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ABSTRACT

Conditional diffusion models have exhibited superior performance in high-fidelity
text-guided visual generation and editing. Nevertheless, prevailing text-guided vi-
sual diffusion models primarily focus on incorporating text-visual relationships
exclusively into the reverse process, often disregarding their relevance in the for-
ward process. This inconsistency between forward and reverse processes may
limit the precise conveyance of textual semantics in visual synthesis results. To
address this issue, we propose a novel and general contextualized diffusion model
(CONTEXTDIFF) by incorporating the cross-modal context encompassing interac-
tions and alignments between text condition and visual sample into forward and
reverse processes. We propagate this context to all timesteps in the two processes
to adapt their trajectories, thereby facilitating cross-modal conditional modeling.
We generalize our contextualized diffusion to both DDPMs and DDIMs with the-
oretical derivations, and demonstrate the effectiveness of our model in evaluations
with two challenging tasks: text-to-image generation, and text-to-video editing. In
each task, our CONTEXTDIFF achieves new state-of-the-art performance, signif-
icantly enhancing the semantic alignment between text condition and generated
samples, as evidenced by quantitative and qualitative evaluations. Our code is
available at https://github.com/YangLing0818/ContextDiff

1 INTRODUCTION

Diffusion models (Yang et al., 2023b) have made remarkable progress in visual generation and
editing. They are first introduced by Sohl-Dickstein et al. (2015) and then improved by Song &
Ermon (2019) and Ho et al. (2020), and can now generate samples with unprecedented quality and
diversity (Rombach et al., 2022; Yang et al., 2023a; Podell et al., 2023; Yang et al., 2024a). As
a powerful representation space for multi-modal data, CLIP latent space (Radford et al., 2021) is
widely used by diffusion models to semantically modify images/videos by moving in the direction
of any encoded text condition for controllable text-guided visual synthesis (Yang et al., 2024b; Zhang
et al., 2024; Ramesh et al., 2022; Saharia et al., 2022b; Wu et al., 2022; Khachatryan et al., 2023).

Generally, text-guided visual diffusion models gradually disrupt visual input by adding noise
through a fixed forward process, and learn its reverse process to generate samples from noise in
a denoising way by incorporating clip text embedding. For example, text-to-image diffusion models
usually estimate the similarity between text and noisy data to guide pretrained unconditional DDPMs
(Dhariwal & Nichol, 2021; Nichol et al., 2022a), or directly train a conditional DDPM from scratch
by incorporating text into the function approximator of the reverse process (Rombach et al., 2022;
Ramesh et al., 2022). Text-to-video diffusion models mainly build upon pretrained DDPMs, and ex-
tend them with designed temporal modules (e.g., spatio-temporal attention) and DDIM Song et al.
(2020a) inversion for both temporal and structural consistency (Wu et al., 2022; Qi et al., 2023).
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(a) Conventional forward and reverse diffusion processes  (b) Contextualized forward and reverse diffusion processes

Figure 1: A simplified illustration of text-guided visual diffusion models with (a) conventional for-
ward and reverse diffusion processes, (b) our contextualized forward and reverse diffusion processes.
x̃0 denotes the estimation of visual sample by the denoising network at each timestep.

Despite all this progress, there are common limitations in the majority of existing text-guided vi-
sual diffusion models. They typically employ an unconditional forward process but rely on a text-
conditional reverse process for denoising and sample generation. This inconsistency in the uti-
lization of text condition between forward and reverse processes would constrain the potential of
conditional diffusion models. Furthermore, they usually neglect the cross-modal context, which
encompasses the interaction and alignment between textual and visual modalities in the diffusion
process, which may limit the precise expression of textual semantics in visual synthesis results.

To address these limitations, we propose a novel and general cross-modal contextualized diffusion
model (CONTEXTDIFF) that harnesses cross-modal context to facilitate the learning capacity of
cross-modal diffusion models. As illustrated in Figure 1, we compare our contextualized diffusion
models with conventional text-guided diffusion models. We incorporate the cross-modal interactions
between text condition and image/video sample into the forward process, serving as a context-aware
adapter to optimize diffusion trajectories. Furthermore, to facilitate the conditional modeling in the
reverse process and align it with the adapted forward process, we also use the context-aware adapter
to adapt the sampling trajectories. In contrast to traditional textual guidance employed for visual
sampling process (Rombach et al., 2022; Saharia et al., 2022b), our CONTEXTDIFF offers a dis-
tinct approach by providing enhanced and contextually informed guidance for visual sampling. We
generalize our contextualized diffusion to both DDPMs and DDIMs for benefiting both cross-modal
generation and editing tasks, and provide detailed theoretical derivations. We demonstrate the effec-
tiveness of our CONTEXTDIFF in two challenging text-guided visual synthesis tasks: text-to-video
generation and text-to-video editing. Empirical results reveal that our contextualized diffusion mod-
els can consistently improve the semantic alignment between text conditions and synthesis results
over existing diffusion models in both tasks.

To summarize, we have made the following contributions: (i) To the best of our knowledge, We for
the first time propose CONTEXTDIFF to consider cross-modal interactions as context-aware trajec-
tory adapter to contextualize both forward and sampling processes in text-guided visual diffusion
models. (ii) We generalize our contextualized diffusion to DDPMs and DDIMs with thereotical
derivations for benefiting both cross-modal visual generation and editing tasks. (iii) Our CON-
TEXTDIFF achieves new state-of-the-art performance on text-to-image generation and text-to-video
editing tasks, consistently demonstrating the superiority of our CONTEXTDIFF over existing diffu-
sion models with both quantitative and qualitative comparisons.

2 RELATED WORK

Text-Guided Visual Diffusion Models Text-to-image diffusion models (Yang et al., 2023a; Podell
et al., 2023) mainly incorporate the text semantics into the image sampling process (Nichol et al.,
2022a) for cross-modal comprehension. Latent Diffusion Models (LDMs) (Rombach et al., 2022)
apply diffusion models on the latent space of powerful pretrained autoencoders for high-resolution
synthesis. RPG (Yang et al., 2024b) proposes a LLM-grounded prompt decomposition and utilizes
the multimodal chain-of-thought reasoning ability of MLLMs to enable complex/compositional im-
age generation. Regarding text-to-video diffusion models, recent methods mainly leverage the pre-
trained text-to-image diffusion models in zero-shot (Qi et al., 2023; Wang et al., 2023b) and one-shot
(Wu et al., 2022; Liu et al., 2023) methodologies for text-to-video editing. For example, Tune-A-
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Video (Wu et al., 2022) employs DDIM (Song et al., 2020a) inversion to provide structural guidance
for sampling, and proposes efficient attention tuning for improving temporal consistency. FateZero
(Qi et al., 2023) fuses the attention maps in the inversion process and generation process to preserve
the motion and structure consistency during editing. In this work, we for the first time improve both
text-to-image and text-to-video diffusion models with a general context-aware trajectory adapter.

