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ABSTRACT

Datasets collected from the open world unavoidably suffer from various forms of
randomness or noiseness, leading to the ubiquity of aleatoric (data) uncertainty.
Quantifying such uncertainty is particularly pivotal for object detection, where
images contain multi-scale objects with occlusion, obscureness, and even noisy
annotations, in contrast to images with centric and similar-scale objects in classifi-
cation. This paper suggests modeling and exploiting the uncertainty inherent in
object detection data with vision foundation models and develops a data-centric
reliable training paradigm. Technically, we propose to estimate the data uncertainty
of each object instance based on the feature space of vision foundation models,
which are trained on ultra-large-scale datasets and able to exhibit universal data
representation. In particular, we assume a mixture-of-Gaussian structure of the
object features and devise Mahalanobis distance-based measures to quantify the
data uncertainty. Furthermore, we suggest two curial and practical usages of the
estimated uncertainty: 1) for defining uncertainty-aware sample filter to abandon
noisy and redundant instances to avoid over-fitting, and 2) for defining sample
adaptive regularizer to balance easy/hard samples for adaptive training. The esti-
mated aleatoric uncertainty serves as an extra level of annotations of the dataset, so
it can be utilized in a plug-and-play manner with any model. Extensive empirical
studies verify the effectiveness of the proposed aleatoric uncertainty measure on
various advanced detection models and challenging benchmarks.

1 INTRODUCTION

Deep learning has witnessed remarkable success in a wide range of scenarios and applications for
predictive performance, such as image classification Liu et al. (2021); Dosovitskiy et al. (2021);
Tolstikhin et al. (2021); He et al. (2016), semantic segmentation Xie et al. (2021); Strudel et al.
(2021), and object detection Carion et al. (2020); Zhang et al. (2022); Zhu et al. (2021a); Ren et al.
(2015); He et al. (2017). Datasets collected from the open world unavoidably suffer from various
randomness or noiseness Kendall & Gal (2017); Cui et al. (2022), resulting in ubiquitous uncertainty
inherent in the data (i.e., aleatoric uncertainty or data uncertainty Der Kiureghian & Ditlevsen (2009);
Hüllermeier & Waegeman (2021)). Quantifying such uncertainty is pivotal for comprehending the
inherent fluctuations within the training data, which enables the construction of more resilient models
that can accommodate and flexibly respond to conditions characterized by inherent uncertainty.

Compared to images with centric and similar-scale objects in classification benchmarks, images in
object detection datasets are typically scene-centric and contain multiple objects in varying scales.
Especially, some objects are accompanied by occlusion, obscureness, and even noisy annotations
due to limited resources and time in the data collection process Liu et al. (2022) (as observed in
Fig. 1). Naturally, the aleatoric uncertainty arises in object detection tasks. However, the majority of
aleatoric uncertainty quantification methods target classification or regression problems Kendall &
Gal (2017); Chang et al. (2020); Depeweg et al. (2018); Zhang et al. (2024a), with few focusing on
the fundamental and challenging object detection. To bridge the gap, we aim to investigate aleatoric
uncertainty at the detection level, i.e., in the context of object detection.

It is almost impossible for human annotators to compare samples within the dataset and quantify
each sample’s aleatoric uncertainty due to unaffordable time and resource costs. When discriminative
features from object instances are salient and obvious, we consider the aleatoric uncertainty to be
low, as such instances can be easily detected and assigned to their semantic classes. However, when
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0.048 0.121 0.393 0.433score: 0.9880.909

easy

hard

noisy

0.029 0.163 0.442 0.673score: 0.9900.918

easy

hard

noisy
Figure 1: Visualization of scoring objects with corresponding uncertainty scores in training images
of MS-COCO. The orange bounding box is the annotated ground truth. “Hard” objects suffer from
occlusion or obscureness within an image, and “noisy” ones have misleading bounding boxes.

some of these features are occluded or missing, aleatoric uncertainty increases, making it more
challenging to localize and classify such instances. Vision foundation models have learned rich
and well-structured features from large-scale training data, enabling them to compare samples from
diverse perspectives. In this paper, we opt for SAM Kirillov et al. (2023) as the foundation model
and bridge the gap in utilizing SAM to characterize aleatoric uncertainty at the detection level. SAM
was trained on the expansive SA-1B dataset Kirillov et al. (2023) that contains more than 1 billion
masks spread over 11 million carefully curated images and has established superior performance in
addressing open-world vision tasks. Unlike vision foundation models CLIP Radford et al. (2021)
and DINOv2 Oquab et al. (2023), SAM received direct supervision in solving dense prediction tasks.
Its vision encoder outputs high-resolution feature maps, which is beneficial for processing object
detection datasets where objects can vary significantly in size.

