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1 Introduction

Gaussian processes (GPs) [24] are priors over functions with many desirable properties, but also
with many computational difficulties. Despite progress, the popular variational method [20, 8] is still
complicated by the need to invert/decompose the kernel matrix, which is 1) difficult in low-precision,
2) less parallelisable than matmuls, and 3) incurs cubic time cost in model capacity.

Van der Wilk et al. [23, 22] proposed variational bounds that involve only matmuls by introducing an
additional variational parameter T ∈ RM×M , which becomes the required inverse at the optimum.
This turns the inversion operation into an optimisation problem. Although, in theory, this would not
introduce performance gaps, practical success requires the optimisation of T to be fast enough to
keep up with the changing kernel throughout training. Unfortunately, typical deep learning optimisers
were shown to converge unusably slowly.

We solve this through 1) a preconditioner for a variational parameter, 2) a tailored update for T based
on natural gradients or Newton’s method, and 3) a stopping criterion to determine the number of
updates. This leads to an inverse-free method on-par with existing approaches on an iteration basis,
with low-precision computation and wall-clock speedups being the next step.

2 Sparse variational Gaussian process (SVGP) parameterisations

We consider learning a function f : RD → R through Bayesian inference, with a prior f(·) ∼
GP(0, kθ(·, ·)) and an arbitrary factorised likelihood with density p(y|f) =

∏N
n=1 p(yn|f(xn), θ).

To make predictions, we need to approximate the maximum marginal likelihood hyperparameters
θ∗ = argmaxθ log p(y|θ), and the posterior p(f |y). To do so, the predominant approach is to use
sparse variational Gaussian processes (SVGPs) [8], which select an approximate posterior distribution
q(f) by minimising the KL-divergence to the true posterior p(f |y). The approximate posterior is
constructed by conditioning the prior on M≪N inducing points [15], at input locations Z∈RM×D

and output values u=f(Z), resulting in a variational posterior q(f) =
∫
p(f ̸=u|u)q(u)du (see [21,

12]). Following variational inference [6], we minimise KL[q(f)||p(f |y)] by maximising the evidence
lower bound (ELBO) with respect to Z and parameters ofq(u). In this case, the ELBO becomes [8]

L =

N∑
n=1

EN (µn,σ2
n)

[log p(yn|f(xn))]−KL [q(u)||p(u)] , (1)

where µn and σn are, respectively, the predictive mean and variance at the input location xn. The
choice of the parameterisation of the Gaussian distribution q(u) can have a significant impact on
the optimisation stability and the tightness of the ELBO. Below, we briefly review two common
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parameterisations, as well as their relationship with the inverse-free variational bound of van der Wilk
et al. [22]. We highlight with red colour the terms in µn, σ2

n and KL[q(u)||p(u)] that involve matrix
decompositions.

Marginal parameterisation (M-SVGP). The most common freeform q(u) = N (m,S) results in
µn = knuK

−1
uum, σ2

n = knn − knuK
−1
uukun + knuK

−1
uuSK

−1
uukun, (2)

KL [q(u)||p(u)] = 1

2

(
tr(K−1

uuS) +m⊤K−1
uum−M + log |Kuu| − log |S|

)
, (3)

where Kuu = k(Z,Z), kun = k⊤
nu = k(Z,xn), and knn = k(xn,xn).

Likelihood parameterisation (L-SVGP). Panos et al. [14] suggest to reparameterise q(u) =

N (m,S) with m = Kuum̃ and S = (K−1
uu + S̃−1)−1, where S̃ is PD diagonal. This results in

µn = knum̃, σ2
n = knn − knuK̃

−1kun =: σ2(L)
n , (4)

KL [q(u)||p(u)] = 1

2

(
−tr(K̃−1Kuu) + m̃⊤Kuum̃−M + log |K̃| − log |S̃|

)
, (5)

where K̃ = Kuu + S̃. Inverting K̃ instead of K is more stable and does not need jitter terms, due to
having lower-bounded minimum eigenvalue thanks to S̃.

