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Abstract

Vertical Federated Learning (VFL) enables collaborative learning between clients
who have disjoint features of common entities. However, standard VFL lacks fault
tolerance, with each participant and connection being a single point of failure.
Prior attempts to induce fault tolerance in VFL focus on the scenario of “straggling
clients", usually entailing that all messages eventually arrive or that there is an
upper bound on the number of late messages. To handle the more general problem
of arbitrary crashes, we propose Decoupled VFL (DVFL). To handle training
with faults, DVFL decouples training between communication rounds using local
unsupervised objectives. By further decoupling label supervision from aggregation,
DVFL also enables redundant aggregators. As secondary benefits, DVFL can
enhance data efficiency and security against gradient-based attacks. In this work,
we implement DVFL for split neural networks with a self-supervised autoencoder
loss. This performs comparably to VFL on a split-MNIST task and degrades
more gracefully under faults than our best VFL-based method. We also discuss its
gradient privacy and demonstrate its data efficiency.

1 Introduction

Federated Learning [19], or FL, was introduced by Google researchers as a strategy for distributed
learning, addressing communication efficiency and data privacy. Distributed participants in FL
training do not expose their data to any other party.

A variant is Vertical FL (VFL). Standard FL can be said to have a “horizontal" or “sample-parallel”
division of data: each participant holds unique samples within a shared feature space. Conversely,
VFL participants hold unique features of a common sample space, which is a “vertical", “feature-
parallel” division. This allows guest agents who individually have incomplete and information about
their target to learn meaningful joint representations without sharing data.

VFL has received nascent interest, with some real-world proposals and applications [16]. However,
VFL requires careful synchronization which makes it difficult to engineer and scale. Training is
contingent on the exchange of intermediate results between the guests and the host. A crashed
connection or participant on the backward pass means a missed model update. On the forward pass,
it is catastrophic: an unfulfilled model input.
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Figure 1: Diagram illustrating the distributed training of a neural network under SplitNN, VFL with
SplitNN, and DVFL. The two input data for VFL and DVFL are partial features of the same entity.

We propose Decoupled Vertical Federated Learning (DVFL), where guests and hosts each train
asynchronously on their own unsupervised objective before the label owner learns a transfer learning
model from its labels. At an algorithmic level, DVFL avoids the forward and backward locking
between hosts and guests. Hence, it is free of a single point of failure. Such “localized" training
means that other participants can continue training even when one fails. Further, separating label
inference from aggregation allows for redundant aggregators, further localizing faults.

The exchange of intermediate results is also the root of many other limitations of VFL including
inference attacks (feedback received from the host has mutual information with labels and other
guests’ features) and the inability to train outside the intersection of all sample spaces. DVFL does
not suffer from these problems.

We discuss these in more detail in the appendix (along with the notation and some implementation
details). In the main paper, we present a basic justification for DVFL and experiments on fault
tolerance and out-of-intersection learning.

2 Why Not a Systems-Level Solution?
The failure point can be partially mitigated within the VFL framework itself (with some extra
bookkeeping). If the guest sends back sample indices and epoch numbers with each minibatch, the
host can uniquely identify which request it belongs to. Now it may employ a timeout with a strategy
to fill missing inputs; late messages may be identified and discarded. Alternately, the host may wait
and poll unresponsive guests until they get at least one response for each request. So why DVFL?

Neither strategy handles faults on on backward passes, and wait is a busy-wait [13]. Further, there
is no guarantee that training ever continues. In DVFL, live participants can continue training even
when some fail. As for timeout, it is not trivial to choose a good replacement for missing inputs. We
investigate some obvious options empirically.

3 Why Not a Straggler-Resilient Solution?
For VFL, there is limited work on crash faults. However, there is a line of work on the related case of
straggling guests. The definition of the problem only extends to the count of failures being bounded
as in FedVS [15], and/or late messages eventually arriving [22, 29, 11, 26]. Since a real system
could have an arbitrary number and duration of crashes, these methods cannot generalize to crash
faults. Typically, they do not address faults in the backward pass. Other paradigms (such as Gradient
Assisted Learning [6]) which require periodic synchronization are similarly hamstrung.

