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Abstract

AI has the potential to transform scientific discovery by analyzing vast datasets with
little human effort. However, current workflows often do not provide the accuracy
or statistical guarantees that are needed. We introduce active measurement, a
human-in-the-loop AI framework for scientific measurement. An AI model is
used to predict measurements for individual units, which are then sampled for
human labeling using importance sampling. With each new set of human labels,
the AI model is improved and an unbiased Monte Carlo estimate of the total
measurement is refined. Active measurement can provide precise estimates even
with an imperfect AI model, and requires little human effort when the AI model
is very accurate. We derive novel estimators, weighting schemes, and confidence
intervals, and show that active measurement reduces estimation error compared to
alternatives in several measurement tasks.

1 Introduction

AI offers a transformative approach to scientific discovery, empowering scientists to analyze vast
datasets in ways that traditional methods cannot achieve [22, 38, 41]. Applications include species
identification from images and audio for biodiversity monitoring [1, 5, 19, 39], disease diagnosis
in medical imaging [2, 37], classifying galaxies in astronomy [23], assessing crop health in agri-
culture [13, 14], and myriad other applications in fields such as remote sensing, microscopy, and
neuroscience. In these applications, the typical goal is to make measurements to answer science
or policy questions, which therefore must be precise. But AI models are far from perfect: they
may introduce bias or have unacceptable error rates, and do not offer the statistical guarantees that
scientists desire.

As a concrete example, consider counting birds in the high-resolution photograph in Fig. 1 of a large
flock of Tree Swallows in Old Lyme, CT in September, 2018. Scientists would like to estimate the
population size and track it over time from photographs like this [e.g., 4, 7, 18]. Computer vision
is an excellent tool for this task, but current workflows are poorly suited to scientific measurement.
A scientist might be able to estimate the count with relatively low effort using a pre-trained object
detector adapted with a few labeled examples. However, substantial additional effort is needed
to obtain a model that is accurate enough for scientific measurement and gain confidence in its
performance. A typical scenario would be to first tune and validate the detector’s performance using
labeled image tiles. To obtain bounds on count performance, more validation is needed. After
substantial effort, the scientist may find that the count is 20,358 ± 8000 birds, which is not accurate
enough to track populations over time. What can be done? Under current practice, the scientist
returns to model development. For challenging tasks, it may be impossible to achieve precise enough
measurements.
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Figure 1: Active measurement. An AI model predicts counts for each image tile, which are then used
to form a proposal distribution to selectively sample tiles for human labeling. Ground-truth counts
are used both to improve the AI model and produce a Monte Carlo estimate of the final measurement.

We introduce a new paradigm of active measurement where the scientist uses AI to interactively
solve the measurement task (Fig. 1). Active measurement is based on Monte Carlo estimation. In
each step, the scientist receives an unbiased estimate of the true count and an estimate of its error
and is asked to provide new labels. These labels are used both to reduce Monte Carlo error of the
estimated measurement and to improve the AI model for future rounds of estimation. The process
continues until the error is sufficiently low — in this example the estimates are 11,977 ± 1,076 after
labeling 50 tiles in the image, closely aligning with the true count of 12,486 birds. Unlike existing
workflows, arbitrarily low error is possible with enough labels even with an imperfect model. On the
other hand, if the model approaches perfect performance, very accurate estimates are possible with a
small amount of labeled data.

Active measurement builds on adaptive importance sampling [28], active testing [20, 26], and prior
work on covariate and detector-based counting [25, 32], but extends each of these works in different
directions. We introduce the active measurement framework, derive new estimators, and show that
they are unbiased and consistent. We contribute novel approaches for confidence interval construction
that are tailored to the active measurement setting, and derive novel weighting schemes to combine
estimates obtained in each step to minimize the overall estimation variance. We show empirically
that our techniques provide accurate confidence intervals and reduce estimation error compared to
prior methods on several scientific measurement tasks.

Code for this paper is available at: https://github.com/cvl-umass/active-measurement.

2 Active measurement

We consider the following scientific measurement task. There is a set Ω of N = |Ω| individual units
(e.g., image tiles), with unknown ground-truth measurement f(s) ≥ 0 for each s ∈ Ω. For S ⊆ Ω,
define F (S) =

∑
s∈S f(s). We seek to estimate the total measurement F (Ω) across all units.

Active measurement combines human labeling with AI predictions. Suppose that, at time t, the
scientist has labeled unitsDt ⊆ Ω and therefore knows the ground-truth value F (Dt) =

∑
s∈Dt

f(s).
Further, suppose an AI model is available (e.g., trained on Dt) to predict g(s) ≈ f(s) for other
units. Let qt be the probability distribution proportional to g on Ω\Dt. The base estimator for active
measurement is:

F̂t = F (Dt) +
f(st)

qt(st)
, st ∼ qt. (1)

The second term is an importance sampling estimate satisfying Eqt [f(st)/qt(st)] = F (Ω\Dt), from
which it follows that E[F̂t] = F (Ω). This estimator is inspired by active testing [20], which we
discuss more below. It is unbiased for any proposal distribution qt, but has minimum variance (of
zero) when qt ∝ f , which motivates the choice qt ∝ g ≈ f .

The active measurement framework, shown in Alg. 1, uses this estimator in each step of a human-in-
the-loop process. The set D1 contains initially labeled units, which may be empty. At the start of
step t, units in Dt have been labeled, and an acquisition distribution qt is used to sample a new unit
for labeling. Our typical acquisition strategy is to train an AI model on Dt to generate predictions
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Algorithm 1 Active measurement
Require: Initially labeled units D1 ⊆ Ω, acquisition

distribution q1, weight sequences ατ , βτ

1: for t = 1, 2, ..., T do
2: Sample st ∼ qt(·) and obtain f(st)
3: Form IS estimate

F̂t = F (Dt) +
f(st)

qt(st)
(2)

4: Combine estimates as F̂1:t =
∑t

τ=1 ᾱτ F̂τ

5: Get variance estimates {V̂arτ}tτ=1 using Alg. 2
6: Combine variances as V̂ar1:t =

∑t
τ=1 ᾱ

2
τ V̂arτ

7: Update Dt+1 = Dt ∪{st}
8: Update acquisition distribution qt+1 over

Ω\Dt+1, e.g., by updating an AI model using Dt+1

9: end for

Algorithm 2 Variance estimation
Require: All variables from Alg. 1
1: for τ = 1, 2, ..., t do
2: Get mean estimate Ĝτ,t = F̂1:t−1−F (Dτ )
3: for r = τ, . . . , t do
4: Form single variance estimator

V̂arτ,r =
∑

s∈Dr \Dτ

qτ (s)

(
f(s)

qτ (s)
− Ĝτ,t

)2

+
qτ (sr)

qr(sr)

(
f(sr)

qτ (sr)
− Ĝτ,t

)2

(3)

5: end for
6: V̂arτ =

∑t
r=τ β̄r V̂arτ,r

7: end for

g(s) for all units s ∈ Ω\Dt and then choose qt ∝ g. In Line 3, the newly labeled unit is used to form
an importance sampling estimate with E[F̂t] = F (Ω) using Eq. (1). Line 4 combines the estimators
from each step into the estimator F̂1:t with normalized weights that satisfy

∑t
τ=1 ᾱτ = 1, which

incorporates all of the labeled samples and represents the model’s overall estimate at time t. Hereafter,
for any weighting scheme, we use ατ to denote a sequence of unnormalized weights for 1 ≤ τ ≤ N
and ᾱτ for their normalized counterparts ᾱτ = ατ/

∑t
r=1 αr, with t implicit from context.

Proposition 1. The combined estimator F̂1:t =
∑t

τ=1 ᾱτ F̂τ is unbiased: E[F̂1:t] = F (Ω).

At step t, we also generate a variance estimate from Alg. 2, which is derived in § 5. Alg. 2 takes
O(t2) time naively, but can be improved to O(t) using the streaming algorithm in § B.2, so that
step t of active measurement takes O(t) time overall. In practical settings we expect the time to be
dominated by labeling and updating an AI model. We next discuss related work before returning to
weighting schemes and variance estimation.

3 Related work

Active measurement is closely related to three existing lines of work. Active testing [12, 20]
interactively estimates the test loss of an AI model by sampling unlabeled points according to
predicted losses from a surrogate model and then using the newly acquired labels to form an
importance-sampling based estimator of the loss and update the surrogate model. The sampling
strategy and form of the estimator in Eq. (1) is identical to that used by active testing, with the
significant difference that the estimand is different: active measurement seeks to directly estimate a
scientific measurement while iteratively refining the AI model itself, while active testing estimates a
test loss and refines a surrogate model. Compared to active testing, we also contribute novel weighting
schemes (§ 4) and show that these reduce error, and novel approaches for variance estimation and
confidence interval construction (§ 5), which was not considered in active testing.

Active testing and active measurement are both versions of adaptive importance sampling (AIS) [6, 27,
28]. AIS improves an importance-sampling estimator f(s)/q(s) by iteratively refining the proposal q
and forming a weighted combination of the estimators made with different proposal distributions.
Active measurement modifies AIS to sample without replacement from a finite sample space, which
leads to the estimator in Eq. (1), compared to the usual importance-sampling estimator supported on
all of Ω. Sampling without replacement leads to novel considerations in the selection of weights (§ 4)
and in variance estimation (§ 5). The DISCount (detector-based importance sampling) method of
Perez et al. [32], which builds on [25], estimates the total counts in scientific collections using AI
model predictions for the importance sampling proposal distribution. Active measurement shares the
same goal, and advances on DISCount by interactively refining the AI model with acquired labels
and by sampling without replacement, which both can significantly reduce estimation error.

The concept of combining an AI model with limited human effort is related to semi-supervised
learning [8], where the model is trained with using a combination of labeled and unlabeled data.
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Most recently, prediction-powered inference (PPI) [3] was proposed to give valid statistical inference
using a small amount of labeled data. Unlike PPI, which assumes data is iid and seeks to estimate a
population parameter, active measurement samples data interactively and non-uniformly as aided by
AI and seeks to estimate a scientific measurement on a finite dataset. We show in the experiments that
active measurement outperforms a PPI-motivated baseline. In a similar spirit, active machine learning
has been used to construct large datasets with crowd-sourcing [21, 30, 40]. We have a different
objective of achieving accurate estimation with a small amount of labeled data.

4 Weighting schemes

What is an appropriate weight sequence ατ to combine the estimators in active measurement? An
important observation is that the estimators in each step, though not independent, are uncorrelated:

Proposition 2. For any 1 ≤ τ < r ≤ t, Cov(F̂τ , F̂r) = 0.