Inverse-free likelihood parameterisation (R-SVGP). Van der Wilk et al. [22] develop an inverse-
free bound for L-SVGP, starting by upper bounding the predictive variance as

σ2(L)
n ≤ knn + knu(TK̃T− 2T)kun =: Un, (6)

where T ∈ RM×M , and with equality when T = K̃−1. Working backwards, they then find that, if the
variance S of the marginal parameterisation is reparameterised as S = Kuu−Kuu(2T−TK̃T)Kuu,
the predictive variance matches the upper bound σ2

n = Un. This improves over the previous inverse-
free bound for M-SVGP [23] by allowing for a closed-form inverse-free bound for the KL term

KL [q(u)||p(u)] ≤ 1

2

(
tr((TK̃T− 2T)Kuu) + m̃⊤Kuum̃

+tr(K̃T)−M − log |T| − log |S̃|
)
, (7)

with equality when T = K̃−1. Putting all this together leads to a new ELBO that 1) depends on
the additional parameter T, 2) is free of matrix decompositions, 3) is always a lower bound to the
L-SVGP ELBO and 4) recovers the L-SVGP solution when T = K̃−1.

Alternative inverse-free parameterisations. While we do not pursue the idea further in this work,
we note that the R-SVGP construction, whereby one exploits an inverse-free upper bound to the
predictive variance, is more general and may be applied to parameterisations other than L-SVGP. For
instance, starting from M-SVGP, reparameterise m = KuuRm̃ and S = KuuRS̃R⊤Kuu, where S̃
is PD and R is lower triangular. This results in

µn = knuRm̃, σ2
n = knn − knu(K

−1
uu −RS̃R⊤)kun. (8)

Similarly to Eq. (6), the predictive variance can be upper bounded as

σ2
n ≤ knn + knuR(R⊤KuuR− 2I+ S̃)R⊤kun, (9)

with equality when R = chol(K−1
uu). Working backwards, the upper bound above is equal to

the predictive variance induced by the reparameterisation S = Kuu +KuuR(R⊤KuuR − 2I +

S̃)R⊤Kuu. The KL term implied by this choice of m and S admits the upper bound

KL[q(u)||p(u)] ≤ 1

2

(
tr
(
(S̃− 2I)R⊤KuuR

)
+ m̃⊤R⊤KuuRm̃

− log |S̃|+KL
[
N (0,RR⊤)||N (0,K−1

uu)
])

, (10)

with equality when R = chol(K−1
uu). The resulting ELBO, which depends on the additional parameter

R, recovers the popular whitened SVGP parameterisation [9] at its optimum R = chol(K−1
uu).

Morever, while Eq. (10) still contains an inverse in the inner KL term, we show in the next section
how one can efficiently minimise the latter with respect to R, thereby making the required update for
the rest of the parameters effectively inverse-free.
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3 Optimising the inverse-free variational bound

The effectiveness of the R-SVGP parameterisation relies on the ability to optimise T close to its
optimal value. In their experiments, Van der Wilk et al. [22] parameterise T through its Cholesky
factor L as T = LL⊤ , which they update jointly with the other model parameters using Adam [10].
However, they report that this results in poor optimisation performance even with simple datasets.
Here, we solve this problem with a tailored optimisation procedure.

3.1 Inverting matrices iteratively with natural gradients

Given a symmetric PD matrix A, the Cholesky factor LA−1 of its inverse A−1 can be written as

LA−1 = argmin
L

ℓA(L) , ℓA(L) := KL
[
N (0,LL⊤)||N (0,A−1)

]
. (11)

Natural gradient (NG) updates are known to converge quickly on KL objectives [3]. In particular, we
descend along the natural gradient ∇̃ℓA = F−1(∇ℓA), which is found by preconditioning the stan-
dard gradient by the inverse Fisher information matrix F = −EN (x;0,LL⊤)

[
∇2

L logN (x; 0,LL⊤)
]
.

For Eq. (11), the natural gradient admits a simple closed-form expression, derived in Appendix A.

Proposition 1. Let ℓ(L) be as in Eq. (11). Then,

∇̃ℓA = L

[
tril(L⊤AL)− 1

2
(I+ diag(L⊤AL))

]
, (12)

where tril(·) and diag(·) return the lower triangular part and the diagonal of a matrix.

With this, we can optimise the R-SVGP bound by alternating between two steps:

1) NG step: for the current K̃, update L by applying Lt+1 = Lt − γ∇̃LℓK̃, t∗ times.

2) Adam step: given the current value of L, update the other model parameters by applying an
Adam update to maximise the R-SVGP bound.