In light of this, we proceed to capture the feature of each object instance in the feature space of
SAM for measuring aleatoric uncertainty. Building on top of the existing ground-truth bounding
boxes and class labels, we perform bounding box-based feature pooling to get a feature vector per
object. While SAM was trained in a class-agnostic manner, semantically similar instances are found
to be closely crowded together in its feature space. In recent work Xiaoke et al. (2024), one can
directly assign semantics and generate captions based on SAM’s output embeddings via some text
feature mixture and decoder. Based on these observations, we employ a class-conditional Gaussian
distribution to model the feature distribution and derive a Mahalanobis distance-based uncertainty
score as a measure of aleatoric uncertainty. As shown in Fig. 1, the proposed uncertainty score
effectively captures pertinent data characteristics such as object difficulty and noise level, aligning
well with human cognitive level.

Furthermore, we devise two practical and crucial usages related to aleatoric uncertainty: uncertainty-
aware sample filtering and loss regularization. We can utilize them as proxy tasks to examine
the quality of aleatoric uncertainty and enhance detection performance. Firstly, we introduce a
quantile function based on aleatoric uncertainty scores to abandon noisy samples that may mislead
model training, as well as redundant samples within sub-populations grouped by uncertainty scores
to improve training efficiency. Secondly, we propose a sample adaptive training objective that
incorporates uncertainty-aware entropy to regularize the binary cross-entropy loss, which can balance
easy and hard samples more knowledgeably compared to typical focal loss Lin et al. (2017) and
entropy regularization Pereyra et al. (2017).

Aleatoric uncertainty measure can serve as additional annotations of training data thus it can be
employed for any model in a plug-and-play way. We conduct extensive empirical studies on chal-
lenging benchmarks: MS-COCO Lin et al. (2014) and BDD100K Yu et al. (2020), corresponding
to natural and self-driving scenarios, respectively. These studies were performed using various
advanced detectors, e.g., CNN-based YOLOX Ge et al. (2021) and FCOS Tian et al. (2019), and
transformer-based Deformable DETR Zhu et al. (2021a) and DINO Zhang et al. (2022), to verify the
effectiveness of the aleatoric uncertainty measure. We first show that the sample adaptive regular-
izer incorporated data uncertainty can improve detection performance regarding averaged precision
and recall. Furthermore, significant performance gains are observed when aleatoric uncertainty is
exploited to abandon noisy samples, and our uncertainty-aware filter strategy outperforms uniform
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sampling for redundant instances filtering. Finally, we conduct informative ablation studies to show
the robustness of hyperparameters and further explore the potential of aleatoric uncertainty.

2 RELATED WORKS

Wide applications of SAM. SAM Kirillov et al. (2023) is a vision foundation model designed to
address dense prediction tasks by outputting instance masks and parts within regions of interest
specified via visual prompts such as points and bounding boxes. Its strong generalization capabilities
across domains have enabled a wide spectrum of downstream use cases. While SAM itself only pro-
vides class-agnostic masks, it can be utilized after semantic-aware object detection to generate masks
for each bounding box. For instance, Grounded-SAM Ren et al. (2024) that connects SAM with
Grounding DINO Liu et al. (2023b) is a strong open-world object detection and segmentation model
with text prompts. Exploiting caption models Li et al. (2022; 2023a) or image tagging models Huang
et al. (2023a); Zhang et al. (2023); Huang et al. (2023b) to get semantic descriptions of images and
further use them as text prompts, Grounded-SAM serves as an effective auto-labeling tool. Addition-
ally, SAM has been employed in segmentation tasks within industrial defect segmentation Cao et al.
(2023); Li et al. (2024) and medical image segmentation Zhang et al. (2024b).

In recent work Xiaoke et al. (2024), SAM was found to know semantics implicitly. Instead of
starting from a semantic-aware object detection model, SAM can do captioning and assign semantic
classes to the generated masks through a combination of text feature mixture and a text decoder
following its vision encoder. We target a novel use case of SAM: annotating the aleatoric uncertainty
of each training sample, which is distinct from the annotations of usual bounding boxes and masks.
We benefit from the implicit semantic knowledge in the feature space of SAM’s vision encoder.
Nevertheless, our use case does not rely on an extra text decoder or feature mixture.

Feature space density modeling. Understanding data distribution provides insights into data
structure, the generation of additional samples following the same distribution, and out-of-distribution
(OOD) detection. Leveraging feature extractors trained to provide compact and informative data
representations, feature space density modeling has been proven more effective for tasks like OOD
detection, e.g., Kirichenko et al. (2020); Ren et al. (2021); Liang et al. (2022). Based on the familiarity
hypothesis in Dietterich & Guyer (2022), relying on rich features is particularly beneficial. Due to
their large-scale training sets, the vision encoders of foundation models like SAM effectively fulfill
this purpose. While various density modeling techniques have been developed and OOD detection is
one of the main use cases, we introduce a new use case: aleatoric uncertainty estimation, which is
distinct from OOD detection. Although we employ a standard density modeling method, the achieved
gains highlight the potential in this novel application.