Diffusion Trajectory Optimization Our work focuses on optimizing the diffusion trajectories that
denotes the distribution of the entire diffusion process. Some methods modify the forward process
with a carefully-designed transition kernel or a new data-dependent initialization distribution (Liu
et al., 2022; Dockhorn et al., 2021; Lee et al., 2021; Karras et al., 2022). For example, Rectified Flow
(Liu et al., 2022) learns a straight path connecting the data distribution and prior distribution. Grad-
TTS (Popov et al., 2021) and PriorGrad (Lee et al., 2021) introduce conditional forward process
with data-dependent priors for audio diffusion models. Other methods mainly parameterize the
forward process with additional neural networks (Zhang & Chen, 2021; Kim et al., 2022; Kingma
et al., 2021). VDM (Kingma et al., 2021) parameterizes the noise schedule with a monotonic neural
network, which is jointly trained with the denoising network. However, these methods only utilize
unimodal information in forward process (Yang et al., 2024a), and thus are inadequate for handling
complex multimodal synthesis tasks. In contrast, our CONTEXTDIFF for the first time incorporates
cross-modal context into the diffusion process for improving text-guided visual synthesis, which is
more informative and contextual guidance compared to text guidance.

3 PRELIMINARIES

Denoising Diffusion Probabilistic Models Diffusion models (Ho et al., 2020; Song et al., 2020b)
consider an unconditional forward process that gradually disturb the data distribution q(x0) into
a tractable prior N (0, I) with a gaussian kernel defined by {β1, β2, . . . , βT }: q(xt|xt−1) =

N (
√
(1− βt)xt−1, βtI), which admits a close form of conditional distribution of xt given x0:

q(xt|x0) = N (
√
ᾱtx0, (1 − ᾱt)I), where ᾱt =

∏t
i=1(1 − βi). Then a parameterized Markov

chain {pθ(xt−1|xt)}Tt=1 is trained match the distribution of the reversal of the forward process. The
training objective is a variational bound of the negative log likelihood of the data distribution q(x0):

L = Eq[log
q(x1:T |x0, c)

pθ(x0:T |c)
] ≥ Eq − log pθ(x0). (1)

q(xt−1|xt,x0) admits a closed form gaussian distribution with the mean determined by x0 and xt,
then pθ(xt−1|xt) can be parameterized to gaussian kernel which mean is predict by xt.

Denoising Diffusion Implicit Models DDIMs generalize the forward process of DDPMs to non-
Markovian process with an equivalent objective for training. Deterministic DDIM sampling (Song
et al., 2020a) is one of ODE-based sampling methods (Lu et al., 2022; Song et al., 2020b) to generate
samples starting from xT ∼ N (0, I) via the following iteration rule:

xt−1 =
√
αt−1

xt −
√
1− αtϵθ(xt, t)√

αt
+

√
1− αt−1ϵθ(xt, t). (2)

DDIM inversion (Song et al., 2020a) can convert a real image x0 to related inversion noise by
reversing the above process, which can be reconstructed by DDIM sampling. It is usually adopted
in editing task (Hertz et al., 2023; Mokady et al., 2022; Tumanyan et al., 2022; Qi et al., 2023).

4 METHOD

4.1 CROSS-MODAL CONTEXTUALIZED DIFFUSION

We aim to incorporate cross-modal context of each text-image(video) pair (c,x0) into the diffusion
process as in Figure 2. We use clip encoders to extract the embeddings of each pair, and adopt an
relational network (e.g., cross attention) to model the interactions and alignments between the two
modalities as cross-modal context. This context is then propagated to all timesteps of the diffusion
process as a bias term (we highlight the critical parts of our CONTEXTDIFF in brown):

qϕ(xt|x0, c) = N (xt,
√
ᾱtx0 + ktrϕ(x0, c, t), (1− ᾱt)I), (3)
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Figure 2: Illustration of our CONTEXTDIFF.

where scalar kt control the magnitude of the bias term, and we set the kt to
√
ᾱt ·(1−

√
ᾱt). rϕ(·) is

the relational network with trainable parameters ϕ, it takes the visual sample x0 and text condition
c as inputs and produces the bias with the same dimension as x0.

Concretely, the forward process is defined as qϕ(x1,x2, ...,xT |x0, c) =
∏T

t=1 qϕ(xt|xt−1,x0, c).
Given cross-modal context rϕ(x0, c, t), the forward transition kernel depends on xt−1,x0, and c :

qϕ(xt|xt−1,x0, c) = N (
√
αtxt−1 + ktrϕ(x0, c, t)−

√
αtkt−1rϕ(x0, c, t− 1), βtI), (4)

where βt = 1 − αt. This transition kernel gives marginal distribution as Equation (3) (proof in
Appendix C.1). At each timestep t, we add a noise that explicitly biased by the cross-modal context.
With Equation (3) and Equation (4), we can derive the posterior distribution of the forward process
for t > 1 (proof in Appendix C.1):

qϕ(xt−1|xt,x0, c) = N (

√
ᾱt−1βt

1− ᾱt
x0+

√
αt(1− ᾱt−1)

1− ᾱt
(xt−bt(x0, c))+bt−1(x0, c),

(1− ᾱt−1)βt

1− ᾱt
I),

(5)

where bt(x0, c) is an abbreviation form of ktrϕ(x0, c, t), and we use it for simplicity. With Equa-
tion (5), we can simplify the training objective which will be described latter. In this way, we con-
textualize the entire diffusion process with a context-aware trajectory adapter. In CONTEXTDIFF,
we also utilize our context-aware context to adapt the reverse process of diffusion models, which en-
courages to align with the adapted forward process, and facilitates the precise expression of textual
semantics in visual sampling process.

4.2 ADAPTING REVERSE PROCESS

We aim to learn a contextualized reverse process {pθ(xt−1|xt, c)}Tt=1 , which minimizes a varia-
tional upper bound of the negative log likelihood, as in Equation (1). pθ(xt−1|xt, c) is gaussian
kernel with learnable mean and pre-defined variance. Allowing the forward transition kernel to de-
pend on x0 and c, the objective function Lθ,ϕ of our CONTEXTDIFF can be formulated as (proof in
Appendix C.2):

Lθ,ϕ = Eqϕ(x1:T |x0,c)

[
DKL(qϕ(xT |x0, c)∥p(xT |c))− log pθ(x0|x1, c)

+
∑
t>1

DKL(qϕ(xt−1|xt,x0, c)∥pθ(xt−1|xt, c))

]
,

(6)

where θ denotes the learnable parameters of denoising network in reverse process. Equation (6) uses
KL divergence to directly compare pθ(xt−1|xt, c) against the adapted forward process posteriors,
which are tractable when conditioned on x0 and c. If rϕ is identically zero, the objective can be
viewed as the original DDPMs. Thus CONTEXTDIFF is theoretically capable of achieving better
likelihood compared to original DDPMs.

Kindly note that optimizing Lt = EqϕDKL(qϕ(xt−1|xt,x0, c)∥pθ(xt−1|xt, c)) is equivalent to
matching the means for qϕ(xt−1|xt,x0, c) and pθ(xt−1|xt, c), as they are gaussian distributions
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with the same variance. According to Equation (5), directly matching the means requires to param-
eterize a neural network µθ that not only predicting x0, but also matching the complex cross-modal
context information in the forward process, i.e.,

Lθ,ϕ,t =
∣∣∣∣µθ(xt, c, t)−

√
ᾱt−1βt

1− ᾱt
x0 −

√
αt(1− ᾱt−1)

1− ᾱt
(xt − bt(x0, c))− bt−1(x0, c)

∣∣∣∣2
2

(7)

Simplified Training Objective Directly optimizing this objective is inefficient in practice because
it needs to compute the bias twice at each timestep. To simplify the training process, we employ
a denoising network fθ(xt, c, t) to directly predict x0 from xt at each time step t, and insert the
predicted x̂0 in Equation (5), i.e., pθ,ϕ(xt−1|xt, c) = qϕ(xt−1|xt, x̂0, c). Under mild condition,
we can derive that the reconstruction objective E||fθ − x0||22 is an upper bound of Lt, and thus an
upper bound of negative log likehood (proof in Appendix C.2). Our simplified training objective is:

Lθ,ϕ =

T∑
t=1

λtEx0,xt ||fθ(xt,ϕ, c, t)− x0||22, (8)

where λt is a weighting scalar. We set kT = 0 and there is no learnable parameters in
DKL(q(xT |x0, c)∥p(xT |c)), which can be ignored. To adapt the reverse process at each timestep,
we can efficiently sample a noisy sample xt according to Equation (3) using re-parameterization
trick, which has included parameterized cross-modal context ktrϕ(x0, c, t), and then passes xt into
the denoising network. The gradients will be propagated to rϕ from the denoising network, and our
context-aware adapter and denoising network are jointly optimized in training.