Thus, the combined variance is Var[F̂1:t] =
∑t

τ=1 ᾱ
2
τ Var[F̂τ ], and the weighting that achieves

minimum variance uses inverse-variance weighting, i.e., ατ = 1/Var[F̂τ ]. However, in practice
we don’t know Var[F̂τ ] and it is difficult to estimate (see § 5), so we first consider fixed weighting
approaches that approximate this principle under assumptions about how Var[F̂τ ] changes due to: (1)
adapting the model, and (2) the shrinking sample space.

Square root law. In AIS, a simple and near-optimal alternative is the square root law αSQRT
τ =√

τ [29]. To derive this law, it is assumed that variance reduces at the rate Var[F̂τ ] ∝ τ−y due to
adaption of the proposal distribution, but the rate y ∈ [0, 1] is unknown. The square root law works as
a conservative strategy that is within a factor of 9/8 of the optimal variance even without knowing the
rate y: if the variance with an optimal weighting strategy for rate y at step t is Varopt(y, t) and F̂ SQRT

1:t

is the estimator using weights αSQRT
τ (we will use similar notation for other weighting schemes

below), then supt≥1 supy∈[0,1]
Var[F̂SQRT

1:t ]
Varopt(y,t)

≤ 9
8 . However, in our context, the model Var[F̂τ ] ∝ τ−y

does not account for shrinking variance due to sampling without replacement, which is not optimal.

LURE weights. In active testing, a weighting scheme known as LURE was introduced for the
pool-based setting with sampling without replacement [12]. If the number of units is |Ω| = N , the
LURE weights are αLURE

τ = 1
(N−τ)(N−τ+1) . The original motivation was to treat samples equally

in the combined estimate, but we can reinterpret these weights as accounting for variance reduction
due to the shrinking sample space:

Proposition 3. If there exist constants 0 < A ≤ B such that for any s ∈ Ω, A ≤ f(s) ≤ B and
A ≤ g(s) ≤ B, then there exists a constant C > 0 such that Var[F̂τ ] ≤ C(N − τ)(N − τ + 1).

For brevity, define wτ = 1
(N−τ)(N−τ+1) . This proposition indicates that the variance is order 1/wτ

when only considering the sample space reduction, so the LURE weights of wτ are well justified by
inverse variance weighting. However, in our setting, LURE weights neglect variance reduction due to
adaptation of the AI model, which is also not optimal.

100 101 102 10310 5

10 4

10 3

10 2
SQRT
LURE

COMB
N

Figure 2: Normalized weights
as functions of τ for t = 700
and N = 1000.

Combined weights. We propose to combine the above two weight-
ing schemes and use αCOMB

τ = wτ
√
τ . Fig. 2 demonstrates the

growth of different weighting schemes. When τ is small, the detector
has not been well-tuned so weighting schemes that discourage early
estimators, like the square root law, are preferred. As τ becomes
closer to N , the sample space reduction becomes more significant,
which is addressed by the LURE weights. Our combined weights
unify the best of the two, accounting for the two sources of variance
reduction. The following result bounds our worst-case estimation
error under our variance reduction model, in a way similar to the
square root law for AIS.

Proposition 4. If Var[F̂τ ] ∝ τ−y/wτ , where y ∈ [0, 1] and wτ are non-decreasing, then the estimate
F̂COMB
1:t =

∑t
τ=1 ᾱ

COMB
τ F̂τ , where αCOMB

τ = wτ
√
τ , satisfies
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sup
t≥1

sup
y∈[0,1]

Var[F̂COMB
1:t ]

Varopt(y, t)
≤ 9

8
, (4)

where Varopt(y, t) is the estimation variance when the estimators are weighted proportionally to the
inverse of the ground-truth variances.

In §7, we show empirically that the combined weighting scheme produces lower estimation error
than either of the two components alone.

Inverse variance weighting. In AIS, it has been advised not to approximate inverse variance
weighting using estimated variances [29], due to the unreliability of variance estimates with only a
finite number of samples in each round of AIS and the potentially large bias this could introduce. In
the next section, we introduce consistent estimates of (conditional) variances and show that these can
make inverse variance weighting practical and achieve even better estimation error than combined
weighting scheme in some settings.

5 Variance estimation and confidence intervals

Along with an unbiased and consistent estimator F̂1:t we typically want a consistent estimate of
Var[F̂1:t] to understand the error and construct confidence intervals. However, this is complicated by
the fact that the estimators F̂τ are not iid. Rather, each depends on the samples drawn in the previous
step, and we only have a single random draw for each τ . As a result, we will be able to form an
unbiased but not a consistent estimate of Var[F̂1:t], unlike in the iid case (but similar to AIS [43]).

Martingale convergence. Fortunately, we can turn to martingale arguments to instead estimate a
conditional variance that is appropriate for confidence intervals. For this argument, consider the
centered sequence of estimators F̃1:t =

∑t
τ=1 ατ (F̂τ − F (Ω)) where the weights are unnormalized.

Because each F̂t is unbiased, the displacement F̃1:t − F̃1:t−1 = αt(F̂t − F (Ω)) has zero mean,
making the sequence F̃1:t a martingale. A martingale central limit theorem can be used to show that
averaging over enough of these zero-mean displacements gives a limiting behavior similar to iid
averaging. Stated informally, we have the following:

Proposition 5 (informal). Let V 2
1:t =

∑t
τ=1 ᾱ

2
τ Var[Fτ | Dτ ] be the conditional variance of F̂1:t.

Under suitable regularity conditions, F̂1:t−F (Ω)
V1:t

D→ N (0, 1).

We provide a formal statement and proof in § A.5, which requires constructing a triangular array and
letting the number of active measurement steps T and domain size N go to infinity jointly. See [43]
and [33] for similar results for AIS, i.e., sampling with replacement. This result motivates forming
estimators of the conditional variance for use in confidence intervals.

Novel conditional variance estimators. We first focus on the conditional variance of a single
estimator F̂τ , which is the variance of the importance weights f(s)/qτ (s) where s ∼ qτ :

Var[F̂τ | Dτ ] =
∑

s∈Ω\Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

(5)

In importance sampling, we typically estimate this variance over iid samples from qτ , but in active
measurement we have only a single sample sτ ∼ qτ . We therefore derive a novel variance estimator
that uses samples sτ , sτ+1, . . . st to estimate Var[F̂τ | Dτ ] following an importance sampling approach
similar to that of the base estimator in Eq. (1). For r ≥ τ , let

V̂arτ,r =
∑

s∈Dr \Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

+
qτ (sr)

qr(sr)

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)2

. (6)

The first term of Eq. 6 is the exact sum of the terms from Eq. 5 for s ∈ {sτ , . . . , sr−1}, and the second
term is an importance sampling estimate using sr ∼ qr for the sum of the remaining terms. We then
mix the variance estimates V̂arτ,r for each r to get the combined estimator V̂arτ :=

∑t
r=τ β̄r V̂arτ,r,

where βr is another sequence of weights; for simplicity, we will always use the LURE weights
βLURE
r = wr to model the shrinking sample space.
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Proposition 6. The estimators V̂arτ and V̂arτ,r for τ ≤ r ≤ t satisfy E[V̂arτ | Dτ ] =

E[V̂arτ,r| Dτ ] = Var[F̂τ | Dτ ] and E[V̂arτ ] = E[V̂arτ,r] = Var[F̂τ ].

Further, beacuse it averages over many individual estimates, the error of V̂arτ for estimating the
conditional variance converges as t→ N :

Proposition 7. With the same settings as Prop. 3, the variance estimate for F̂τ weighted by
the LURE scheme V̂arLURE

τ =
∑t

r=τ β̄
LURE
r V̂arτ,r satisfies that Var

[
V̂arLURE

τ | Dτ

]
≲ 1

t−τ+1 ·
min

(
1, (N−t)2

t−τ+1

)
.

The notation ≲ hides multiplicative constants with respect to t. When t ≪ N , we have the usual
Monte Carlo rate of (t − τ + 1)−1 (recall that t − τ + 1 is the number of samples). On the other
hand, when t → N , a faster rate is achieved thanks to sampling without replacement. This result
contrasts with the usual practice of variance estimation for AIS, where only the samples from one
stage are used to estimate the conditional variance, and the stagewise estimators do not converge.

Confidence intervals. Several practical steps remain to construct confidence intervals. The full
variance estimation procedure is shown include Alg. 2. Previously, we assumed knowledge of
F (Ω\Dτ ) for estimating the conditional variance, but in practice we use the plug-in estimator Ĝτ,t =

F̂1:t−1 − F (Dτ ) ≈ F (Ω\Dτ ) from step t of active measurement. The full conditional variance
estimator is then V̂ar1:t =

∑t
τ=1 ᾱ

2
τ V̂arτ ≈

∑t
τ=1 ᾱ

2
τ Var[Fτ | Dτ ] = V 2

1:t, which according to
Prop. 5 is the appropriate quantity for the martingale central limit theorem. The naive implementation
to compute V̂ar1:t using Alg. 2 takes O(t2) time but we can reduce the complexity to O(t) with
a streaming algorithm; see §B.2 for details. Finally, a 1 − α confidence interval is constructed as
F̂1:t ± zα/2V̂ar

1/2
1:t , where zα/2 is the 1− α/2 quantile of the standard normal distribution.

We will also consider confidence intervals formed using the “simple” conditional variance estimator
V̂arsimp

1:t =
∑t

τ=1 ᾱ
2
τ (F̂τ − F̂1:t)

2, which is the motivated by the fact the sum of squared deviations∑t
τ=1 ᾱ

2
τ (F̂τ − F (Ω))2 of the martingale sequence converges to the conditional variance V 2

1:t under
the same regularity conditions as Prop. 5; see § A.5 for details. When needed, we will denote the
estimator V̂ar1:t from Alg. 1 as V̂arcond1:t to emphasize that it is based on estimating conditional
variances for each τ .

