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Abstract

In the presence of confounding, naively using off-the-shelf offline reinforcement learning
(RL) algorithms leads to sub-optimal behaviour. In this work, we propose a safe method to
exploit confounded offline data in model-based RL, which improves the sample-efficiency
of an interactive agent that collects and learns from online, unconfounded data. First, we
import ideas from the well-established framework of do-calculus to express model-based RL
as a causal inference problem, thus bridging the gap between the fields of RL and causality.
Then, we propose a generic method for learning a causal transition model from offline and
online data, which captures and corrects the confounding effect using a hidden latent variable.
We demonstrate that our method is correct and efficient, in the sense that it attains better
generalization guarantees thanks to the confounded offline data (in the asymptotic case),
regardless of the confounding effect (the offline expert’s behaviour). We showcase our method
on a series of synthetic experiments, which demonstrate that a) using confounded offline data
naively degrades the sample-efficiency of an RL agent collecting and learning from online
data; b) using confounded offline data correctly improves its sample-efficiency.

1 Introduction

As human beings, understanding cause and effect is crucial to successfully navigate our environment. If
I take aspirin, will my headache go away? Should I better lie down for a while? Should I do both? Two
key ingredients in our learning process are observation (we passively contemplate our environment) and
experimentation (we perform actions, and we measure their outcomes). While it is well-known that passive
observation is not sufficient to infer cause and effect1, it is hard to believe that it can provide no learning
signal at all. The field of cosmology draws models of the universe by exploiting experiments on earth (particle
physics) and passive observations of the sky (astronomy). In our everyday lives, the actions of others (e.g.,
a coworker taking aspirin) can bring some insight into the effects of our own actions. A key question is

1Simply put, correlation does not imply causation. Or, citing Pearl [29], “behind every causal conclusion there must lie some
causal assumption that is not testable in observational studies”.
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then: which role does observation play when learning cause and effect? This question is at the core of the
burgeoning field of causality and reinforcement learning (RL) [2; 40; 16; 41; 42; 43; 26] 2.

In this paper we consider the role of confounded data in the generic setting of model-based RL. Imagine
an agent trying to solve a sequential decision-making problem, such as a bot in a videogame. The agent
can rely on observational data, collected from the passive observation of other agents (e.g., a dataset of
offline traces collected from other bots or humans), and experimental data, collected through the agent’s own
interactions (e.g., a dataset of online traces collected during learning). We are interested in scenarios where
the observational data is confounded, that is, when a hidden variable has been the cause of both actions and
their effects in the traces (e.g., when the observed agent had access to privileged information). Our goal is
then to understand if and how the use of confounded observational data can improve the sample-efficiency of
an online model-based RL agent learning from experimental data.

In the Markov Decision Process (MDP) setting the entire state of the environment is available to the learning
agent at each time step, hence there can be no hidden confounder. Because the issue of confounding does not
exist, straightforward solutions can leverage large offline datasets safely, leading to the fast-growing field of
offline reinforcement learning [20; 21]. In the more general Partially-Observable MDP (POMDP) setting,
however, offline data must be considered with more care, because of the potential presence of confounding. A
typical example is in the context of medicine, when offline data is collected from physicians who may rely on
information absent from their patient’s medical records, such as their wealthiness or their lifestyle. Suppose
that wealthy patients in general get prescribed specific treatments by their physicians, because they can
afford it, while being less at risk to develop severe conditions regardless of their treatment, because they can
also afford a healthier lifestyle. This creates a spurious correlation called confounding, and will cause a naive
recommender system to wrongly infer that a treatment has positive health effects. Another example is in the
context of autonomous driving, when offline data is collected from human drivers who have a wider field
of vision than the camera on which the robot driver relies. Suppose human drivers push the brakes when
they see a person waiting to cross the street, and only when the person walks in front of the car it enters the
camera’s field of vision. Then, again, a naive robot might wrongly infer from its observations that whenever
the brakes are pushed, a person appears in front of the car. Suppose now that the robot’s objective is to
avoid collisions with pedestrians, then it might get regrettably reluctant to push the brakes. Of course, in
both those situations, the learning agent can infer the right causal model by disregarding the (confounded)
offline data altogether, and by relying only on online data instead, collected from its own direct interactions.
However, in both those situations also, collecting online data can be expensive, impractical, or even unethical,
while collecting offline data by observing the behaviour of human agents is much more affordable.

In this paper we study the question of combining confounded offline data with non-confounded, online data
in model-based RL, in the general Partially-Observable Markov Decision Process (POMDP) setting. Our
contribution is three-fold:

1. We formalize model-based RL as a causal inference problem using the framework of do-calculus [30],
which allows us to reason about confounding in the online and offline scenarios in a formal and
intuitive manner (Section 3).

2. We present a generic method for combining online and offline data in model-based RL (Section 4),
which we demonstrate is correct even when the offline policy relies on privileged hidden information
(confounding), and is efficient in the asymptotic case (infinite offline data).

3. We illustrate the effectiveness of our method with a practical implementation for the tabular setting,
and three experiments on synthetic toy problems (Section 5).

While our proposed method can be formulated outside of the framework of do-calculus, in this paper we hope
to demonstrate that it offers a principled and intuitive tool to reason about causality in model-based RL.
By relating common concepts from RL and causality, we wish that our contribution will ultimately help to
bridge the gap between the two communities.

2See section 6 for a discussion of related works.
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Figure 1: Standard POMDP regime.

S0

pinit

St

ptrans

St+1

ptrans

O0

pprv

Ot

pprv

Ot+1

pprv

At

πprv

At−1

πprv

Figure 2: Privileged regime (confounding).

2 Background

2.1 Notation

In this paper, upper-case letters in italics denote random variables (e.g. X,Y ), while their lower-case
counterpart denote their value (e.g. x, y) and their calligraphic counterpart their domain (e.g., x ∈ X ).
For simplicity we consider only discrete random variables. To keep our notation uncluttered, with a slight
abuse of notations we use p(x) to denote sometimes the event probability p(X = x), and sometimes the
whole probability distribution of X, which should be clear from the context. In sequential models we also
distinguish random variables with a temporal index t, which might be fixed (e.g., o0, o1 ), or undefined
(e.g., p(st+1|st, at) denotes at the same time the distributions p(s1|s0, a0) and p(s2|s1, a1)). We also adopt
a compact notation for sequences of contiguous variables (e.g., s0→T = (s0, . . . , sT ) ∈ ST+1 ), and for
summations over sets (

∑
x∈X ⇐⇒

∑X
x ). We assume the reader is familiar with the concepts of conditional

independence (X ⊥⊥ Y | Z) and probabilistic graphical models based on directed acyclic graphs (DAGs),
which can be found in most introductory textbooks, e.g. Pearl [27]; Studeny [36]; Koller and Friedman [18].