Aleatoric uncertainty. In deep learning, uncertainty can be classified into two categories: aleatoric
or data uncertainty and epistemic or model uncertainty Der Kiureghian & Ditlevsen (2009); Kendall &
Gal (2017); Hüllermeier & Waegeman (2021). Depeweg et al. (2018) propose a decomposition method
of uncertainty to capture aleatoric uncertainty from the predictive distribution of Bayesian neural
networks with latent input variables. Similarly, Kendall & Gal (2017) developed a technique using
MC-dropout Gal & Ghahramani (2016) to independently characterize both uncertainty components.
Zhang et al. (2024a) propose a prediction-model-agnostic denoising approach to estimate aleatoric
uncertainty for regression by augmenting a variance approximation module under the assumption
of the zero mean distribution of data noise. Chang et al. (2020) introduces a data uncertainty-aware
method for face recognition by learning feature (mean) and uncertainty (variance) simultaneously
in the feature embedding. Prior works mainly estimate aleatoric uncertainty for classification or
regression tasks by predictive uncertainty decomposition on task-specific data distribution and training
model. This explores the ability of vision foundation models trained on diverse data to be used to
quantify data uncertainty from a data distribution perspective.

3 ALEATORIC UNCERTAINTY QUANTIFICATION IN OBJECT DETECTION

As data collection and annotation processes inevitably suffer from varying degrees of corruption,
aleatoric uncertainty (i.e., data uncertainty) is ubiquitous in real-world datasets. Accurately char-
acterizing data uncertainty can help us better understand training data to utilize it more efficiently
and reliably, especially for modern large-scale datasets. To quantify data uncertainty, we leverage
SAM to extract the feature of each object instance and model the training data distribution by fitting
a multivariate Gaussian distribution in the feature space. Prior work Cui et al. (2024) has shown
the effectiveness of Gaussian distribution modeling on classification tasks. We anticipate that easy
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samples with low uncertainty will be closely crowded together, while hard/noisy ones with high
uncertainty will be far away from the population and more dispersed. A similar intuition is utilized to
quantify uncertainty in the classification literature in previous works Van Amersfoort et al. (2020);
Mukhoti et al. (2023). From the perspective of density estimation within feature distribution, we
derive a Mahalanobis distance-based uncertainty score to represent aleatoric uncertainty. We detail
the whole process in Algorithm 1.
Multivariate Gaussian distribution. The training dataset consists of the image-label pairs: D =

{(xi, yi)}Ni=1 with xi ∈ Rd and yi = {bj , cj , sj}Mj=1, and yi represents the set of ground-truths for
each image where bj ∈ R4 and sj is the bounding box and binary mask for each object instance zj ,
and cj ∈ {1, . . . ,K} is the corresponding class. Let V (·) denote the feature map layer of the vision
encoder in SAM, and we can employ it to obtain each image’s feature embedding V (xi). Building
on V (xi) and corresponding ground-truths: bj or sj , we further acquire each object’s feature vector:
V (zj). The conditional Gaussian distribution with the class k can be defined as:

P (V (z) | c = k) = N (V (z) | µk,Σ) , (1)

where µk is the mean vector for class k, and Σ is an averaged covariance matrix shared by all classes
for all training samples. Specifically, we can empirically estimate them by

µk =
1

Nk

∑
j:cj=k

V (zj) ,

Σ =
1

N

∑
k

∑
j:cj=k

(V (zj)− µk)(V (zj)− µk)
⊤,

(2)

where Nk is the number of training samples (i.e., object instances) with the label cj = k.
Mahalanobis distance-based uncertainty score. Leveraging the class-conditional Gaussian dis-
tributions fitted above, we measure the Mahalanobis distance between training object z and the
corresponding class-conditional Gaussian distribution to represent the aleatoric uncertainty of each
object in the training set., i.e.,

M(zj |cj) = −
(
V (zj)− µcj

)⊤
Σ−1

(
V (zj)− µcj

)
. (3)

The Mahalanobis distance M(zj |cj) measures the distance between an object and the centroid
of the category cj . A small M(zj |cj) indicates that the object has typical features of the sub-
population belonging to this class and boils down to low data uncertainty. Oppositely, the ob-
ject with the high M(zj |cj) tends to contain ambiguous information (i.e., insufficient identify-
ing characteristic) or noisy annotation (i.e., ambiguous bounding box or even wrong class label).

Figure 2: The histogram of
d(zj |cj) for MS-COCO.

In order to more conveniently exploit data uncertainty, we employ
a scaling procedure to transform the Mahalanobis distance to a
range of (0, 1), which is achieved through a combination of log
transformation and min-max normalization techniques:

d(zj |cj) =
log (M(zj |cj))− min

j:cj=k
{logM(zj |cj)}

max
j:cj=k

{logM(zj |cj)} − min
j:cj=k

{logM(zj |cj)}
, (4)

where the Mahalanobis distance belonging to each class is individu-
ally normalized to (0, 1). Fig. 2 illustrates the distribution of d(zj |cj)
for the training data of MS-COCO Lin et al. (2014), and we also
show the distribution by categories in Appendix. It is evident that a
small percentage (approximately 5%-10%) of samples exhibit high
uncertainty scores, implying the presence of noisy objects within the
dataset. Additionally, a significant proportion of objects in the MS-COCO dataset are characterized
as difficult/hard, as evidenced by the high density of uncertainty scores within the range of 0.5− 0.6.