Context-Aware Sampling During sampling, we use the denoising network to predict x̂0, and the
predicted context-aware adaptation rϕ(x̂0, c, t) is then used to contextualize the sampling trajectory.
Hence the gaussian kernel pθ(xt−1|xt, c) has mean:

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
αt(1− ᾱt−1)

1− ᾱt
(xt − bt(x̂0, c)) + bt−1(x̂0, c), (9)

where bt(x̂0, c) = ktrϕ(x̂0, c, t), and variance (1−ᾱt−1)βt

1−ᾱt
I . In this way, our CONTEXTDIFF can

effectively adapt sampling process with cross-modal context, which is more informative and con-
textual guided compared to traditional text guidance (Rombach et al., 2022; Saharia et al., 2022b).
Next, we will introduce how to generalize our contextualized diffusion to DDIMs for fast sampling.

4.3 GENERALIZING CONTEXTUALIZED DIFFUSION TO DDIMS

DDIMs (Song et al., 2020a) accelerate the reverse process of pretrained DDPMs, which are also
faced with the inconsistency problem that exists in DDPMs. Therefore, we address this problem by
generalizing our contextualized diffusion to DDIMs. Specifically, we define a posterior distribution
qϕ(xt−1|xt,x0, c) for each timestep, thus the forward diffusion process has the desired distribution:

qϕ(xt|x0, c) = N (xt,
√
ᾱtx0 + bt(x0, c), (1− ᾱt)I), (10)

If the posterior distribution is defined as:

q(xt−1|xt,x0, c) = N (
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ∗
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I), (11)

then the mean of qϕ(xt−1|x0, c) is (proof in Appendix C.1):

√
ᾱt−1x0 + bt(x0, c) ∗

√
1− ᾱt−1 − σ2

t√
1− ᾱt

(12)

To match the forward diffusion, we need to replace the adaptation ktrϕ(x0, c, t)∗
√

1−ᾱt−1−σ2
t√

1−ᾱt
with

kt−1rϕ(x0, c, t− 1). Given σ2
t = 0, the sampling process becomes deterministic:

x̃t−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 ∗

xt −
√
ᾱtx̂0√

1− ᾱt

xt−1 = x̃t−1 − bt(x̂0, c) ∗
√
1− ᾱt−1√
1− ᾱt

+ bt−1(x̂0, c).

(13)

In this way, DDIMs can better convey textual semantics in generated samples when accelerating the
sampling of pretrained DDPMs, which will be evaluated in later text-to-video editing task.
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“	A	waterfall	is	in	a	lush	
rainforest	teeming	with	
vibrant	vegetation.”

“	A	scientist	in	a	
laboratory,	surrounded	
by	equipment	and	notes.”

“	A	woman is	dancing
with	a	white background	
wall	featuring	graffiti	of	a	
lion.”

“	A	cozy	fireplace	with	
crackling	flames,	a	
hearth	rug,	and	a	
stack	of	logs	nearby.”

“	An	Italian	espresso	with	
latte	art	in	the	shape	of	a	
heart,	accompanied	by	a	
saucer	and	a	spoon.”

Figure 3: Qualitative comparison in text-to-image generation. Our model can better express the
semantics of the texts marked in blue. We use red boxes to highlight critical fine-grained parts where
LDM and Imagen fail to align with texts.

5 EXPERIMENTS

We conduct experiments on two main text-guided visual synthesis tasks: text-to-image generation
(Sec. 5.1) and text-to-video editing (Sec. 5.2). We also extend our CONTEXTDIFF to other condi-
tional generation scenarios: class-to-image and layout-to-image (in Appendix B), to demonstrate
the generalization ability. For better understanding and explanation of our proposed contextualized
diffusion, we further provide some qualitative analysis on FID-CLIP trade-off (Sec. 5.3), model
convergence (Sec. 5.3) and heatmap visualization (Appendix A).

5.1 TEXT-TO-IMAGE GENERATION

Datasets and Metrics. Following Rombach et al. (2022); Saharia et al. (2022b), we use public
LAION-400M (Schuhmann et al., 2021), a dataset with CLIP-filtered 400 million image-text pairs
for training CONTEXTDIFF. We conduct evaluations with FID and CLIP score (Hessel et al., 2021;
Radford et al., 2021), which aim to assess the generation quality and resulting image-text alignment.

Implementation Details. For our context-aware adapter, we use text CLIP and image CLIP (Rad-
ford et al., 2021) (ViT-B/32) to encode text and image inputs, and adopt multi-head cross attention
(Vaswani et al., 2017) to model cross-modal interactions with 8 parallel attention layers. For the
diffusion backbone, we mainly follow Imagen (Saharia et al., 2022b) using a 64× 64 base diffusion
model (Nichol & Dhariwal, 2021; Saharia et al., 2022a) and a super-resolution diffusion models
to upsample a 64 × 64 generated image into a 256 × 256 image. For 64 × 64 → 256 × 256
super-resolution, we use the efficient U-Net model in Imagen for improving memory efficiency. We
condition on the entire sequence of text embeddings (Raffel et al., 2020) by adding cross atten-
tion (Ramesh et al., 2022) over the text embeddings at multiple resolutions. More details about the
hyper-parameters can be found in Appendix E.

Quantitative and Qualitative Results Following previous works (Rombach et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022b), we make quantitative evaluations CONTEXTDIFF on the MS-
COCO dataset using zero-shot FID score, which measures the quality and diversity of generated
images. Similar to Rombach et al. (2022); Ramesh et al. (2022); Saharia et al. (2022b), 30,000
images are randomly selected from the validation set for evaluation. As demonstrated in Tab. 1, our
CONTEXTDIFF achieves a new state-of-the-art performance on text-to-image generation task with
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Table 1: Quantitative results in text-to-image generation with FID score on MS-COCO dataset
for 256 × 256 image resolution.