2.2 Partially-Observable Markov Decision Process

We consider episodic Partially-Observable Markov Decision Processes (POMDPs) of the form M =
(S,O,A, pinit, ptrans, pprv, r), with hidden states s ∈ S, observations o ∈ O, actions a ∈ A, initial and
transition state distributions pinit(s0) and ptrans(st+1|st, at), observation distribution pprv(ot|st), and reward
function r : O → R. For simplicity we assume episodes τ = (o0, a0, . . . , oT ) of finite length |τ | = T > 0, and
we introduce the concept of a history at time t, ht = (o0, a0, . . . , ot). The control mechanism is represented as
a stochastic policy π, which together with the POMDP dynamics pinit, ptrans and pprv defines a probability
distribution over trajectories, p(τ). In this work we consider two types of control policies, which result in two
distinct data-generation regimes.
Definition 1 (Standard POMDP regime). In the standard POMDP regime, actions are decided based only
on the visible information from the past, Ht, according to a standard policy πstd(at|ht). This results in the
data-generation process depicted in figure 1, and trajectory distributions that decompose as

pstd(τ) =
S|τ|+1∑
s0→|τ|

pinit(s0)pprv(o0|s0)
|τ |−1∏
t=0

πstd(at|ht)ptrans(st+1|st, at)pprv(ot+1|st+1).

This standard regime is that of the regular POMDP control problem, which formulates as:

π?std = arg max
πstd

E
τ∼pstd

 |τ |∑
t=0

r(ot)

 . (1)

Definition 2 (Privileged POMDP regime). In the privileged POMDP regime, actions can be decided based on
the hidden state St as well, according to a privileged policy πstd(at|ht, st). This results in the data-generation
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process depicted in figure 2, with trajectory distributions that decompose as

pprv(τ) =
S|τ|+1∑
s0→|τ|

pinit(s0)pprv(o0|s0)
|τ |−1∏
t=0

πprv(at|ht, st)ptrans(st+1|st, at)pprv(ot+1|st+1).

This privileged regime allows us to consider situations where trajectories are collected by observing an external
agent who uses privileged information, in the extreme case the entire POMDP hidden state. Such a privileged
agent can be for example a human driver in the context of autonomous driving, who has access to privileged
information not accessible to the learning robot, such as the weather forecast. There lies the origin of the
confounding problem in offline RL.

2.3 Causality and do-calculus

Several frameworks exist in the literature for reasoning about causality [28; 14; 7]. Here we follow the
framework of Judea Pearl, whose concept of ladder of causation is particularly relevant to answer RL
questions. The first level of the ladder, association, relates to the passive observation of an external
agent acting in the environment, while the second level, intervention, relates to the question of what will
happen to the environment as a result of the observer’s own actions. The tool of do-calculus [30], presented
in appendix A, acts as a bridge between these two levels, and is typically used to answer whether and
interventional distribution, such as p(y|do(x), z), can be identified from an observational distribution, such as
p(x, y, z). In a nutshell, in causal systems that can be expressed as DAGs, an intervention do(x) forces the
variables in X to take the specific value X = x regardless of their causal ancestors in the graph, and queries
of form p(y|do(x), z) measure the effect of an intervention do(X = x) on an outcome event Y = y, in the
context where another event Z = z is also observed. In this paper, we will use do-calculus to reason formally
about model-based RL in different POMDP data-collection regimes, which entail different causal graphs.

3 Model-based RL as causal inference

Decision-making problems are inherently causal [10; 7]. In POMDPs, model-based RL relies on measuring the
causal effect of immediate interventions, do(at), on the next observation, ot+1, given that past observations,
o0→t, and past interventions, do(a0→t−1), have already happened. Such causal queries are embodied in the
causal transition model p(ot+1|o0→t, do(a0→t))3, which depends only on the POMDP dynamics in M , and
not on the control policy π.

p(ot+1|o0→t, do(a0→t)) = pstd(ot+1|o0→t, do(a0→t)),∀πstd

= pprv(ot+1|o0→t, do(a0→t)),∀πprv.

Together with the initial distribution p(o0), this causal model allows for the evaluation of any standard control
policy πstd(at|ht). Model-based RL then decomposes the control problem equation (1) into two sub-problems:

1. learning: given a dataset D, estimate a model q̂(ot+1|ht, at) ≈ p(ot+1|o0→t, do(a0→t));

2. planning: given a history ht and the model q̂, derive an optimal action at.

In this work we consider only the first problem, that is, learning the causal transition model from data. Next,
we show using do-calculus that this problem can be either trivial or impossible, depending on whether the
data is collected using a standard or a privileged control policy.
Guiding example. Consider the door problem illustrated in figure 3. You are sitting in a room with a door,
a light that can be red or green, and two buttons that will open the door depending on the light color. You can
collect data samples in two ways, either from interventions, i.e., you get up and press the buttons (expensive),
or from observations, i.e., you watch someone else press the buttons (cheap). A key detail: you’re colorblind

3Such a notation can be found also in [26]

4



Published in Transactions on Machine Learning Research (08/2023)

Light

Button Door

Causal DAG

Figure 3: The door problem.

and can’t distinguish red from green. Your goal is to find which button is more likely to open the door. The
mechanism responsible for opening the door works as follows: when the light is red, button A opens the door,
when the light is green, button B opens the door. The light is red 60% of the time, and green the rest of the
time. You are told nothing about the door’s mechanism, except that it depends on both the light color and the
button pressed (Light → Door ← Button). Since you are colorblind you cannot use the light color to make
decisions, and the question you are interested in is simply, which button is more likely to open the door? In
the do-calculus framework, this question translates to

arg max
button∈{A,B}

p(door=open|do(button)).

You have to estimate two causal queries: p(door=open|do(button = A)) and p(door=open|do(button = B)).

3.1 In the standard POMDP regime

In the standard POMDP regime, we assume access to a dataset Dstd ∼ pstd(τ) of episodes τ collected using
an arbitrary standard policy πstd(at|ht). A key characteristic in this setting is that At ⊥⊥ St | Ht is always
true, that is, every action is independent of the current hidden state given the current history. By applying
do-calculus on the causal graph from figure 1, the causal model can be shown to be trivially identifiable as

p(ot+1|o0→t, do(a0→t)) = pstd(ot+1|ht, at). (2)

Because of this property, any trajectory τ ∼ pstd(τ) can be interpreted as an interventional trajectory, where
the learning agent itself could have decided on each of the action at in τ . Thus, in the remainder of the paper
we will interchangeably call the standard POMDP regime the interventional regime, and any dataset Dstd
collected in this regime an interventional dataset.

Assuming sufficient exploration, which is achieved if the control policy is strictly positive (πstd(at|ht) > 0,
∀at, ht), an estimator of the POMDP causal model can be obtained from Dstd via log-likelihood maximization,

q̂ = arg max
q∈Q

Dstd∑
τ

|τ |−1∑
t=0

log q(ot+1|ht, at). (3)

This corresponds to the simplest and most common form of model learning via supervised learning [24], which
effectively solves our causal inference problem.
Guiding example. Consider again our door example. If you collect the result of your own (or another
colorblind person’s) interactions with the door, then you know that the light color can not cause which button
is pressed (Light 6→ Button). Then, you can directly estimate the causal effect of the button on the door,

p(door=open|do(button)) = pstd(door=open|button).

