arXiv:1706.02633, 2017.

Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence,
24(1):164–181, 2011.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio.
Professor forcing: A new algorithm for training recurrent networks. In Advances in Neural
Information Processing Systems, 2016.

Alex Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013.

10

http://arxiv.org/abs/1905.12374
http://arxiv.org/abs/1905.12374
http://arxiv.org/abs/1606.01865
https://arxiv.org/abs/1806.07366
https://doi.org/10.1007/978-3-030-59137-3_34
https://doi.org/10.1007/978-3-030-59137-3_34
https://proceedings.neurips.cc/paper_files/paper/2020/file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf

Under review as a conference paper at ICLR 2024

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709, 2005. URL http://jmlr.org/papers/v6/
hyvarinen05a.html.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33:917–963, 2019.

Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General
purpose time series synthesis with generative adversarial networks, 2022. URL https://
arxiv.org/abs/2210.02040.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. CoRR, abs/2105.14080, 2021. URL
https://arxiv.org/abs/2105.14080.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. CoRR, abs/1912.04958, 2019. URL http://
arxiv.org/abs/1912.04958.

Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural controlled differential
equations for irregular time series. CoRR, abs/2005.08926, 2020. URL https://arxiv.org/
abs/2005.08926.

Jayoung Kim, Chaejeong Lee, Yehjin Shin, Sewon Park, Minjung Kim, Noseong Park, and Jihoon
Cho. Sos: Score-based oversampling for tabular data. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022.

Stephan Matzka. Ai4i 2020 predictive maintenance dataset. https://archive.ics.uci.
edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset, 2020.

Olof Mogren. C-RNN-GAN: A continuous recurrent neural network with adversarial training. In
Constructive Machine Learning Workshop (CML) at NeurIPS 2016, 2016.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International Conference
on Machine Learning, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
pp. 234–241, 2015.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
Computing in Cardiology, pp. 245–248. IEEE, 2012.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, 2019.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. CoRR, abs/1905.07088, 2019. URL http://arxiv.org/
abs/1905.07088.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

11

http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://arxiv.org/abs/2210.02040
https://arxiv.org/abs/2210.02040
https://arxiv.org/abs/2105.14080
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2005.08926
https://arxiv.org/abs/2005.08926
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
http://arxiv.org/abs/1905.07088
http://arxiv.org/abs/1905.07088

Under review as a conference paper at ICLR 2024

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, pp. 1017–1024, 2011.

Simo Särkkä and Arno Solin (eds.). Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Advances in Neural Information
Processing Systems, 2021.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine
learning research, 9(86):2579–2605, 2008.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computa-
tion, 23(7):1661–1674, 2011.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=JprM0p-q0Co.

Tianlin Xu, Li K. Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating sequential
data via causal optimal transport. In Advances in Neural Information Processing Systems, 2020.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In Advances in Neural Information Processing Systems, 2019.

12

https://openreview.net/forum?id=JprM0p-q0Co

Under review as a conference paper at ICLR 2024

A PROOFS

Theorem 3.1 (Denoising score matching on time-series). l1(n, s) can be replaced by the following
l2(n, s):

l2(n, s) = EX0
n
EXs

1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)−∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
, (15)

where X0
n and Xs

1:n are sampled from p(X0
n|X0

1:n−1) and p(Xs
1:n|X0

1:n). Therefore, we can use an

alternative objective, L2 = EsEX1:N

[∑N
n=1 λ(s)l2(n, s)

]
instead of L1

Proof. At first, if n = 1, it can be substituted with the naive denoising score loss by Vincent (2011)
since x00 = 0.

Next, let us consider n > 1. l1(n, s) can be decomposed as follows:

l1(n, s) = −2 · Exs1:n⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n−1)⟩

+Exs1:n

[∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2

]
+ C1

(16)

Here, C1 is a constant that does not depend on the parameter θ, and ⟨·, ·⟩ means the inner product.
Then, the first part’s expectation of the right-hand side can be expressed as follows:

Exs1:n [⟨Mθ(s, xs
1:n, x01:n−1),∇xs1:n log p(xs1:n|x01:n−1)⟩]

=

∫
xs1:n

⟨Mθ(s, xs1:n, x0
1:n−1),∇xs1:n log p(xs1:n|x0

1:n−1)⟩p(xs1:n|x01:n−1)dxs1:n

=

∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
1

p(x0
1:n−1)

∂p(xs1:n, x01:n−1)

∂xs1:n
⟩dxs

1:n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs
1:n, x01:n−1),

1

p(x0
1:n−1)

∂p(xs1:n, x01:n−1, x0n)
∂xs1:n

⟩dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs
1:n, x01:n−1),

∂p(xs1:n|x0
1:n))