Furthermore, we give some sorting examples and their uncertainty scores belonging to classes “bus”
and “zebra” in Fig 1, see Appendix for more visual examples. We can observe a high level of
agreement between human visual perception and MD-based data uncertainty scores. In conclusion,
our empirical investigation suggests that:

• The low data uncertainty represents an easy sample that can be readily recognized by humans or
models due to abundant and unbroken features.
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• The objects with medium uncertainty scores are often located in distant positions or partially
obscured within an image, posing challenges for accurate classification and detection.

• The objects with high uncertainty often indicate low-quality samples, which may stem from un-
recognizable instances or misleading annotated bounding boxes and categories. These instances
are prone to being regarded as data noise due to their ambiguity or inconsistency.

Algorithm 1: Aleatoric uncertainty quantification for object detection
Input: Training dataset D, the feature map layer of vision encoder in SAM: V (·)

1 for xi, yi in D do
2 Get feature embedding V (xi) for each xi;
3 for bj , sj , cj in ground-truths set yi do
4 Compute the feature vector V (zj) of each object based on ground-truths bj or sj ;
5 Add the feature vector V (zj) to the feature set V;
6 end
7 end
8 Compute the mean vector and averaged covariance matrix using Eqn. (2);
9 Compute Mahalanobis distance of each object using Eqn. (3);

10 Obtain the final uncertainty score of each object by Eqn. (4) and save all uncertainty scores.

4 A RECIPE FOR ALEATORIC UNCERTAINTY IN OBJECT DETECTION

This section explores the practical usage of aleatoric uncertainty in object detection. Based on
estimated aleatoric uncertainty, we propose various data filtering strategies, which aim to remove
underlying noisy and redundant objects from the training dataset, leading to more efficient and reliable
model training. To further enhance the predictive performance, we develop an uncertainty-aware
regularizer and incorporate it into the loss function. Moreover, these two usages can also serve
as a proxy for examining the quality of estimated aleatoric uncertainty. It is worth noting that we
can calculate the per-object uncertainty score beforehand and treat it as an offline proxy, so the
proposed uncertainty-aware usages do not take any additional computational overhead during the
model training. In particular, uncertainty scores can serve as an extra level of annotations of the
training set and be utilized for any model in a plug-and-play way.

4.1 ALEATORIC UNCERTAINTY-AWARE DATA FILTERING

Filtering out noisy objects. As shown in Fig. 1 and 2, some objects have incomplete discriminative
features or incorrect annotations, which can damage model training and lead to poor predictive
performance. Given this, we propose discarding possible noisy samples that are harmful to model
learning. Specifically, we employ a quantile function to discard objects with high uncertainty scores
during model training. Let F denote the cumulative distribution function (CDF) of uncertainty scores
over all classes, and then we can use the inverse function of CDF F−1 : [0, 1] → d(zj |cj) to represent
its quantile function:

F−1(p) = inf {d : p ≤ F (d(zj |cj))} . (5)

After that, we retain objects D∗ that are smaller than the specific quantile p (e.g, p = 95%) used for
model training, i.e.,

D∗ =
{
zj |dj ≤ F−1(p)

}N∗M
j=1

. (6)

Considering the class-imbalanced issues Lin et al. (2014) in the MS-COCO dataset, we also try
discarding noisy objects according to per class, i.e., first calculating the inverse function of CDF of
each class cj , referred to as F−1

j:cj=k(p), and then retaining the objects D∗ that meet:

D∗ =
{{

zj |dj ≤ F−1
j:cj=k(p)

}Nk

j:cj=k

}K

k=1
, (7)

where Nk is the number of object instances with the label cj = k.
Filtering out redundant objects. Object detection datasets, such as MS-COCO, typically contain
numerous similar objects with common patterns. Thus, an additional useful application of the
uncertainty score is eliminating potentially redundant objects from the training set. Objects with
closely clustered uncertainty scores within each class often exhibit similar or common patterns.
Consequently, the model may only need to learn from a subset of these instances to achieve satisfactory
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performance. In this spirit, we can select a certain proportion of objects, known as valuable samples,
from each sub-population with close uncertainty scores to enhance training efficiency.