In this regime, regardless of which policy is used to collect (button, door) samples, eventually you realize that
button A has more chances of opening the door (60%) than button B (40%), and thus is the optimal action4.

4One assumption though is strict positivity, πstd(button) > 0 ∀button, which ensures that both buttons are pressed.
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3.2 In the privileged POMDP regime

In the privileged POMDP regime, we assume access to a dataset Dprv ∼ pprv(τ) of episodes τ collected using
an arbitrary privileged policy πprv(at|ht, st). In this setting, actions might not be independent of the current
hidden state given the current history, i.e., At ⊥⊥ St | Ht might not hold. Because each hidden state St has a
causal effect on both the current action At and the next observation Ot+1, it acts as a hidden confounder in
the POMDP causal transition model. This confounding effect can not be adjusted for without observing
the hidden states of the POMDP, and applying do-calculus on the causal graph from figure 2 results in the
causal model p(ot+1|o0→t, do(a0→t)) being non-identifiable from pprv(τ). In particular,

p(ot+1|o0→t, do(a0→t)) 6= pprv(ot+1|ht, at).

Because of this, trajectories τ ∼ pprv(τ) cannot be interpreted as interventional. To better relate to the
causality literature, we will interchangeably call the privileged POMDP regime the observational regime, and
any dataset Dprv collected in this regime an observational dataset.

Note that, as a consequence of this non-identifiability, naively applying any off-the-shelf offline RL algorithm
[20; 21] on an observational dataset such as Dprv is a risky endeavour, and might result in biased transition
models and value functions, and sub-optimal policies.
Guiding example. Take again the door example in figure 3, and assume that you observe someone else
interacting with the door. You do not know whether that person is colorblind or not (Light→ Button is possible).
In this regime, without additional knowledge, you cannot recover the causal queries p(door=open|do(button))
from the observed distribution p(door, button). In the do-calculus framework, the queries are said non
identifiable. However, if that person was to tell you the light color they see before they press A or B, then you
could recover those queries via deconfounding,

p(door=open|do(button)) =
∑

light∈{red,green}

pprv(light)pprv(door=open|light, button).

This formula eventually yields the correct causal transition probabilities regardless of the observed policy, given
that enough (light, button, door) samples are collected5.

3.3 Connection to online and offline RL

To relate the concepts of standard (interventional) and privileged (observational) POMDP data to online and
offline RL, the key question to ask is, when the samples were collected, could the control policy have used
privileged information besides the history ht? Or, more formally, can we guarantee that At ⊥⊥ St | Ht did
hold in the data-generating process?

In online RL, the learning agent explicitly controls the data-collection policy, so by design it can not rely
on privileged information, hence At ⊥⊥ St | Ht always holds. Therefore, data collected in an online RL setting
can be safely treated as interventional, and the causal transition model can be directly estimated using
equation (3).

In offline RL, the learning agent might have limited knowledge about the data-collection policy, sometimes
no knowledge at all. In some settings, it can be shown that the offline policy could not have used any
privileged information, and offline data can be treated as interventional. For example, with human replays
from Atari video games, it is hard to imagine a human player having access to more information from the
machine’s internal state than the regular video and audio outputs from the game. But in more general offline
RL settings, access to privileged information can not be dismissed. This is particularly true with human
demonstrations collected in the wild, such as in the context of autonomous driving, medical recommender
systems (examples in Section 1), or question answering systems [26]. In that case, the offline trajectories can
not be considered interventional, and the offline dataset must be treated as observational.

5The strict positivity condition here is πprv(button|light) > 0 ∀button, light.
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4 Combining observational and interventional data

Given enough online data, RL agents can learn optimal policies. But in some situations collecting a large
online (interventional) dataset can be expensive (recording a robot driver in the wild), while collecting a
large offline (observational) dataset from demonstrations is relatively cheap (recording human drivers in the
wild). Is it possible then to leverage such offline data to improve the sample-efficiency of an online RL agent,
even in the presence of confounding? 6

4.1 Problem statement

We consider two datasets of POMDP trajectories, Dstd and Dprv, sampled respectively in the standard
(interventional) and the privileged (observational) POMDP regime. We then ask the following question: can
the observational dataset Dprv be used in combination to the interventional dataset Dstd, to improve the
POMDP causal transition model p(ot+1|o0→t, do(a0→t)) that would be obtained from equation (3) using
Dstd only? As we will see, answering this question will require to go beyond the identifiability framework of
do-calculus.

4.2 The augmented POMDP

Since both datasets Dstd and Dprv are sampled from the same POMDP (pinit, ptrans, pprv) controlled in two
different ways, we introduce a regime indicator variable [7] I ∈ {0, 1} that controls an augmented control
policy π. This results in the augmented data-generating process depicted in figure 4, such that

Dprv ∼ p(τ |i = 0) := pprv(τ), and
Dstd ∼ p(τ |i = 1) := pstd(τ).

Note that the augmented control policy induces the contextual conditional independence At ⊥⊥ St | Ht, I = 1,
which is not implied by the DAG factorization. As a direct consequence of equation (2), in this augmented
POMDP the causal POMDP transition model can be extracted as

p(ot+1|o0→t, do(a0→t)) = pstd(ot+1|ht, at) = p(ot+1|ht, at, i = 1). (4)

4.3 The augmented learning problem

In order to learn the causal transition model p(ot+1|o0→t, do(a0→t) we propose the following two-step procedure,
which relies on fitting a latent probabilistic model q̂ that explains both Dstd and Dprv. Our latent model is
constrained to respect the structure of our augmented POMDP, with a latent variable zt ∈ Z that substitutes
the true hidden state st ∈ S.

6Note that we consider this question in its broadest, without further assumptions about the observed offline agent. The
offline agent might act sub-optimally, or optimally according to a different reward function than the learning agent.
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Learning. Our learning problem formulates as standard likelihood maximization7,

q̂ = arg max
q∈Q

Dprv∑
(τ)

log q(τ |i = 0) +
Dstd∑
(τ)

log q(τ |i = 1), (5)

with Q the family of latent probabilistic models that respect the augmented POMDP structure,

q(τ |i = 0) =
Z|τ|+1∑
z0→|τ|

qinit(z0)qobs(o0|z0)
|τ |−1∏
t=0

qprv(at|ht, zt)qtrans(zt+1|at, zt)qobs(ot+1|zt+1), and

q(τ |i = 1) =
Z|τ|+1∑
z0→|τ|

qinit(z0)qobs(o0|z0)
|τ |−1∏
t=0

qstd(at|ht)qtrans(zt+1|at, zt)qobs(ot+1|zt+1).