∂xs1:n
⟩

p(x0
1:n−1, x0n)

p(x0
1:n−1)

dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
∂p(xs1:n|x0

1:n)

∂xs
1:n

⟩p(x0
n|x01:n−1)dxs1:ndx0n

= Ex0n

[∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
∂p(xs1:n|x01:n)

∂xs1:n
⟩dxs1:n

]

= Ex0n

[∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n)⟩p(xs

1:n|x01:n)dxs
1:n

]
= Ex0nExs1:n [⟨Mθ(s, xs

1:n, x01:n−1),∇xs1:n log p(xs1:n|x01:n)⟩]

(17)

13

Under review as a conference paper at ICLR 2024

Similarly, the second part’s expectation of the right-hand side can be rewritten as follows:

Exs1:n [
∥∥Mθ(s, xs1:n, x01:n−1)

∥∥2
2
]

=

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n−1)dxs1:n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs
1:n, x01:n−1)

∥∥2
2
·

p(xs1:n, x01:n−1, x0
n)

p(x0
1:n−1)

dxs1:ndx0n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n)
p(x01:n−1, x0n)

p(x0
1:n−1)

dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n)p(x
0
n|x01:n−1)dxs1:ndx0

n

= Ex0nExs1:n [
∥∥Mθ(s, xs1:n, x0

1:n−1)
∥∥2
2
]

(18)

Finally, by using above results, we can derive following result:

l1 = Ex0nExs1:n

[∥∥Mθ(s, xs
1:n, x01:n−1)

∥∥2
2

]
+ C1

− 2 · Ex0nExs1:n⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n)⟩

= Ex0nExs1:n

[∥∥Mθ(s, xs1:n, x01:n−1)−∇xs1:n log p(xs1:n|x0
1:n)
∥∥2
2

]
+ C

(19)

C is a constant that does not depend on the parameter θ.

Corollary 3.2. Our target objective function, Lscore, is defined as follows:

Lscore = EsEx01:N

[
N∑

n=1

λ(s)l⋆2(n, s)

]
, (20)

where

l⋆2(n, s) = EXs
1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)−∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
. (21)

Then, L2 = Lscore is satisfied.

proof. Whereas one can use the law of total expectation, which means E[X] = E[E[X|Y]] if X,Y
are on an identical probability space to show the above formula, we calculate directly. At first, let us
simplify the expectation of the inner part with a symbol f(x0

1:n) for our computational convenience,
i.e., f(x01:n) = EsExs1:n

[
λ(s)

∥∥Mθ(s, xs1:n, x01:n−1)−∇xs1:n log p(xs1:n|x0
1:n)
∥∥2
2

]
. Then we have the

following definition:

L2 = EsEx01:N
[l2] = Ex01:N

[
N∑

n=1

Ex0n [f(x
0
1:n)]

]
=

N∑
n=1

Ex01:N
Ex0n [f(x

0
1:n)] (22)

14

Under review as a conference paper at ICLR 2024

At last, the expectation part can be further simplified as follows:

Ex01:N
Ex0n [f(x

0
1:n)]

=

∫
x01:N

∫
x0n

f(x0
1:n)p(x

0
n|x0

1:n−1)dx0n · p(x0
1:n−1)p(x

0
n:N |x01:n−1)dx0

1:N

=

∫
x01:N

∫
x0n

f(x0
1:n)p(x

0
1:n)dx0n · p(x0

n:N |x01:n−1)dx01:N

=

∫
x0n:N

(∫
x01:n

f(x0
1:n)p(x

0
1:n)dx0

1:n

)
p(x0n:N |x01:n−1)dx0n:N

=

∫
x01:n

f(x0
1:n)p(x

0
1:n)dx01:n

=

∫
x01:n

(∫
x0n+1:N

p(x0n+1:N |x0
1:n)dx0n+1:N

)
f(x01:n)p(x

0
1:n)dx01:n

=

∫
x01:N

f(x01:n)p(x
0
1:N)dx01:N

= Ex01:N
[f(x01:n)]

(23)

Since
∑N

n=1 Ex01:N
[f(x01:n)] = Ex01:N

[
∑N

n=1 f(x
0
1:n)] = Lscore, we prove the corollary. □

B EXISTING TIME-SERIES DIFFUSION MODELS

B.1 DIFFUSION MODELS FOR TIME-SERIES FORECASTING AND IMPUTATION

TimeGrad (Rasul et al., 2021) is a diffusion-based method for time-series forecasting, and
CSDI (Tashiro et al., 2021) is for time-series imputation.

