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Abstract
Singing Voice Synthesis (SVS) strives to syn-
thesize pleasant vocals based on music scores
and lyrics. The current acoustic models based
on Transformer usually process the entire se-
quence globally and use a simple L1 loss. How-
ever, this approach overlooks the significance
of local modeling within the sequence and the
local optimization of the hard-to-synthesize
parts in the predicted mel-spectrogram. Con-
sequently, the synthesized audio exhibits local
incongruities (e.g., local pronunciation jitter
or noise). To address this problem, we pro-
pose two methods to enhance local modeling in
the acoustic model. First, we devise a nearest
neighbor local attention, where each phoneme
token focuses only on the adjacent phoneme to-
kens located before and after it. Second, we pro-
pose a phoneme-level local adaptive weights
loss function that enables the model to focus
more on the hard-to-synthesize parts of the
mel-spectrogram. We verify the universality
of our methods on public Chinese pop song
and Hokkien Gezi Opera datasets. Extensive
experiments demonstrate the effectiveness of
our methods, resulting in significant improve-
ments in both objective and subjective evalu-
ations when compared to the strong baselines.
Our code and demonstration samples are avail-
able at https://github.com/baipeng1/SVSELM.

1 Introduction

Singing Voice Synthesis (SVS) converts the lyrics
into natural and humanlike voice audio accord-
ing to the music scores (Yi et al., 2019)1. Due
to its promising application in fields such as vir-
tual singer and music education, SVS has attracted
the attention of a large number of researchers re-
cently (Hono et al., 2019; Lu et al., 2020; Gu et al.,
2021; Liu et al., 2022; He et al., 2023). SVS sys-
tems generally consist of an acoustic model and

*Equal contribution.
†Corresponding author.
1The music score referred to in this paper does not include

lyrics.

a vocoder. The acoustic model converts music
scores and lyrics into acoustic features (e.g., mel-
spectrogram), and the vocoder synthesizes audio
waveform from acoustic features (Liu et al., 2022).

Recently, Transformer (Vaswani et al., 2017)
has been widely used in sequence modeling tasks.
The acoustic models based on Transformer have
showed great performance, including FFT-NPSS
(Blaauw and Bonada, 2020), XiaoiceSing (Lu et al.,
2020), DeepSinger (Ren et al., 2020), FFT-Singer
(Liu et al., 2022). However, these models still ex-
hibits local incongruity in the synthesized audio,
which is characterized by local pronunciation jit-
ter or noise. Local incongruity will bring negative
experiences to listeners, so this is a problem that
urgently needs to be solved. Lee et al. (2021) also
focus on local incongruity problem. In order to
improve the accuracy of the local pronunciation,
they added a postnet to the model and used adver-
sarial training methods, where the voicing-aware
discriminator was used to capture the harmonic fea-
tures of vocal segments and the noise components
of silent segments. Unlike their approaches, we ab-
stain from employing post processing networks or
adversarial training methods. Instead, we address
this problem from the perspective of enhancing
local attention and refining loss function.

Some studies (Yang et al., 2020; Watzel et al.,
2021; Zhu et al., 2021; Cao et al., 2021) discovered
that incorporating additional local attention can en-
hance model performance in text to speech (TTS)
and automatic speech recognition (ASR) tasks. In
addition, some studies (Lin et al., 2017; George
and Marcel, 2021; Li et al., 2022) used the local
focus loss function in the image reconstruction task
to improve the reconstruction effect. Inspired by
the above works, in order to address the problem
of local incongruity in acoustic models based on
Transformer, we propose two methods to enhance
local modeling. First, the attention mechanism
in these acoustic models is the global contextual

https://github.com/baipeng1/SVSELM
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Figure 1: The structure of the our model.

self-attention of the entire sequence, and such an at-
tention mechanism may disperse the local attention
in the sequence. So we devise a nearest neighbor
local attention to only focus on the phoneme to-
kens that are close to each other in a short distance.
Second, the loss function in these acoustic models
is generally a simple L1 loss. It optimizes each
part of the mel-spectrogram with equal weights.
This will lead to the hard-to-synthesize parts of
the mel-spectrogram still being in a difficult posi-
tion. So we propose a phoneme-level local adap-
tive weights loss to mainly optimize the hard-to-
synthesize parts.