Note that the recovered model q̂ conveniently decomposes into a series of simpler components: the initial latent
model q̂(z0), the observation model q̂(ot|zt), the latent transition model q̂(zt+1|zt, at), and the behaviour model
q̂(at|zt, ht, i). In practice, the behaviour model in the interventional regime q̂(at|zt, ht, i = 1) = q̂(at|ht, i = 1)
can be safely ignored during learning, since it does not impact the recovered latent variable nor the causal
transition model. Also, the agent behavior model in the observational regime q̂(at|zt, ht, i = 0) can be
substituted for a simpler model q̂(at|zt, i = 0), which further simplifies the model architecture to be used
when solving (5). This leaves only four learnable components: q̂(z0), q̂(ot|zt), q̂(zt+1|zt, at) and q̂(at|zt, i = 0),
each of which can be approximated using any black-box model, such as a feed-forward neural network.

Inference. We recover the causal transition model q̂(ot+1|o0→t, do(a0→t)) = q̂(ot+1|ht, at, i = 1) by applying
do-calculus on the augmented DAG from figure 4, with zt instead of st. The procedure conveniently unrolls
as a forward algorithm at test time, and relies on the recurrent computation of q̂(zt|ht, i = 1), a.k.a. the
agent’s belief state at time t [5; 35]. First, the initial belief state at t = 0 is recovered as

q̂(z0|h0, i = 1) = q̂init(z0)q̂obs(o0|z0)∑Z
z0
q̂init(z0)q̂obs(o0|z0)

.

Then, for every 0 ≤ t < T , the causal transition model is recovered as

q̂(zt+1, ot+1|ht, at, i = 1) =
∑Z
zt
q̂(zt|ht, i = 1)q̂trans(zt+1|zt, at)q̂obs(ot+1|zt+1),

q̂(ot+1|ht, at, i = 1) =
∑Z
zt+1

q̂(zt+1, ot+1|ht, at, i = 1),

and the next belief state is updated to

q̂(zt+1|ht+1, i = 1) = q̂(zt+1, ot+1|ht, at, i = 1)∑Z
zt+1

q̂(zt+1, ot+1|ht, at, i = 1)
.

Since the observational distribution pprv does not appear in the expression of p(ot+1|o0→t, do(a0→t)) in equa-
tion (4), how does the observational dataset Dprv influence the causal transition model q̂(ot+1|o0→t, do(a0→t))?
The intuition is as follows. The learned model q̂ must fit both observational and interventional data by
sharing the same latent variables Zt, and the same building blocs q̂init(z0), q̂obs(ot|zt) and q̂trans(zt+1|zt, at).
The privileged behaviour model q̂prv(at|zt) is the only component that can allow for discrepancies between
the two regimes, and it offers a limited flexibility. As a result, the observational distribution q̂(τ |i = 0)
estimated from Dprv acts as a regularizer for the interventional distribution q̂(τ |i = 1) estimated from Dstd.
This regularization helps prevent overfitting when learning from limited interventional data, and improves
the generalization performance of the estimated causal transition model. As a side comment, note that our
method does not rely on the identifiability of the latent transition model ptrans(st+1|st, at), which remains in
general non-identifiable from observational data, interventional data, or any of their combinations.

7Note that, while the problem of learning structured latent variable models is known to be hard in general, there also exists a
wide range of tools and algorithms available in the literature for solving it approximately, such as the EM algorithm or the
method of ELBO maximization.
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4.4 Theoretical analysis

In this section we analyse the two-step approach described in the previous section, and we demonstrate that
it is 1) correct, in the sense that it yields a consistent estimator of the standard POMDP causal transition
model and 2) efficient, in the sense that it yields a better estimator than the one based on interventional data
only (asymptotically in the number of observational data).

First, let us demonstrate how our approach is correct. An important assumption here is that the latent space
of the model is sufficiently large (|Z| ≥ |S|), which ensures enough expressivity to learn the true augmented
POMDP distribution, i.e., p ∈ Q. Under this condition, with enough data q̂ converges to p, and in particular
q̂(τ |i = 1)→ p(τ |i = 1) when Dstd →∞. Then, the standard POMDP causal model q̂(ot+1|ht, at, i = 1) being
a marginal distribution of q̂(τ |i = 1), it also converges to p(ot+1|ht, at, i = 1). Hence, solving equation (5)
with a sufficiently large interventional dataset Dstd and a sufficiently large latent space Z converges to the
true standard POMDP transition model.

Second, let us demonstrate intuitively how our approach is efficient asymptotically. Our key assumption is
that we have a big enough observational dataset, |Dprv| → ∞, which makes it act as a strong regularizer
in equation (5). Our key result is theorem 1, which generalizes a famous result in econometrics known as
Manski’s bounds [23], from the contextual bandit setting (T = 1) to the POMDP setting (T > 1).

Theorem 1. Assuming |Dprv| → ∞, for any Dstd the recovered causal model is bounded as follows:

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≥
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0), and

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

p(at|ht, i = 0),

∀hT−1, aT−1, T ≥ 1 where p(hT−1, aT−1, i = 0) > 0.

Proof. See appendix D.

Let us denote the family of candidate causal models when solving equation (5) as H0 = {q(ot+1|o0→t, a0→t, i =
1) | q ∈ Q} when |Dprv| = 0, and H∞ = {q(ot+1|o0→t, a0→t, i = 1) | q ∈ Q ∧ q(τ |i = 0) = p(τ |i = 0)} when
|Dprv| → ∞. Because there exists at least one episode τ = (o0, ao, . . . , oT ) with p(τ |i = 0) > 0, theorem 1
implies the non-trivial lower bound q(ot+1|o0→t, a0→t, i = 1) > 0 for every 0 ≤ t ≤ T − 1, at least for the
specific values in τ . Therefore, candidate models q such that q(ot+1|o0→t, a0→t, i = 1) = 0 are allowed in
H0 but forbidden in H∞, and hence H∞ ⊂ H0. Because this new hypothesis space is a strict subset of the
original one, it offers better generalization bounds for a fixed |Dprv|, or equivalently a better sample-efficiency
with respect to |Dprv|.

Guiding example. Let us now examine our door example in light of Theorem 1. Assume this time that
you observe many (button, door) interactions from a non-colorblind person (privileged, i = 0), who’s policy is
π(button=A|light=red) = 0.9 and π(button=A|light=green) = 0.4. Then you can already infer from Theorem 1
that p(door=open|do(button=A)) ∈ [0.54, 0.84] and p(door=open|do(button=B)) ∈ [0.24, 0.94]. You now get a
chance to interact with the door (i = 1), and you decide to press A 10 times and B 10 times. You are unlucky,
and your interventional study results in the following probabilities: q(door=open|do(button=A)) = 0.5 and
q(door=open|do(button=B)) = 0.5. This does not coincide with your (reliable) observational study, and
therefore you adjust q(door=open|do(button=A)) to its lower bound 0.54. You now believe that pressing A is
more likely to be your optimal strategy.
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4.5 Limitations of the provided analysis

We would like to acknowledge two limitations of the theoretical results we provide in the previous section.
First, it is fairly easy to see that the upper bound in theorem 1 is not tight. For example,

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤
T−2∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ∀T ≥ 2,

is always true, and therefore

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤ min
K∈{0,...,T−1}

K∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1−
K∏
t=0

p(at|ht, i = 0)

which is a tighter bound and also a generalization of Manski’s bounds [23]. Still, it is likely that this upper
bound is not tight either. The purpose of theorem 1 is merely to serve as a building block in the argument
“observational data creates bounds (in the asymptotic regime) which restrict the hypothesis space for learning”.
Providing tighter bounds for augmented POMDPs would give valuable insight, and is left for future work.