In TimeGrad (Rasul et al., 2021), they used a diffusion model for forecasting future observations given
past observations. On each sequential order n ∈ {2, ..., N} and diffusion step s ∈ {1, ..., T}, they
train a neural network ϵθ(·,x1:n−1, s) with a time-dependent diffusion coefficient ᾱs by minimizing
the following objective function:

Ex0n,ϵ,s[
∥∥ϵ− ϵθ(

√
ᾱsx

0
n +

√
1− ᾱsϵ,x1:n−1, s)

∥∥2
2
], (24)

where ϵ ∼ N (0, I). The above formula assumes that we already know x1:n−1, and by using an RNN
encoder, x1:n−1 can be encoded into hn−1. After training, the model forecasts future observations
recursively. More precisely speaking, x1:n−1 is encoded into hn−1 and the next observation xn is
forecast from the previous condition hn−1.

CSDI (Tashiro et al., 2021) proposed a general diffusion framework which can be applied mainly
to time-series imputation. CSDI reconstructs an entire sequence at once, not recursively. Let
x0 ∈ Rdim(X)×N be an entire time-series sequence with N observations in a matrix form. They
define x0

co and x0ta as conditions and imputation targets which are derived from x0, respectively. They
then train a neural network ϵθ(·, x0co, s) with a corresponding diffusion coefficient ᾱs and a diffusion
step s ∈ {1, ..., T} by minimizing the following objective function:

Ex0,ϵ,s[
∥∥ϵ− ϵθ(s, xsta, x0

co)
∥∥2
2
], (25)

where xsta =
√
ᾱsx0ta+(1− ᾱs)ϵ. By training the network using the above loss, it generates missing

elements from the partially filled matrix x0co.

15

Under review as a conference paper at ICLR 2024

Observed Data Forecasting Data Synthesized Data

4

3

1 2 3

2

Figure 4: Graphical representation of TimeGrad (left) and TSGM (right). We adapt TimeGrad to our
generation task but its results are not comparable even to other baselines’ results (see Appendix C.1).

B.2 DIFFERENCE BETWEEN EXISTING AND OUR WORKS

Although they have earned state-of-the-art results for forecasting and imputation, we found that they
are not suitable for our generative task due to the fundamental mismatch between their model designs
and our task (cf. Table 7 and Fig. 4).

Table 7: Comparison among various recent GAN, diffusion, and SGM-based methods for time-series.
xt (resp. x̂t) means a raw (resp. synthesized) observation at time t. For CSDI, xco means a set of
known values and xta means a set of target missing values — it is not necessary that xco precedes xta
in time in CSDI.

Method Type Task Description
TimeGrad Diffusion From x1:N−K , infer x̂N−K+1:N .

CSDI Diffusion Given known values xco, infer missing values x̂ta.
TimeGAN GAN Synthesize x̂1:N from scratch.
GT-GAN GAN Synthesize x̂1:N from scratch.
TSGM SGM Synthesize x̂1:N from scratch.

TimeGrad generates future observations given the hidden representation of past observations hn−1,
i.e., a typical forecasting problem. Since our task is to synthesize from scratch, past known observa-
tions are not available. Thus, TimeGrad cannot be directly applied to our task.

In CSDI, there are no fixed temporal dependencies between x0
co and x0ta since its task is to impute

missing values, i.e., x0ta, from known values, i.e., x0co, in the matrix x0. It is not necessary that x0co
precedes x0ta in time, according to the CSDI’s method design. Our synthesis task can be considered
as x0co = ∅, which is the most extreme case of the CSDI’s task. Therefore, it is not suitable to be used
for our task.

To our knowledge, we are the first proposing an SGM-based time-series synthesis method. We
propose to train a conditional score network by using the denoising score matching loss proposed by
us, which is denoted as LH

score. Unlike other methods (Rasul et al., 2021; Tashiro et al., 2021) that
resort to existing known proofs, we design our denoising score matching loss in Eq. equation 12 and
prove its correctness. Meanwhile, TimeGrad and CSDI can be somehow modified for time-series
synthesis but their generation quality is mediocre (see Appendix C).

C EXPERIMENTAL RESULTS FOR INAPPLICABILITY OF EXISTING
TIME-SERIES DIFFUSION MODELS TO OUR WORK

In this section, we provide experimental results to show inapplicability of the existing time-series
diffusion models, TimeGrad and CSDI, to the time-series generation task.