Crucially, the expression for the natural gradient in Eq. (12) does not involve matrix decompositions,
thereby maintaining the overall optimisation procedure inverse-free. Interestingly, such an update for
L is related to the well-known Newtonian iteration for computing the inverse of a matrix [5].

The R-SVGP parameterisation introduces some slack to the L-SVGP objective through the upper
bound on the predictive variance σ

2(L)
n in Eq. (6). For Gaussian likelihoods, we can monitor such

a bias to choose the number t∗ of NG updates for T. This approach is similar in spirit to several
stopping criteria used for conjugate gradient approximations of Gaussian processes [11, 4]. We start
by deriving the following lower bound on σ

2(L)
n , which is proved in Appendix B.

Proposition 2. Let σ2(L)
n be as in Eq. (4). Since S̃ is diagonal and PD, without loss of generality, we

can rewrite it as S̃ = S̃′ + σ2I, where S̃′ is diagonal and PD. Then,

σ2(L)
n ≥ knn − 1

σ2

(
knukun − 2knuTK̃−kun + knuTK̃−K̃Tkun

)
=: Ln, (13)

where K̃− = Kuu + S̃′, so that K̃ = K̃− + σ2I.

By subtracting the upper and lower bounds on σ
2(L)
n , we find the quantity

Gn := Un − Ln =
1

σ2
||(I− K̃T)kun||2. (14)

Moreover, for Gaussian likelihoods, the predictive variance σ2
n enters the expectation component of

the ELBO through the term − 1
2σ2

obs

∑N
n=1 σ

2
n, where σ2

obs is the likelihood variance. Therefore, the

stopping criterion G :=
∑N

n=1 Gn ≤ 2σ2
obsϵ ensures that the gap between the R-SVGP and L-SVGP

bounds due to the approximation of σ2(L)
n is at most ϵ.
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3.2 Improving the performance of L-SVGP with inducing mean preconditioning

When T is optimised perfectly, the R-SVGP bound coincides with the L-SVGP bound. Hence, the
ability for L-SVGP to reach competitive performance is a necessary condition for R-SVGP to do the
same. Unfortunately, we find across a range of experiments that the L-SVGP bound is more difficult
to optimise than the standard M-SVGP bound, often leading to worse predictive performance. We
identify the cause of this issue in the inducing mean parameterisation m = Kuum̃ and we propose
to address it by pre-multiplying m̃ with the matrix K̃−1 = (Kuu + S̃)−1. The intuition behind this
change is that, in the case where the data points X and the inducing inputs Z coincide, the resulting
posterior mean µn = knu(Kuu + S̃)−1m̃ is precisely in the form of the true posterior mean of a GP
with Gaussian likelihood, for which S̃ = σ2

obsI and m̃ = y [14, 2]. However, in the R-SVGP bound,
we cannot simply pre-multiply m̃ with K̃−1 without defeating the purpose of it being inverse-free.
Instead, we use T as an approximate preconditioner. In doing so, we also hardcode the custom
gradient of Tm̃ wrt K̃ as if T was exactly equal to K̃−1. Our hope is that, when T is sufficiently
well optimised, this will lead to similar benefits.

4 Results

To assess the effectiveness of the NG updates for T (Section 3.1) and the inducing mean precondi-
tioning (Section 3.2), we compare versions of the R-SVGP bound that take advantage of either or
both of these tools. The main baseline is the R-SVGP bound without preconditioning and where T is
trained with Adam, as in van der Wilk et al. [22]. In this context, the optimisation of the R-SVGP
bound is successful when the resulting model matches the performance of the one trained with the
corresponding L-SVGP bound. In all comparisons, we include the M-SVGP parameterisation, which
is the de facto standard baseline for stochastic variational GP approximations. The setup of all the
experiments discussed below is presented in Appendix C.