Conditional inverse variance weighting. Prior AIS literature has advised against using inverse
variance weighting with estimated variances [29]. However, our analysis suggests that weighting
with estimated conditional variances may be appropriate. First, Prop. 5 can be read as F̂1:t ≈
N (F (Ω), V 2

1:t), which motivates choosing weight sequences ατ to minimize the conditional variance
V 2
1:t =

∑t
τ=1 ᾱ

2
τ Var[F̂τ | Dτ ], the optimal choice being ατ ∝ 1/Var[F̂τ |Dτ ]. Second, Prop. 7

controls the error of the conditional variance estimators V̂arτ ≈ Var[Fτ |Dτ ]. Because the error
decays with the number of samples t− τ +1, estimates for τ ≪ t will be more reliable than those for
τ ≈ t. This motivates our proposed scheme, which uses inverse estimated variances for τ ≤ γt and
continues the sequence using the αCOMB

τ weights for τ > γt, where γ ∈ (0, 1) is a hyperparameter:

αINV
τ =

{
1/V̂arτ 1 ≤ τ ≤ γt

αCOMB
τ · 1/V̂arγt

αCOMB
γt

γt ≤ τ ≤ t
. (7)

The constant factor (1/V̂arγt)/(αCOMB
γt ) for τ ≥ γt ensures that the weight sequence is continuous

at τ = γt. We show in our experiments that these weights can produce even better estimation results
than the αCOMB weights for suitable settings of γ. Disadvantages are that F̂1:t is no longer unbiased
when using estimated weights, and that confidence intervals may have poorer coverage.

6 Experiments

We mainly experiment with two tasks: 1) counting birds in high-resolution images of Tree Swallow
flocks, and 2) counting roosting birds in weather radar images across multiple radar stations and
years. The first task is analogous to common counting problems in microscopy or medical imaging,
where an object detector trained on a few examples may perform reasonably well. In contrast, the
second task is considerably more challenging, as it requires a custom detector—typically the result
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of substantial community effort involving dataset annotation, model training, and validation. To
demonstrate domain generality, we also performed experiments on malaria-infected cell counting
and damaged-building counting from satellite images. For all IS-based methods, we use proposal
distributions proportional to predicted counts using an object detector.

Counting birds in high-resolution images. We aim to estimate the total number of birds in two
separate images—“sky" and “reeds"—each with different difficulty levels. The reeds image is more
challenging due to its higher bird density and more complex background (see Fig. 1 and Fig. A1).
We divide the sky and reeds images into tiles of size 200×200 and 160×160 pixels, respectively, and
manually annotate the birds in each tile using the VGG annotator [11]. This results in 925 tiles for
sky and 1,426 tiles for reeds, which serve as the annotation units in our experiments. In total, the
ground truth bird count is 5,682 for the sky image and 12,486 for the reeds image.

To detect birds, we train a Faster R-CNN [35] detector with a ResNet-50 [17] backbone pre-trained
on ImageNet [9], using the Detectron2 [42] library. The model is fine-tuned with a single A16 GPU
for 400 iterations and a learning rate of 0.001 on the annotated tiles. The detector performs reasonably
well, with average error rates of 9.5% and 33.1% when trained on 50 randomly selected tiles. We
also experimented with few-shot detection models [34, 36] that do not require training, but found that
a standard Faster R-CNN detector outperforms them when even a few labeled tiles are available. See
§ D.1 for a comparison.

Counting roosting birds in radar. Another scientific application involves estimating bird counts
from weather radar. Birds often congregate overnight in large numbers. Their mass departure from
roosting sites in the morning can be detected by weather radar and the roosts leave visible signatures
in radar-collected data channels such as reflectivity (Fig. A2) [5, 10]. Scientists can use these signals
to estimate total bird counts, providing valuable data to analyze long-term migration trends.

We adapt the experimental setup of DISCount [32], leveraging expert annotated roosts from the Great
Lakes analysis in [5] and [10] as ground truth. Our objective is to automatically estimate the total of
the daily bird counts for each of 11 radar stations in the Great Lakes region, for dates between June
1st and October 31st over the five-year period from 2015 to 2019.

We follow Perez et al. [31] to pretrain a roost detector on a manually labeled training set from multiple
radar stations that do not include the Great Lakes stations. It is based on a Faster R-CNN architecture
with a ResNet-101 backbone and an adapter layer to handle radar channels across elevations and
time steps. Detections from consecutive timestamps are assembled into tracks and bird counts are
estimated from the tracks based on the radar geometry and reflectivity of the birds. We provide details
in § C.1. The detection task is challenging and the best model only achieves 56% mean average
precision. Thus, [5, 10] invested substantial manual screening time for scientific analyses that require
high precision. Our method substantially reduces this screening effort in estimating the bird counts.

We adapt the detector to each station with learning rate 10−4 for 3000 iterations on a single A16 GPU.
To reduce overfitting, we use a mix of 80% pretraining data and 20% station-specific labeled data.
The model is finetuned every 10 samples for the first 40 samples, after which performance saturates.

Counting malaria-infected cells. The Malaria Cell dataset (image set BBBC041v1, available
from the Broad Bioimage Benchmark Collection [24]) comprises 1,364 images (about 80,000 cells).
This dataset contains microscopy images of blood smears used for detecting and classifying malaria
parasites, aimed at enabling the development and evaluation of automated methods for parasite
detection, quantification, and stage classification. For this evaluation, we focus on counting the
number of infected cells, which are around 5% of the dataset. We use the same settings as our sky
and reeds image experiments. For our initial model we finetune the default Faster R-CNN network
on three randomly selected cell images.

Counting damaged buildings. For damaged building detection we focus on the Palu Tsunami
subset of xBD [15], which contains 113 satellite images of the shoreline before and after the Palu
Tsunami. We count the number of damaged buildings, which corresponds to a label of “major-
damage” or “destroyed”. Only the post disaster images are given to the model. We use the same
hyperparameters as before. The initial model is trained on 5 randomly selected images.
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Figure 3: Estimation error on two measurement tasks. Top: Fractional error of the estimated count
as the percentage of labeled tiles increases, averaged over 10,000 runs for the counting birds in the
"sky" and "reeds" images, and counting roosting birds in KCLE and KGRR radar stations. Bottom:
Fractional error of the estimated count after 200 labeled days for the 11 radar stations, using different
estimators. The bottom-right table shows that the geometric average fractional error across stations
for the raw detector and active measurement across iterations. We see that both the adaptation and
the sampling without replacement are beneficial, and quickly outperform the detector and baselines
for both tasks.

Baselines. We compare our work against DISCount [32], which we will denote DIS. We also
investigate the impact of the two major extensions individually: sampling without replacement
(DIS+WOR) and fine-tuning the detector similar to adaptive importance sampling (DIS+AIS). Active
measurement combines all of these, so we denote it as DIS+AIS+WOR. We also compare against
simple Monte Carlo (MC), i.e., DIS with uniform q [32], and MC without replacement (MC+WOR).
Lastly we show the performance of the raw detector predicted counts after each step of adaptation.

Since averaging over many trials is computationally expensive—particularly when detector fine-
tuning (+AIS) is involved—we approximate the effect of interactive model adaptation using a “fixed
checkpoint” approach that uses a fixed sequence of detectors pre-trained on an increasing number of
labels sampled according to a fixed strategy. Specifically, we sample annotation units uniformly from
those with non-zero counts for different sizes. These fixed model checkpoints are then reused across
all trials, allowing us to run a significantly larger number of evaluations. In a real-world deployment,
a practitioner would typically fine-tune the detector using the same samples on which annotations
are collected during active measurement. However, we find that the estimates produced using this
approximation match those obtained via a full end-to-end setup, as discussed in § D.3.

Evaluation metrics. We evaluate our methods using fractional error and CI coverage. Specifi-
cally, we estimate them using the fractional error 1/M

∑M
m=1 |F̂

(m)
1:t − F (Ω)|/F (Ω) and coverage

1/M
∑M

m=1 I
[
|F̂ (m)

1:t − F (Ω)| ≤ zα/2
(
V̂ar

(m)
1:t

)1/2]
, where M is the number of trials, F (Ω) is the

ground truth measurement, and (F̂ (m)
1:t , V̂ar(m)

1:t ) are the estimates from the mth trial.

7 Results

Main results. Our main results for both tasks are presented in Fig. 3. The top row illustrates
that simply using raw detector predictions (i.e., directly interpreting model outputs as estimates)
can lead to suboptimal performance, particularly when the detector is biased or exhibits irreducible
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errors. In the sky and reeds images, the detector performance improves with additional training but
typically saturates. In contrast, our method demonstrates greater robustness to biased predictions and
continues to improve as detector performance improves. Compared to other unbiased estimators,
active measurement (AIS+DIS+WOR) outperforms DISCount (DIS) with as little as 1% of labeled
tiles, and further gains are achieved by sampling without replacement once approximately 10% of
tiles have been labeled. These improvements are particularly notable in the challenging reeds image,
where the detector’s baseline performance leaves considerable room for enhancement.

On the radar task, shown in the top-right panels and the bottom row, the detector performance
(summarized in the table) is substantially worse. Fine-tuning on station-specific data reduces the frac-
tional error from 3.78 to approximately 2, averaged across stations, but performance again saturates.
However, active measurement (AIS+DIS+WOR) continues to yield improvements. Improvements
are consistent across all radar stations and are substantially better than DISCount (DIS).

While the fractional error of the raw detector saturates quickly, we observe that additional fine-tuning
continues to improve the proposal distribution, which in turn leads to better AIS performance (see
§ D.2 for details). In Fig. A4, we also compare true end-to-end training with the more computationally
efficient fixed checkpoint scheme. We observe that fractional errors between the two methods are
not significantly different, especially when fewer tiles are labeled. With a higher number of labeled
tiles, we see greater variance arising from the choice of the specific checkpoint; however, the relative
performance remains consistent.

Different weighting schemes. We now examine the performance of different weighting schemes
in active measurement. According to our theory, we expect that our proposed weights αCOMB work
consistently well for all t. In Fig. 4, we find that this is the case for the counting problem in the
high resolution images. When t is small, the visual detector works poorly, so weighting schemes that
assign equal weights early-on, like αLURE, work worse than αCOMB. As t increases, the reduction of
the sample space is more significant, so weighting schemes that do not consider this, like the αSQRT

weights, works increasingly worse. For large t, as the performance gains from fine-tuning saturate,
the performance of LURE weights will eventually converge to COMB weights, but are never better.
We also test the inverse variance weighting scheme with different hyperparameters γ. The full results
can be found in Fig. A5. In general, a conservative γ = 0.3 brings little benefit, while an aggressive
γ = 0.9 can be detrimental because each individual estimator may not be accurate enough. In the
middle, we find that γ = 0.5 performs well and can achieve even smaller error than αCOMB.