Second, the results in section 4.4 are restricted to the asymptotic regime |Dprv| → ∞, and do not provide any
practical guarantee in the finite-sample regime. Our intuition is that these hard bounds would translate into
some kind of soft prior over the hypothesis space, which would also improve generalization. Proving this idea
formerly and deriving proper generalization bounds in the finite-sample regime is left for future work.

5 Experiments

We run experiments on the three synthetic toy problems described in figure 6, each expressing a different
level of complexity and a different form of privileged information. In order to answer the question raised in
section 4.1, we compare our augmented method against two baselines: no obs which discards the observational
dataset, and naive which naively combines observational and interventional data as if there was no confounding.
We expect two things: 1) in the presence of privileged information (confounding), the observational dataset
decreases the performance of the naive agent, compared to the no obs agent; and 2) our augmented agent
benefits from the observational dataset, and outperforms both the naive and the no obs agent. The code to
reproduce these experiments is available online8.

5.1 Experimental setup

RL procedure. Our augmented model-based RL procedure is depicted in algorithm 1. We start from
a pre-existing dataset of privileged POMDP trajectories (observational data), Dprv, an empty dataset of
standard POMDP trajectories (interventional data), Dstd, and a random exploration policy, π̂std. By fixed
increments (e.g., 0, 10, 50, . . . , 1000), the learning agent collects new interventional trajectories by exploring
the environment, which complement the interventional dataset Dstd. After each increment a new latent-based
model q̂ is obtained by solving equation (5), and a new (near)-optimal policy π̂std is derived from the model
q̂ using an actor-critic algorithm. The newly obtained policy π̂std is then used to collect the next increment
of interventional trajectories, supplemented with an ε-random noise for exploration.

Model and agent training. We train all three model-based methods, augmented, no obs and naive, using
the same model architecture and training procedure. Each building bloc q̂init, q̂trans, q̂obs and q̂prv consists in
a tabular logistic model, and equation (5) is solved via mini-batch stochastic gradient descent using Adam [17].
Once the POMDP dynamics are recovered we extract q̂(o0) and q̂(ot+1|o0→t, do(a0→t)) to train a "dreamer"
agent [11] via actor-critic, implemented as a feed-forward neural network that takes as input the recovered
POMDP belief state, q̂(zt|o0→t, do(a0→t−1)).

Evaluation. We evaluate on the real test environment 1) the quality of the causal transition model
q̂(ot+1|o0→t, do(a0→t)) in terms of its likelihood on new interventional data (collected via random exploration),

8Code for the experiments: https://github.com/gasse/causal-rl-tmlr
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Algorithm 1 Augmented model-based RL pseudocode
Require: observational dataset Dprv (potentially privileged), training method (augmented, no_obs or naive),
training steps N (e.g., N = (0, 10, 50, . . . , 1000)), exploration noise ε

Ensure: estimated POMDP dynamics q̂init(z0), q̂obs(ot|zt), q̂trans(zt+1|zt, at), and optimal policy π̂std
Initialize Dstd ← ∅, π̂std ← random exploration policy
if training method is no_obs then discard observations (Dprv ← ∅)
if training method is naive then consider observations as interventions (Dstd ← Dprv and Dprv ← ∅)
nprev ← 0
for all n ∈ N do

Collect n− nprev new interventional samples using π̂std + ε-random noise, and add them to Dstd
Obtain a new model q̂ using Dstd and Dprv (equation (5), supervised learning)
Obtain a new policy π̂std using the model q̂ (actor-critic in “dream” environment)
nprev ← n
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Figure 5: Robustness to different degrees of confounding on the tiger problem. Top: model likelihood on
new data (higher is better). Bottom: agent performance in terms of cumulated reward (higher is better).
Columns: the different privileged agents used to collect the observational dataset Dobs. The random agent
amounts to no confounding, while the noisy good, perfect good and perfect bad agents introduce different
degrees of confounding. We report the mean ± standard deviation over 10 random seeds. Our augmented
method performs best regardless of the degree of confounding, both in terms of model likelihood and agent
performance, and is on par with the naive method when there is no confounding (random).

and 2) the performance of the resulting policy π̂std in terms of its cumulated reward. We evaluate each model
and agent over 10K new trajectories, and we repeat each experiment 10 times with different random seeds to
account for variability. We defer the reader to appendix B for the complete experimental details.

5.2 Robustness to different degrees of confounding in the tiger problem

Tiger is a classic small-scale POMDP from Cassandra et al. [4] with |S| = 6 hidden states and time
horizon T = 10. To measure the robustness of our method to different degrees of confounding, we
consider different privileged policies, described in detail in appendix B. For each experiment we col-
lect |Dprv| = 1500 (confounded) observational trajectories, and we train and evaluate at increments
|Dstd| ∈ (0, 50, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000).

Results are reported in figure 5. The first policy, random, amounts to a degree 0 of confounding, because
the privileged information is effectively not used to generate Dprv. In this setting our method performs on
par with the naive method, which also leverages the observational data without bias due to the absence of
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confounding. The noisy good policy mostly opens the correct door with the treasure, but sometimes also
decides to listen or to open the wrong door at random. This degree of confounding, although rather mild
in terms of the bias in the non-causal transition probabilities pprv(ot+1|ht, at), is particularly hurtful to the
naive method. The perfect good policy always opens the correct door, which induces non-causal transition
probabilities that are completely off the causal ones, and also hurts the performance of the naive method as
the learned model will tend to be over-optimistic. The perfect bad policy always opens the wrong door, which
induces transition probabilities that are completely off in the other direction, but this time the effect on the
performance of the naive method is not as bad. Indeed, the learned naive model this time will tend to be
over-pessimistic, which is not such a bad prior in the case of the tiger problem. Our augmented method,
always performs better than (or on par with) both no obs and naive, effectively leveraging the observational
dataset |Dprv| even in the presence of confounding.

5.3 Performance on the gridworld problems

Hidden treasures is a 3x3 grid-world problem inspired from Sutton et al. [37], with |S| = 36 hidden states
and a time horizon T = 10. Sloppy dark room is a 5x5 grid-world inspired from Alt et al. [1], with |S| = 21
hidden states and a time horizon T = 30. In both problems, the privileged agent has complete information
at each time step, and uses a shortest path algorithm to decide on its next action. For each experiment we
collect |Dprv| = 8000 (confounded) observational trajectories, and we train and evaluate each method at
increments |Dstd| ∈ (25, 50, 75, 100, 150, 200, 300, 400, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000).