The benefits of the tools proposed in Section 3 are apparent even in toy datasets. Fig. 1 shows training
loss traces for each bound optimised on the SNELSON regression and BANANA classification datasets.
In both cases, the R-SVGP bounds with NG updates (i.e. R-SVGP-N and R-SVGP-NP) match

Figure 1: Loss traces on SNELSON and BANANA datasets. The P and N suffixes in the legend
names refer to the use of inducing mean preconditioning (Section 3.2) or NG updates (Section 3.1),
respectively.

the performance of the corresponding L-SVGP bounds (i.e. L-SVGP and L-SVGP-P, respectively).
Conversely, the bounds trained only with Adam suffer from either much slower convergence (R-
SVGP) or worse results (R-SVGP-P) than their NG-counterparts. Furthermore, preconditioning is
crucial for the L-SVGP and R-SVGP bounds to match the performance of M-SVGP. However, it
is only beneficial for R-SVGP when coupled with the NG updates. This is explained by the fact
that, as discussed in Section 3.2, preconditioning is expected to help only when T is a good enough
approximation to K̃. As shown in Appendix D.1, this is usually only the case when we use NG
updates.
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Larger datasets make the performance gap between RSVGP-NP and the other versions of the RSVGP
bound even more significant. To show this, we evaluate our method on four UCI regression datasets.
As shown in Appendix D.2 and Appendix D.3, the R-SVGP-NP bound recovers the performance of
L-SVGP-P on all datasets, regardless of whether the inducing locations Z are fixed and trained. When
Z is fixed, we find that a single NG update with step size one at every iteration is enough. On the
other hand, when Z is trained, multiple NG updates are required, which represents a use case for the
stopping criterion derived in Section 3.1. In particular, at each iteration, we employ an exponentially
increasing schedule for the NG step size and stop optimising T when G falls below a predetermined
threshold. In all cases, RSVGP-NP is the only version of the RSVGP bound that is able to match
the performance of M-SVGP and LSVGP-P, demonstrating the effectiveness of our approach for
optimising the inverse-free bound.

5 Discussion

We introduced new and effective techniques to optimise the inverse-free bound of van der Wilk et al.
[22]. For the first time, our method allows to successfully train a sparse variational GP model on
realistic datasets without the computation of matrix decompositions, and we are extremely excited
about the next steps in this direction. In particular, while we find that multiple NG updates for T are
required when training Z, we only experiment with a basic exponential schedule for the NG step
size. We expect that a more tailored approach, possibly using a log-linear schedule [18], may further
improve stability and robustness. Furthermore, since our method only employs matmuls, it should
be possible to implement it using only single-precision arithmetic. A careful runtime benchmark of
our method, both using single and double precision floats, is required to assess the computational
benefit of using the inverse-free bound to train variational GPs. Lastly, our method could be extended
to derive and optimise inverse-free versions of other SVGP parameterisations, as well as other GP
architectures based on the SVGP framework, such as deep GPs [17]. All in all, we believe that our
results, while preliminary, hint at the intriguing possibility of building complex GP models that are
more scalable and better suited to modern hardware.
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A Proof of Proposition 1

Proof. Given the decomposition for our variational parameter T = LL⊤, our goal is to find the
optimal L so that T = (Kuu + S̃)−1, without explicitly computing the inverse. We consider the
problem of finding the Cholesky factor of the inverse of a matrix A via:

LA−1 = argmin
L

ℓA(L) ℓA(L) := KL
[
N (0,LL⊤)||N (0,A−1)

]
. (15)

The above optimisation problem describes the update we take in the direction of the natural gradient:
g̃ = F−1g, (16)

where g and g̃ are column vectors denoting the gradient and the natural gradient of ℓA wrt L,
while we denote with F the Fisher information matrix of the distribution p(x;L) = N (x|0,LL⊤)
parameterised by L:

F = −Ep

[
∂2

∂ vec(L) ∂ vec(L⊤)
log p(x;L)

]
, (17)

with vec(·) the column-wise vectorisation operator.

We start by computing the gradient of the loss ∇ℓA wrt L. As in Eq. (11),

ℓA(L) = KL
[
p(x;L)||N (0,A−1)

]
=

1

2

(
tr(ALL⊤)− log |LL⊤|

)
+ c1, (18)

where c1 is a constant that does not depend on L. The first differential of ℓA with respect to L is
given by

d ℓA =
1

2
d tr(ALL⊤)︸ ︷︷ ︸

(a)

−1

2
d log |LL⊤|︸ ︷︷ ︸

(b)

. (19)

Term (a) can be computed as

d tr(ALL⊤) = tr(Ad(LL⊤))

= tr(AdLL⊤ +ALdL⊤)

= tr(L⊤AdL) + tr(ALdL⊤)