Approach Model Type FID-30K Zero-shot
FID-30K

DF-GAN (Tao et al., 2022) GAN 21.42 -
DM-GAN + CL (Ye et al., 2021) GAN 20.79 -
LAFITE (Zhou et al., 2022) GAN 8.12 -
Make-A-Scene (Gafni et al., 2022) Autoregressive 7.55 -

DALL-E (Ramesh et al., 2021) Autoregressive - 17.89
Stable Diffusion (Rombach et al., 2022) Continuous Diffusion - 12.63
GLIDE (Nichol et al., 2022b) Continuous Diffusion - 12.24
DALL-E 2 (Ramesh et al., 2022) Continuous Diffusion - 10.39
Improved VQ-Diffusion (Tang et al., 2022) Discrete Diffusion - 8.44
Simple Diffusion (Hoogeboom et al., 2023) Continuous Diffusion - 8.32
Imagen (Saharia et al., 2022b) Continuous Diffusion - 7.27
Parti (Yu et al., 2022) Autoregressive - 7.23
Muse (Chang et al., 2023) Non-Autoregressive - 7.88
eDiff-I (Balaji et al., 2022) Continuous Diffusion - 6.95
ERNIE-ViLG 2.0 (Feng et al., 2023) Continuous Diffusion - 6.75
RAPHAEL (Xue et al., 2023) Continuous Diffusion - 6.61

CONTEXTDIFF Continuous Diffusion - 6.48

Table 2: Quantitative results in text-to-video editing. Text. and Temp. denote CLIP-text and
CLIP-temp, respectively. User study shows the preference rate of CONTEXTDIFF against baselines
via human evaluation.

Metric User Study

Method Text.↑ Temp.↑ Text. (%)↑ Temp.(%)↑
Tune-A-Video (Wu et al., 2022) 0.260 0.934 91 84
FateZero (Qi et al., 2023) 0.252 0.954 84 75
ControlVideo (Zhao et al., 2023) 0.258 0.961 81 73

CONTEXTDIFF 0.274 0.970 - -

6.48 zero-shot FID score, outperforming previous dominant diffusion models such as Stable Diffu-
sion (Rombach et al., 2022), DALL-E 2 (Ramesh et al., 2022), and Imagen (Saharia et al., 2022b).
We also make qualitative comparisons in Figure 3, and find that our CONTEXTDIFF can achieve
more precise semantic alignment between text prompt and generated image than previous methods,
demonstrating the effectiveness of incorporating cross-modal context into diffusion models. We
visualize more qualitative results in Appendix F.1.

5.2 TEXT-TO-VIDEO EDITING

Datasets and Metrics To demonstrate the strength of our CONTEXTDIFF for text-to-video edting,
we use 42 representative videos taken from DAVIS dataset (Pont-Tuset et al., 2017) and other in-the-
wild videos following previous works (Wu et al., 2022; Qi et al., 2023; Bar-Tal et al., 2022; Esser
et al., 2023). These videos cover a range of categories including animals, vehicles, and humans.
To obtain video footage, we use BLIP-2 (Li et al., 2023) for automated captions. We also use their
designed prompts for each video, including object editing, background changes, and style transfers.
To measure textual alignment, we compute average CLIP score between all frames of output videos
and corresponding edited prompts. For temporal consistency, we compute CLIP (Radford et al.,
2021) image embeddings on all frames of output videos and report the average cosine similarity
between all pairs of video frames. Moreover, We perform user study to quantify text alignment,
and temporal consistency by pairwise comparisons between the baselines and our CONTEXTDIFF.
A total of 10 subjects participated in this user study. Taking text alignment as an example, given a
source video, the participants are instructed to select which edited video is more aligned with the
text prompt in the pairwise comparisons between the baselines and CONTEXTDIFF.

Implementation Details In order to reproduce the baselines of Tune-A-Video (Wu et al., 2022),
FateZero (Qi et al., 2023), and ControlVideo (Zhao et al., 2023), we use their official repositories
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A red rose.

Figure 4: Qualitative comparison in text-to-video editing, edited text prompt is denoted in color.
Our CONTEXTDIFF achieves best semantic alignment, image fidelity, and editing quality.

for one-shot video tuning. Following FateZero, we use the trained Stable Diffusion v1.4 (Rom-
bach et al., 2022) as the base text-to-image diffusion model, and fuse the attention maps in DDIM
inversion (Song et al., 2020a) and sampling processes for retaining both structural and motion in-
formation. We fuse the attentions in the interval of t ∈ [0.5 × T, T ] of the DDIM step with total
timestep T = 20. For context-aware adapter, we use the same encoders and cross attention as in text-
to-image generation. We additionally incorporate spatio-temporal attention, which includes spatial
self-attention and temporal causal attention, into our context-aware adapter for capturing spatio-
temporal consistency. For each source video, we tune our adapter using source text prompt for
learning both context-aware structural and motion information, and use the learned adapter to con-
duct video editing with edited text prompt. Details about the hyper-parameters are in Appendix E.

Quantitative and Qualitative Results We report our quantitative and qualitative results in Tab. 2
and Figure 4. Extensive results demonstrate that CONTEXTDIFF substantially outperforms all these
baselines in both textual alignment and temporal consistency. Notably, in the textual alignment in
user study, we outperform the baseline by a significant margin (over 80%), demonstrating the su-
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[Source Video] A jeep car is moving on the road.

[Tune-A-Video] A jeep car is moving on the snow.

[Tuna-A-Video+Context-Aware Adapter] 
A jeep car is moving on the snow.

[Source Video] A woman is running.

[Tune-A-Video] An astronaut is running on the moon.

[Tuna-A-Video+Context-Aware Adapter] 
An astronaut is running on the moon.

Figure 5: Generalizing our context-aware adapter to Tune-A-Video (Wu et al., 2022).

perior cross-modal understanding of our contextualized diffusion. In qualitative comparisons, we
observe that CONTEXTDIFF not only achieves better semantic alignment, but also preserves the
structure information in source video. Besides, the context-aware adapter in our contextualized dif-
fusion can be generalized to previous methods, which substantially improves the generation quality
as in Figure 5. More results demonstrating our generalization ability can be found in Appendix F.2.

5.3 ABLATION STUDY

Guidance Scale vs. FID Given the significance of classifier-free guidance weight in controlling
image quality and text alignment, in Figure 6, we conduct ablation study on the trade-off between
CLIP and FID scores across a range of guidance weights, specifically 1.5, 3.0, 4.5, 6.0, 7.5, and
9.0. The results indicate that our context-aware adapter contribute effectively. At the same guidance
weight, our context-aware adapter considerably and consistently reduces the FID, resulting in a
significant improvement in image quality.

Training Convergence We evaluate CONTEXTDIFF regarding our contribution to the model con-
vergence. The comparison in Figure 7 demonstrates that our context-aware adapter can significantly
accelerate the training convergence and improve the semantic alignment between text and generated
video. This observation also reveals the generalization ability of our contextualized diffusion.

2 4 6 8
Guidance Scale

16

18

20

22

24

26

 F
ID

-5
k

LDM 
LDM with Context-Aware Adapter

Figure 6: The trade-off between FID
and CLIP scores for LDM and LDM
with our context-aware adapter.

Figure 7: The comparison of model conver-
gence between Tune-A-Video and Tune-A-
Video + our context-aware adapter.

6 CONCLUSION

In this paper, we propose a novel and general conditional diffusion model (CONTEXTDIFF) by
propagating cross-modal context to all timesteps in both diffusion and reverse processes, and adapt
their trajectories for facilitating the model capacity of cross-modal synthesis. We generalize our
contextualized trajectory adapter to DDPMs and DDIMs with theoretical derivation, and consistently
achieve state-of-the-art performance in two challenging tasks: text-to-image generation, and text-
to-video editing. Extensive quantitative and qualitative results on the two tasks demonstrate the
effectiveness and superiority of our proposed cross-modal contextualized diffusion models.
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A VISUAL ANALYSIS ON CONTEXT AWARENESS OF OUR MODEL

We conduct visual analysis to investigate how our context-aware adapter works in text-guided vi-
sual synthesis. As illustrated in Figure 8 and Figure 9, we visualize the heatmaps of text-image
cross-attention module in the sampling process of each frame image. We find that our context-aware
adapter can enable the model to better focus on the fine-grained semantics in text prompt (Lei et al.,
2022; Wang et al., 2023a) and sufficiently convey them in final generation results. Because incorpo-
rating textual information into diffusion process of the image benefits the cross-modal understanding
for image diffusion models.