Fully event-driven asynchronous VFL methods exist [3, 9], which are viable candidates to tackle
crash faults. However, their convergence guarantees also assume all messages eventually arrive. Our
experiments indicate that their performance with indefinite crashes may be graceful, but not as much
as DVFL even at best. We discuss this in the appendix (§B).
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Table 1: We compare DVFL to standard VFL. After filtering outliers by IQR, we report the mean
and 2x the standard deviation of MNIST test performance when trained with various entities i ∈
{connection, guest,host} susceptible to fail at a rate of R(d)

i = 0.3. A failed resource has R(u)
i =

Prejoin ∈ {1, 0.5, 0.1} to be available next time it is requested. SplitNN, the baseline VFL algorithm,
cannot train at all when there are any faults. On the other hand, our DVFL implementation degrades
gracefully with faults. Using an explicit fault handling strategy within VFL does allow it to train. But
the degradation with faults is sharper than DVFL and the variance in model performance is higher.
Under fault-free circumstances, SplitNN slightly outperforms our DVFL implementation. With minor
adjustments, SplitNN can tolerate some faults, but our approach is more resilient and stable.

STRATEGY

TEST ACCURACY (%) WITH 0.3 LOSS RATE

NO FAULTS CONNECTION LOSS GUEST LOSS HOST LOSS

Prejoin = N/A Prejoin = 1 Prejoin = 0.5 Prejoin = 0.1 Prejoin = 1 Prejoin = 0.5 Prejoin = 0.1 Prejoin = 1 Prejoin = 0.5 Prejoin = 0.1
DVFL-NN 97.80±0.12 97.78±0.11 97.78±0.14 97.72±0.17 97.77±0.11 97.74±0.16 97.58±0.20 97.81±0.12 97.79±0.14 97.60±0.33

VFL (SplitNN) 97.85±0.17 N/A N/A N/A N/A N/A N/A N/A N/A N/A
VFL (SplitNN-skip) 97.86±0.16 97.50±0.54 96.60±0.51 77.21±5.34 97.44±0.57 96.65±0.45 80.22±4.31 97.65±0.41 97.59±0.50 97.29±0.89
VFL (SplitNN-zeros) 97.84±0.15 97.64±0.38 97.53±0.40 97.44±0.36 97.68±0.40 97.59±0.40 96.95±0.50 97.68±0.30 97.65±0.37 97.31±0.93
VFL (SplitNN-buffer) 97.85±0.17 97.66±0.38 96.85±0.74 93.45±2.10 97.59±0.58 96.76±0.70 91.78±1.70 97.81±0.32 97.71±0.40 97.69±0.51

4 DVFL with Self-Supervised Learning

DVFL splits the training into two phases coordinated by the owner. The first is an unsupervised and
decoupled greedy guest-host representation learning phase. In this phase, the guest and host models
learn feature extractors on their own unsupervised objectives. The second is a supervised owner
transfer-learning phase where the label owner learns to aggregate encodings from the host space and
produce label predictions. We do not consider faults in owner training. They do not affect the guests
and hosts which train the bulk of the network. Further, even if there may be faults during owner
training, the owner only needs to collect hosts’ final encodings for each input– then, it may train its
model offline whenever it is up.

Since guests do not rely on feedback from hosts to update their models, host or connection faults
during the backward pass are irrelevant to the guest models. Hosts store activations from guests as
they arrive and use the latest message for their forward pass, so a missing input on the forward pass is
no longer critical.

The lack of end-to-end feedback combined with the three-tier hierarchy leads to significant robustness.
The task of a host’s model is only to learn an encoding of features in the joint guest domain, which is
not an instance-specific task. Therefore, a host may still update its model meaningfully with some
out-of-date activations. Similarly, guests may use their entire datasets as opposed to only members
of the intersection. Besides leading to better models, using more data means a single fault does not
affect the overall uptime as much. On the backward pass, faults only affect the crashed participant.

5 Experiments
As a toy example, we consider a system of |G| guests which can each see 1

|G|
th of an handwritten

digit from the MNIST dataset [5]. For our experiments, we set |G| = 4 i.e. g1’s dataset contains the
top 28× 7 pixel patch of an MNIST image, g2’s dataset contains the second , g3’s contains the third,
and g4’s contains the bottom 28× 7 patch.