= 2 vec(AL)⊤ vec(dL), (20)
where the last equality holds because A is symmetric. Term (b) is given by

d log |LL⊤| = 1

|LL⊤|
d |LL⊤|

=
1

|LL⊤|
|LL⊤| tr(L−⊤L−1 d(LL⊤))

= tr(L−⊤L−1 dLL⊤ + L−⊤L−1LdL⊤)

= tr(L−1 dL) + tr(L−⊤ dL⊤)

= 2 vec(L−⊤)⊤ vec(dL). (21)
Putting it all together, the differential of ℓA takes the form

d ℓA = (vec(AL) + vec(L−⊤))⊤ vec(dL), (22)
which implies that

g = vec(AL)− vec(L−⊤). (23)

We now move to computing the Fisher information matrix F of p(x;L) wrt L. We have that

log p(x;L) = −1

2
log |LL⊤| − 1

2
x⊤L−⊤L−1x+ c2, (24)

where c2 is a constant that does not depend on L. The quantity of interest is the expected value of the
second differential of log p(x;L) wrt p, which takes the form

Ep

[
d2 log p(x;L)

]
= −1

2
d2 log |LL⊤|︸ ︷︷ ︸

(c)

−1

2
Ep

d2(x⊤L−⊤L−1x)︸ ︷︷ ︸
(d)

 (25)
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because log |LL⊤| does not depend on x. By taking advantage of Eq. (21), term (c) is given by

d2 log |LL⊤| = 2d tr(L−1 dL)

= −2 tr(L−1 dLL−1 dL)

= −2 vec((L−1 dL)⊤)⊤ vec(L−1 dL) (26)

= −2
[
C vec(L−1 dL))

]⊤
vec(L−1 dL)

= −2
[
C(I⊗ L−1) vec(dL)

]⊤
(I⊗ L−1) vec(dL)

= −2 vec(dL)⊤(I⊗ L−⊤)C(I⊗ L−1) vec(dL)

= −2 vec(dL)⊤C(L−⊤ ⊗ L−1) vec(dL), (27)

where Eq. (26) follows from tr(X⊤Y) = vec(X)⊤ vec(Y), and C = C⊤ is the commutator matrix
such that C vec(X) = vec(X⊤) and C(X⊗Y) = (Y ⊗X)C.

Similarly, term (d) can be computed starting from the first differential

d(x⊤L−⊤L−1x) = x⊤ d(L−⊤L−1)x

= −x⊤(L−⊤ dL⊤L−⊤L−1 + L−⊤L−1 dLL−1)x

= − tr(L−⊤L−1xx⊤L−⊤ dL⊤)− tr(L−1xx⊤L−⊤L−1 dL)

= −2 tr(L−1xx⊤L−⊤L−1 dL). (28)

Then, the second differential takes the form

d2(x⊤L−⊤L−1x) = −2 tr(d(L−1xx⊤L−⊤L−1 dL))

= 2
[
tr(L−1 dLL−1xx⊤L−⊤L−1 dL)

+ tr(L−1xx⊤L−⊤ dL⊤L−⊤L−1 dL)

+ tr(L−1xx⊤L−⊤L−1 dLL−1 dL)
]
. (29)

By taking the expectation wrt p, we have that

Ep

[
d2(x⊤L−⊤L−1x)

]
= 2

[
tr(L−1 dLL−1LL⊤L−⊤L−1 dL)

+ tr(L−1LL⊤L−⊤ dL⊤L−⊤L−1 dL)

+ tr(L−1LL⊤L−⊤L−1 dLL−1 dL)
]

= 2
[
2 tr(L−1 dLL−1 dL) + tr(dL⊤L−⊤L−1 dL)

]
= 2

[
2 vec(dL)⊤C(L−⊤ ⊗ L−1) vec(dL) (30)

+vec(dL)⊤ vec(L−⊤L−1 dL)
]

= 2vec(dL)⊤
[
2C(L−⊤ ⊗ L−1) + (I⊗ L−⊤L−1)

]
vec(dL), (31)

where the first component of Eq. (30) follows from the expression already derived in Eq. (27). Overall,
the expectation in Eq. (25) becomes

Ep

[
d2 log p(x;L)

]
= − vec(dL)⊤

[
C(L−⊤ ⊗ L−1) + (I⊗ L−⊤L−1)

]
vec(dL), (32)

which implies that the Fisher information matrix F takes the form

F = −Ep

[
∂2

∂ vecL∂ vecL⊤ log p(x;L)