Heatmaps in Text-Image 
Cross-Attention

FateZero

FateZero with
Context-Aware Adapter

Source Video

Shape Awareness

Carnation 
Generation 

Fails

Carnation 
Generation 
Succeeds

A yellow sunflower blooms ——> A white carnation blooms

Source Prompt Edited Prompt

Real Carnation

Heatmaps in Text-Image 
Cross-Attention

Larger Value

Figure 8: Our context-aware adapter improves the shape awareness of diffusion models in text-
guided video editing.

Background Awareness

Heatmaps in Text-Image 
Cross-Attention

FateZero

FateZero with
Context-Aware Adapter

Source Video

Heatmaps in Text-Image 
Cross-Attention

A silver jeep driving down a 
curvy road in the countryside 
covered with snow

Source Prompt Edited Prompt
A silver jeep driving 
down a curvy road in 
the countryside

——>

Partially 
Covered 

with Snow

Completely
Covered 

with Snow

Larger Value

Figure 9: Our context-aware adapter can improve the background awareness of diffusion models in
text-guided video editing.
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B GENERALIZING TO CLASS AND LAYOUT CONDITIONAL GENERATION
TASKS

We generalize our context-aware adapter into class and layout conditional generation tasks. We re-
place the text encoder in original adapter with ResNet blocks for embedding classes or layouts, and
keep the original image encoder and cross-attention module for obtaining cross-modal context infor-
mation. We put both quantitative and qualitative results in Tabs. 3 and 4 and Figures 10 and 11. From
the results, we conclude that our context-aware adapter can benefit the conditional diffusion models
with different condition modalities and enable more realistic and precise generation consistent with
input conditions, demonstrating the satisfying generalization ability of our method.

Table 3: Performance comparison in class-to-image generation on ImageNet 256×256.

Method FID ↓ IS ↑ Precision ↑ Recall ↑
BigGAN (Brock et al., 2018) 6.95 203.63 0.87 0.28
ADM-G (Dhariwal & Nichol, 2021) 4.59 186.70 0.82 0.52
LDM (Rombach et al., 2022) 3.60 247.67 0.87 0.48
LDM+Context-Aware Adapter 2.97 273.04 0.89 0.55

Table 4: FID performance comparison in layout-to-image generation on MS-COCO 256×256.

Method FID↓
VQGAN+T (Jahn et al., 2021) 56.58
Frido (Fan et al., 2023) 37.14
LDM (Rombach et al., 2022) 40.91
LDM+Context-Aware Adapter 34.58

Egyptian Cat

Catamount

Ferret

Tup

LDM                                               LDM + Context-Aware Adapter

Class-to-image generation

Figure 10: Qualitative results in class-to-image generation on ImageNet 256×256. Our context-
aware adapter improves the generation quality of LDM.
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Figure 11: Qualitative results in layout-to-image generation on MS-COCO 256×256. Our context-
aware adapter improves both fidelity and precision of the generation results of LDM. We use red
boxes to highlight critical fine-grained parts where original LDM fails to align with conditional
layout. Our method substantially improves both quality and precision of the generation results.

C THEORETICAL DERIVATIONS

C.1 THE DISTRIBUTIONS IN THE FORWARD PROCESS

First, we derive the explicit expressions for q(xt|xt−1,x0, c) and q(xt−1|xt,x0, c), based on our
cross-modal contextualized diffusion defined by Equation (3).

lemma 1 For the forward process q(x1,x2, ...,xT |x0, c) =
∏T

t=1 q(xt|xt−1,x0, c), if the transi-
tion kernel q(xt|xt−1,x0, c) is defined as Equation (4), then the conditional distribution q(xt|x0, c)
has the desired distribution as Equation (3), i.e.,N (xt,

√
ᾱtx0 + ktrϕ(x0, c, t), (1− ᾱt)I).

Proof 1 We prove the lemma by induction. Suppose at time t, we have q(xt|xt−1,x0, c) and
q(xt−1|x0, c) admit the desired distributions as in Equations (3) and (4), respectively, then we
need to prove that q(xt|x0, c) = N (xt,

√
ᾱtx0 + ktrϕ(x0, c, t), (1 − ᾱt)I). We can re-write

he conditional distributions of xt given (xt−1,x0, c) and xt−1 given (x0, c) with the following
equations:

xt =
√
αtxt−1 + ktrϕ(x0, c, t)−

√
αtkt−1rϕ(x0, c, t− 1) +

√
βtϵ1, (14)

xt−1 =
√
ᾱt−1x0 + kt−1rϕ(x0, c, t− 1) +

√
1− ᾱt−1ϵ2, (15)

where ϵ1, ϵ2 are two independent standard gaussian random variables. Replacing xt−1 in Equa-
tion (14) with Equation (15), we have:

xt =
√
ᾱtx0 + ktrϕ(x0, c, t)

+
√
αtkt−1rϕ(x0, c, t− 1)−

√
αtkt−1rϕ(x0, c, t− 1)

+
√
βtϵ1 +

√
αt ∗ (1− ᾱt−1) ∗ ϵ2

=
√
ᾱtx0 + kt−1rϕ(x0, c, t− 1) +

√
βtϵ1 +

√
αt ∗ (1− ᾱt−1) ∗ ϵ2

(16)
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As a result, the distribution of xt given (x0, c) is a gaussian distribution with mean
√
ᾱtx0 +

ktrϕ(x0, c, t) and variance αt ∗ (1− ᾱt−1) + βt = 1− ᾱt, which admits the desired distribution.

Proposition 1 Suppose the distribution of forward process is defined by Equations (3) and (4), then
at each time t, the posterior distribution q(xt−1|xt,x0, c) is described by Equation (5)

Proof 2 By the Bayes rule, q(xt−1|xt,x0, c) = q(xt−1|x0,c)q(xt|xt−1,x0,c)
q(xt|x0,c)

. By Equations (3)
and (4), the numerator and denominator are both gaussian , then the posterior distribution is also
gaussian and we can proceed to calculate its mean and variance:

q(xt−1|xt,x0, c) =
N (xt−1,

√
ᾱt−1x0 + bt−1(x0, c), (1− ᾱt−1)I)

N (xt,
√
ᾱtx0 + bt(x0, c), (1− ᾱt)I)

∗ N (xt,
√
αtxt−1 + bt(x0, c)−

√
αtbt−1(x0, c), βtI)

, (17)

where bt(x0, c) is an abbreviation form of ktrϕ(x0, c, t). Dropping the constants which are unre-
lated to x0,xt,xt−1 and c, we have:

q(xt−1|xt,x0, c) ∝ exp

{
− (xt−1 −

√
ᾱt−1x0 − bt−1(x0, c))

2

2(1− ᾱt−1)
+

(xt −
√
ᾱtx0 − bt(x0, c))

2

2(1− ᾱt)

−
(xt −

√
αtxt−1 − bt(x0, c) +

√
αtbt−1(x0, c))

2

2βt

}
= exp

{
C(x0,xt, c)−

1

2
(

1

1− ᾱt−1
+

αt

βt
) ∗ x2

t−1 + xt−1∗

[
(
√
ᾱt−1x0 + bt−1(x0, c))