Results are reported in figure 7, where a similar trend can be observed in the two experiments. Initially,
when few interventional samples have been collected, the observational data seems to benefit the naive
method, despite the presence of confounding, and it exhibits gains both in terms of model likelihood and
agent performance compared to the no obs method. But as more samples are collected, the untreated
confounding effect in the observational data starts becoming hurtful to the naive method, and eventually
better performances are obtained by disregarding the observational data, using the no obs method. In both
cases our augmented method makes the best use of the available data, and exhibits a better convergence rate
than both naive and no obs, in terms of model quality and agent performance, despite the confounding effect
present in the observational data. In figure 7, right side, we report the density of tiles visited by the agent of
each method, at a chosen time step where our augmented method has almost converged, while the two other
methods haven’t. In hidden treasures we see that our method has learned to cycle through all 4 corners,
which is the optimal strategy, while the two other methods still struggle and focus only on a single side or a
single corner of the grid. In sloppy dark room, our method succeeds in quickly escaping the upper section
and reaching the target, while the two other methods struggle more in the upper section, and reach the target
less often. It is interesting to observe a very similar outcome in both experiments, while the type of privileged
information, hidden to the learning agent, is quite different. In hidden treasures the learning agent knows
its position at all times, but is missing information about where the target is located, thus it needs to explore
the space at test time, while the privileged agent just has to go straight to the target. In sloppy dark room,
the target is fixed hence no exploration of the space is needed at test time, but the agent’s location is hidden
most of the time and the agent has to learn how to best navigate while being half-blind.

6 Related work

Causal RL. A whole body of work exists around the question of merging interventional and observational
data in RL in the presence of confounding. Bareinboim et al. [2] study a sequential decision problem similar
to ours, but assume that expert intentions are observed both in the interventional and the observational
regimes, i.e., prior to doing interventions the learning agent can ask “what would the expert do in my
situation?” This artificially introduces an intermediate, observed variable ât = f(ot) with the property that
pprv(at = ât|ât) = 1, which effectively removes any confounding (At ⊥⊥ St|Ht). Zhang and Bareinboim
[40; 43] relax this assumption in the context of binary bandits, and later on in the more general context of
dynamic treatment regimes [41; 42]. They derive causal bounds similar to ours (Theorem 1), and propose a
two-step approach which first extracts causal bounds from observational data, and then uses these bounds
in an online RL algorithm. While their method nicely tackles the question of leveraging observational data
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tiger hidden treasures sloppy dark room

Figure 6: Our three synthetic toy problems. In tiger, the learning agent receives a noisy signal of the tiger’s
position (roar left or roar right). It can wait and listen to a new roar at the cost of -1 reward, or decide to
move left or right. Treasure gives +10 reward, and tiger gives -100 reward. The privileged agent knows the
exact location of the tiger. The game stops when treasure or tiger is found, or after a maximum horizon of
T = 10. In hidden treasures the agent must collect a treasure (+1 reward), which is randomly located in
one of the four corners. The privileged agent knows the treasure’s position at all times, the learning agent
doesn’t. The treasure is reset to a new location when found, and the game stops after a fixed horizon of
T = 10. In sloppy dark room the agent must reach a treasure (+1 reward) located behind a wall, and slips
to a random adjacent tile instead of moving to the chosen direction 50% of the time. The privileged agent
knows its position at all times, while the learning agent is only revealed its position with 20% chances at each
time step, and is blind otherwise (a dummy position is revealed). The time horizon is fixed to T = 30.
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Figure 7: Performance on the hidden treasures (top row) and sloppy dark room (bottom row) grid-
world problems. First column: model likelihood on new data (higher is better). Second column: agent
performance in terms of cumulated reward (higher is better). Third column: density of the agent trajectories
obtained by each method at a specific time step ?. In both setups, our augmented method outperforms both
the unbiased no obs method and the biased naive method, and displays a better sample-efficiency in terms of
interventional (online) data due to its correct use of the observational (offline, confounded) data. While the
naive method can sometimes provide some initial gains compared to the no obs method, at some point the
confounding effect in the observational dataset (collected from a privileged agent) starts affecting the agent’s
performance negatively, and one is better off not using the confounded data at all (no obs method).
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for online exploration, it does not account for uncertainty in the bounds estimated from the observational
data. In comparison, our latent-based approach is more flexible, as it never computes explicit bounds, but
rather lets the learning agent balance through equation (5) how data from both regimes will influence the
final transition model, depending of the number of samples available. Kallus et al. [16] also propose a
two-step procedure to combine observational and interventional data, which however requires a series of
strong parametric assumptions (strong one-way overlap, linearity, non-singularity etc.), and only works in the
context of binary contextual bandits.

Causal confusion. In the context of imitation learning, the problem of causal misidentification, that is,
ascribing the actions of the expert to the wrong explanatory variables, is attributed to confounding by
de Haan et al. [8]. Spencer et al. [34] argue instead that it is a manifestation of covariate shift, which appears
more plausible to us. Indeed, it can be shown that in the experiments of de Haan et al. [8] the experts don’t
use privileged information, which theoretically circumvents any confounding.

Exploiting offline RL data. Combining online and offline data in RL also raises additional challenges, such
as the value function initialisation problem [9] or the bootstrapping error accumulation problem [19; 25]. While
these challenges could be combined with and amplified by confounding, they originate from fundamentally
different issues and require orthogonal treatments. Off-policy evaluation, which is about estimating the
performance of a policy π using observational data only, can be seen as a specific instantiation of the framework
we present in this paper. It corresponds to the particular setting |Dint| = 0, where it can be shown that the
causal transition model is in general not recoverable in the presence of confounding. Still, a growing body of
literature studies the question of learning purely from offline data in the presence of confounding, under the
assumption that the data-generating process respects specific structural or parametric constraints [22; 38; 3].

Large sequence models. A recent trend in RL is to apply large sequence models to estimate the
environment’s dynamics in a model-based fashion [32; 15], or to parameterize a goal-conditioned policy in a
model-free fashion [6; 44]. While large sequence models appear a promising tool for efficiently combining
offline and online datasets, they remain vulnerable to confounding, as pinpointed by Ortega et al. [26].
Because our proposed method follows a generic model-based approach, in theory it could be easily combined
with a large sequence model to address large-scale RL scenarios, while remaining robust to confounding.