The main contributions of this paper can be sum-
marized as follows:

• We devise a nearest neighbor local attention
to only focus on the adjacent phoneme tokens
located before and after the target phoneme
token in a short distance.

• We propose a novel phoneme-level local
adaptive weights loss to optimize the local
hard-to-synthesize parts in the predicted mel-
spectrogram.

• The extensive experiments on public Chinese
pop song and Hokkien Gezi Opera datasets
have demonstrated the effectiveness and uni-

versality of our local modeling enhancement
methods.

2 Methods

In Section 2.1, we first introduce an overview of
our model. We then introduce the nearest neighbor
local attention method in Section 2.2, and finally
introduce the local adaptive weights loss method in
Section 2.3.

2.1 Overview of Model

As shown in Figure 1, our model consists of an
encoder, a length regulator, and a decoder.

Encoder The encoder in our model is the
same as the Transformer block in the FastSpeech2
(Ren et al., 2021). The input of the encoder is the
lyrics phoneme. After passing through the embed-
ding layer, the phoneme sequence is inputted to the
encoder with position embedding.

Length Regulator The length regulator ex-
pands the phoneme-level sequence into the frame-
level sequence. The duration of phonemes has been
obtained during the data processing stage.

Decoder The decoder in our model is Con-
former (Gulati et al., 2020) block with linear
layer. Conformer is a convolution-augmented
Transformer. The input of the decoder is the output
representation of the encoder, pitch embedding, du-



ration information, and position embedding. Pitch
and duration are the important content of the music
score. After the entire representation is processed
by the decoder, the output of the decoder is a pre-
dicted mel-spectrogram.

2.2 Nearest Neighbor Local Attention

Figure 2: The visualization result of the global self-
attention of the first Transformer block in the FFT-
Singer decoder.

Local Attention Layer In the SVS task, each
word token is composed of one or more phoneme
tokens. Each phoneme token consists of multiple
frame tokens. As shown in Figure 2, from the vi-
sualization result of the global self-attention of the
first Transformer block in the FFT-Singer decoder,
it can be seen that the existing global self-attention
primarily focuses on the phoneme tokens area ad-
jacent to the current phoneme token. The overall
attention still exhibits a predominantly diagonal
distribution. In addition, we also see that some
phoneme tokens tend to focus on distant areas, and
we mark them with red boxes. Based on the above
observations, we think that the local attention of
each phoneme token is insufficient. So we add a
nearest neighbor local attention layer in the decoder
to enhance the local attention of each phoneme. We
first construct a nearest neighbor local attention ma-
trix to only focus on the phoneme tokens that are
close to each phoneme token in a short distance.
We then use a gated unit mechanism to fuse local
attention representation with global self-attention
representation.

Considering that singers usually focus on the
word they are currently singing in performance in-

stead of paying too much attention to other words
in the entire lyrics at the same time, so we specially
devise a nearest neighbor local attention that only
focuses on the previous and next phoneme token.
We first need to construct a masked phoneme-level
local attention matrix. Figure 1 demonstrates the
constructed masked local attention matrix, in which
the frame tokens area corresponding to the current
phoneme token is shown in pink, and the frame to-
kens area corresponding to the previous phoneme
token is green, and the frame tokens area corre-
sponding to the next phoneme token is purple.

Specifically, P = {p1, · · · , pi, · · · , pn} is a
phoneme sequence, where n is the number of
phoneme in a certain sample. We define the cur-
rent phoneme token ID as i, the locally focused
phoneme token number before the current phoneme
token as l, and the locally focused phoneme token
number after the current phoneme token as r. In
the masked phoneme-level local attention matrix
M , the attended phoneme tokens are set to 0, while
the rest phoneme tokens are negative infinity. Thus
M can be represented as follows:

Mp,g =

{
0, p, g ∈ [i− l, i+ r]
−∞, otherwise

, (1)

where both p and g are the phoneme ID of the entire
phoneme-level representation sequence.