Confidence intervals. We evaluate variance estimators and confidence intervals by looking at CI
coverage and width over 5,000 trials on the radar counting problem. Results from one station are
shown in Fig. 5, and the full results can be found in Fig. A7. Overall, we find that the DISCount
baseline undercovers and has wider confidence intervals, due to its higher estimation error—we
expect width to be proportional to error if the coverage is correct. With adaptation, both metrics
improve, but are different with different estimators. We compare the two variance estimators V̂arsimp

1:t

and V̂arcond1:t in the second panel. In most of our experiments, the coverage with them both improves
with more samples and converges to the desired confidence level.
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Comparison with other baselines. We use an experiment to illustrate the differences between
active measurement and other baselines. Assume the loss function is |f(s) − g(s)| for any s ∈ Ω.
Active testing will use an acquisition distribution proportional to the approximate loss to select units
to label. Even if we know the ground-truth loss values, this acquisition distribution is worse than
active measurement because of the mismatch between the proposal distribution and the estimand.
Similarly, another estimator, motivated by PPI, is Ĥt =

∑
s∈Ω g(s)− N

t

∑t
τ=1(g(sτ )− f(sτ )) with

uniformly sampled labeled data. This estimator is also worse than active measurement because it
requires a fixed detector and does not select the best labels for estimation. This is shown in Fig. 6.

Additional results. Additional experimental results on counting malaria cells and counting dam-
aged buildings are in Fig. 7. Here we run active measurement with end-to-end settings and average
over 1,000 trials. From the first figure, we observe trends similar to those seen in the image and radar
experiments for malaria cell counting. DIS consistently outperforms MC, while AIS shows an early
reduction in error as the model improves. WOR also demonstrates steady improvement, with its
impact becoming more pronounced after roughly 10% of the data is labeled. The results on the second
dataset follow similar trends: WOR provides the most benefit when a larger fraction is labeled, while
AIS is more helpful early on. We also note that our performance is lower than the numbers reported
in DISCount [32], as they use a detector specifically trained for damaged building detection, whereas
we use a simple ImageNet-pretrained backbone fine-tuned on just 5 satellite images. These results
show that active measurement is capable of improving scientific estimation tasks across different
domains.

8 Conclusions, Limitations, Future Work
We introduced active measurement, a framework that interactively leverages AI models to achieve
precise scientific measurements. In contrast to traditional workflows, which are prone to errors
from fully automated methods, active measurement integrates Monte Carlo estimation and model
adaptation with iterative human labeling. This approach yields unbiased estimates with calibrated
confidence intervals. We formally derive the unbiasedness and consistency of our estimators and
propose novel techniques for sequential update weighting and uncertainty quantification. Empirical
results on two measurement tasks show that active measurement not only reduces estimation error
but also provides reliable uncertainty estimates, outperforming existing methods.

One limitation of our approach is that the estimates may still not be precise enough for all applications;
users should carefully validate the safety of any AI method in high-stakes scenarios. Another is that
AI measurement has potential to be misused, e.g., to target vulnerable populations; our work does not
enable new measurements but can make them more accurate.

There are several promising directions for future work. Beyond simple fine-tuning, unsupervised,
semi-supervised, and transductive approaches could improve predictions across the full dataset. The
current importance sampling strategy prioritizes units with high counts, but early-stage measurements
could adopt more balanced sampling to better support detector training—for example, through active
learning. Although model adaptation improves performance, there is a substantial computational
overhead; in our experiments, we fine-tuned deep networks for detection tasks on GPUs. To enable
interactivity, future systems must support fast and lightweight model updates. Approaches such as
few-shot counting models and in-context learning architectures may offer practical solutions for
efficient adaptation. Another promising opportunity is to consider correlation among images. As
an example, in the reeds image we have observed spatial auto-correlation in the residuals of the
AI model. Fitting a Gaussian process can exploit this spatial structure to improve predictions for
unlabeled tiles.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our derivation of estimators, weighting schemes, and confidence intervals is
included in Section 2. We show that our method results in lower estimation error in Figure
3. The coverages of our confidence intervals are verified in Figure 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses limitations of our work, such as fine-tuning overhead and
suboptimal detector improvement in the early stages of measurement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide a proof for all of our propositions and state the assumptions clearly
in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudo code in section 2 for the Active measurement and variance
estimation algorithms. In section 4 we provide the details of counting birds in high-resolution
images, which uses an off-the-shelf detector, and counting birds in radar, which closely
follows Perez et al. [32]. Finally we link to our code on github at the end of the introduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to our code and documentation on github with a link at the
end of the introduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the important details in the results section, and more specific
information in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, an important contribution of our work is that it provides error bars for the
measurement task. We include these error bars in our results and evaluate them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention the compute hardware used in the experiments section, and
provide more detail in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Justification: We conform with the NeurIPS Code of Ethics to the best of our
ability.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
We discuss both positive and negative societal impacts in Section 8.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. We do not plan to release pre-trained models,
as running our method is focused on the fine-tuning procedure itself, not in the final weights
of a trained model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The NEXRAD radar data that we use is open to the public and can be used as
desired, and the roost and sky images were used with permission from the photographer.
We adapt code from Perez et al. [31] and will give credit in the publicly released repository.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Documentation for the data and code is provided with the code submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper’s method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of the theoretical results

In this section, we restate each theoretical result and provide proofs.

A.1 Proof of Proposition 1

Proposition 1. The combined estimator F̂1:t =
∑t

τ=1 ᾱτ F̂τ is unbiased: E[F̂1:t] = F (Ω).

Proof. We first show that each individual estimator F̂τ is unbiased.

EDτ ,sτ [F̂τ ] = EDτ ,sτ

[
F (Dτ ) +

f(sτ )

qτ (sτ )

]
= EDτ

[
F (Dτ ) + Esτ

[
f(sτ )

qτ (sτ )

]]

= EDτ

F (Dτ ) +
∑

sτ∈Ω\Dτ

qτ (sτ )
f(sτ )

qτ (sτ )


= EDτ [F (Dτ ) + F (Ω\Dτ )]

= F (Ω).

Therefore, for the combined estimator

E[F̂1:t] = E

[
t∑

τ=1

ᾱτ F̂τ

]

=

t∑
τ=1

ᾱτ E[F̂τ ]

=

t∑
τ=1

ᾱτ F (Ω)

= F (Ω).

A.2 Proof of proposition 2

Proposition 2. For any 1 ≤ τ < r ≤ t, Cov(F̂τ , F̂r) = 0.

Proof.

Cov[F̂τ , F̂r] = E[(F̂τ − F (Ω))(F̂r − F (Ω))]

= EDr
[(F̂τ − F (Ω))Esr [F̂r − F (Ω)]]

= EDr

(F̂τ − F (Ω))
∑

sr∈Ω\Dr

qr(sr)

(
F (Dr) +

f(sr)

qr(sr)
− F (Ω)

)
= EDr

(F̂τ − F (Ω))

F (Dr) +
∑

sr∈Ω\Dr

qr(sr)
f(sr)

qr(sr)
− F (Ω)


= EDr

[
(F̂τ − F (Ω)) · 0

]
= 0.
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A.3 Proof of proposition 3

Proposition 3. If there exists constants 0 < A ≤ B such that for any s ∈ Ω, A ≤ f(s) ≤ B and
A ≤ g(s) ≤ B, then there exists a constant C > 0 such that Var[F̂τ ] ≤ C(N − τ)(N − τ + 1).

Proof. To start, we first bound the sampling distribution implied by the detector measurements g(s).
For unit s ∈ Ω\Dτ , the sampling distribution is qτ (s) =

g(s)∑
s′∈Ω\Dτ

g(s′) . By the lower and upper

bounds, we can see that A
(N−τ+1)B ≤ qτ (s) ≤ B

(N−τ+1)A . Also, we can bound F (Ω)− F (Dτ ) =∑
s∈Ω\Dτ

f(s) with the same technique, which is (N−τ+1)A ≤ F (Ω)−F (Dτ ) ≤ (N−τ+1)B.

Next, we write the variance of F̂τ in terms of expectations.

Var[F̂τ ] = EDτ ,sτ

[(
F (Dτ ) +

f(sτ )

qτ (sτ )
− F (Ω)

)2
]

= EDτ ,sτ

[
f(sτ )

2

qτ (sτ )2
+ (F (Dτ )− F (Ω))2 + 2(F (Dτ )− F (Ω))

f(sτ )

qτ (sτ )

]
≤ EDτ ,sτ

[
(N − τ + 1)2B4

A2
+ (N − τ + 1)2B2 − 2(N − τ + 1)2

A3

B

]
= (N − τ + 1)2

B3(B2 +A2)− 2A5

A2B
.

When τ < N , we further have

Var[F̂τ ] = (N − τ + 1)2
B3(B2 +A2)− 2A5

A2B

= (N − τ)(N − τ + 1)
N − τ + 1

N − τ

B3(B2 +A2)− 2A5

A2B

≤ (N − τ)(N − τ + 1)
2B3(B2 +A2)− 4A5

A2B
.

Also note that

Var[F̂N ] = EDN ,sN

[(
F (DN ) +

f(sN )

qN (sN )
− F (Ω)

)2
]

= EDN ,sN

[(
F (DN ) +

f(sN )

1
− F (Ω)

)2
]

= EDN ,sN

[
(F (Ω)− F (Ω))

2
]
= 0.

This means that for all τ ≤ N , Var[F̂τ ] ≤ C(N−τ)(N−τ+1), where C = 2B3(B2+A2)−4A5

A2B .

A.4 Proof of proposition 4

Proposition 4. If Var[F̂τ ] ∝ τ−y/wτ , where y ∈ [0, 1], and wτ are non-decreasing, then the
estimate F̂ comb

1:t =
∑t

τ=1 α
comb
τ F̂τ , where αcomb

τ ∝ wτ
√
τ and

∑t
τ=1 α

comb
τ = 1, satisfy

sup
t≥1

sup
y∈[0,1]

Var[F̂ comb
1:t ]

Varopt(y, t)
≤ 9

8
,

where Varopt(y, t) is the estimation variance when the estimators are weighted proportional to
inverse of ground-truth variances.

Proof. Denote the variance of combined estimator weighted by α
(x)
τ ∝ wττ

x by Varx(y, t), where
x ∈ [0, 1]. An observation is that Var[F̂ comb

1:t ] = Var0.5(y, t), and Varopt(y, t) = Vary(y, t). So we
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shall bound Var0.5(y,t)
Vary(y,t)

. Note that for any x ∈ [0, 1],

Varx(y, t) ∝
∑t

τ=1 w
2
ττ

2x · τ−y/wτ(∑t
τ=1 wττx

)2
=

∑t
τ=1 wττ

2x−y(∑t
τ=1 wττx

)2 .
Therefore, let

lx(y, t) =
Varx(y, t)

Vary(y, t)
=

(∑t
τ=1 wττ

2x−y
)(∑t

τ=1 wττ
y
)

(∑t
τ=1 wττx

)2 ,

we have

∂2lx(y, t)

∂y2
=

∑t
τ=1

∑t
τ ′=1 wτw

′
ττ

2x−yτ ′y(log τ − log τ ′)2(∑t
τ=1 wττx

)2 > 0.