Concretely, we group the uncertainty score of each object into M interval bins for each class (each
of size 1/M ) and randomly throw away p% objects in each bin. We use 10 bins in this work, and
we provide the results of more bins in Table A1 in the Appendix. Let Bcj

m be the set of indices of
samples with class cj whose uncertainty score falls into the interval Im =

(
m−1
M , m

M

]
, and the object

set that we retain: D∗ can be denoted as:

D∗ =
{{

zj |j ∈ Bcj=k
m

}M

m=1

}K

k=1
, (8)

4.2 ALEATORIC UNCERTAINTY-AWARE REGULARIZATION

The uncertainty score serves as a valuable tool for characterizing each object’s difficulty and noise
level, as demonstrated in Fig. 1. Therefore, it is worth exploring how to leverage this knowledge
to enhance model performance. The object detection models usually optimize multiple losses, e.g.,
L = Lcls + Lbox + Lobj, and the standard training loss formulation is data uncertainty agnostic. The
previous work, such as focal loss Lin et al. (2017), primarily focuses on fitting hard samples and
mitigating overfitting to easy samples. It is defined as LFL = − (1− Pt)

γ
log (Pt), where Pt is the

model’s predictive probability of the ground-truth class and γ is a predefined coefficient designed to
alleviate the model overfitting to the already confident (i.e., Pt close to 1) majority class. Yet, the
focal loss is sensitive to coefficient γ and may lead to inappropriate or even harmful regularization
for some samples based on the predicted probability.

To address this issue, we incorporate data uncertainty score d(zj |cj) into classification loss Lcls and
propose an uncertainty-aware entropy to regularize the binary cross-entropy loss. Besides, prior
work Mukhoti et al. (2020) has demonstrated that cross-entropy loss equipped with a maximum-
entropy regularizer can be interpreted as the lower bound of focal loss, resulting in the ability of the
proposed uncertainty-aware entropy regularizer to ensure the optimal performance of the model. As a
result, we arrive at the sample adaptive classification loss:

Lcls = − 1

N ∗M

N∗M∑
j=1

(
(1− cj) log (1− fθ(zj)) + cj log(fθ(zj))− βd(zj |cj)H[fθ(zj)]

)
, (9)

where fθ(zj) and H[fθ(zj)] refer to the predictive binary probability distribution and corresponding
entropy for the object zj . β is a predefined coefficient to control the strength of entropy regularization,
which generally ranges from (0.1, 0.3). Since we can estimate the per-object uncertainty score once
before training, the proposed training objective scarcely introduces additional computing overhead.

5 EXPERIMENTS

To verify the effectiveness of the proposed aleatoric uncertainty measure in conveying valuable
information about the dataset, we report the predictive performance when employing it for both
data filtering and sample adaptive regularization. We mainly present primary experimental results
on the challenging benchmark MS-COCO Lin et al. (2014) for the bounding box detection task
and use Deformable DETR Zhu et al. (2021b) and anchor-free YOLOX Ge et al. (2021) as the
object detection models. In the Appendix, we provide more results for other detection models, such
as FCOS Tian et al. (2019) and DINO Zhang et al. (2022). We also validate our method on the
challenging self-driving dataset: BDD100K Yu et al. (2020) and other VFMs. Moreover, we ablate
the robustness of the proposed uncertainty-aware entropic regularizer to hyper-parameters.

Datasets. The 118k train set (train2017) and the 5k validation set (val2017) of COCO 2017 are
utilized for training and evaluating the model on the bounding box (bbox) detection task. COCO
2017 comprises 80 classes and encompasses a diverse range of scenes, including indoor and outdoor
environments, urban and rural settings, as well as various lighting and weather conditions. The
training set contains, on average, 7 instances per image, with a maximum of 63 instances observed in
a single image. These instances span a wide range of sizes, from small to large.

Metrics. To evaluate the prediction quality, we report averaged precision (AP) and recall (AR) over
IoU thresholds, AP50, AP75, and APL, APM , APS for various-scale objects.
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Implementation Details. In our study, we mainly employ two typical detection models as detectors:
the transformer-based Deformable DETR (trained up to Epoch 50, with a 4-scale setup) and the
CNN-based anchor-free YOLOX (specifically, YOLOX-S and YOLOX-M versions), and model
details are summarized in Table 1. We also report the performance of more detectors in the Appendix.

Table 1: Model details.

Model Params GFLOPS

YOLOX-S 9M 26.8
YOLOX-M 25M 73.8
D-DETR 40M 265

Deformable DETR surpasses previous DETR Carion et al. (2020)
in both performance and efficiency, achieving better performance
than DETR (especially on small objects) with 10×less training
epochs by combining the best of the sparse spatial sampling
of deformable convolution. YOLOX transforms the traditional
YOLO detector, such as YOLOv3 Redmon & Farhadi (2018), into
an anchor-free method and enhances it with a decoupled head
and the proposed label assignment strategy SimOTA, thereby achieving state-of-the-art performance.
As for implementation details, e.g., data preprocessing, experimental settings, etc., we completely
follow the original paper. Moreover, we do not use strong data augmentation techniques such as
Mixup Zhang et al. (2018) for all experiments. For the hyper-parameters in the proposed training
loss 9, we set β as 0.2 and 0.3 for YOLOX and Deformable DETR, respectively.