C.1 ADAPTING TIMEGRAD TOWARD GENERATION TASK

In this section, TimeGrad (Rasul et al., 2021) is modified for the generation task. We simply add an
artificial zero vector 0 in front of the all time-series samples of Energy. Therefore, TimeGrad’s task
becomes given a zero vector, forecasting (or generating) all other remaining observations. For the
stochastic nature of its forecasting process, it can somehow generate various next observations given

16

Under review as a conference paper at ICLR 2024

Table 8: Comparison between TSGM and modified TimeGrad in Energy for its regular time-series
setting

Method Disc. Pred.
TSGM-VP .221±.025 .257±.000

TSGM-subVP .198±.025 .252±.000
Modified TimeGrad .500±.000 .287±.003

Table 9: Comparison between TSGM and modified CSDI in Energy and AI4I for its regular time-
series setting

Method Energy AI4I
Disc. Pred. Disc. Pred.

TSGM-VP .221±.025 .257±.000 .147±.005 .217±.000
TSGM-subVP .198±.025 .252±.000 .150±.010 .217±.000
Modified CSDI .500±.000 .641±.000 .500±.000 .640±.000

the sample input 0. Table 8 shows the experimental comparison between modified TimeGrad and
TSGM in Energy, which has high dimensional features, for its regular time-series setting. TSGM
gives outstanding performance, compared to modified TimeGrad. When checked in Table 3, modified
TimeGrad is even worse than some baselines. Therefore, unlike TSGM, TimeGrad is not appropriate
for the generation task.

C.2 ADAPTING CSDI TOWARD GENERATION TASK

In this section, we apply CSDI to the time-series generation task by regarding all observations as
missing values (i.e., x0co = 0). However, as demonstrated in Table 9, CSDI fails to generate reliable
time series samples in the Energy and AI4I datasets for its regular time series setting. Hence, we
conclude that CSDI is unsuitable for the time-series generation task.

D DETAILED TRAINING PROCEDURE

We train the conditional score network and the encoder-decoder pair alternately after the pre-training
step. For some datasets, we found that training only the conditional score network achieves better
results after pre-training the autoencoder. Therefore, usealt = {True, False} is a hyperparameter
to set whether we use the alternating training method. We give the detailed training procedure in
Algorithm 1.

Algorithm 1: Training algorithm
Input: x0

1:N ; usealt is a Boolean parameter to set whether to use the alternating training method; iterpre is
the number of iterations for pre-training; itermain is the number of iterations for training.

1 for iter ∈ {1, ..., iterpre} do
2 Train Encoder and Decoder by using Led

3 end
4 for iter ∈ {1, ..., itermain} do
5 Train Mθ by using LH

score

6 if usealt then
7 Train the Encoder and Decoder by using Led

8 end
9 end

10 return Encoder,Decoder,Mθ

E DATASETS AND BASELINES

We use 4 datasets from various fields as follows. We summarize their data dimensions, the number of
training samples, and their time-series lengths (window sizes) in Table 10.

17

Under review as a conference paper at ICLR 2024

• Stock (Yoon et al., 2019): The Google stock dataset was collected irregularly from 2004 to
2019. Each observation has (volume, high, low, opening, closing, adjusted closing prices),
and these features are correlated.

• Energy (Candanedo et al., 2017): This dataset is from the UCI machine learning repository
for predicting the energy use of appliances from highly correlated variables such as house
temperature and humidity conditions.

• Air (De Vito et al., 2008): The UCI Air Quality dataset was collected from 2004 to 2005.
Hourly averaged air quality records are gathered using gas sensor devices in an Italian city.

• AI4I (Matzka, 2020): AI4I means the UCI AI4I 2020 Predictive Maintenance dataset. This
data reflects the industrial predictive maintenance scenario with correlated features including
several physical quantities.

We use several types of generative methods for time-series as baselines. At first, we consider
autoregressive generative methods: T-Forcing (teacher forcing) (Graves, 2013; Sutskever et al.,
2011) and P-Forcing (professor forcing) (Goyal et al., 2016). Next, we use GAN-based methods:
TimeGAN (Yoon et al., 2019), RCGAN (Esteban et al., 2017), C-RNN-GAN (Mogren, 2016), COT-
GAN (Xu et al., 2020), GT-GAN (Jeon et al., 2022). We also test VAE-based methods into our
baselines: TimeVAE (Desai et al., 2021). Finally, we treat flow-based methods. Among the array
of flow-based models designed for time series generation, we have chosen to compare our TSGM
against CTFP (Deng et al., 2020). This choice is informed by the fact that CTFP possesses the
capability to handle both regular and irregular time series samples, aligning well with the nature of
our task which involves generating both regular and irregular time series data.