So lx(y, t) is strictly convex over y. Also note that lx(y, t) is symmetric around y = x. So

supy∈[0,1] lx(y, t) =

{
lx(1, t) x ≤ 1/2

lx(0, t) x ≥ 1/2
. In the combined estimator we chose x = 0.5, which leads

to the supremum l0.5(1, t) for any t. Furthermore, x = 0.5 is the best assumption for the mixing
weights. The derivation is the same as Owen and Zhou [29] and we omit it here. In such case

sup
y∈[0,1]

l0.5(y, t) = l0.5(1, t) =

(∑t
τ=1 wτ

)(∑t
τ=1 wττ

)
(∑t

τ=1 wττ0.5
)2 =

∑t
τ=1

wτ

(
∑t

τ′=1
wτ′)

τ(∑t
τ=1

wτ

(
∑t

τ′=1
wτ′)

τ0.5
)2 .

We can plot this specific function for a few different choices of wτ and t,

100 101 102 103 104

t

1.00
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nc
e 
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Empirical Bound of Variance Ratio

N=100
N=1000
N=10000
w =1

The lines labeled N = x correspond to the combined weighting scheme proposed in our main method
(see Section 4), and wτ = 1 is a uniform weighting. We can see empirically that these are all bounded
above by 9

8 .

To prove this bound, we define the following weights,

ŵτ =
wτ(∑t

τ ′=1 wτ ′

) , βτ = (ŵτ − ŵτ−1)(t− τ + 1).
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Since wτ are non-decreasing, ŵτ − ŵτ−1 ≥ 0 and thus βτ ≥ 0. We can also cancel out terms of a
telescoping series to see that

∑t
τ=1 βτ =

∑t
τ=1 ŵτ = 1. Therefore both ŵτ and βτ are non-negative

weights that sum to 1. Note we define ŵ0 = 0.

Plugging these in, and borrowing a trick from Gabriel’s Staircase, we can rewrite as,∑t
τ=1

wτ

(
∑t

τ′=1
wτ′)

τ(∑t
τ=1

wτ

(
∑t

τ′=1
wτ′)

τ0.5
)2 =

∑t
τ=1 ŵττ(∑t

τ=1 ŵττ0.5
)2 =

∑t
τ=1 βτ

1
t−τ+1

∑t
τ ′=τ τ

′(∑t
τ=1 βτ

1
t−τ+1

∑t
τ ′=τ τ

′0.5
)2 .

We can bound this expression by considering the supremum over all possible positive weights λτ ,

∑t
τ=1 βτ

1
t−τ+1

∑t
τ ′=τ τ

′(∑t
τ=1 βτ

1
t−τ+1

∑t
τ ′=τ τ

′0.5
)2 ≤ sup

λ∈Rt
≥0

∑t
τ=1

λτ∑t
τ′=1

λτ′
1

t−τ+1

∑t
τ ′=τ τ

′(∑t
τ=1

λτ∑t
τ′=1

λτ′
1

t−τ+1

∑t
τ ′=τ τ

′0.5
)2

= sup
λ∈Rt

≥0

(∑t
τ=1 λτ

)(∑t
τ=1

λτ

t−τ+1

∑t
τ ′=τ τ

′
)

(∑t
τ=1

λτ

t−τ+1

∑t
τ ′=τ τ

′0.5
)2 .

We can simplify by using the closed form expression for sum of consecutive integers and a lower
bound for the sum of consecutive square roots from Owen and Zhou [29],

≤ sup
λ∈Rt

≥0

(∑t
τ=1 λτ

)(∑t
τ=1

λτ

t−τ+1
(t+τ)(t−τ+1)

2

)
(∑t

τ=1
λτ

t−τ+1
(t+0.5)1.5−(τ−0.5)1.5

1.5

)2
= sup

λ∈Rt
≥0

9

8

(∑t
τ=1 λτ

)(∑t
τ=1 λτ (t+ τ)

)
(∑t

τ=1
λτ

t−τ+1 ((t+ 0.5)1.5 − (τ − 0.5)1.5)
)2 . (8)

Define this last expression inside the supremum as f(λ, t). Taking the derivative with respect to each
λn,

∂f(λ, t)

∂λn
=

(∑t
τ=1 λτ (t + τ)

)
+ (t + n)

(∑t
τ=1 λτ

)
(∑t

τ=1 λτ
1

t−τ+1

(
(t + 0.5)1.5 − (τ − 0.5)1.5

))2

−
2
(∑t

τ=1 λτ

) (∑t
τ=1 λτ (t + τ)

) (
1

t−n+1

(
(t + 0.5)1.5 − (n − 0.5)1.5

))
(∑t

τ=1 λτ
1

t−τ+1

(
(t + 0.5)1.5 − (τ − 0.5)1.5

))3
.

Setting this equal to 0 and rearranging,
∂f(λ, t)

∂λn
= 0(∑t

τ=1
λτ∑t

τ′=1
λτ′

τ
)
+ (2t+ n)(

1
t−n+1

(
(t+ 0.5)

1.5 − (n− 0.5)
1.5
)) =

2
(∑t

τ=1 λτ (t+ τ)
)

(∑t
τ=1

λτ

t−τ+1

(
(t+ 0.5)

1.5 − (τ − 0.5)
1.5
)) . (9)

Note the right hand side does not depend on n, the index of the partial derivative. Thus at a critical
point, the left hand side will equal the same value for all n. We can define this left side as a function
g(n, t, λ).

To simplify, we make the following substitutions:

c1(t, λ) =

(
t∑

τ=1

λτ∑t
τ ′=1 λτ ′

τ

)
− 0.5

u(n) =
√
n− 0.5

w(t) =
√
t+ 0.5
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Since n ≥ 1, t ≥ 1, and n ≤ t, we can note that u(n) > 0, w(t) > 0, u(n) < w(t), and
0.5 ≤ c1(t, λ) ≤ t− 0.5. This alleviates concerns over dividing by zero going forward.

Applying these to g(n, t, λ),

g(n, t, λ) =
c1(t, λ) + 2w(t)2 + u(n)2

w(t)3−u(n)3

w(t)2−u(n)2

=
(w(t) + u(n))

(
c1(t, λ) + 2w(t)2 + u(n)2

)
w(t)2 + w(t)u(n) + u(n)2

.

Next we can consider the partial derivative over n and set it equal to zero, noting that u′(n) = 1
2u(n) ,

∂g(n, t, λ)

∂n
=

u(n)(u(n)3 + 2w(t)u(n)2 + (2w(t)2 − c1(t, λ))u(n)− 2w(t)(w(t)2 + c1(t, λ))

2u (u(n)2 + w(t)u(n) + w(t)2)
2

u(n)3 + 2w(t)u(n)2 + (2w(t)2 − c1(t, λ))u(n)− 2w(t)(w(t)2 + c1(t, λ)) = 0.

This is a cubic equation over u(n). Looking at the coefficients, 1 and 2w(t) are both positive. Making
a substitution and using a bound on c1, 2w(t)2 − c1(t, λ) ≥ 2t+ 1− t+ 0.5 = t+ 1.5 > 0. Clearly
the last term is negative. By Descartes’ rule of signs, the coefficients of this polynomial have 1 sign
change and thus at most 1 positive real root over u(n). Since u(n) is monotonic over n and positive
for all n ≥ 1, we see that there exists at most one n such that ∂g(n,t,λ)

∂n = 0, for any given t and λ.
From this we can deduce that the equation g(n, t, λ) = h(t, λ) for any function h(t, λ) that does not
depend on n has at most 2 solutions over n.

Applying this to Eq. 9 and noting that the left hand side is equal to g(n, t, λ), we can conclude that
this equation can have no more than 2 solutions over n. Thus the partial derivative of f(λ, t) with
respect to λ can have at most 2 components with value 0 at the same time. We can also observe
f(cλ, t) = f(λ, t) for all c ∈ R+, thus the supremum must occur at some finite point. Since we’re
optimizing over the positive orthant, that finite point must have all non-zero components with gradient
zero. Thus there can be at most 2 non-zero components of λ at the supremum. Continuing from Eq.
8, we now have the upper bound,

sup
λ∈Rt≥0

9

8

(∑t
τ=1 λτ

) (∑t
τ=1 λτ (t + τ)

)
(∑t

τ=1
λτ

t−τ+1

(
(t + 0.5)1.5 − (τ − 0.5)1.5

))2

= sup
λ∈Rt≥0

,1≤i<j≤t

9

8

(
λi + λj

) (
λi(t + i) + λj(t + j)

)(
λi

t−i+1
((t + 0.5)1.5 − (i − 0.5)1.5) +

λj
t−j+1

((t + 0.5)1.5 − (j − 0.5)1.5)

)2
. (10)

We will denote this function inside the supremum as z. We can replace λi and λj with variables x, y
and make similar substitutions as before,

u(i) =
√
i− 0.5

v(j) =
√
j − 0.5

w(t) =
√
t+ 0.5

For more compact notation we will ignore arguments going forward. Making these substitutions
yields,

z(x, y, i, j, t) =
9

8

(x+ y)(x(w2 + u2) + y(w2 + v2))(
x(w3−u3)
w2−u2 + y(w3−v3)

w2−v2

)2 .

Using a computer algebra system, we can expand this as,

z(x, y, i, j, t) =
9

8

(
1− p

q

)
p = −u4v2xy − 2u4vwxy − u4w2xy + 2u3v3xy + 2u3v2wxy − u2v4xy + 2u2v3wxy+

u2v2w2x2 + 4u2v2w2xy + u2v2w2y2 + 2u2vw3x2 + 2u2vw3xy + u2w4x2+

u2w4xy − 2uv4wxy + 2uv2w3xy + 2uv2w3y2 − v4w2xy + v2w4xy + v2w4y2

q =
(
x(w2 + wu+ u2)(w + v) + y(w2 + wv + v2)(w + u)

)2
.