5.1 Baselines

DVFL is an alternate strategy to VFL. Naturally we compare DVFL for NNs to SplitNN, a direct
application of VFL to NNs. Naive VFL implicitly employs the “wait” protocol. . We also modify
the algorithm to implement the timeout strategy, imputing missing inputs with zeros (zeros), stale
activations (buffer), and skipping that round altogether (skip).

For SplitNN hosts and DVFL owners, we use cross-entropy loss. For DVFL hosts and guests, We use
a learnable decoder head and MSE reconstruction as a self-supervised objective.

5.2 Fault Tolerance

We use a fault model where a live resource has a fixed probability R(d) of dropping off at a given
request (and R(u) vice-versa). How these faults are simulated are elaborated in the Appendix §D.2.
For a given experiment, which resource fails (connection, guest, or host) is fixed. There are 4 DVFL
hosts and 1 VFL host. These results are presented in Table 1.
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Table 2: We exploit data outside the sample intersection to train DVFL’s guests and hosts. For the
owner model, we use labeled entities common to all datasets. This performs better than VFL, which
can only use the common samples.

STRATEGY
TEST ACCURACY (%)

# OF LABELED SAMPLES

128 256 512 1024
DVFL 76.45 82.51 85.18 88.90

VFL (SplitNN) 65.07 77.51 83.09 87.26

5.3 Limited Intersection
We first fix a small labelled and aligned intersection size. The remaining sample space is shuffled
and distributed evenly across all four guests. We try this experiment with 128, 256, 512 and 1024
labeled samples. We compare with SplitNN, which can only be trained on the labeled samples since
the aggregator needs to calculate a supervised loss. Results are presented in Table 2

6 Discussion

6.1 Fault Tolerance

Model performance degrades with faults, but not catastrophically (unlike VFL with SplitNN). In
ideal conditions, DVFL performance is slightly poorer than SplitNN’s. This is not unexpected (see
Limitations). Observe that the degradation with faults in DVFL is more graceful and stable.

In the case of SplitNN-based algorithms, a connection and guest fault are functionally identical. In
the case of DVFL, there are some performance savings under connection faults– the corresponding
guest and host can still meaningfully learn even in the absence of connection. Further, redundant
hosts may continue training as normal.

6.2 Limited Intersection
Although VFL with SplitNN marginally outperforms our DVFL NN in the experiments with perfect
conditions, DVFL significantly outperforms VFL on a limited labeled intersection. DVFL’s advantage
is greater with fewer labels (Table 2).

6.3 Gradient Privacy
VFL is performant while also completely eliminating the possibility of gradient-based inference
attacks. Complex mechanisms can be developed on top of SplitNN to provide privacy guarantees
within some bounds [12]. DVFL achieves complete privacy against gradient-based attacks without
any extra computation and minimal performance loss.

6.4 Limitations
This study only considers an MNIST-based toy example. While this is a reasonable proxy for most
benchmark VFL datasets (which are typically “easy", e.g. [18, 27, 21, 14]), it remains open to see
whether this performance keeps up on “harder" datasets. Typically, local self-supervision does not
scale well with deeper models (perhaps thanks to lesser mutual information with the task– analyzed
by [24]). However, it is possible the information loss from connections between guests is a bigger
bottleneck here. More investigation is needed.

7 Conclusions and Future Work
We present Decoupled Vertical Federated Learning, a strategy for joint learning on vertically par-
titioned data. Instead of adding complexity to cope with the data leakage and synchronization
associated with BP, we eschew feedback altogether. Combined with the ability to reuse feedforward
signals, this allows for fault tolerance and privacy in training. Training may continue even when there
are faults, or there are a limited number of samples common to all guests.

We believe DVFL will enable large scale and democratic participation in joint learning tasks where
VFL has been unable to provide solutions. e.g. street & private residential cameras predicting traffic
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incidents at a busy intersection. Participants might suffer from intermittent connection, might not
all be able to see each training incident i.e. small Sguest ∩ Slabels, or might be concerned about
privacy. DVFL is also more practical for existing cross-silo applications. Consider the typical
example of various specialized healthcare providers predicting, say, cancer. Not only can the hospitals
train asynchronously and not worry about faults, they need not worry about compromised hospitals
launching gradient inference attacks. Further, they may now admit more hospitals to their system
even if they have few patients in common.
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A Background: Standard VFL