Table 10: Characteristics of the datasets we use for our experiments

Dataset Dimension #Samples Length
Stocks 6 3685

24Energy 28 19735
Air 13 9357

AI4I 5 10000

F HYPERPARAMETERS AND ITS SEARCH SPACE

Table 11 shows the best hyperparameters for our conditional score network Mθ on regular time-series,
and we explain its neural network architecture in Appendix J.2. Mθ has various hyperparameters and
for key hyperparameters, we set them as listed in Table 11. For other common hyperparameters with
baselines, we reuse the default configurations of TimeGAN (Yoon et al., 2019) and VPSDE (Song
et al., 2021) to conduct the regular time-series generation.

We give our search space for the hyperparameters of TSGM. iterpre is in {50000,100000}. The
dimension of hidden features, dhidden, ranges from 2 times to 5 times the dimension of input features.
On regular time-series generation, we follow the default values in TimeGAN (Yoon et al., 2019)
and VPSDE (Song et al., 2021). For irregular time-series tasks, we search the hidden dimension of
decoder from 2 times to 4 times the dimension of input dimension, and follow GTGAN (Jeon et al.,
2022) for other settings of NCDE-encoder and GRU-ODE-decoder. We give our best hyperparameters
for irregular time-series on Table 12.

For baselines, we check their hyperparameters as follow:

• T-forcing (Graves, 2013): We control batch size among {256, 512, 1024}.

• P-forcing (Goyal et al., 2016): We control batch size among {256, 512, 1024}.

• TimeGAN (Yoon et al., 2019): The dimension of hidden features range from 2 times to 4
times the dimension of input features.

• RCGAN (Esteban et al., 2017): We control learning rate of generator’s optimizer and
discriminator’s optimizer from {1e-4, 2e-4} and {1e-3, 5e-3}, respectively.

18

Under review as a conference paper at ICLR 2024

• C-RNN-GAN (Mogren, 2016): We control learning rate of generator’s optimizer and
discriminator’s optimizer from {1e-4, 2e-4} and {3e-4, 4e-4}, respectively. We also use
label smoothing which is stated in the paper.

• TimeVAE (Desai et al., 2021): We control its latent dimension among {5, 10, 20}.
• COT-GAN (Xu et al., 2020): We calculate score every 250 epoch during 1000 epochs and

get the best experimental results.
• CTFP (Deng et al., 2020): The dimension of hidden features range from 2 times to 4 times

the dimension of input features.
• GT-GAN (Jeon et al., 2022): For encoder-decoder pair, we test from exactly the same search

space as TSGM. We calculate score every 5000 iteration during 40000 iterations and get the
best score.

Especially for COT-GAN, since it is on video generation, modifying the architecture to one dimen-
sional form was difficult. So, we augment our time-series data into two dimensional ones by stacking
them. After generating two-dimensional data, we extract the first row of the synthesized one and
calculate the score. We search every hyperparameter from {0.5, 1, 2} times of default value. Through
the experiment, we acquire compatible result but lower than TimeGAN in several datasets.

We follow default values for miscellaneous settings which are not explained on the above. Addition-
ally, to deal with irregular time-series, we search the hyperparameters of GRU-D, which substitutes
for RNN or are added to the head of baselines. We test the hidden dimension of GRU-D from 2 times
to 4 times the dimension of input features.

Table 11: The best hyperparameter setting for our method on regular time-series.

Dataset dim(h) usealt iterpre itermain

Stocks 24 True 50000

40000Energy 56 False 100000
Air 40 True 50000

AI4I 24 True 50000

Table 12: The best hyperparameter setting for our method on irregular time-series. Dhidden denotes
the hidden dimension of GRU-ODE-decoder.

Dataset Dhidden dim(h) usealt iterpre itermain

Stocks 48 24 True

50000 40000Energy 112 56 False
Air 40 40 True

AI4I 48 24 True

G MISCELLANEOUS EXPERIMENTAL ENVIRONMENTS

We give detailed experimental environments. The following software and hardware environments
were used for all experiments: UBUNTU 18.04 LTS, PYTHON 3.9.12, CUDA 9.1, NVIDIA Driver
470.141, i9 CPU, and GEFORCE RTX 2080 TI.

In the experiments, we report only the VP and subVP-based TSGM and exclude the VE-based one for
its lower performance. For baselines, we reuse their released source codes in their official repositories
and rely on their designed training and model selection procedures. For our method, we select the
best model for every 5000 iterations. For this, we synthesize samples and calculate the mean and
standard deviation scores of the discriminative and predictive scores.