]
= C(L−⊤ ⊗ L−1) + (I⊗ L−⊤L−1)

= (I⊗ L−⊤)(I+C)(I⊗ L−1). (33)

By rearranging the terms of Eq. (16), we have that the natural gradient may be found without
explicitly computing the inverse F by solving the equation

Fg̃ = g (34)

8



for g̃, under the constraint that the latter is the vectorisation of a lower triangular. Before we proceed,
let us introduce the matrix form of the the natural gradient vector as G̃ = unvec(g̃). Then we
compute

Fg̃ = (I⊗ L−⊤)(I+C)(I⊗ L−1)g̃

= (I⊗ L−⊤)(I+C) vec(L−1G̃)

= (I⊗ L−⊤) vec(L−1G̃+ (L−1G̃)⊤)

= vec(L−⊤L−1G̃+ L−⊤(L−1G̃)⊤). (35)

Then, Eq. (34) is equivalent to

L−⊤L−1G̃+ L−⊤(L−1G̃)⊤ = AL− L−⊤. (36)

By left-multiplying both sides by L⊤, we obtain

L−1G̃+ (L−1G̃)⊤ = L⊤AL− I

= tril(L⊤AL) + triu(L⊤AL)− diag(L⊤AL)− I

= tril(L⊤AL)− 1

2
(I+ diag(L⊤AL))

+

[
tril(L⊤AL)− 1

2
(I+ diag(L⊤AL))

]⊤
, (37)

which implies that

L−1G̃ = tril(L⊤AL)− 1

2
(I+ diag(L⊤AL)). (38)

Finally, by left-multiplying both sides by L, we find that

G̃ = L

[
tril(L⊤AL)− 1

2
(I+ diag(L⊤AL))

]
. (39)

Notice that a similar procedure as the one above can be used to derive the natural gradient of the
loss ℓA with respect to different parameterisations of the covariance matrix of p(x). This includes
the marginal parameterisation p(x;T) = N (0,T), as well as a general square root parameterisation
p(x;B) = N (0,BB). In particular, it can be shown that, when using the marginal parameterisation,
natural gradient descent with unit step size recovers the well-known Newtonian iteration for computing
the inverse of a matrix [5].

B Proof of Proposition 2

Proof. As in the statement of Proposition 2, we use the shorthand K̃− = Kuu + S̃′, so that
K̃ = K̃− + σ2I. Then, proving the inequality

σ2(L)
n = knn − knuK̃

−1kun

≥ knn − 1

σ2

(
knukun − 2knuTK̃−kun + knuTK̃−K̃Tkun

)
= Ln (40)

is equivalent to showing that

1

σ2

(
knukun − 2knuTK̃−kun + knuTK̃−K̃Tkun

)
≥ knuK̃

−1kun. (41)
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We write Tkun = K̃−1kun + δ, where δ is the discrepancy due to the error with which T approxi-
mates K̃−1. Notice that both K̃− and K̃ are PSD. Then, we have

1

σ2

(
knukun − 2knuTK̃−kun + knuTK̃−K̃Tkun

)
=

1

σ2

(
knukun − 2(K̃−1kun + δ)⊤K̃−kun + (K̃−1kun + δ)⊤K̃−K̃(K̃−1kun + δ)

)
=

1

σ2

(
knukun − �2knuK̃

−1K̃−kun������
−2δ⊤K̃−kun

+((((((((
knuK̃

−1K̃−kun������
+2δ⊤K̃−kun + δ⊤K̃−K̃δ

)
=

1

σ2

(
knukun − knuK̃

−1(K̃− σ2I)kun + δ⊤K̃−K̃δ
)

= knuK̃
−1kun +

1

σ2
δ⊤K̃−K̃δ

≥ knuK̃
−1kun, (42)

where the last inequality follow from the fact that the product of two PSD matrices K̃− and K̃ is also
PSD, and with equality when δ = 0, which is implied by T = K̃−1.