A.1 Notation

The rows of a dataset are features of a unique entity x. We may serialize these entities using a sample
index e.g. as xj . gi is the ith data-owning agent, member of set of guests G. Fi is the set of features
that guest gi records. xj,Fi

are the features Fi of the jth entity. mi( · ; θi) is gi’s model, R|Fi| → Rki

function parameterized by θi, which is learnable. Si is the set of sample indices for which gi has
records. Sguests =

⋂|G|
i=1. h is the host agent, which owns labels. Slabels is the set of sample indices

corresponding to labeled entities. mh( · ; θh) is the host’s Rk1 × Rk2 . . .× Rk|G| → Rout learnable
model, which accepts the outputs of mi and makes a task-relevant prediction.

A.2 The VFL Hierarchy

Guest: The guest role does not entail access to labels or other guests’ data. The guest’s private model
mi’s task is to concisely represent the features Fi of xj ∀ sample indices j ∈ Sguests ∩ Slabels.
Guests obtain these encodings and pass them to the host h.

Host: The host agent h executes every round of training. The host has access to target labels. The
host passes encodings of all available features of xj through its model and outputs a label prediction.

If the host has access to the full computational graph, it may adjust all parameters to better predict
label y, usually by minimizing the expected value of some loss function. Otherwise, it may update
only its parameters θh and send gradients to guests, who may then update their own models.

Together, the guests and host solve the following joint optimization problem:

θ∗ =θ Exj∼X

[
ℓ(mh

(
x̂j,1, . . . , x̂j,|G|); θh

)
,yj)

]
,

where x̂j,i ≡ mi(xj,Fi
; θi) ∈ Rki .

A.3 Split Training for Neural Networks

SplitNN [10] is a faithful implementation of VFL for NNs. It was originally proposed as an algorithm
to distribute the training of a global neural network across two agents by splitting the network
depth-wise into two. At the “split layer", forward and backward signals are communicated between
the two devices.2 Ceballos et al. [2], Romanini et al. [20] extend SplitNN for vertically partitioned
data by vertically splitting the shallower layers (see Figure 1). Effectively, the guest models mi are
NNs and host model mh consists of a concatenation layer m0

h followed by an NN m1
h.

A.4 Impracticalities in VFL Training

A.4.1 Single Points of Failure

In order to make a prediction on a batch of data, the host model mh : Rk1 × . . . × Rk|G| → Rout

requires inputs from all guest models. If an input is unavailable to the host model, no prediction
can be made– a catastrophic fault. Similarly, local models’ updates require gradients from the host,
lacking which the model convergence slows down and may fail altogether. We consider the following
fault model for a round of training:

• Guest faults: A guest may be unable to compute its output, update its model, or communicate.
• Host faults: The host itself may fail, and be unable to receive inputs or calculate gradients.
• Connection faults: The communication link between a guest and the host may be dropped

during the forward or backward pass.

From a VFL host’s perspective, a guest fault and connection fault manifest as a missing input to its
model mh( · ; θh) during training.

2One might say that the standard SplitNN addresses a special case of VFL where the host has access only to
labels and the (single) guest has access only to features. The original paper [10] also presents a protocol for
training when the features are horizontally distributed across N guests.
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A.4.2 Data Intersection

Since VFL training is contingent on entity alignment, it is not usable in scenarios where the inter-
section of entities known to each guest is small. This is often the case when the number of guests is
large. It could also be the case that, although Sguests is reasonably large, labels are not available for
all its members, i.e., Slabels ∩ Sguests ⊂ Sguests.

A.4.3 Inference Attacks

Fu et al. [8], Luo et al. [17], Erdoğan et al. [7] show various methods curious guests may infer private
information from gradients. Some attacks require training a generative model or somehow obtaining
a small number of labels. Others are as simple as analyzing the sign of the gradient.

Typical defenses include differential privacy, gradient compression, homomorphic encryption and
secret shares for gradients and model features. However, these methods usually have a negative
effect on model convergence rate and tightness [12]. Moreover, implementing such cryptographic
algorithms is computationally expensive.

B SplitNN-Zeros as a Skyline

We argue that under some constraints, SplitNN-zeros may be an upper bound on the performance of
asynchronous and systems-level solutions.