H EMPIRICAL SPACE AND TIME COMPLEXITY ANALYSES

We report the memory usage during training in Table 13 and the wall-clock time for generating
1,000 time-series samples in Table 14. We compare TSGM to TimeGAN (Yoon et al., 2019) and
GTGAN (Jeon et al., 2022). Our method is relatively slower than TimeGAN and GTGAN, which

19

Under review as a conference paper at ICLR 2024

is a fundamental drawback of all SGMs. For example, the original score-based model (Song et al.,
2021) requires 3,214 seconds for sampling 1,000 CIFAR-10 images while StyleGAN (Karras et al.,
2019) needs 0.4 seconds. However, we also emphasize that this problem can be relieved by using the
techniques suggested in (Xiao et al., 2022; Jolicoeur-Martineau et al., 2021) as we mentioned in the
conclusion section.

Table 13: The memory usage for training

Method Stock Energy
TimeGAN 1.1 (GB) 1.6 (GB)
GTGAN 2.3 (GB) 2.3 (GB)
TSGM 3.8 (GB) 3.9 (GB)

Table 14: The sampling time of TSGM, TimeGAN and GTGAN for generating 1,000 samples on
each dataset. The original score-based model (Song et al., 2021) requires 3,214 seconds for sampling
1000 CIFAR-10 images while StyleGAN (Karras et al., 2019) needs 0.4 seconds, which is similar to
the case between TSGM and TimeGAN.

Method Stocks Energy
TimeGAN 0.43 (s) 0.47 (s)
GTGAN 0.43 (s) 0.47 (s)
TSGM 3318.99 (s) 1620.84 (s)

Although our method achieves state-of-the-art sampling quality and diversity, there exists a funda-
mental problem that all SGMs have. That is, SGMs are slower than GANs for generating samples
(see above). Since there are several accomplishments for faster sampling (Xiao et al., 2022; Jolicoeur-
Martineau et al., 2021), however, one can apply them to our method and it would be much faster
without any loss of sampling quality and diversity.

I ENCODER AND DECODER FOR IRREGULAR TIME-SERIES

To process irregular time-series, one can use continuous-time methods for constructing the encoder
and the decoder. In our case, we use neural controlled differential equations (NCDEs) for designing
the encoder and GRU-ODEs for designing the decoder, respectively (Kidger et al., 2020; Brouwer
et al., 2019). Our encoder based on NCDEs can be defined as follows:

h(tn) = h(tn−1) +

∫ tn

tn−1

f(t,h(t); θf)
dX(t)

dt
dt, (26)

where X(t) is an interpolated continuous path from x1:N — NCDEs typically use the natural cubic
spline algorithm to define X(t), which is twice differentiable and therefore, there is not any problem
to be used for forward inference and backward training. In other words, NCDEs evolve the hidden
state h(t) by solving the above Riemann-Stieltjes integral.

For the decoder, one can use the following GRU-ODE-based definition:

d(tn) = d(tn−1) +

∫ tn

tn−1

g(t,d(t); θg)dt, d(tn) = GRU(h(tn),d(tn)), x̂n = FC(d(tn)),

(27)

where FC denotes a fully-connected layer-based output layer. The intermediate hidden representation
d(tn) is jumped into the hidden representation d(tn) by the GRU-based jump layer. At the end, there
is an output layer.

For our irregular time-series experiments, i.e, dropping 30%, 50%, and 70% of observations from
regular time-series, we use the above encoder and decoder definitions and have good results.

20

Under review as a conference paper at ICLR 2024

J NEURAL NETWORK ARCHITECTURE

J.1 ARCHITECTURAL DETAILS OF NCDES AND GRU-ODES

As mentioned in Appendix I, we take the following architecture for functions f , g of (26) and (27) in
Table 15.

Table 15: Architecture of functions f (upper) and g(lower). Each layer of encoder and gate of decoder
takes (σ ◦Linear) form where σ denotes activation function. We describe which activation and Linear
function are used.

Layer Activation function Linear
1 ReLU dim(x)→ 4 dim(x)
2 ReLU 4 dim(x)→ 4 dim(x)
3 ReLU 4 dim(x)→ 4 dim(x)
4 Tanh 4 dim(x)→ dim(x)

Layer Gate Activation function Linear

1
rt ReLU

dim(h)→ dim(h)zt ReLU
ut Tanh

J.2 CONDITIONAL SCORE NETWORK

Unlike other generation tasks, e.g., image generation (Song et al., 2021) and tabular data synthe-
sis (Kim et al., 2022), where each sample is independent, time-series observations are dependent to
their past observations. Therefore, the score network for time-series generation must be designed to
learn the conditional log-likelihood given past generated observations, which is more complicated
than that in image generation.