1− ᾱt−1
+
√
αt

(xt − bt(x0, c) +
√
αtbt−1(x0, c))

βt
]

}
= exp

{
C(x0,xt, c)−

1

2
(

1

1− ᾱt−1
+

αt

βt
) ∗ x2

t−1 + xt−1∗

[
(
√
ᾱt−1

1− ᾱt−1
x0 +

√
αt

βt
(xt − bt(x0, c)) + (

1

1− ᾱt−1
+

αt

βt
) ∗ bt−1(x0, c)]

}
,

(18)
where C(x0,xt, c) is a constant term with respect to xt−1. Note that ( 1

1−ᾱt−1
+ αt

βt
) =

1−ᾱt

(1−ᾱt−1)(1−αt)
, and with some algebraic derivation, we can show that the gaussian distribution

q(xt−1|xt,x0, c) has:

variance :
(1− ᾱt−1)(1− αt)

1− ᾱt
I

mean :

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
(xt − bt(x0, c)) + bt−1(x0, c)

(19)

Similarly, we can derive the distribution of DDIMs.

lemma 2 Suppose that at each time t, the posterior distribution is defined by a gaussin distribution
with

Mean :
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ∗
xt −

√
ᾱtx0√

1− ᾱt

− ktrϕ(x0, c, t) ∗
√
1− ᾱt−1 − σ2

t√
1− ᾱt

+ kt−1rϕ(x0, c, t− 1)

V ariance : σ2
t I,

(20)

then the marginal distribution qϕ(xt|x0, c) has the desired distribution as Equation (3)

Proof 3 We prove by induction. Suppose that at time t, posterior and marginal distributions admit
the desired distributions, then we need to prove that at time t−1, qϕ(xt−1|x0, c) also has the desired
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distribution. Rewrite the posterior and marginal distribution as the following:

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ∗
xt −

√
ᾱtx0√

1− ᾱt

− ktrϕ(x0, c, t) ∗
√

1− ᾱt−1 − σ2
t√

1− ᾱt
+ kt−1rϕ(x0, c, t− 1)) + σtϵ1

(21)

xt =
√
ᾱtx0 + ktrϕ(x0, c, t) +

√
1− ᾱtϵ2, (22)

where ϵ1, ϵ2 are standard gaussian noises. Plugging in xt, we have:

xt−1 =
√
ᾱt−1x0

+ ktrϕ(x0, c, t) ∗
√
1− ᾱt−1 − σ2

t√
1− ᾱt

− ktrϕ(x0, c, t) ∗
√
1− ᾱt−1 − σ2

t√
1− ᾱt

+ kt−1rϕ(x0, c, t− 1)) + σtϵ1 +
√
1− ᾱt−1 − σ2

t ϵ2

=
√
ᾱt−1x0 + kt−1rϕ(x0, c, t− 1)) + σtϵ1 +

√
1− ᾱt−1 − σ2

t ϵ2

(23)

Since the variance of σtϵ1 +
√
1− ᾱt−1 − σ2

t ϵ2 is (1− ᾱt−1)I , we have the desired distribution.

C.2 UPPER BOUND OF THE LIKELIHOOD

Here we show with our parameterization, the objective function Lθ,ϕ Equation (8) is a upper bound
of the negative log likelihood of the data distribution.

lemma 3 Based on the non-Markovian forward process q(x1,x2, ...,xT |x0, c) =∏T
t=1 q(xt|xt−1,x0, c) and the conditional reverse process pθ(x0,x1,x2, ...,xT |c) =

pθ(xT |c)
∏T

t=1 pθ(xt−1|xt, c), the objective function Equation (6) is an upper bound of the
negative log likelihood.

Proof 4

− log pθ(x0|c) ≤ − log pθ(x0|c) + Eq(x1:T |x0,c)

{
− log

pθ(x1:T |x0, c)

q(x1:T |x0, c)

}
= Eq(x1:T |x0,c)

{
− log

pθ(x0:T |c)
q(x1:T |x0, c)

}
= −Eq(x1:T |x0,c)

{
log

pθ(xT |c)
∏T

t=1 pθ(xt−1|xt, c)∏T
t=1 q(xt|xt−1,x0, c)

}

= −Eq(x1:T |x0,c)

{
log pθ(xT |c) +

∑
t>1

log
pθ(xt−1|xt, c)

q(xt|xt−1,x0, c)
+ log

pθ(x0|x1, c)

q(x1|x0, c)

}

= −Eq(x1:T |x0,c)

{
log pθ(xT |c) + log

pθ(x0|x1, c)

q(x1|x0, c)

+
∑
t>1

log
pθ(xt−1|xt, c)

q(xt−1|xt,x0, c)
∗ q(xt−1|x0, c)

q(xt|x0, c)

}

= −Eq(x1:T |x0,c)

{
log

pθ(xT |c)
q(xT |x0, c)

+ log pθ(x0|x1, c) + log
∑
t>1

pθ(xt−1|xt, c)

q(xt−1|xt,x0, c)

}
= DKL(qϕ(xT |x0, c)∥pθ(xT |c))− Eq(x1|x0,c) log pθ(x0|x1, c)

+
∑
t>1

Eq(xt|x0,c)DKL(qϕ(xt−1|xt,x0, c)∥pθ(xt−1|xt, c))

(24)
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lemma 4 Assuming the relational network rϕ(x0, c, t) is Lipschitz continuous, i.e., ∀t,∃a positive
real number Ct s.t. ∥rϕ(x0, c, t)− ∥rϕ(x

′

0, c, t)∥ ≤ Ct∥x0 − x
′

0∥, then ∥fθ(xt, c, t)− x0∥22 is an
upper bound of DKL(qϕ(xt−1|xt,x0, c)∥pθ(xt−1|xt, c)) after scaling.

Proof 5 From the main text, we know that

DKL(qϕ(xt−1|xt,x0, c)∥pθ(xt−1|xt, c)) ∝∣∣∣∣µθ(xt, c, t)−
√
ᾱt−1βt

1− ᾱt
x0 −

√
αt(1− ᾱt−1)

1− ᾱt
(xt − bt(x0, c))− bt−1(x0, c)

∣∣∣∣2
2
,

(25)

where µθ(xt, c, t) is the mean of qθ(xt−1|xt, c). Here we discard a constant with respect to
x0,xt, c. With our parameterization,

µθ(xt, c, t) =

√
ᾱt−1βt

1− ᾱt
x̂0 −

√
αt(1− ᾱt−1)

1− ᾱt
(xt − bt(x̂0, c))− bt−1(x̂0, c), (26)

where x̂0 = fθ(xt, c, t). Thus the objective function can be simplified as:

∣∣∣∣√ᾱt−1βt

1− ᾱt
(x̂0 − x0) +

√
αt(1− ᾱt−1)

1− ᾱt
(bt(x̂0, c)− bt(x0, c))− (bt−1(x̂0, c)− bt−1(x0, c))

∣∣∣∣
2

≤
√
ᾱt−1βt

1− ᾱt
∥x̂0 − x0∥2 +

√
αt(1− ᾱt−1)

1− ᾱt
∥bt(x̂0, c)− bt(x0, c)∥2 + ∥bt−1(x̂0, c)− bt−1(x0, c)∥2

≤
√
ᾱt−1βt

1− ᾱt
∥x̂0 − x0∥2 +

√
αt(1− ᾱt−1)

1− ᾱt
ktCt∥x̂0 − x0∥2 + kt−1Ct−1∥x̂0 − x0∥2

= λt∥fθ(xt, c, t)− x0∥2
(27)

Similar results can be proved for DDIMs by replacing the mean of posterior in DDPMs with DDIMs,
defined by Equation (20), in Equation (25).