We add masked local attention matrix M to the
global self-attention matrix. In fact, M acts as a
mask role, which preserves the content of the global
self-attention matrix corresponding to the position
with the content 0 in the matrix M . Therefore, the
formula for sequence local representation Rl is as
follows:

Rl = softmax(M +
QK⊤
√
dk

)V , (2)

where Q, K and V are the query, key and value for
sequence. dk is the dimension of keys. softmax(·)
is a normalization function.

Fusion of local and global representation
As shown in Figure 1, on the basis of local rep-
resentation Rl, we use a gated unit coefficient α
to fuse it with the original global representation
Rg. In this way, we will obtain a fusion represen-
tation Rf of local and global representation. The
representation of each phoneme token in the Rf is
strengthened.

The formula for Rg is as follows:

Rg = softmax(
QK⊤
√
dk

)V , (3)



where Q, K, V and dk are similar to Eq. 2.
The formula for Rf is as follows:

Rf = αRl + (1− α)Rg, (4)

where α is a learnable coefficient, and α ∈ [0, 1].
The formula for α is as follows:

α = sigmoid(W ([Rl;Rg])), (5)

where sigmoid(·) is an activation function. W is a
fully connected layer. [; ] is a concatenation opera-
tion and concats the channel dimension of Rl and
Rg.

2.3 Local adaptive weights loss

Ordinary L1 loss optimizes each part of the mel-
spectrogram with equal weights, so it will re-
sult in hard-to-synthesize parts in the predicted
mel-spectrogram still difficult to synthesize. We
are driven by the motivation to optimize each
phoneme region, with particular emphasis on the
hard-to-synthesize parts within the predicted mel-
spectrogram. As shown in Figure 3, we propose
a phoneme-level local adaptive weights loss to
replace L1 loss. Specifically, We calculate the
phoneme-level adaptive confidence based on the
phoneme region, and the confidence scores repre-
sent the synthesis quality of each phoneme region
in the current mel-spectrogram. We also normalize
the phoneme-level adaptive confidence scores to
phoneme-level adaptive weights, which can dynam-
ically update the weight of the phoneme region in
the predicted mel-spectrogram. We finally multi-
ply the adaptive weights by the values of different
phoneme regions in the mel-spectrogram.

Phoneme-level Adaptive Confidence We use
the confidence of phoneme-level mel-spectrogram
to determine the emphasis of the model’s learn-
ing, which quantifies whether the predicted mel-
spectrogram phoneme region is close to or far from
the real mel-spectrogram. The confidence scores
mk are calculated as follows:

mk = Ave(
∣∣∣M ′

p(i, j)−Mp(i, j)
∣∣∣), (6)

where k is the phoneme ID and its range is
1, 2, · · · , n. M

′
p(i, j) is the phoneme-level pre-

dicted mel-spectrogram. Mp(i, j) is the phoneme-
level real mel-spectrogram. i is the frame ID, and j
is the mel bins ID. Ave(·) is an operation that aver-
ages the mel-spectrogram of the phoneme region.
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Figure 3: The schematic diagram of the calculation
process for local adaptive weights loss.

Phoneme-level Adaptive Weight We use
the softmax function to normalize the confidence
scores and obtain the adaptive weights ωk:

ωk =
emk∑n
z=1 e

mz
, k = 1, 2, · · · , n. (7)

Finally, we multiply the phoneme-level adaptive
weights by the original L1 loss matrix according
to the phoneme region. The formula for the local
adaptive weights loss value F is as follows:

F =
1

MN

M−1∑
i=0

N−1∑
j=0

ωk

∣∣∣M ′
p(i, j)−Mp(i, j)

∣∣∣ ,
(8)

where M is the frame number of the sample, and
N is the number of mel bins.