In order to learn the conditional log-likelihood, we modify the popular U-net (Ronneberger et al.,
2015) architecture for our purposes. Since U-net has achieved various excellent results for other
generative tasks (Song & Ermon, 2019; Song et al., 2021), we modify its 2-dimensional convolution
layers to 1-dimensional ones for handling time-series observations. The modified U-net, denoted Mθ,
is trained to learn our conditional score function (cf. Eq. equation 12). More details on training and
sampling with Mθ are in Sec. 3.4.

K ADDITIONAL EXPERIMENTAL RESULTS

We give additional experimental results for irregular time-series generation with 50% and 70%
missing rates in Table 16.

L ADDITIONAL VISUALIZATIONS

In this section, we provide additional visualization results in each dataset. Figure 5 illustrates the
density function of each feature estimated by KDE in original and generated data. Figure 6 shows
original and generated data points projected onto a latent space using t-SNE (van der Maaten &
Hinton, 2008)

M EFFICACY OF OUR RECURSIVE GENERATION

In this section, we investigate the efficacy of our proposed recursive design. We compare TSGM to an
method using one-shot generation. we call one-shot generation when a generation method generates
all time-series observations at once, not recursively. In other words, D×N matrices, where D means
the number of features and N means the sequence length, are synthesized at once. CSDI (Tashiro
et al., 2021) is one of the most famous one-shot imputation model for time-series.

21

Under review as a conference paper at ICLR 2024

Table 16: Experimental results in terms of the discriminative and predictive scores. The best scores
are in boldface. The left and right ones denote experimental results on irregular time-series with 50%
and 70% missing rates, respectively.

Method Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .051±.014 .398±.003 .272±.012 .156±.106
TSGM-subVP .031±.012 .421±.008 .213±.025 .137±.102
T-Forcing-D .407±.034 .376±.046 .499±.001 .473±.045
P-Forcing-D .500±.000 .500±.000 .494±.012 .437±.079
TimeGAN-D .477±.021 .473±.015 .500±.001 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .450±.150
TimeVAE-D .411±.110 .436±.088 .423±.153 .389±.113
COT-GAN-D .499±.001 .500±.000 .500±.000 .500±.000

CTFP .499±.000 .500±.000 .500±.000 .499±.001
GT-GAN .265±.073 .317±.010 .434±.035 .276±.033

Pr
ed

.s
co

re

TSGM-VP .011±.000 .051±.001 .041±.001 .060±.001
TSGM-subVP .011±.000 .051±.001 .042±.002 .065±.013
T-Forcing-D .038±.003 .090±.000 .121±.003 .143±.005
P-Forcing-D .089±.010 .198±.005 .101±.003 .116±.007
TimeGAN-D .254±.047 .339±.029 .325±.005 .251±.010
RCGAN-D .333±.044 .250±.010 .335±.023 .276±.066

C-RNN-GAN-D .273±.000 .438±.000 .289±.033 .373±.037
TimeVAE-D .195±.012 .143±.007 .103±.002 .144±.004
COT-GAN-D .246±.000 .475±.000 .557±.000 .449±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .018±.002 .064±.001 .061±.003 .113±.024
Original .011±.002 .045±.001 .044±.006 .059±.001

Method Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .065±.010 .482±.003 .337±.025 .327±.104
TSGM-subVP .035±.009 .213±.025 .329±.027 .235±.123
T-Forcing-D .404±.068 .336±.032 .499±.001 .493±.010
P-Forcing-D .449±.150 .494±.011 .498±.002 .440±.125
TimeGAN-D .485±.022 .500±.000 .500±.000 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
TimeVAE-D .444±.148 .498±.003 .426±.148 .371±.092
COT-GAN-D .498±.001 .500±.000 .500±.000 .500±.000

CTFP .500±.000 .500±.000 .500±.000 .499±.000
GT-GAN .230±.053 .325±.047 .444±.019 .362±.043

Pr
ed

.s
co

re

TSGM-VP .011±.000 .053±.001 .043±.000 .092±.024
TSGM-subVP .012±.000 .042±.002 .042±.001 .097±.020
T-Forcing-D .031±.002 .091±.000 .116±.003 .144±.004
P-Forcing-D .107±.009 .193±.006 .107±.002 .125±.007
TimeGAN-D .228±.000 .443±.000 .425±.008 .323±.011
RCGAN-D .441±.045 .349±.027 .359±.008 .346±.029

C-RNN-GAN-D .281±.019 .436±.000 .306±.040 .262±.053
TimeVAE-D .199±.009 .134±.004 .108±.004 .142±.008
COT-GAN-D .278±.000 .456±.000 .556±.000 .435±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .020±.005 .076±.001 .059±.004 .124±.003
Original .011±.002 .045±.001 .044±.006 .059±.001

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Data Value

0

2

4

6

8

10

Da
ta

 D
en

sit
y

Air
Original
TimeVAE
TimeGAN
GTGAN
TSGM VP

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Data Value

0

2

4

6

8

10

12
Air

Original
TimeVAE
TimeGAN
GTGAN
TSGM VP

0.50 0.25 0.00 0.25 0.50 0.75 1.00

Data Value
0.0

0.5

1.0

1.5

2.0

2.5
AI4I

Original
TimeVAE
TimeGAN
GTGAN
TSGM VP

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Data Value
0.0

0.5

1.0

1.5

2.0

2.5

3.0
AI4I

Original
TimeVAE
TimeGAN
GTGAN
TSGM VP

Figure 5: Additional KDE plots for each feature in Air and AI4I datasets.