25



By definition x, y ≥ 0 and 1 ≤ i < j ≤ t, so u,w, v > 0, u < w, and v < w. Thus we can see that
q > 0. Rearranging terms,

p = u3v2 (2w − u)xy + 2u2vw
(
w2 − u2

)
xy + u2w2

(
w2 − u2

)
xy

+u2v2
(
4w2 − v2

)
xy + 2uv2w

(
w2 − v2

)
xy + v2w2

(
w2 − v2

)
xy

+2u3v3xy + 2u2v3wxy + u2v2w2x2 + u2v2w2y2 + 2u2vw3x2

+u2w4x2 + 2uv2w3y2 + v2w4y2.

Since w > u and w > v we can see that p is a sum of positive terms so p > 0. Putting this together
we have p

q > 0. Therefore continuing from Eq. 10,

= sup
t≥1,x,y≥0,1≤i<j≤t

z(x, y, i, j, t) = sup
t≥1,x,y≥0,1≤i<j≤t

9

8
(1− p

q
) ≤ 9

8
.

This proves our bound. In conclusion, we first show that the variance ratio is bounded by another
ratio involving 2 weighted averages. We then use the fact that the weights are non-decreasing to
transform the expressions into a weighted average of unweighted averages. Using closed forms and
approximations we find a simpler upper bound. We consider the supremum of this expression over
all possible weights, and observe that the maximum can only occur with at most 2 non-zero weights.
Finally we analyze this 2 weight case and conclude it is bounded by 9

8 . Thus we have,

sup
t≥1

sup
y∈[0,1]

Var[F̂ comb
1:t ]

Varopt(y, t)
≤ 9

8
,

A.5 Proof of Proposition 5 (martingale CLT)

To construct the formal martingale CLT, we need to let the number of active measurement steps T
and the domain size N go to infinity jointly. Suppose that for each N , we set the number of active
measurement steps to be TN (TN < N ) where TN is non-decreasing with N . By letting N →∞ and
TN →∞, we have a martingale array SN,t =

∑t
τ=1 XN,τ =

∑t
τ=1 α̃τ (F̂τ − F (Ω)), for t ≤ TN .

Here α̃τ = ατ/
√∑TN

τ ′=1 α
2
τ ′ Var[F̂τ ′ ] is normalized using total variances. It is direct to check that

E[SN,t+1 − SN,t|SN,t] = E[XN,t+1|SN,t] = 0. With addition assumptions, we are able to construct
a limiting theorem for active measurement.

Proposition 5 (formal). Assume that (1)
∑TN

τ=1 α̃
2
τ Var[F̂τ | Dτ ] → η2 as N → ∞; (2) P (η2 <

∞) = 1 and P (η2 > 0) = 1; (3)
∑TN

τ=1 E[X2
N,τ I(|XN,τ | > ϵ)| Dτ ]

p−→ 0 for any ϵ > 0. We have
two central limit theorems

SN,TN√∑TN

τ=1 X
2
N,τ

D−→ N (0, 1), (11)

SN,TN√∑TN

τ=1 α̃
2
τ Var[F̂τ | Dτ ]

D−→ N (0, 1). (12)

Proof. We have met all the conditions for Theorem 3.3 and Corollary 3.2 in Hall and Heyde [16].
Then we directly have

SN,TN

UN,TN

D−→ N (0, 1),

SN,TN

VN,TN

D−→ N (0, 1),

where

UN,TN
=

TN∑
τ=1

X2
N,τ

VN,TN
=

TN∑
τ=1

α̃2
τ Var[F̂τ | Dτ ].
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The formal proposition employs a different normalizer from active measurement. It is useful for
bounding the discrepancy between conditional and total variances. For active measurement, we have
the following corollary.

Corollary 1. With the same conditions as Prop. 5, we also have that

F̂1:TN
− F (Ω)√∑TN

τ=1 ᾱ
2
τ (F̂τ − F (Ω))2

D−→ N (0, 1), (13)

F̂1:TN
− F (Ω)√∑TN

τ=1 ᾱ
2
τ Var[F̂τ | Dτ ]

D−→ N (0, 1). (14)

Proof. Basically the equations are the same as Eq. 11 and 12, but with different normalizers. After

multiplying

√∑TN
τ′=1

α2
τ′ Var[F̂τ′ ]∑TN

τ′=1
ατ′

to both the numerator and denominator, we get Eq. 13 and 14.

This leads to our informal version of the martingale CLT. Both Varcond1:t and Varsimp
1:t can be con-

structed using the corollary.

We also demonstrate our assumptions in Prop. 5 with a simple example. If Var[F̂τ ] = σ2
τ =

λ1τ
−y/wτ and Var[F̂τ | Dτ ] = λ2τ

−y/wτ where y ∈ [0, 1] and 0 < λ2 ≤ λ1, then with COMB
weights

TN∑
τ=1

α̃2
τ Var[F̂τ | Dτ ] =

∑TN

τ=1 λ2wττ
1−y∑TN

τ=1 λ1wττ1−y

=
λ2

λ1
.

It is clear that 0 < λ2/λ1 <∞, so the first two assumptions are met. For the third assumption, let
TN = N/2 and further assume for some δ > 0, supτ,N

E[(F̂τ−F (Ω))2+δ| Dτ ]

σ2+δ
τ

< ∞. The additional

assumption implies the uniform boundedness of (F̂τ−F (Ω))2

σ2
τ

, which is common in the literature [43].
Then note that

maxτ α
2
τσ

2
τ∑TN

τ=1 α
2
τσ

2
τ

=
λ1wTN

T 1−y
N∑TN

τ=1 λ1wττ1−y

≤
λ1wTN

T 1−y
N

λ1

TN

(∑TN

τ=1 wτ

)(∑TN

τ=1 τ
1−y
)

=
NT 1−y

N

(N − TN + 1)
(∑TN

τ=1 τ
1−y
)

≤
NT 1−y

N

(N − TN + 1)T 2−y
N /(2− y)

→ 0. (15)

Therefore, for any τ ,

E[X2
N,τ I(|XN,τ | > ϵ)| Dτ ] = E

[
α2
τ (F̂τ − F (Ω))2∑TN

τ ′=1 α
2
τ ′σ2

τ ′

I(|XN,τ ′ | > ϵ)| Dτ

]

=
α2
τσ

2
τ∑TN

τ ′=1 α
2
τ ′σ2

τ ′

E

[
(F̂τ − F (Ω))2

σ2
τ

I(|XN,τ ′ | > ϵ)| Dτ

]
.
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Note that

E

[
(F̂τ − F (Ω))2

σ2
τ

I(|XN,τ ′ | > ϵ)| Dτ

]
= E

 (F̂τ − F (Ω))2

σ2
τ

I

 |F̂τ − F (Ω)|
στ

> ϵ

√∑TN

τ ′=1 α
2
τ ′σ2

τ ′

ατστ

 | Dτ

 .

Observe that E[(F̂τ−F (Ω))2| Dτ ]
σ2
τ

= λ2

λ1
, but

√∑TN
τ′=1

α2
τ′σ

2
τ′

ατστ
→ ∞ for any τ according to Eq. 15. By

the uniform boundedness, then for any ϵ0 > 0, there exists N0 such that for any N > N0,

E

[
(F̂τ − F (Ω))2

σ2
τ

I(|XN,τ ′ | > ϵ)| Dτ

]
< ϵ0.

Therefore,
TN∑
τ=1

E[X2
N,τ I(|XN,τ | > ϵ)| Dτ ] <

TN∑
τ=1

α2
τσ

2
τ∑TN

τ ′=1 α
2
τ ′σ2

τ ′

ϵ0

= ϵ0.

This shows that the third assumption is also met.

A.6 Proof of proposition 6

Proposition 6. The estimators V̂arτ and V̂arτ,r for τ ≤ r ≤ t satisfy E[V̂arτ | Dτ ] =

E[V̂arτ,r| Dτ ] = Var[F̂τ | Dτ ] and E[V̂arτ ] = E[V̂arτ,r] = Var[F̂τ ].

Proof. We first show the unbiasedness of individual variance estimators V̂arτ,r.

E[V̂arτ,r| Dτ ]

=EDr \Dτ ,sr

 ∑
s∈Dr \Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

+
qτ (sr)

qr(sr)

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)2

| Dτ


=EDr \Dτ

 ∑
s∈Dr \Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

+ Esr

[
qτ (sr)

qr(sr)

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)2
]
| Dτ


=EDr \Dτ

 ∑
s∈Dr \Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

+
∑

sr∈Ω\Dr

qτ (sr)

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)2

| Dτ


=EDr \Dτ

 ∑
s∈Ω\Dτ

qτ (s)

(
f(s)

qτ (s)
− F (Ω\Dτ )

)2

| Dτ


=Var[F̂τ | Dτ ].

Also, note that

VarDτ [E[F̂τ | Dτ ]] = VarDτ

[
E
[
F (Dτ ) +

f(sτ )

q(sτ )
| Dτ

]]

= VarDτ

 ∑
sτ∈Ω\Dτ

q(sτ )

(
F (Dτ ) +

f(sτ )

q(sτ )

)
= VarDτ

F (Dτ ) +
∑

sτ∈Ω\Dτ

q(sτ )
f(sτ )

q(sτ )


= VarDτ

[F (Ω)]

= 0.
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Therefore, we further have
E[E[V̂arτ,r| Dτ ]] = EDτ [Var[F̂τ | Dτ ]]

= Var[F̂τ ]−VarDτ
[E[F̂τ | Dτ ]]

= Var[F̂τ ].

Since V̂arτ is convex on V̂arτ,r with the weights, we also have E[V̂arτ | Dτ ] = Var[F̂τ | Dτ ] and
E[V̂arτ ] = Var[F̂τ ].

A.7 Proof of proposition 7

Proposition 7. With the same settings as Prop. 3, the variance estimate for F̂τ weighted by
the LURE scheme V̂arLURE

τ =
∑t

r=τ β̄
LURE
r V̂arτ,r satisfies that Var

[
V̂arLURE

τ | Dτ

]
≲ 1

t−τ+1 ·
min

(
1, (N−t)2

t−τ+1

)
.

Proof. We first derive the normalized LURE weights.
t∑

r=τ

βLURE
r =

t∑
r=τ

1

(N − r)(N − r + 1)

=

t∑
r=τ

1

N − r
− 1

N − r + 1

=
1

N − t
− 1

N − τ + 1

=
t− τ + 1

(N − t)(N − τ + 1)
.

So the normalized LURE weights satisfy

β̄
LURE
r =

(N − t)(N − τ + 1)

(t− τ + 1)(N − r)(N − r + 1)
.