5.1 PERFORMANCE ON UNCERTAINTY-AWARE REGULARIZER

Table 2 demonstrates the performance comparison between binary cross-entropy with a constant
weighting (Entropy) and uncertainty-aware entropy (UA-entropy) for YOLOX-S, YOLOX-M, and De-
formable DETR. The proposed uncertainty-aware entropic regularizer is obviously the top-performing
one and leads to a consistent improvement across all detection models. Notably, the performance
gain is also prominent for the small-scale models, i.e., YOLOX-S and YOLOX-M, indicating that the
proposed data uncertainty measure can convey valuable information about the dataset to model learn-
ing. More importantly, the superior performance gain of the proposed sample adaptive regularizer
on small-scale models holds significant implications for real-world model deployment. Conversely,
regularizing each sample with equal entropy shows only slight improvement or even deteriorates
model performance, especially for the small-scale detector YOLOX-S (-0.88% AP). Moreover, the
proposed method also achieves significant performance gain on more advanced Deformable DETR
with focal loss, implying that the proposed training objective effectively combines data uncertainty to
more reasonably balance the learning of difficult and easy samples. We also report the performance
of other detectors (i.e., FCOS and DINO) in the Appendix, showing the consistent performance gain.
Table 2: Performance comparison of uncertainty-aware entropy (UA-entropy) and constant entropy
regularizer (Entropy) on COCO valset.

Model Method AR AP AP50 AP75 APL APM APS

YOLOX-S
Vanilla 53.92 39.43 57.62 42.53 52.53 43.24 21.22
Entropy 52.97 38.55 55.83 41.58 51.71 42.43 20.34

UA-entropy 54.26 39.85 58.66 43.13 52.84 43.67 22.05

YOLOX-M
Vanilla 57.92 44.34 62.27 47.98 58.32 48.33 26.69
Entropy 58.22 44.41 62.54 48.22 58.31 48.71 26.84

UA-entropy 58.86 45.33 63.78 49.12 58.99 49.94 27.97

Deformable DETR
Vanilla 67.44 46.22 65.23 50.00 61.73 49.21 28.82
Entropy 67.23 46.10 65.01 49.25 61.06 48.34 28.17

UA-entropy 68.43 47.59 66.84 51.96 62.57 50.66 30.34

5.2 PERFORMANCE ON UNCERTAINTY-AWARE DATA FILTER

Filtering of noisy objects. We verify the effectiveness of measured data uncertainty in filtering out
noisy samples from the training set. Table 3 reports the results of discarding samples corresponding
to the highest 5% and 10% uncertainty scores (i.e., filtering out possible noisy samples) for different
models. We can observe that the predictive performance of each model is improved when samples
with high uncertainty scores are abandoned both for 95% data and 90% data settings, which indi-
cates that the reliability of detecting noisy samples in the training data and these samples do not
contribute valuable supervision to model training. Therefore, our data uncertainty scores can serve as
effective indicators for identifying noisy samples and mitigating the model learning from misleading
supervisory information, thereby enhancing predictive performance.

Filtering of redundant objects. Afterwards, we examine the effectiveness of the redundant samples
filtering by comparing uncertainty-aware and random discarding (i.e., uniformly dropping a certain
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Table 3: Performance of filtering out noisy samples using uncertainty scores on COCO 2017 valset.
“95%” represents retaining samples less than 95% quantile of aleatoric uncertainty scores.

Model Data(%) AR AP AP50 AP75 APL APM APS

YOLOX-S
100 53.92 39.43 57.62 42.53 52.53 43.24 21.22
95 54.34 39.78 58.36 42.77 51.97 43.85 22.56
90 53.77 39.41 58.15 42.91 51.87 43.55 21.43

YOLOX-M
100 56.98 44.05 61.72 47.44 58.33 48.32 26.65
95 58.62 44.86 63.17 48.54 58.39 49.15 27.26
90 58.44 44.84 63.22 48.61 58.72 49.51 26.54

Deformable DETR
100 67.44 46.22 65.23 50.00 61.73 49.21 28.82
95 69.52 47.31 67.14 51.24 62.55 50.53 29.73
90 69.37 47.22 67.02 51.06 62.76 50.24 29.81

Table 4: Performance of filtering out redundant samples using uncertainty-aware filter and uniform
sampling on COCO 2017 valset. “95%” represents abandoning 5% redundant samples.

Model Data(%) AR AP AP50 AP75

Random / Ours

YOLOX-S
95 53.92/54.05 37.72/39.54 54.68/58.37 40.66/43.12
90 53.85/53.86 36.74/39.12 52.94/57.88 39.83/42.44
80 53.51/53.56 36.46/39.05 52.81/57.94 39.59/42.13
70 53.15/53.21 35.12/38.66 53.83/57.53 38.18/41.44

YOLOX-M
95 57.11/58.68 43.22/45.21 60.03/63.62 47.05/48.95
90 57.65/58.03 43.04/44.32 60.12/62.97 46.88/48.21
80 57.24/57.44 43.01/44.01 60.03/62.23 46.80/47.32
70 59.25/59.54 42.52/43.66 60.01/61.11 46.44/46.65