We convert our TSGM for the one-shot generation by removing the RNN-based encoder. In Table 17,
TSGM-oneshot shows poor generation quality in Stock and Energy. TSGM-oneshot achieves com-
parable predictive scores but its discriminative score gets worse a lot. From these results, we can
support the efficacy of our recursive structures, compared to one-shot generation. One can also check
the one-shot generation result by CSDI in Appendix C.2.

N DRIFT AND DIFFUSION TERMS IN VE, VP AND SUBVP SDE

In this section, we describe the detailed form of each SDE. In (Song et al., 2021), the authors
investigated that SMLD (Song & Ermon, 2019) and DDPM (Ho et al., 2020) can be extended to

E
ne
rg
y

A
I4
I

TSGM-VP TSGM-subVP TimeGAN TimeVAE GT-GAN

Figure 6: Additional t-SNE plots in Energy and AI4I datasets.

22

Under review as a conference paper at ICLR 2024

Table 17: Comparison between TSGM and one-shot generations. We give representative results. For
other datasets, the results are similar or worse than the table.

Method Stock Energy
Disc. Pred. Disc. Pred.

TSGM-VP .022±.005 .037±.000 .221±.025 .257±.000
TSGM-subVP .021±.008 .037±.000 .198±.025 .252±.000
TSGM-oneshot .029±.018 .037±.000 .494±.001 .258±.000

continuous forms and as a result, suggested VE and VP SDEs. Furthermore, the author proposed an
additional SDE form, called subVP SDE, which has a smaller variance than VP SDE but the same
expectation. The exact calculation is not a main subject of this paper, so we only explain the form of
these terms in Table 2. Please refer to (Song et al., 2021) for the detailed computation.

Along with already mentioned notations in Section 2.1, we define noise scales. σ(s) means positive
noise values which are increasing, and β(s) denotes noise values in [0,1] which are used in SMLD and
DDPM. Although we give the exact form of the three SDEs, we report only the VP and subVP-based
TSGM in our experiments and exclude the VE-based one for its lower performance.

O DETAILED DESCRIPTION OF GRU-D

GRU-D (Che et al., 2016) is a modified GRU model which is for learning time-series data with
missing values. This concept is similar with our problem statement, so we apply it to our baseline for
irregular case. GRU-D needs to learn decaying rates along with the values of GRU. First, GRU-D
learns decay rates which depict vagueness of data as time passed. After calculating the decay rates,
each value is composed of decay rate, mask, latest observed data, and predicted empirical mean that
of GRU. The code can be utilized in the following link: https://github.com/zhiyongc/GRU-D

23

	Introduction
	Related Work and Preliminaries
	Score-based Generative Models
	Forward and Reverse Process
	redTraining Process

	Time-series Generation

	Proposed Method
	Problem Formulation
	Encoder and Decoder
	Training Objective Function
	Training and Sampling Procedures

	Experiments
	Experimental Environments
	Baselines and Datasets
	Evaluation Metrics

	Experimental Results
	Sensitivity and Ablation Studies
	Sensitivity Studies
	Ablation Studies

	Conclusions
	Proofs
	Existing Time-Series Diffusion Models
	Diffusion Models for Time-series Forecasting and Imputation
	Difference between Existing and Our Works

	Experimental Results for Inapplicability of Existing Time-Series Diffusion Models to Our Work
	Adapting TimeGrad toward Generation Task
	Adapting CSDI toward Generation Task

	Detailed Training Procedure
	Datasets and Baselines
	Hyperparameters and its Search Space
	Miscellaneous Experimental Environments
	Empirical Space and Time Complexity Analyses
	Encoder and Decoder for Irregular Time-series
	Neural Network Architecture
	Architectural Details of NCDEs and GRU-ODEs
	Conditional Score Network

	Additional Experimental Results
	Additional Visualizations
	Efficacy of Our Recursive Generation
	Drift and diffusion terms in VE, VP and subVP SDE
	Detailed Description of GRU-D