7 Discussions

In this paper we have presented a simple, generic method for combining interventional and observational
(potentially confounded) POMDP trajectories in model-based reinforcement learning. We have demonstrated
theoretically that our method is correct and efficient in the asymptotic case (infinite observational data), and
we have illustrated its effectiveness empirically on three synthetic toy problems. We have also highlighted the
dangers of naively using offline data collected under privileged information in RL, which can effectively hurt
the performance of an online RL agent, and reduce its sample-efficiency. The main limitation of our method
is that it adds an additional challenge on top of model-based RL, that of learning a latent-based POMDP
transition model, which can become problematic in high-dimensional RL settings. Still, the recent success of
discrete latent-based models for solving complex RL tasks [11; 39; 12] or tasks in high-dimensional domains
[31] lets us envision that this difficulty can be overcome in practice. A first extension of this work would be to
develop a similar approach using latent-free transition models, which would remove the challenge of learning
a latent variable model. This seems doable at least in the case T = 1. A second potential extension to this
work could be to consider a setting where several privileged agents are observed, each with its own distinct
policy, leading to multiple observational datasets. This would lead, in the asymptotic case, to a stronger
regularizer for the causal POMDP transition model, as the implicit bounds implied by theorem 1 would
combine into tighter ones. A third, obvious extension would be to develop a similar approach within the
framework of model-free RL, which could take the form of an explicit or implicit value-function regularizer.
A fourth direction to investigate is that of scaling, by extending our method to RL tasks with continuous
observation spaces (e.g., pixel-based) and continuous latent spaces, so that it can be applied to a broader
range of problems. Finally, we hope that this work will help bridge the gap between the fields of RL and
causality, and will convince the RL community that causality is an adequate tool to reason about offline,
observational data, which is plentiful in the world.
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A Introduction to do-calculus

The framework of do-calculus [30] was proposed as an intuitive tool to answer identifiability questions given a
causal graph G, such as, can the interventional distribution p(y|do(x), z) be recovered from the observational
distributions p(y, x, z)?

A.1 The three rules of do-calculus

Do-calculus relies on three graphical rules, which depend solely on the existence of specific structural
constraints in G:

• R1: insertion/deletion of observations, p(y|do(x), z, w) = p(y|do(x), w) if Y and Z are d-separated
by X ∪W in G?, the graph obtained from G by removing all arrows pointing into variables in X.

• R2: action/observation exchange, p(y|do(x), do(z), w) = p(y|do(x), z, w) if Y and Z are d-separated
by X ∪W in G†, the graph obtained from G by removing all arrows pointing into variables in X and
all arrows pointing out of variables in Z.

• R3: insertion/deletion of actions, p(y|do(x), do(z), w) = p(y|do(x), w) if Y and Z are d-separated by
X ∪W in G‡, the graph obtained from G by first removing all the arrows pointing into variables in
X (thus creating G?) and then removing all of the arrows pointing into variables in Z that are not
ancestors of any variable in W in G?.

This set of rules has been shown to be complete [13; 33], and results in an algorithm polynomial in the number
of nodes in G to answer identifiability questions, which either outputs "no" or "yes" along with an estimate
(a recovery formula) based on observational quantities. We refer the reader to Pearl [30] for a thorough
introduction to do-calculus.

A.2 Note on ignorability and exogeneity

In this paper we use at great length the concept of confounding, which is a core idea in Judea Pearl’s
do-calculus framework. For readers who are more familiar with the framework of potential outcomes from
Donald Rubin [14], the concept of confounding closely relates to the concepts of ignorability and exogeneity,
which can be shown to be equivalent to the unconfoundedness (no confounding) assumption [28].
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B Experimental details

B.1 Training

In all our experiments we use tabular logistic models for each of the components in q̂. That is, each building
bloc q(z0), q(ot|zt), q(zt+1|zt, at), and q(at|ht, zt, i = 0) is parameterized using a set of softmax-normalized
scalars vectors. We train q̂ via gradient descent using the Adam optimizer [17], by directly minimizing the
negative log likelihood of the model (equation (5)) on random mini-batches of trajectories sampled from
Dstd ∪ Dprv. Agents are trained using the learned model as a “dream” environment (by sampling imaginary
trajectories τ ∼ q̂(τ |i = 1)), with a simple actor-critic algorithm (REINFORCE with a state-value baseline)
for a fixed number of iterations, also using the Adam optimizer. Both the actor and critic consists of a
2-layers perceptron (MLP) with the same hidden layer size, which take as input the belief state recovered
from the model. The training hyperparameters we used in each experiment are displayed in table 1.

tiger
hidden sloppy

treasures dark room

Latent model
latent space size |Z| 32 256 128
learning rate 10−3 10−3 10−3

number of epochs (max) 500 500 500
number of gradient steps per epoch 50 100 100
minibatch size (trajectories τ) 32 64 64

Actor-critic agent
exploration noise ε 0.5 0.2 0.2
hidden layer size 256 512 256
learning rate 5× 10−4 5× 10−4 5× 10−4

number of epochs 200 400 200
number of gradient steps per epoch 50 50 50
minibatch size (trajectories τ) 32 64 64
minibatch return scaling yes no no
entropy bonus 10−3 10−3 10−3

discount factor γ 1 1 1

Table 1: Training hyperparameters we used in each experiment. When learning the model, we divide the
learning rate by 10 after 10 epochs without loss improvement (reduce on plateau), and we stop training after
20 epochs without improvement (early stopping). We use all available data for training, and we monitor the
training loss for early stopping (no validation set).

B.2 Evaluation

Model quality (likelihood). To evaluate the general quality of the recovered POMDP model, we compute
the likelihood of q̂ on a new interventional dataset Dtest obtained from the true environment p with a uniformly
random policy πrand,

Eτ∼pinit,ptrans,pobs,πrand

q̂(o0)
|τ |∏
t=1

q̂(ot+1|ht, i = 1)

 .

We report an empirical estimate of this measure using 10000 trajectories.

Agent performance (cumulated reward). To evaluate quality of the agent obtained from the model q̂
for solving the standard POMDP control task, we compute the expected cumulated reward of the policy π̂?
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on the true environment p,

Eτ∼pinit,ptrans,pprv,π̂?

 |τ |∑
t=1

r(ot)

 .

We report an empirical estimate of this measure using 10000 trajectories.

B.3 Tiger experiment

We present the (compact) POMDP dynamics of the tiger problem in table 2. After conversion to the
notation in the paper, the observations become ot = (roart, rewardt), the actions remain at = actiont, and
the hidden states are st = (tigert, rewardt). The privileged policies used in the experiments (section 5.2) are
reported in table 3.