Deformable DETR
95 68.03/68.36 46.01/46.40 65.12/65.76 49.85/50.33
90 67.51/68.27 45.59/46.05 64.06/65.99 49.13/49.94
80 66.24/67.49 44.26/45.47 63.08/65.44 48.13/49.07
70 65.47/66.71 43.75/44.82 62.30/64.25 47.27/48.20

percentage of samples) strategies, with the experimental results summarized in Table 4. As shown,
the proposed uncertainty-aware filtering strategy consistently outperforms uniform sampling for
all metrics under different data percentages, suggesting that leveraging data uncertainty scores to
cluster samples (i.e., grouping overall training data into multiple subsets with similar patterns) is
reliable. Furthermore, uniforming data selection can dramatically degrade predictive performance on
relatively small-capacity models like YOLOX-S. Oppositely, our uncertainty-aware data sampling
still maintains superior performance, with only a marginal reduction of 0.8% in AP while discarding
30% of the data. Interestingly, uncertainty-aware data sampling with 95% data surpasses predictive
performance with 100% data, which further verifies the existence of noisy samples in training data. In
the future, the proposed uncertainty-aware filtering could serve as a new paradigm for data pruning.

5.3 ABLATION STUDIES

This section further examines the effectiveness of our aleatoric uncertainty measure on the self-
driving dataset. We also conduct ablation studies on different vision backbones (e.g., DINOv2), the
hyper-parameters β in Eqn. 9 and the combination of aleatoric uncertainty-aware filter and regularizer.

Table 5: Results (AP) on the self-driving dataset: BDD100K. “95% data” denotes abandoning 5%
samples with the highest uncertainty scores, and the same meaning goes for “90% data”.

Vanilla UA-entropy 95% data 90% data

YOLOX-S 28.16 32.53 33.41 33.38
YOLOX-M 30.17 34.02 34.15 34.20
D-DETR 65.33 68.72 69.02 68.81

Effectiveness on the self-driving dataset. We further examine the performance of the proposed
data uncertainty measure for object detection in the self-driving scenario using the BDD100K
dataset Yu et al. (2020). This large-scale and long-tailed driving video dataset includes a diverse
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set of 100k annotated images (70k/10k/20k images for train/val/test set) with 10 classes for object
detection. Table 5 presents the performance of data uncertainty scores used for entropy regularization
and noisy sample filtering, showing significant gains in terms of average precision (AP) on YOLOX
and Deformable DETR. We can especially observe a more prominent gain on small-scale YOLOX-S.
All of this further confirms the superior scalability of our method across different real-world tasks.
Different vision backbones. We further examine the applicability of our approach to additional
vision foundation models, such as SAM2 and DINOv2 Oquab et al. (2023). Due to the inherent
resolution limitation of DINOv2, we incorporate LoftUp Huang et al. (2025) (Learnable Feature
Upsampling)—a recent technique designed to enhance the spatial resolution of features extracted
from vision backbones—to upsample its feature maps before applying our framework. Table 6 reports
the performance of UA-entropy with DINOv2 enhanced by LoftUp as well as SAM2 on the COCO
2017 val set. As shown, our method consistently improves performance across both backbones,
further demonstrating its generalizability and effectiveness.

Table 6: Performance of UA-entropy with DINOv2 and SAM2 on COCO 2017 valset.

Model Method DINOv2 SAM2
AR AP AR AP

YOLOX-S Vanilla 53.91 39.43 53.91 39.43
UA-Entropy 54.31 39.83 54.49 39.85

YOLOX-M Vanilla 57.92 44.34 57.92 44.34
UA-Entropy 58.90 45.39 58.96 45.45

Regularization coefficient β. We analyze the effect of hyper-parameter β on predictive perfor-
mance in the loss function 9. Table A2 reports the comparison results under various β for constant
weighting and uncertainty-aware entropy regularization on YOLOX-S. As shown, the entropy penalty
with a constant weighting is particularly sensitive to hyper-parameter β, with large values (e.g.,
0.4) resulting in significantly poor performance. In contrast, the proposed data uncertainty-aware
regularizer is robust to β owing to sample-uncertainty adaptive weighting, which highlights that data
uncertainty provides a more reliable way to balance difficult and easy samples.
Combination of uncertainty-aware data filter and regularization. Table 2 and 4 have shown the
effectiveness of data uncertainty for redundant sample filtering and entropy regularization. It is worth
exploring whether the performance of uncertainty-aware data filtering can be further enhanced by
incorporating sample-adaptive regularization. To this end, we compare the predictive performance of
using uncertainty-aware data filtering alone versus its combination with sample-adaptive regulariza-
tion under different proportions of training data. As shown in Fig. A4 in Appendix, the proposed
sample-adaptive regularization (UA-entropy) consistently improves the performance of redundant
sample filtering on YOLOX-S and YOLOX-M by incorporating data uncertainty of each object to
adaptively balance the impact of easy and hard samples within the remaining data.