As already discussed in Section 3, the upper bound Un in Eq. (6) and the lower bound Ln in Eq. (13)
that we proved above can be monitored to choose the number of NG optimisation steps for T. In
particular, by subtracting Un and Ln, we find the quantity

Gn = Un − Ln

= knuTK̃Tkun − 2knuTkun +
1

σ2

(
knukun − 2knuTK̃−kun + knuTK̃−K̃Tkun

)
=

1

σ2

(
knukun − 2knuT(K̃− + σ2I)kun + knuT(K̃− + σ2I)K̃Tkun

)
=

1

σ2
||knu − K̃Tkun||2

=
1

σ2
||(I− K̃T)kun||2. (43)

By optimising T until Gn < ϵ′, one can ensure that the R-SVGP predictive variance in Eq. (6) is at
most ϵ′ larger than the L-SVGP predictive variance σ

2(L)
n in Eq. (4). Moreover, the only part of the

SVGP ELBO in Eq. (1) that depends directly on the predictive variance σn of the parameterisation is
the expectation component, which, in the case of Gaussian likelihoods, is given by

N∑
n=1

EN (µn,σ2
n)

[log p(yn|f(xn))] = − 1

2σ2
obs

N∑
n=1

σ2
n + c3, (44)

where σ2
obs is the likelihood variance and c3 is a constant that does not depend on σ2

n. Therefore, as
mentioned in the main text, optimising T until the stopping criterion

N∑
n=1

Gn ≤ 2σ2
obsϵ (45)

is reached ensures that the slack in the ELBO of the R-SVGP parameterisation introduced by upper
bounding the predictive variance σ

2(L)
n of the L-SVGP parameterisation is at most ϵ.

The careful reader may have noticed that the stopping criterion derived above resembles a commonly
used approach for iterative GP approximations [11, 7]. In particular, iterative frameworks for solving
GPs approximate key quantities of exact GPs, such as their predictive mean

µ∗ = k∗uK
−1
ff y, (46)

by using iterative solvers (e.g. conjugate gradients) for the linear system Kffx = y, until a stopping
criterion is reached. A common criterion [11] monitors the slack due to the approximation in the
quadratic term of the true GP log marginal likelihood, i.e.

−1

2
y⊤K−1

ff y, (47)
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by employing upper and lower bounds on Eq. (47), which resemble the bounds Un and Ln, with kun

replaced by y.

C Experimental details

C.1 Datasets

For the experiments presented in Section 4 and Appendix D, we use datasets from three sources:

• UCI repository1: the ELEVATORS (N = 16599, D = 18, B = 1000), KEGGDIRECTED
(N = 48827, D = 20, B = 1000), KEGGUNDIRECTED (N = 63608, D = 27, B = 1000)
and KIN40K (N = 40000, D = 8, B = 1000) regression datasets;

• OpenML2.: the BANANA (N = 5300, D = 2, B = 64) classification dataset;

• Other: the SNELSON (N = 200, D = 1, B = 10) regression dataset [19].

For the SNELSON and BANANA datasets we only consider the training fit on the whole dataset,
whereas for the UCI datasets we perform a 90/10 train/test split.

C.2 Model setup

For all the bounds and throughout all the experiments:

• We use the ARD squared exponential kernel initialised using the GPFlow defaults;

• We initialise the inducing locations Z drawing uniformly without replacement from the
training observations;

• We initialise the Gaussian (regression) or Bernoulli (classification) likelihood using the
GPFlow defaults.

By default, GPFlow applies whitening to the M-SVGP parameterisation. In particular, the inducing
mean and variance are reparameterised, respectively, as m = Luum̃ and S = LuuS̃L

⊤
uu, where Luu

is the Cholesky factor of Kuu. In experiments not reported here, we found M-SVGP with whitening
to generally exhibit better optimisation performance than standard M-SVGP on the datasets used
in this work. For this reason, the results for M-SVGP in Section 4 and in Appendix D refer to the
whitened version.

Furthermore, depending on the bound, we initialise the inducing parameters as follows:

• M-SVGP: m̃ and S̃ are initialised using the GPFlow defaults;

• L-SVGP: we initialise m̃ = 0 and S̃ = σ2
S̃
I with σ2

S̃
= 1−4;

• R-SVGP: we initialise m̃ and S̃ as with L-SVGP, and T = σ2
TI with σ2

T = 1−6.