3 Experiments

3.1 Datasets
PopCS Dataset PopCS (Liu et al., 2022) is a Chi-
nese Mandarin pop singing dataset recorded by
a female professional singer in a recording studio.
This dataset has a total of approximately 5.89 hours
and contains 117 Chinese songs, with each audio
is sampled at 24kHz and quantized using 16 bits.
Gezi Opera Dataset Gezi Opera is one of the tradi-
tional local operas of the Hokkien dialect in China,
and is a national intangible cultural heritage. This
dataset is recorded by 5 professional Gezi Opera
singers using mobile phones, consisting of 3 ac-
tresses and 2 male actors. The total duration is
approximately 4.5 hours. Each audio is sampled at



48kHz and quantized using 16 bits. This dataset is
built by our team 2.

3.2 Comparative models
• The Baseline model is the FFT-Singer (Liu

et al., 2022) based on FastSpeech2. The en-
coder and decoder are Transformer blocks.
The training loss is L1 loss.

• The Baseline-T+C is the model that replaces
the Baseline decoder with Conformer blocks.
The training loss is L1 loss.

• The Baseline-T+C+A model on the basis of
Baseline-T+C replaces the training loss with
our local adaptive weights loss.

• The Baseline-T+C+L model adds our nearest
neighbor local attention to the the Baseline-
T+C model decoder. The training loss is L1
loss.

• The Baseline-T+C+A+L model is our final
model. It adds our nearest neighbor local
attention to the Baseline-T+C+A model de-
coder. The training loss is local adaptive
weights loss.

• The N-Singer (Lee et al., 2021) model is a
Korean SVS model that focuses on addressing
the accuracy of pronunciation in local incon-
gruity problems. It includes a Transformer-
based mel-generator, a convolutional network-
based postnet, and voicing-aware discrimina-
tors 3.

• The Baseline+GAN model is an adversarial
training method that we add to the Baseline,
and the method used to generative adversar-
ial network (GAN) comes from HiFiSinger
(Chen et al., 2020).

3.3 Model configuration

Our model is modified based on FastSpeech2. The
encoder is Transformer block and the decoder is
Conformer block. In terms of the global configura-
tion of the model, the audio sampling rate is 24kHz.
Because we extract the real mel-spectrogram from
real audio, the length of the Fast Fourier Trans-
form window is 512 and the hop length is 128. The
number of mel bins is 80. The representation di-
mension of the input token and channels are all
256. Meanwhile, the dimension of attention is also
256. The encoder has the same settings as the en-

2This dataset can be authorized by contacting us and used
only for scientific research.

3Due to the lack of open official code for N-Singer, we
reproduced it.

coder in FastSpeech2. Both the Transformer block
and Conformer block have multi-head attention.
The number of head in multi-head attention is 4.
The number of block is set to 4 in encoder and
decoder. The Transformer block of the encoder
contains 1d convolution, and the size of the kernel
is 9. The Conformer block of the decoder contains
a depthwise 1d convolutional layer with a kernel
size of 31. In addition, there are two pointwise con-
volutional layers with kernel size of 1. The Con-
former block includes gated linear unit activation
and swish (Ramachandran et al., 2018) activation.
Our SVS model is a two-stage model. Our pro-
posed methods are added to an acoustic model, so
we also choose a HiFi-GAN (Kong et al., 2020)
singing model pre-trained by the DiffSinger open-
source project as the vocoder to synthesize audio.
We use the AdamW (Loshchilov and Hutter, 2017)
optimizer. Our maximum training steps are 160k.
We train the model on a single A40 GPU.

3.4 Evaluation metrics

In order to evaluate the performance of our pro-
posed method, we conduct objective and subjective
evaluations. In objective evaluation, we use Mean
Cepstral Distortion (MCD) and Mean Spectral Dis-
tortion (MSD) to evaluate the timbral distortion
of synthesized audio. We also select Gross Pitch
Error (GPE), Voicing Decision Error (VDE), and
F0 Frame Error (FFE) (Chu and Alwan, 2009) to
evaluate the F0 track in synthesized audio. We
use the code implemented in fairseq 4 for objective
evaluation.

For subjective evaluation, we conduct a Mean
Opinion Score (MOS) for both real and synthesized
audio in the test set. MOS mainly evaluates the
human subjective perception of audio naturalness.
The rating range of MOS is from 1 to 5. 1 repre-
sents the lowest naturalness, and 5 represents the
highest naturalness. 10 volunteers participated in
the evaluation without disclosing the audio source.