6 CONCLUSIONS

This work investigates an important yet under-explored problem – how to accurately characterize
aleatoric uncertainty in object detection. Profiting from the powerful feature representation capabil-
ities of vision foundation models, we propose to estimate the aleatoric uncertainty of each object
based on the representation space of foundation models. Furthermore, we explore two practical
uncertainty-related tasks: aleatoric uncertainty-aware sample filtering and loss regularization. These
tasks serve a dual purpose: examining the quality of aleatoric uncertainty and being used to develop
a data-centric learning paradigm aimed at enhancing model performance and training efficiency.
Extensive empirical studies validate the effectiveness of the proposed aleatoric uncertainty measure,
demonstrating consistent performance gains across various advanced detection models.

In the future, we can explore leveraging various vision foundation models, e.g., DINOv2 Oquab
et al. (2023) and GroundingDINO Liu et al. (2023b), to quantify data uncertainty at the detection
level. Additionally, it is critical to develop more techniques, such as knowledge distillation, to extract
valuable knowledge from foundation models for uncertainty quantification. Large Vision Language
Models (LVLMs) Liu et al. (2024); Zhu et al. (2023) bridge the gap between visual and linguistic
understanding and exhibit the potential towards achieving general artificial intelligence. However,
they also easily produce hallucinations or generate inconsistent responses with input images Liu et al.
(2023a); Zhou et al. (2023); Li et al. (2023b). Typically, LVLMs are fine-tuned on language-image
instruction-following data generated from COCO, so the proposed noisy sample filtering strategy
could be beneficial in enhancing robustness and mitigating hallucinations.

9
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Reproducibility Statement We have made significant efforts to ensure the reproducibility of our
work. The details of model architectures, training settings, and evaluation protocols are provided
in the main paper. Additional implementation details, hyperparameter configurations, and ablation
results are included in the appendix. Furthermore, the complete source code and scripts necessary to
reproduce our experiments are provided in the supplementary materials.
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Table A1: AP of filtering out 10% redundant samples with different bins on COCO 2017 valset.

Models / Bins 6 8 10 12 16

YOLOX-S 39.04 39.10 39.12 39.14 39.07
YOLOX-M 44.19 44.29 44.32 44.31 44.21

Deformable DETR 45.91 46.03 46.05 46.02 45.96

A HISTOGRAMS OF ALEATORIC UNCERTAINTY SCORES BY CATEGORIES

(a) Bus. (b) Zebra. (c) Backpack.

(d) Dog. (e) Bird. (f) Cell phone.

Figure A1: Distributions of data uncertainty scores for different classes.

B MORE SORTING EXAMPLES VIA ALEATORIC UNCERTAINTY ON MS-COCO

0.028 0.043 0.361 0.383score: 0.9890.915

easy

hard

noisy

0.026 0.033 0.442 0.713score: 0.9870.947

easy

hard

noisy

Figure A2: Visualization of scoring objects with corresponding uncertainty scores in training images
of MS-COCO Lin et al. (2014) for class “dog” and “bird”. The orange bounding box is the annotated
ground truth. “Hard” objects suffer from occlusion or obscureness within an image, and “noisy” ones
have misleading bounding boxes.
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0.018 0.092 0.413 0.401score: 0.9780.923

easy

hard

noisy
0.011 0.023 0.531 0.589score: 0.9910.969

easy

hard

noisy

Figure A3: Visualization of scoring objects with corresponding uncertainty scores from training
images of Pascal VOC Everingham et al. (2015) for class “person” and “car”.
Table A2: The comparison for AP and AR under different β on YOLOX-S. Bold indicates the results
from the chosen hyperparameter.

β 0 0.10 0.20 0.25 0.30 0.40 0.50

Entropy AP 39.43 37.22 38.55 37.75 37.47 36.85 36.03
AR 53.92 51.88 52.97 52.10 51.90 51.02 50.42

UA-entropy AP 39.43 39.75 39.85 39.81 39.77 39.54 39.44
AR 53.92 54.17 54.26 54.24 54.02 53.88 53.91

Table A3: Performance comparison of uncertainty-aware regularizer (UA-entropy) and constant
entropy regularizer (Entropy) on COCO 2017 valset.

Model Method AR AP AP50 AP75 APL APM APS

FCOS
Vanilla 57.21 41.46 60.71 45.08 51.53 44.82 24.41
Entropy 57.10 41.35 60.62 45.01 51.61 44.24 24.03

UA-entropy 58.62 42.62 62.13 46.36 52.74 45.67 25.33

DINO
Vanilla 72.63 49.39 66.97 53.84 63.64 52.30 32.48
Entropy 72.23 49.30 66.78 53.11 63.06 51.65 32.15

UA-entropy 73.59 49.59 67.01 54.23 63.67 53.07 32.54

(a) The performance comparison on YOLOX-S. (b) The performance comparison on YOLOX-M.

Figure A4: The effect of combining uncertainty-aware redundant samples filtering (UA-filter) and
regularization (UA-entropy) on performance on YOLOX-S and YOLOX-M.
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