We then bound the variance of individual variance estimators. Observe that
Var[V̂arτ,r| Dτ ] = Var[E[V̂arτ,r|Dr]| Dτ ] + E[Var[V̂arτ,r|Dr]| Dτ ]

= Var[Var[F̂τ ]| Dτ ] + E[Var[V̂arτ,r|Dr]| Dτ ]

= 0 + E

[
Var

[
qτ (sr)

qr(sr)

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)2

|Dr

]
| Dτ

]

≤ E

[
E

[
qτ (sr)

2

qr(sr)2

(
f(sr)

qτ (sr)
− F (Ω\Dτ )

)4

|Dr

]
| Dτ

]

≤ E
[
E
[
qτ (sr)

2

qr(sr)2
· 8 ·

(
f(sr)

4

qτ (sr)4
+ F (Ω\Dτ )

4

)
|Dr

]
| Dτ

]
≤ E

[
E
[
B4(N − r + 1)2

A4(N − τ + 1)2
· 8 ·

(
B4(N − τ + 1)4B4

A4
+B4(N − τ + 1)4

)
|Dr

]
| Dτ

]
=

8B8(B4 +A4)

A8
(N − r + 1)2(N − τ + 1)2.

Therefore, let D = 8B8(B4+A4)
A8 , we can say that Var[V̂arτ,r| Dτ ] ≤ D(N−τ+1)2(N−r+1)2. Next,

we show that for every two variance estimators Cov(V̂arτ,r1 , V̂arτ,r2 | Dτ ) = 0 if τ ≤ r1 < r2 ≤ N .

Cov(V̂arτ,r1 , V̂arτ,r2 | Dτ ) = E[(V̂arτ,r1 −Varsτ [F̂τ | Dτ ])(V̂arτ,r2 −Varsτ [F̂τ | Dτ ])| Dτ ]

= EDr2 \Dτ
[(V̂arτ,r1 −Varsτ [F̂τ | Dτ ])Esr2

[(V̂arτ,r2 −Varsτ [F̂τ | Dτ ])]]

= EDr2
\Dτ

[(V̂arτ,r1 −Varsτ [F̂τ | Dτ ]) · 0]
= 0.
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Therefore (when t < N ),

Var
[
V̂arLURE

τ | Dτ

]
=

t∑
r=τ

(N − t)2(N − τ + 1)2

(t− τ + 1)2(N − r)2(N − r + 1)2
Var[V̂arτ,r]

≤
t∑

r=τ

(N − t)2(N − τ + 1)2

(t− τ + 1)2(N − r)2(N − r + 1)2
D(N − τ + 1)2(N − r + 1)2

=
D(N − t)2(N − τ + 1)4

(t− τ + 1)2

t∑
r=τ

1

(N − r)2
.

There are two ways to bound the right hand side. When t is far from N , we can bound with

Var
[
V̂arLURE

τ | Dτ

]
≤ D(N − t)2(N − τ + 1)4

(t− τ + 1)2

t∑
r=τ

1

(N − r)2

≤ D(N − t)2(N − τ + 1)4

(t− τ + 1)2

t∑
r=τ

1

(N − t)2

=
D(N − τ + 1)4

t− τ + 1
.

When t is close to N , by the fact that
∑∞

x=1
1
x2 = π2

6 , we have

Var
[
V̂arLURE

τ | Dτ

]
≤ D(N − t)2(N − τ + 1)4

(t− τ + 1)2

t∑
r=τ

1

(N − r)2

≤ D(N − τ + 1)4

t− τ + 1
· π

2(N − t)2

6(t− τ + 1)
.

The above two inequalities still hold when t = N , where LURE will assign infinite weights
on the exact variance V̂arτ,N = Var[F̂τ |Dτ ], so Var[V̂arLURE

τ | Dτ ] = 0. In summary, we

see that Var
[
V̂arLURE

τ | Dτ

]
≤ E

t−τ+1 · min
(
1, (N−t)2

(t−τ+1)

)
, for E = π2D(N−τ+1)2

6 . Thus

Var
[
V̂arLURE

τ | Dτ

]
≲ 1

t−τ+1 ·min
(
1, (N−t)2

(t−τ+1)

)
.

B Details of variance estimation

B.1 The plug-in mean in variance estimation

One practical gap is the incorporation of a plug-in mean instead of the ground-truth mean in Eq. 6.
We show that the error introduced by this trick is controlled. First of all, the variance of the plug-in
mean could be controlled with the following lemma.

Lemma 1. For F̂LURE
1:t =

∑t
τ=1 ᾱ

LURE
τ F̂τ , its variance satisfies that there exists a constant E > 0,

Var[F̂LURE
1:t ] ≤ E(N−t)

t .

Proof. By Prop. 3,

Var[F̂τ ] ≤ C(N − τ)(N − τ + 1).
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Then

Var[F̂LURE
1:t ] =

t∑
τ=1

(
ᾱLURE
τ

)2
Var[F̂τ ]

≤
t∑

τ=1

N2(N − t)2

t2(N − τ)2(N − τ + 1)2
· C(N − τ)(N − τ + 1)

=
CN2(N − t)2

t2

t∑
τ=1

1

(N − τ)(N − τ + 1)

=
CN2(N − t)2

t2
t

N(N − t)

=
CN(N − t)

t
.

Let E = CN , then Var[F̂LURE
1:t ] ≤ E(N−t)

t .

This directly implies that the plug-in mean constructed from the LURE estimate will not be far from
F (Ω). Denote the variance estimate with the plug-in mean by

Ṽarτ,t =
∑

s∈Dt \Dτ

qτ (s)

(
f(s)

qτ (s)
− Ĝτ,t

)2

+
qτ (st)

qt(st)

(
f(st)

qτ (st)
− Ĝτ,t

)2

.

We control the error with the following proposition.

Proposition 8. Given the same assumptions as Prop. 3, with at least probability 1− p, there exists a

constant H dependent on p such that |Ṽarτ,t − V̂arτ,t| ≤ H(N − τ + 1)
√

N−t+1
t−1 .

Proof. First, note that

Ĝτ,t − F (Ω\Dτ ) = F̂LURE
1:t − F (Ω).

By Chebyshev’s inequality, with at least probability 1− p,

|Ĝτ,t − F (Ω\Dτ )| = |F̂LURE
1:t−1 − F (Ω)| ≤

√
E(N − t+ 1)

p(t− 1)
.

Also,

|Ĝτ,t + F (Ω\Dτ )| ≤ |Ĝτ,t − F (Ω\Dτ )|+ 2F (Ω\Dτ )

≤

√
E(N − t+ 1)

p(t− 1)
+ 2B(N − τ + 1)

≤ I(N − τ + 1),
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where I is a constant dependent on p. We expand the difference directly.

|Ṽarτ,t − V̂arτ,t| =

∣∣∣∣∣ ∑
s∈Dt \Dτ

qτ (s)(Ĝ
2
τ,t − F (Ω\Dτ )

2)− 2f(s)(Ĝτ,t − F (Ω\Dτ ))

+
qτ (st)

qt(st)

(
Ĝ2

τ,t − F (Ω\Dτ )
2
)
− 2

f(st)

qt(st)
(Ĝτ,t − F (Ω\Dτ ))

∣∣∣∣∣
≤

∑
s∈Dt \Dτ

qτ (s)|Ĝ2
τ,t − F (Ω\Dτ )

2|+ 2f(s)|Ĝτ,t + F (Ω\Dτ )|

+
qτ (st)

qt(st)

∣∣∣Ĝ2
τ,t − F (Ω\Dτ )

2
∣∣∣+ 2

f(st)

qt(st)
|Ĝτ,t − F (Ω\Dτ )|

≤

√
E(N − t+ 1)

p(t− 1)

( ∑
s∈Dt \Dτ

B

(N − τ + 1)A
I(N − τ + 1) + 2B

+
B2(N − t+ 1)

A2(N − τ + 1)
I(N − τ + 1) + 2

B2(N − t+ 1)

A

)

=

(
IB

A
+ 2B

)(
t− τ +

B

A
(N − t+ 1)

)√
E(N − t+ 1)

p(t− 1)

≤ (I + 2A)B2

A2

√
E

p
(N − τ + 1)

√
N − t+ 1

t− 1
.

Let H = (I+2A)B2

A2

√
E
p , then |Ṽarτ,t − V̂arτ,t| ≤ H(N − τ + 1)

√
N−t+1
t−1 .

Comparing the derivation of Prop. 7 and Prop. 8, the L1 error introduced by the plug-in mean goes to
0 at a faster rate than the standard deviation of V̂arτ,t, indicating that the error is negligible in our
evaluation when t is large enough.

B.2 The streaming algorithm of variance estimation

Alg. 2 has a summation for each 1 ≤ τ ≤ t, amounting to a complexity of O(t2). In practice, we
would reuse part of previous computation at step t−1 to accelerate the computation at step t. Observe
that

Ṽarτ,t =
∑

s∈Dt \Dτ

qτ (s)

(
f(s)

qτ (s)
− Ĝτ,t

)2

+
qτ (st)

qt(st)

(
f(st)

qτ (st)
− Ĝτ,t

)2

=
∑

s∈Dt \Dτ

(
f(s)2

qτ (s)
+ qτ (s)Ĝ

2
τ,t − 2f(s)Ĝτ,t

)
+

qτ (st)

qt(st)

(
f(st)

qτ (st)
− Ĝτ,t

)2

=
∑

s∈Dt \Dτ

f(s)2

qτ (s)
+ Ĝ2

τ,t

∑
s∈Dt \Dτ

qτ (s)− 2Ĝτ,t

∑
s∈Dt \Dτ

f(s) +
qτ (st)

qt(st)

(
f(st)

qτ (st)
− Ĝτ,t

)2

.

This is a polynomial with respect to our plug-in mean Ĝτ,t. Therefore, we could maintain the three
summations in the coefficients

∑
s∈Dt \Dτ

f(s)2

qτ (s)
,
∑

s∈Dt \Dτ
qτ (s) and

∑
s∈Dt \Dτ

f(s) for each τ

during the algorithm to speed-up the computation of each individual Ṽarτ,t. In addition, our final
estimate is

Ṽarτ =

t∑
r=τ

β̄r Ṽarτ,r =

∑t
r=τ βrṼarτ,r∑t

r=τ βr

.