4 Results

This section shows the results of the experiments.
Section 4.1 is the main comparison and analysis
of the overall objective and subjective results. Sec-
tion 4.2 is the experiments about the best num-
ber selection for the previous and next masked
phoneme tokens. Section 4.3 explores how our

4https://github.com/facebookresearch/fairseq/blob/main/
examples/speech_synthesis/docs/ljspeech_example.md



Dataset Model MCD(dB)↓ MSD(dB)↓ GPE(%)↓ VDE(%)↓ FFE(%)↓
Baseline 3.4065 1.7164 0.74 3.63 4.05
Baseline-T+C 3.2646 1.638 0.75 3.75 4.18
Baseline-T+C+A 3.062 1.5475 0.75 3.46 3.89

PopCS Baseline-T+C+L 2.9991 1.5452 0.64 3.83 4.2
Baseline-T+C+A+L 2.8735 1.4809 0.65 3.3 3.67
N-Singer 2.9561 1.5523 3.29 3.85 4.95
Baseline+GAN 3.0324 1.645 5.88 4.05 8.81
Baseline 3.4694 1.7498 1.5 3.7 4.81
Baseline-T+C 3.3911 1.6924 1.75 3.67 4.97
Baseline-T+C+A 3.0314 1.5459 1.75 3.78 5.07

Gezi Opera Baseline-T+C+L 3.017 1.5595 1.47 3.59 4.71
Baseline-T+C+A+L 2.931 1.5144 1.34 3.57 4.57
N-Singer 3.021 1.582 5.88 3.69 7.82
Baseline+GAN 3.0728 1.937 6.94 4.12 9.86

Table 1: The objective evaluation results on the PopCS dataset and Gezi Opera dataset. The Baseline model is the
FFT-Singer. -T means removing Transformer blocks from the decoder of the Baseline model. +C means adding
Conformer blocks to the decoder of the Baseline model. +A means that the loss function is replaced by the default
L1 loss with the local adaptive weights loss. +L means adding the nearest neighbor local attention in the decoder.

methods can flexibly combine with other models,
such as DiffSinger. Section 4.4 is a case study,
which visually demonstrates the effectiveness and
universality of our proposed methods.

4.1 Main result analysis

Table 1 shows the results of the objective evalua-
tion metrics of the models on the PopCS dataset
and the Gezi Opera dataset. For every dataset, the
first line is the result of the Baseline model. In the
second line, when we replace the Baseline decoder
with a Conformer block, the results will decrease.
This result validates that the performance of Con-
former blocks surpasses the Transformer blocks
in the SVS task. The convolution module in the
Conformer block is more effective. In the third line,
we can see that after replacing the ordinary L1 loss
with the local adaptive weights loss, the metrics
continue to decrease, which also confirms the ef-
fectiveness of our proposed loss. The reason is that
the local adaptive weights loss can dynamically ex-
pand the weights of hard-to-synthesize parts in the
mel-spectrogram, making the model to focus on op-
timizing the hard-to-synthesize parts. In the fourth
and fifth lines, we add the nearest neighbor local
attention to the previous model, and we can see a
further decrease in metrics. Especially in the fifth
line, after adding both the nearest neighbor local at-
tention and local adaptive weights loss, the metrics
achieve the lowest value. These two lines of results
indicate that the nearest neighbor local attention

method has worked. The N-Singer in the sixth line
and the Baseline+GAN in the seventh line are all
GAN-based methods. We can see that the objective
evaluation metrics of these two models, especially
GPE and FFE, are not ideal. However, we find
that the increase of GPE and FFE did not cause a
significant decrease in subjective perception. It is
necessary to conduct subjective evaluation and we
cannot rely too much on objective evaluation. We
should combine these two aspects for comprehen-
sive evaluation.