Table 2: Compact POMDP dynamics in the tiger problem.

tiger0
left right
0.5 0.5

p(tiger0)

tigert+1
tigert actiont left right

left
listen 1.0 0.0

open left 0.5 0.5
open right 0.5 0.5

right
listen 0.0 1.0

open left 0.5 0.5
open right 0.5 0.5

p(tigert+1|tigert, actiont)

roart
tigert left right
left 0.85 0.15
right 0.15 0.85

p(roart|tigert)

rewardt+1
tigert actiont -1 -100 +10

left
listen 1.0 0.0 0.0

open left 0.0 1.0 0.0
open right 0.0 0.0 1.0

right
listen 1.0 0.0 0.0

open left 0.0 0.0 1.0
open right 0.0 1.0 0.0

p(rewardt+1|tigert, actiont)

Table 3: Privileged policies πprv(action|tiger) used in the tiger experiment.

actiont
privileged policy tigert listen left right

random left 0.33 0.33 0.33
right 0.33 0.33 0.33

noisy good left 0.05 0.30 0.65
right 0.05 0.80 0.15

perfect good left 0.00 0.00 1.00
right 0.00 1.00 0.00

perfect bad left 0.00 1.00 0.00
right 0.00 0.00 1.00

C Additional empirical results
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Figure 8: Evolution of the test-time agent trajectories in the hidden treasures experiment. We report a
heatmap of the tiles visited by each agent (no obs, naive, augmented) at different time steps (number of
interventional samples collected) during a single RL run (single seed). Eventually all methods converge to the
optimal strategy, which is to cycle through the 4 corners. Our augmented method converges to this behaviour
earlier on during training.
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Figure 9: Evolution of the test-time agent trajectories in the sloppy dark room experiment. We report
a heatmap of the tiles visited by each agent (no obs, naive, augmented) at different time steps (number
of interventional samples collected), averaged over 10 RL runs (10 seeds). Eventually all methods manage
to consistently overcome the obstacle and reach the target tile. Our augmented method converges to this
behaviour earlier on during training.
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D Proof of Theorem 1.

Theorem 1. Assuming |Dprv| → ∞, for any Dstd the recovered causal model is bounded as follows:
T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≥
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0), and

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

p(at|ht, i = 0),

∀hT−1, aT−1, T ≥ 1 where p(hT−1, aT−1, i = 0) > 0.

Proof of Theorem 1. Consider q(τ, i) ∈ Q any distribution that follows our augmented POMDP constraints.
As an intermediary step, we will start by proving the following

T−1∏
t=0

q(ot+1|ht, at, i = 1) =
ZT+1∑
z0→T

q(z0|h0, i = 0)
T−1∏
t=0

q(zt+1, ot+1|zt, at, ht, i = 0). (6)

First, for any 0 ≤ t ≤ T − 1, we can write the following factorization

q(zt, zt+1, ot+1|ht, at, i = 1) = q(zt|ht, at, i = 1)q(zt+1, ot+1|zt, ht, at, i = 1).

Because of the augmented POMDP constraints, the independences Zt ⊥⊥ At | Ht, I = 1 and Zt+1, Ot+1 ⊥⊥ I |
Zt, At, Ht hold in q, which further allows us to write

q(zt, zt+1, ot+1|ht, at, i = 1) = q(zt|ht, i = 1)q(zt+1, ot+1|zt, ht, at, i = 0). (7)

Then, we directly get

q(ot+1|ht, at, i = 1) =
Z×Z∑
zt,zt+1

q(zt|ht, i = 1)q(zt+1, ot+1|zt, ht, at, i = 0). (8)

Now, let us consider the special case where T = 1. We can use the constraint Z0 ⊥⊥ I | H0 to write

q(o1|h0, a0, i = 1) =
Z2∑
z0→1

q(z0|h0, i = 0)q(z1, o1|z0, h0, a0, i = 0),

which is equation (6), the desired result, for T = 1. In the case where T ≥ 2, we can reuse equation (8) to
write

q(oT |hT−1, aT−1, i = 1) =
Z2∑

zT−1→T

q(zT−1|hT−2, aT−2, oT−1, i = 1)q(zT , oT |zT−1, hT−1, aT−1, i = 0)

=
Z2∑

zT−1→T

q(zT−1, oT−1|hT−2, aT−2, i = 1)
q(oT−1|hT−2, aT−2, i = 1) q(zT , oT |zT−1, hT−1, aT−1, i = 0)

T−1∏
t=T−2

q(ot+1|ht, at, i = 1) =
Z2∑

zT−1→T

q(zT−1, oT−1|hT−2, aT−2, i = 1)q(zT , oT |zT−1, hT−1, aT−1, i = 0).

Then, we can introduce variable ZT−2 and use equation (7) again to obtain
T−1∏
t=T−2

q(ot+1|ht, at, i = 1) =
Z3∑

zT−2→T

q(zT−2, zT−1, oT−1|hT−2, aT−2, i = 1)q(zT , oT |zT−1, hT−1, aT−1, i = 0)

=
Z3∑

zT−2→T

q(zT−2|hT−2, i = 1)
T−1∏
t=T−2

q(zt+1, ot+1|zt, ht, at, i = 0).
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In the case where T = 2, we can use Z0 ⊥⊥ I | H0 again to obtain equation (6), the desired result for T = 2.
In the case where T ≥ 3, we can apply the same steps again to obtain

T−1∏
t=T−3

q(ot+1|ht, at, i = 1) =
Z4∑

zT−3→T

q(zT−3|hT−3, i = 1)
T−1∏
t=T−3

q(zt+1, ot+1|zt, ht, at, i = 0).

Now, either T = 3 and we can use Z0 ⊥⊥ I | H0 to obtain equation (6), or T ≥ 4 and we can continue the
decomposition by introducing ZT−4. By following this recursive approach we eventually reach Z0 and prove
equation (6) for any T .

Let us now re-express equation (6) as follows

T−1∏
t=0

q(ot+1|ht, at, i = 1) =
ZT+1∑
z0→T

q(z0|h0, i = 0)
(
T−1∏
t=0

q(zt+1, ot+1|zt, ht, at, i = 0)
)(

T−1∏
t=0

q(at|zt, ht, i = 0)
)

+
ZT+1∑
z0→T

q(z0|h0, i = 0)
(
T−1∏
t=0

q(zt+1, ot+1|zt, ht, at, i = 0)
)(

1−
T−1∏
t=0

q(at|zt, ht, i = 0)
))

T−1∏
t=0

q(ot+1|ht, at, i = 1) =
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0)

+
ZT+1∑
z0→T

q(z0|h0, i = 0)
(
T−1∏
t=0

q(zt+1, ot+1|zt, ht, at, i = 0)
)(

1−
T−1∏
t=0

q(at|zt, ht, i = 0)
)
.

By assuming probabilities are positive, we can substitute the second term by 0 to obtain our lower bound

T−1∏
t=0

q(ot+1|ht, at, i = 1) ≥
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0).

Then by assuming probabilities are upper bounded by 1, we can substitute q(ot+1|zt+1, zt, ht, at, i = 0) by 1
to obtain our upper bound

T−1∏
t=0

q(ot+1|ht, at, i = 1) ≤
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0)

+
ZT+1∑
z0→T

q(z0|h0, i = 0)
(
T−1∏
t=0

q(zt+1|zt, ht, at, i = 0)
)(

1−
T−1∏
t=0

q(at|zt, ht, i = 0)
)

≤
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

q(at|ht, i = 0).

Finally, with q̂ solution of (5) and |Dprv| → ∞ we have that DKL(p(τ |i = 0)‖q̂(τ |i = 0)) = 0, and thus
q̂(at|ht, i = 0) = p(at|ht, i = 0) and in particular q̂(ot+1|ht, at, i = 0) = p(ot+1|ht, at, i = 0), which allows us
to conclude.
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