Assume that the total diffusion step T is big enough and only a neglegible amount of noise
is added to the data at the first diffusion step, then the term DKL(qϕ(xT |x0, c)∥pθ(xT |c)) −
Eq(x1|x0,c) log pθ(x0|x1, c) is approximately zero. Now combining Lemmas 3 and 4, we have the
following proposition:

Proposition 2 The objective function defined in Equation (8) is an upper bound of the negative log
likelihood.

C.3 ACHIEVING BETTER LIKELIHOOD WITH CONTEXTDIFF

Next, we show that CONTEXTDIFF is theoretically capable of achieving better likelihood compared
to original DDPMs. As the exact likelihood is intractable, we aim to compare the optimal variational
bounds for negative log likelihoods. The objective function of CONTEXTDIFF at time step t is
EqϕDKL(qϕ(xt−1|xt,x0, c)||pθ(xt−1|xt, c)), and its optimal solution is

min
ϕ,θ

EqϕDKL(qϕ(xt−1|xt,x0, c)||pθ(xt−1|xt, c))

= minϕ[minθEqϕDKL(qϕ(xt−1|xt,x0, c)||pθ(xt−1|xt, c))]

≤ minθEqϕ=0
DKL(qϕ=0(xt−1|xt,x0, c)||pθ(xt−1|xt, c)),

(28)

where ϕ = 0 denotes setting the adapter network identical to 0, and thus
minθEqϕ=0

DKL(qϕ=0(xt−1|xt,x0, c)||pθ(xt−1|xt, c)) is the optimal loss of origianl DDPMs
objective at time t. Similar inequality can be obtained for t=1:

min
ϕ,θ

Eqϕ − log pθ(x0|x1, c)

≤ min
θ

Eqϕ=0
− log pθ(x0|x1, c).

(29)
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As a result, we have the following inequality by summing up the objectives at all time step:

− Eq(x0) log pθ(x0)

≤ minϕ,θ

∑
t>1

EqϕDKL(qϕ(xt−1|xt,x0, c)||pθ(xt−1|xt, c)) + Eqϕ − log pθ(x0|x1, c) + C

≤ minθ

∑
t>1

Eqϕ=0
DKL(qϕ=0(xt−1|xt,x0, c)||pθ(xt−1|xt, c)) + Eqϕ=0

− log pθ(x0|x1, c) + C

(30)
, where C = EDKL(qϕ(xT |x0, c)∥pθ(xT |c)) is a constant defined by

√
ᾱT . Hence, CONTEXTD-

IFF has a tighter bound for the NLL, and thus theoretically capable of achieving better likelihood,
compared with the original DDPMs.

C.4 BETTER EXPRESSION OF CROSS-MODAL SEMANTICS

We provide an in-depth analysis on why CONTEXTDIFF can better express the cross-modal se-
mantics. Our analysis focuses on the case of optimal estimation, as the theoretical analysis of
convergence requires understanding the non-convex optimization of neural network, which is be-
yond the scope of this paper. Based on objective function in Equation (8), the optimal solution of
CONTEXTDIFF at time t can be expressed as

argmin
ϕ,θ

Eqϕ(xt,x0|c)||x0 − fθ(xt, c)||2

= argmin
ϕ

argmin
θ

Eqϕ(xt,x0|c)||x0 − fθ(xt, c)||2

= argmin
ϕ

Eqϕ(xt|c)Eqϕ(x0|xt,c)||x0 − E[x0|xt, c]||22

= ϕ∗, θ∗

(31)

since the best estimator under L2 loss is the conditional expectation. As a result, the optimal esti-
mator of CONTEXTDIFF for x0 is

E[x0|ktrϕ∗(x0, c) +
√
ᾱtx0 +

√
1− ᾱtϵ, c], (32)

while existing methods that did not incorporate cross-modal contextual information in the forward
process have the following optimal estimator:

E[x0|
√
ᾱtx0 +

√
1− ᾱtϵ, c]. (33)

Compared with existing methods, CONTEXTDIFF can explicitly utilize the cross-modal context
rϕ∗(x0, c) to optimally recover the ground truth sample, and thus achieve better multimodal se-
mantic coherence.

Furthermore, we analyze a toy example to show that CONTEXTDIFF can indeed utilize the cross-
modal relations to better recover the ground truth sample. We consider the image embedding x0 and
text embedding c that were generated with the following mechanism:

x0 = µ(c) + σ(c)ϵ, (34)

where ϵ is an independent standard gaussain, µ(c) and σ2(c) are the mean and variance of x0 con-
ditioned on c. We believe this simple model can capture the multimodal relationships in the em-
bedding space, where the relevant images and text embeddings are closely aligned with each other.
Then xt =

√
ᾱtx0 +

√
1− ᾱtϵ

′
is the noisy image embedding in original diffusion model. We aim

to calculate and compare the optimal estimation error at time step t in original diffusion model and
in CONTEXTDIFF:

min
θ

E||x0 − fθ(x0, c)||22

= E||x0 − E[x0|xt, c]||22
(35)

The conditional expectation as the optimal estimator of DDPMs can be calculated as:

E[x0|xt, c] = µ(c)− Cov(x0, xt|c) ∗ V ar(xt|c)−1(
√
ᾱtµ(c)− xt)

= µ(c)−
√
ᾱtσ(c)

2

ᾱtσ(c)2 + 1− ᾱt
(
√
ᾱtµ(c)− xt)
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As a result, we can calculate the estimation error of DDPMs:
E||x0 − E[x0|xt, c]||22

= E||σ(c)ϵ−
√
ᾱtσ(c)

2

ᾱtσ(c)2 + 1− ᾱt
(
√
ᾱtσ(c)ϵ+

√
1− ᾱtϵ

′
)||22

= d ∗ (1− ᾱt)ᾱtσ(c)
4 + σ2(c)(1− ᾱt)

2

(ᾱtσ2(c) + 1− ᾱt)2

= d ∗ σ(c)2 1− ᾱt

ᾱtσ2(c) + 1− ᾱt

(36)

Now we use CONTEXTDIFF with a parameterized adapter : xt =
√
ᾱtx0+

√
1− ᾱtϵ

′
+r(ϕ, c, t)x0

, where r(ϕ, c, t)x0 is the adapter. We can similarly calculate the conditional mean as the optimal
estimator of CONTEXTDIFF:

Eϕ[x0|xt, c] = µ(c)− σ2(c)(r(ϕ, c, t) +
√
ᾱt)

1− ᾱt + (r(ϕ, c, t) +
√
ᾱt)2σ2

∗ ((r(ϕ, c, t) +
√
ᾱt)µ(c)− xt)

And the estimation error for a given ϕ in CONTEXTDIFF is:

E||x0 − Eϕ[x0|xt, c]||22

= E||σ(c)ϵ− σ2(c)(r(ϕ, c, t) +
√
ᾱt)

1− ᾱt + (r(ϕ, c, t) +
√
ᾱt)2σ2(c)

((r(ϕ, c, t) +
√
ᾱt)σ(c)ϵ+

√
1− ᾱtϵ

′
)||22

= dσ(c)2
1− ᾱt

1− ᾱt + (r(ϕ, c, t) +
√
ᾱt)2σ2(c)

(37)
Comparing the denominators of two estimation errors (Equations (36) and (37)), we can see that
using a non-negative adapter will always reduce the estimation error.