Dataset Model MOS↑
Ground Truth 4.43±0.08
Baseline 3.55±0.12

PopCS Baseline-T+C+A+L 3.71±0.11
N-Singer 3.65±0.1
Baseline+GAN 3.63±0.13

Ground Truth 4.33±0.09
Baseline 3.46±0.15

Gezi Opera Baseline-T+C+A+L 3.61±0.12
N-Singer 3.58±0.11
Baseline+GAN 3.51±0.12

Table 2: The MOS results on the PopCS and the Gezi
Opera dataset. MOS is reported with 95% confident
intervals.

Table 2 shows the results of the subjective evalu-
ation metrics of the models on the PopCS dataset
and the Gezi Opera dataset. As shown in the PopCS
dataset, our final model achieves the highest MOS



value of 3.71. As shown in the Gezi Opera dataset,
our final model achieves the highest MOS value of
3.61. In the analysis of the synthesized samples,
we also find that the two GAN-based methods, N-
Singer and Baseline+GAN, have positive effects in
terms of noise, but the GAN-based methods some-
times suffer from pitch inaccuracies on the Gezi
Opera dataset, which is proved by the GPE and
FFE metrics in Table 1.

On the two datasets of SVS tasks, the Baseline
model adding our methods achieves the best results
in both objective and subjective evaluations, which
fully demonstrates the effectiveness and universal-
ity of the two local modeling enhancement methods
we proposed.

4.2 Number of phoneme tokens selection
This section is how to determine the best number
of phoneme tokens before and after the current
phoneme token in the masked phoneme-level local
attention matrix. We conduct experiments on the
Baseline-T+C+A+L model in the PopCS dataset,
employing seven different scenarios for number
selection. As we defined in section 2.2, l is the
number of locally focused phoneme tokens before
the current phoneme token, and r is the number of
locally focused phoneme tokens after the current
phoneme token. The seven scenarios we set are
"l=0 and r=0", "l=0 and r=1", "l=1 and r=0", "l=1
and r=1", "l=1 and r=2", "l=2 and r=1" and "l=2
and r=2". The reason for our setting is that we
observe the self-attention matrix from Figure 2,
it can be seen that roughly one to two phoneme
tokens range before and after each current phoneme
token are mainly being focused on. Finally, we
select the optimal parameters through objective
and subjective evaluation metrics.

l and r MCD(dB)↓ FFE(%)↓ MOS↑
l=0 r=0 2.93 3.77 -
l=0 r=1 2.9026 3.87 -
l=1 r=0 2.8581 3.86 3.65±0.13
l=1 r=1 2.8735 3.67 3.71±0.11
l=1 r=2 2.838 4.02 3.61±0.12
l=2 r=1 2.8615 3.83 -
l=2 r=2 2.883 3.89 -

Table 3: The MCD, FFE, and MOS results of Baseline-
T+C+A+L model on the PopCS dataset. MOS is re-
ported with 95% confident intervals.

As shown in Table 3, we can see that when "l=1
and r=2", MCD achieves the lowest at 2.838, but

FFE is the highest at 4.02. When "l=1 and r=1",
MCD is 2.8735 and FFE is the lowest at 3.67. In
subjective evaluation, "l=1 and r=1" is the highest
at 3.71. Considering both objective and subjec-
tive evaluation results, we believe that under the
premise of approximate MCD, we should focus on
FFE and MOS. So we choose the setting of "l=1
and r=1". In this setting, it is possible to ensure
that the attention is focused on the initial and final
phonemes of each word. Our main experiments
adopt this setting.

4.3 Method flexibility

The two methods we proposed can be flexibly com-
bined with other models. As long as the original
acoustic model utilizes global self-attention and
L1 loss, our methods can be flexibly applied to
these models to improve performance. We validate
the performance when using the DiffSinger model
(Liu et al., 2022). DiffSinger is a SVS model based
on the diffusion model. We have set two scenar-
ios, one diffusion condition is the mel-spectrogram
predicted by FFT-Singer and the other diffusion
condition is the mel-spectrogram predicted by FFT-
Singer adding our methods.