C.3 Training

The mini-batch sizes B are listed in Appendix C.1, while the number of training iterations is either
clear from the figures or mentioned in each specific experimental section in Appendix D, when
needed. The learning rate of Adam is kept fixed during training to 1−2 for the BANANA dataset, and
to 5−3 everywhere else. Lastly, the schedule of the NG updates for T is as follows:

• UCI datasets with Z trainable: the initial step size of 1−2 is doubled after every NG update
until the stopping criterion G falls below the threshold values of 1.0 for ELEVATORS and
KIN40K, and 1−3 for KEGGDIRECTED and KEGGUNDIRECTED;

• Everywhere else: a single NG update with step size 1.0 is used.

1https://archive.ics.uci.edu/datasets
2https://www.openml.org/search?type=data
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C.4 Implementation

We implement our methods using GPFlow [13], which is based on Tensorflow [1]. All the experiments
were run on a single NVIDIA V100 GPU with 16GB of memory.

D Additional results

D.1 Quality of learned T

We aim to evaluate the effectiveness of Adam and NG in keeping the matrix T close to its optimal
value throughout training. To do so, we consider the KIN40K dataset with M = 1000 and initialise T
to its optimal value K̃−1. Then, we train the R-SVGP and R-SVGP-N bounds for 100000 iterations.
Fig. 2 shows the quality of the T matrix learned by the two methods during training, as measured by
KL[N (0,LL⊤),N (0,A−1)], which is the NG objective for T. As it can be clearly seen, the NG
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Figure 2: Quality of the T matrix learned during training by optimising the RSVGP bound with NG
(left) and with Adam (right).

updates are able to consistently keep T close to its optimal value, whereas this is not the case for
Adam. In particular, the R-SVGP bound exhibits the same erratic behaviour observed by van der Wilk
et al. [22], where the quality of T repeatedly improves until a point where it suddenly gets worse,
hampering effective training.

D.2 UCI datasets with fixed inducing locations

We evaluate the ability of our method to optimise the R-SVGP bound beyond toy datasets by testing it
on four larger UCI regression datasets. In particular, we use each of the bounds discussed in Section 4
to train a sparse variational GP model with fixed inducing locations Z for 20000 iterations following
the specifics described in Appendix C.

Fig. 3 shows the training loss and predictive metrics (RMSE and NLPD) achieved by the models
at the end of training for four choices of the number of inducing points M ranging from 1000 and
4000. As it can be seen, each of the R-SVGP bounds trained with NG (RSVGP-N and RSVGP-NP)
consistently matches the performance of the corresponding L-SVGP bound (LSVGP and LSVGP-P,
respectively). In particular, the R-SVGP-NP bound achieves competitive performance compared to
the standard M-SVGP parameterisation.

As reported by van der Wilk et al. [22], we find that the R-SVGP bounds trained only with Adam (i.e.
R-SVGP and R-SVGP-P) exhibit erratic performance, and we report their results separately in Fig. 4.

D.3 UCI datasets with trained inducing locations

We repeat the experiments in Appendix D.2, while also training the inducing locations Z as part of
the Adam step. In this case, the optimisation of T in the inverse-free bounds is more challenging
because, when Z moves, we expect the optimal value of T, K̃−1 = (Kuu + S̃)−1, to change more
between iterations compared to when Z is fixed. For this reason, for R-SVGP-N and R-SVGP-NP, we
perform multiple NG updates at each iteration according to the schedule described in Appendix C.3.

Fig. 5 shows the training loss and predictive metrics (RMSE and NLPD) achieved by the models
at the end of training for four choices of the number of inducing points M ranging from 1000 and
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Figure 3: Final loss (negative ELBO) and predictive metrics (RMSE and NLPD) on four UCI datasets
for different choices of M with fixed Z. The legend keys are as in Fig. 1.

4000. In this case, training Z introduces a bit more variance between runs compared to the case
where Z is fixed. We believe that using a more refined scheduling for the step-size of the NG updates,
such as commonly used log-linear scheduling [18], may help to reduce it. In any case, the main
takeaway remains the same: the R-SVGP-NP bound achieves competitive performance compared to
the standard M-SVGP parameterisation even when Z is trained.

As before, the results for the inverse-free bounds trained only with Adam (R-SVGP and R-SVGP-P)
are unstable, and we report them separately in Fig. 6.
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Figure 4: Same content as in Fig. 3, with the addition of the RSVGP bounds trained solely with
Adam, both with (R-SVGP-P) and without (R-SVGP) inducing mean preconditioning.
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for different choices of M with trainable Z. The legend keys are as in Fig. 1.
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