D MORE MODEL ANALYSIS

Comparison on Computational Costs We compare our method with LDM and Imagen regard-
ing parameters, training time, and testing time in Tab. 5. We find that our context-aware adapter
(188M) only introduces few additional parameters and computational costs to the diffusion back-
bone (3000M), and substantially improves the generation performance, achieving a better trade-off
than previous diffusion models.

Table 5: Comparison on Computational Costs.

Method #Params #Training Cost # Inference Cost FID

LDM 1.4B 0.39 s/Img 3.4 s/Img 12.64
SDXL 10.3B 0.71 s/Img 9.7 s/Img 8.32
DALL·E 2 6.5B 2.38 s/Img 21.9 s/Img 10.39
Imagen 3B 0.79 s/Img 13.2 s/Img 7.27
Our CONTEXTDIFF 3B+188M 0.83 s/Img 13.4 s/Img 6.48

Contributing to Faster Convergence In the Figure 7 of main text, we generalize our context-
aware adapter to other video diffusion model Tune-A-Video and make a faster and better model
convergence. Here, we additionally generalize the adapter to image diffusion model LDM and plot
the partial training curve on the subset of LAION dataset in Figure 12. Similar to video domain,
our context-aware adapter can also substantially improve the model convergence for image diffusion
models, demonstrating the effectiveness and generalization ability of our method.

Quantitative Results on Likelihood We follow (Kim et al., 2022) to compute NLL/NELBO (Ne-
gaitve Log-Likelihood/Negative Evidence Lower Bound) for performances of density estimation
with Bits Per Dimension (BPD). We train our context-aware adapter on CIFAR-10 and compute
NLL with the uniform dequantization. As the results in Tab. 6, we conclude that our method is
empirically capable of achieving better likelihood compared to original DDPMs.

21



Published as a conference paper at ICLR 2024

0 10 20 30 40
train steps (k)

22

24

26

28

30

32

34

36

FI
D

FID vs. training progress
LDM
LDM with Context-Aware Adapter

Figure 12: Our context-aware adapter can enable faster model convergence (partial training curve)
.

Table 6: NLL comparison on CIFAR-10.

Method NLL ↓
DDPM (Jahn et al., 2021) 3.01
DDPM + Context-Aware Adapter 2.63

E HYPER-PARAMETERS IN CONTEXTDIFF

We provide detailed hyper-parameters in training CONTEXTDIFF for text-to-image generation (in
Tab. 7) and text-to-video editing (in Tab. 8).

Table 7: Hyper-parameters in training our CONTEXTDIFF for text-to-image generation.

Configs/Hyper-parameters Values

T 1000
Noise schedule cosine
Number of transformer blocks for cross-modal interactions 4
Betas of AdamW (Loshchilov & Hutter, 2018) (0.9, 0.999)
Weight decay 0.0
Learning rate 1e-4
Linear warmup steps 10000
Batch size 1024

F MORE QUALITATIVE COMPARISONS

F.1 MORE QUALITATIVE COMPARISONS ON TEXT-TO-IMAGE GENERATION

In order to fully demonstrate the effectiveness of our proposed contextualized diffusion, we visualize
more qualitative comparison results in Figure 13. The results sufficiently demonstrate the superior
cross-modal understanding in generated images of our CONTEXTDIFF over other models.

F.2 GENERALIZING TO OTHER TEXT-GUIDED VIDEO DIFFUSION MODELS

Qualitative Results In order to fully demonstrate the generalization ability of the context-aware
adapter in our contextualized diffusion, we visualize more qualitative comparison results, where we
utilize context-aware adapter to improve Tune-A-Video (Wu et al., 2022) (in Figure 14) and FateZero
(Qi et al., 2023) (in Figure 15 and Figure 16). From the results, we observe that our context-aware
adapter can effectiveness promote the performance of text-to-video editing, significantly enhancing
the semantic alignment while maintaining structural information in source videos. All video exam-
ples are also provided in the supplementary material, and we are committed to open sourcing the
train/inference code upon paper acceptance.
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Table 8: Hyper-parameters in training our CONTEXTDIFF for text-to-video editing.

Configs/Hyper-parameters Values

T 20
Noise schedule linear
(βstart, βend) (0.00085, 0.012)
Number of transformer blocks for cross-modal interactions 4
Frames for causal attention 3
Betas of AdamW (Loshchilov & Hutter, 2018) (0.9, 0.999)
Weight decay 1e-2
Learning rate 1e-5
Warmup steps 0
Use checkpoint True
Batch size 1
Number of frames 8∼24
Sampling rate 2

“	A film	camera	,	
with	a	roll	of	film
partially exposed.”

“	There	is	an old	
typewriter	and	a	
sheet	of	paper	with	
four	letters	'LOVE'
on	the	table.”

LDM                            Imagen                            Ours

“	A	cup	of	coffee is	
put	on	a	table	in	a	
coffee	shop	with	an	
arched	ceiling,	
vintage	furniture.”

“	A	bustling city	
street	during	a	
rainy day	with	
reflections	on	wet	
pavement.”

“	A	market		with	
textiles,	aromatic	
spices	under	the	
sun.”

Figure 13: Synthesis examples demonstrating text-to-image capabilities of for various text prompts
with LDM, Imagen, and CONTEXTDIFF (Ours). Our model can better express the semantics of
the texts marked in blue. We use red boxes to highlight critical fine-grained parts where LDM and
Imagen fail to align with texts. For example, in second row, only our method successfully generates
the four letters spelling ”LOVE”. In third row, we generate the specific detail of a film roll, while
other methods lose this detail.
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[Source video] A rabbit is eating a watermelon.

[Tune-A-Video] A puppy is eating an orange.

[Tune-A-Video+Context-Aware Adapter] A puppy is eating an orange.

[Source video] A man is surfing.

[Tune-A-Video] A raccoon is surfing, cartoon style.

[Tune-A-Video+Context-Aware Adapter] A raccoon is surfing, cartoon style.

[Source video] A man is skiing

[Tune-A-Video] Wonder woman, wearing a cowboy hat is skiing.

[Tune-A-Video+Context-Aware Adapter] Wonder woman, wearing a cowboy hat is skiing.

Figure 14: Generalizing our context-aware adapter to Tune-A-Video (Wu et al., 2022).
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[Source Video] Two sharks are swimming in the ocean.

[FateZero] Two goldfishes are swimming in the ocean.

[FateZero + Context-Aware Adapter] Two goldfishes are swimming in the ocean.

[Source Video] A yellow cat.

[FateZero] A yellow dog.

[FateZero + Context-Aware Adapter] A yellow dog.

Figure 15: Generalizing our context-aware adapter to FateZero (Qi et al., 2023).
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[Source Video] A person wearing a helmet on a motorcycle does a burnout on the road.

[FateZero] A person wearing a helmet on a motorcycle does a burnout on a frozen lake

[FateZero + Context-Aware Adapter] A person wearing a helmet on a motorcycle does a burnout on a frozen lake

[Source Video] A brown bird sits on a feeder that is being hung by a red string.

[FateZero] A brown squirrel sits on a feeder that is being hung by a red string.

[FateZero + Context-Aware Adapter] A brown squirrel sits on a feeder that is being hung by a red string.

Figure 16: Generalizing our context-aware adapter to FateZero (Qi et al., 2023).
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