Dataset Model MOS↑
Ground Truth 4.43±0.08

PopCS DiffSinger 3.86±0.12
DiffSinger+Our 3.91±0.11

Ground Truth 4.33±0.09
Gezi Opera DiffSinger 3.82±0.1

DiffSinger+Our 3.86±0.12

Table 4: The MOS results on PopCS and Gezi Opera
datasets. MOS is reported with 95% confident inter-
vals. Diffsinger represents diffusion based on the mel-
spectrogram predicted by FFT-Singer. DiffSinger+Our
represents the diffusion of DiffSinger based on the mel-
spectrogram predicted by FFT-Singer adding our meth-
ods.

As shown in Table 4, we can see that after adding
our methods, the MOS score of DiffSinger+Our
is higher than that of the basic DiffSinger. This
demonstrates that the audio synthesized by Diff-
Singer on the basis of FFT-Singer adding our meth-
ods is better. This further validates the flexibility
and practicality of our methods. We also find that
the DiffSinger+Our model can indeed solve some
of the local incongruity problems that exist in the
DiffSinger model, especially local pronunciation
jitter.



4.4 Case study

In order to more intuitively demonstrate the lo-
cal modeling enhancement effects of our proposed
methods in the mel-spectrogram prediction pro-
cess, Figure 4 and Figure 5 respectively show the
mel-spectrogram visualization results of a certain
sample on the PopCS dataset and the Gezi Opera
dataset by different models.

<BOS> <SEP> <EOS> <BOS> <BOS><SEP> <SEP><EOS> <EOS>
(a) (b) (c)

Figure 4: The mel-spectrogram visualization of the
same sample in the PopCS dataset. (a) is the real
mel-spectrogram of the sample. (b) is the mel-
spectrogram predicted by the Baseline model. (c) is the
mel-spectrogram predicted by the Baseline-T+C+A+L
model.

e e e
(a) (b) (c)

Figure 5: The mel-spectrogram visualization of the
same sample in the Gezi Opera dataset. (a) is the
real mel-spectrogram of the sample. (b) is the mel-
spectrogram predicted by the Baseline model. (c) is the
mel-spectrogram predicted by the Baseline-T+C+A+L
model.

As shown in Figure 4, the phoneme sequence of
the lyrics is "<BOS> b ie | h ou | h uei <SEP> j iou |
s uan | c uo | g uo <SEP> z ai | i | h ou <SEP> n i | sh
ao | b u | m ian | x iang | q i | uo <SEP> h ai | s uan |
b u | c uo <EOS>", and there are breathing or silent
segments in "<BOS>", "<SEP>", and "<EOS>"
token segments. We highlight these parts with red
boxes in the mel-spectrogram. In Figure 4(b), these
three phoneme segments are relatively noisy com-
pared to Figure 4(a). In Figure 4(c), we can see
that the mel-spectrogram predicted by our methods
is closer to the real mel-spectrogram and has less
noise at these three segments.

In Gezi Opera, in order to express a certain
emotion, artistic modifications are often made to
the pronunciation of the final or after the final.
Artistic modifications usually involve long-term
multi rhythmic singing. As shown in Figure 5, the

phoneme sequence of the lyrics is "sp ua sp kh o
sp m ia e h i ien an an tsh e sp e e e sp e e e e
e e e e e sp". At the following segment "e e e e
e e e e e", the medium and high frequency bands
of the corresponding parts in the mel-spectrogram
are marked with red boxes. We can see that the
predicted content in Figure 5(c) is more detailed
than that in Figure 5(b). The Figure 5(c) is closer to
the real mel-spectrogram in Figure 5(a). This result
also reflects that our methods can indeed improve
the local quality of the predicted mel-spectrogram.

5 Related Works

5.1 Singing voice synthesis

At the end of the 1950s, the earliest computer music
project studied by Bell Labs realized the SVS, and
a representative physical acoustic model is Kelly
and Lochbaum (Cook, 1996). After the develop-
ment of traditional methods such as unit splicing
and statistical parameters, the current mainstream
method is based on deep learning.