The numerator is still a polynomial with respect to the plug-in mean whose coefficients can be written
as summations. We would further maintain the three coefficients and

∑t
r=τ βr to avoid the loop to

compute V̂arτ . With the two techniques, our approach is summarized as Alg. 3.
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Algorithm 3 Streaming variance estimation update

Require: Sample st, label f(st) and estimate F̂1:t−1

1: Set xt = yt = zt = at = bt = ct = ut = 0
2: for τ = 1, 2, ..., t do
3: Get estimated mean Ĝτ,t = F̂1:t−1 − F (Dτ )

4: aτ ← aτ + βt

(
xτ + f(st)

2

qt(st)qτ (st)

)
5: bτ ← bτ + βt

(
yτ + f(st)

qt(st)

)
6: cτ ← cτ + βt

(
zτ + qτ (st)

qt(st)

)
7: uτ ← uτ + βt

8: Ṽarτ = (aτ − 2bτ Ĝτ,t + cτ Ĝ
2
τ,t)/uτ

9: xτ ← xτ + f(st)
2

qτ (st)

10: yτ ← yτ + f(st)
11: zτ ← zτ + qτ (st)
12: end for

C Experimental settings

C.1 Estimating birds in radar data

Weather radar preliminaries. The NEXRAD radar network contains 159 high-resolution radars
and covers most of the U.S. territories. Each radar station typically scans the surrounding atmosphere
every 4-10 minutes to collect weather data. This is achieved by rotating the radar antenna around the
vertical axis at multiple elevation angles. At each elevation, the radar performs “sweeps” to collect
several radar products, such as, reflectivity and radial velocity. These signals also record objects like
bird roosts. We render radar data for 300km × 300km regions into 600 × 600 pixel arrays, on which
we train a detector model to automatically predict bounding boxes for roosts.

Visualization. Fig. A2 (left) illustrates weather radar scans capturing bird roosts. Fig. A2 (right)
visualizes the reflectivity data at 0.5◦ elevation of a radar scan that happened at the KCLE weather
radar station on August 19 2015 at 10:31:22 UTC, which is a randomly sampled radar scan that
captures bird roosts. The circular and semicircular patterns are massive amounts of birds departing
from their overnight roosting locations.

Detector, tracking, and filtering. We follow Perez et al. [31] to pretrain a station-agnostic spa-
tiotemporal roost detector. We also follow their configuration for deploying the detector on the Great
Lakes radar stations, which are excluded from the pretraining data, assembling model predicted
boundings boxes into roost tracks, and filtering tracks with too few detected time frames or too low of
a max or mean detection confidence score. Since each weather radar collects data every few minutes,
the same roost is often captured by multiple consecutive scans of a radar station. To avoid double
counting, it is necessary to assemble detections of the same roost into a track.

Perez et al. [31] deploys the roost predition system on radar data from 12 radar stations in the Great
Lakes region and let human experts screen the system predictions. They focus on the time window
from 30 minutes to 90 minutes after the local sunrise for every station-day.

Following Deng et al. [10], we focus on 11 stations, including KAPX, KBUF, KCLE, KDLH, KDTX,
KGRB, KGRR, KLOT, KMKX, KTYX, KIWX, since KMQT does not clearly observe roosts in the
human screened data. Our goal is to estimate the number of birds in June to October in the 2015-2019
five-year period at these 11 stations. We use screened data from Perez et al. [31] as the ground truth
bounding boxes for estimating bird counts. We let our station-specific finetuned checkpoints predict
bounding boxes for the same time periods on the same station-day for our estimations.

Station-day bird count estimation.

• Per-sweep counts. For each predicted bounding box by the detector model in a radar scan in
a station-day, we enumerate over the radar sweeps at all elevation within 5000km height and
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follow Belotti et al. [5] to estimate the bird count of this bounding box geographical region
in this sweep.

• Per-bounding-box counts. We summarize, for each detection, radar sweeps taken across
multiple elevations. In order to prevent double counting of birds in regions sampled twice by
two consecutive beams, we bin the sweep elevations into 1◦ bins. We then take the average
of sweeps that fall in the same bin. Lastly, we sum counts across all bins.

• Per-track counts. We obtain summaries across detections by finding the median count within
each track and selecting two scans before and after the median. We then calculate the
average count within this set of 5 scans.

• Per-day counts. We sum over per-track counts to obtain a per-day bird count at a station-day.

C.2 Additional Finetuning And Sampling Details

To fine-tune our models, we use the Detectron2 library with modified configurations. Specifically, we
disable learning rate warmup, set the batch size to 8, and set FILTER_EMPTY_ANNOTATIONS
to False. For the high-resolution image experiments, we use the faster_rcnn_R_50_FPN_3x.yaml
configuration with the default ImageNet-pretrained weights.

Fine-tuning the image detector takes approximately 20 minutes on a single NVIDIA A16 GPU. We
perform fine-tuning 8 times, resulting in a total end-to-end runtime of just under 3 hours per image.
For the roost detector, each fine-tuning run takes about 2 hours on a single A16 GPU. We fine-tune
4 times, totaling roughly 8 hours of compute per station for roost counting. In both cases, the time
required to compute count and variance estimates is negligible.

In practice, the measurements from the detectors could be as low as 0, making the labeling of some
units impossible and introducing huge variances to the estimation. In our image counting tasks, we
set g(s)← max(g(s), 1) to make sure that each tile can be sampled. In our radar counting tasks, we
set g(s)→ g(s) + 1000 to cover every day in every station.

C.3 Labeling Birds in Images

We visualize the Reeds and Sky images in figure A1. To collect ground truth, we manually label both
images entirely. We use a tile size of 200 pixels for sky and 160 pixels for reeds, resulting in a total
of 925 and 1426 tiles respectively. To label we randomly group the tiles into batches of 50, and have
labelers annotate each batch using VGG annotator. To speed up the process, we label each bird with
a single point at its center of mass. This results in about 1 second of human effort per labeled point.
We only label a bird on the edge if a majority of it is visible in the tile. In total, our ground truth
count for sky is 5682 birds and 12486 birds for reeds.

To convert point annotations into approximate bounding boxes, we use a two-stage heuristic algorithm.
First, we apply Otsu thresholding to each tile and compute the average size of a square bounding
box by dividing the number of foreground pixels by the number of labeled points. In the second
stage, we center these boxes at each labeled point, mask out foreground pixels outside the boxes, and
recompute the average box size using the remaining foreground pixels.

D Additional experimental results

D.1 Comparison to few-shot models

Figure A3 presents results in terms of the Hellinger distance between the predicted proposal dis-
tribution P and the optimal sampling distribution Q (proportional to ground truth counts). We use
Hellinger distance because it accommodates zero-probability entries. It is defined as:

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2.

Where pi, qi are the probabilities assigned to unit i for P and Q, respectively. Unlike raw counts, the
Hellinger distance is unaffected by constant-factor over or under prediction and thus gives a better
idea of how good the model is for the estimation process.
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Figure A1: The Sky image (left) and Reeds image (right) used for our detection experiments. Note
the resolution has been reduced for this visualization.

Figure A2: (Left) Weather radars can detect bird roosts departing from their nighttime roosting
locations. (Right) Roosts appear as circular patterns in images rendered from radar products, such as
the reflectivity at 0.5◦ channel as visualized.

On the left, we compare the proposal distributions of the sky image raw predictions from our fine-
tuned detector and the few-shot FamNet model [34], which estimates object counts from a few
examples without additional training. FamNet struggles to adapt with more examples, while the
fine-tuned model achieves lower Hellinger distance even with a single labeled tile.
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Figure A3: Left: Comparing the performance of raw predictions from fine-tuned detectors vs. few-
shot FamNet[34] model, based on Hellinger distance to ground truth. The FamNet model performs
worse and does not improve as much with more labeled tiles. Right: Hellinger distance between
the raw predictions of the fine-tuned detector and the optimal sampling distribution for both images,
averaged over 100 checkpoints. Unlike the raw counts which saturate quickly, additional training
continues to improve the proposal distribution, especially on the harder Reeds image.
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1000 trials. While the fixed checkpoint approach introduces slightly higher variance, particularly
at higher label counts, it preserves relative trends between methods. This supports its use for our
large-scale evaluation.
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Figure A5: Relative errors compared to αCOMB weighting. Other fixed weighting strategies (αSQRT,
αLURE) are worse, but inverse variance weighting (denoted by INV (γ)) may achieve lower error.

D.2 Fine-Tuning Improves Proposal Distribution

On the right of Figure A3, we track the Hellinger distance over the course of finetuning, averaged
over 100 checkpoints. While raw detector counts tend to saturate early, the Hellinger distance of the
proposal distribution continues to improve, especially for the harder Reeds image, before eventually
saturating.

D.3 True End-to-End Finetuning

To approximate the effect of interactive model adaptation in our main results, we use a “fixed
checkpoint” approach: a predefined sequence of detectors trained on a progressively larger number
of labels. This allows us to conduct a significantly larger number of trials than would be feasible with
full end-to-end training.

In practice, however, a practitioner would retrain the detector as new samples are labeled during
active measurement. To assess how well our “fixed checkpoint” approach approximates this more
realistic scenario, we compare it to end-to-end training averaged over 1,000 trials (Figure A4).

The results indicate that performance under both approaches is similar, particularly when using fewer
tiles, and that the relative trends between methods are preserved. We do observe slightly higher
variance in the fixed checkpoint setting, likely due to the specific checkpoint chosen.

D.4 Different weighting schemes for all experiments

We compare different weighting schemes in both image counting and radar counting experiments.
The results are in Fig. A5 and A6. From the first and the third columns, we conclude that the αCOMB

weights work consistently better than αSQRT and αLURE. In the second and the fourth columns, the
performances of inverse variance weighting with different γ are compared. In general, a conservative
γ = 0.3 brings little benefit, while an aggressive γ = 0.9 can be detrimental because each individual
estimator may not be accurate enough.
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D.5 Confidence intervals for all experiments

In Fig. A7, we compare the CI coverages for all experiments. In most of the experiments, the
coverage for active measurement improves as the number of labeled samples increases (except on
KIWX and KTYX). This behavior is typical in importance sampling-based methods. Out of the 11
radar stations, we achieve near perfect coverage (around 0.95) in 6, good coverage (around 0.9) in 2
and fair coverage (around 0.8) in 3. Comparing the two variance estimators Varsimp

1:t and Varcond1:t , we
find that the Varsimp

1:t works better, especially on stations with bad coverage. We conclude that the
CIs in active measurement usually have the desired properties for measuring the uncertainty.
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Figure A6: Relative errors compared to αCOMB weighting, for the roost counting problem on all 11
radar stations.
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Figure A7: Full CI coverage results for counting on the two images and on all 11 radar stations.
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