With the rapid development of deep learning
(Lin et al., 2023), the implementation of SVS re-
search mainly adopts various neural network ar-
chitectures. The current SVS research can be di-
vided into integrated end-to-end and fully end-to-
end model. The integrated end-to-end SVS sys-
tem consists of an acoustic model and a vocoder.
XiaoiceSing (Lu et al., 2020), DeepSinger (Ren
et al., 2020), ByteSing (Gu et al., 2021), HiFiSinger
(Chen et al., 2020), XiaoiceSing2 (Wang et al.,
2022) are all integrated end-to-end models. Among
the above models, the acoustic model in ByteSing
is based on a recurrent neural network, while the
rest acoustic models are all based on Transformer.
HiFiSinger and XiaoiceSing2 adopt adversarial
training. The vocoders used in these models are
usually WORLD(Morise et al., 2016), HiFi-GAN
(Kong et al., 2020) or MelGAN (Kumar et al.,
2019), etc. Liu et al. (2022) designed an acous-
tic model named DiffSinger based on the diffusion
probabilistic model. They proposed a shallow dif-
fusion mechanism to improve audio quality and
accelerate inference. Visinger(Zhang et al., 2022a)
and Visinger2 (Zhang et al., 2022b) are fully end-
to-end models, and the acoustic model is trained
together with the vocoder. This type of model can
avoid the problem of error accumulation.

In our work, we propose two local modeling
enhancement methods for the acoustic model based
on Transformer.



5.2 Local modeling enhancement

In the research of TTS, Yang et al. (2020) pro-
posed two local modeling enhancement methods to
improve the performance of models based on the
self-attention mechanism. One is the enhancement
of local relative position perception representation
for sequence representation. Another approach is
learnable gaussian bias to enhance local represen-
tation in self-attention. In the research of ASR,
some research works (Watzel et al., 2021; Zhu et al.,
2021; Cao et al., 2021) also enhance recognition ac-
curacy by strengthening local modeling. In natural
language processing research, in order to enhance
the local attention of sequence, Zhang et al. (2020)
added a syntax-guided self-attention layer to im-
prove the Transformer’s performance in reading
comprehension tasks. Li et al. (2021) proposed
a syntax-aware local attention method to improve
BERT. In the task of facial photo sketch synthesis,
Yu et al. (2023) proposed an additional local self-
attention for local correlation. Local attention can
achieve better synthesis results by integrating with
global self-attention.

In this work, we enhance the local modeling
ability of the acoustic model from two perspectives:
adding local attention and designing local adaptive
weights loss.

6 Conclusion

In the Chinese pop song and Hokkien Gezi Opera
singing voice synthesis tasks, we propose two local
modeling enhancement methods in acoustic model
based on Transformer to improve the quality of
the predicted mel-spectrogram. One method is to
enhance local attention for each phoneme token
in the decoder and fuse local attention representa-
tion with the original global self-attention repre-
sentation. Another method involves employing a
novel phoneme-level local adaptive weights loss
to optimize the hard-to-synthesize parts of the pre-
dicted mel-spectrogram. We conduct extensive ex-
periments on the Chinese pop song and Hokkien
Gezi Opera datasets, and both objective and sub-
jective evaluation metrics show the effectiveness
and universality of our methods in enhancing lo-
cal modeling for mel-spectrogram prediction. Our
two methods are simple and practical, and can be
flexibly incorporated into acoustic models based on
Transformer or Conformer. In summary, our meth-
ods can greatly alleviate the local inconsistency
problem in SVS tasks and improve the quality of

synthesized audio. We are moving towards a better
solution to completely solve this problem.

Limitations

We propose two local modeling enhancement meth-
ods in the SVS acoustic model. The methods can
effectively alleviate the problem of local incon-
gruity in synthesized audio. However, our work
still has some limitations. (1) The proposed nearest
neighbor local attention representation in this paper
only verifies the effectiveness of the fusion with the
global self-attention representation. (2) The nearest
neighbor local attention brings additional compu-
tational requirements and increases the demand
for GPU resources. (3) We find that our methods
cannot completely solve the problem of local incon-
gruity in SVS. Our methods significantly improve
the effect of the silent or breathing segments, and
can provide some relief for other segments. Our
method still has room for improvement, and we
think that we can further control the high, medium,
and low frequency bands in the mel-spectrogram
locally through the loss function.
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