Firstly, observe that when there are no skip connections, constrained solvers etc. SplitNN-zeros simply
behaves as if missing inputs never existed to begin with– the gradient with respect to those inputs is
zero and the output is only calculated based on the available information. From the perspective of
asynchronous VFL, [3, 9] this is as if there is an oracle telling the host which clients will not respond
to its next request– and then the host then only sending requests to live guests. Further, the host
launches requests to all live guests simultaneously– so each model is updated based on all responses
at once, reducing variance.

From the perspective of systems-level solutions (in particular, the timeout strategy), results on
SplitNN-buffer show that there is no meaningful locality to be exploited. This suggests that unless
we have a way of modelling missing inputs, SplitNN-zeros might be the best we can do. Trying to
model inputs on the other hand would require prohibitive computation (perhaps a generative model).
Moreover, an estimator would suffer from high variance, especially at the start of training. So we do
not consider this alternative.

Finally note that in models where there are skip connections, constrained solvers etc. SplitNN-zeros
will degrade in performance, since connections to dead inputs will get an error signal which should
not exist.

C Computational Overhead

C.1 Periodic Communication

The owner initiates each round of training as well as communication for all agents. Since the training
of guests and hosts are decoupled, the owner may ask guests to communicate their latent activations
(and therefore start host training rounds) at arbitrary intervals. In VFL, guest model updates are
dependent on host feedback. So there is every-shot communication: guests send every single output
to the host.

With one-shot communication such as FedOnce [25], the volume of communication is greatly reduced,
at the cost of model performance. Equivalently, Belilovsky et al. [1], Siddiqui et al. [23] demonstrate
that updating all layers on local objectives on each forward pass performs better than fully training
and freezing a layer before moving on to the next.

We study the tradeoff between communication cost and model performance by introducing a hyper-
parameter K, which is the period (in guest epochs) at which communication epochs occur. During a
communication epoch, every iteration of the guest model iteration is followed by a communication
round i.e. guests write their activations to the communication registers, and hosts read them, concate-
nate them and store the concatenations in their input buffers.
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Figure 2: Model performance degrades with an increase in communication period, i.e. more
communication is correlated with better performance.

If there is a host training iteration at every guest training iteration communication round, after the
guests complete N epochs, the hosts will have

1. A model trained for
⌊
N
K

⌋
epochs

2. The history of model inputs from each iteration in
⌊
N
K

⌋
epochs of training

If the host must complete a certain number M >
|Sguests|
batchsize ×

⌊
N
K

⌋
iterations of training, it reuses

these activations until the required number of iterations is met.

We simulate VFL training with 4 hosts and 0 fault rate. We measure test accuracy for the following
communication periods:

• Every guest epoch (K = 1)
• Every 5 guest epochs (K = 5)
• Every 10 guest epochs (K = 10)
• Only once, after 20 guest epochs (K = 20).

Note that the dimension of the latent representations communicated by each guest to reach host
is 80, and each dimension corresponds to a 32-bit floating point number. The MNIST training
dataset has 60000 samples. If the total number of guest training epochs is N and the period of
communication epochs is K, the total communication cost per guest is |H|×⌊N

K ⌋×60000×80×32

bits. Each message received is saved by the host in the activation replay3. Consistent with results
from Belilovsky et al. [1], Wu et al. [25], Siddiqui et al. [23], training the depth-wise split model
parallely yields better model performance. We observe the tradeoff between communication cost and
model performance. With 1.536GB, 0.307GB, 0.154GB and 0.077GB outgoing from each guest, the
accuracies on the MNIST test set are 97.30%, 97.14% 97.08% and 96.84% respectively.

C.2 Activation Replay Mechanism and Its Computational Overhead

A host gets its input from its activation replay buffer. That allows it to train asynchronously wrt the
guests. The host can train independently of the guests as long as the guests have communicated
earlier. Indeed, that is the case in our experiments– we simulate host models’ training offline, after
guest training. As discussed in Appendix C.1, this allows control over when the guests communicate.

Another way to look at this is: hosts do not need to train for the same number of iterations as guests
communicate messages for. This includes the case where guests communicate every iteration, but
hosts want to train more (or less) iterations. While we use 40 epochs to train the entire SplitNN

3Although this is not necessary if the host will not reuse activations, viz. a host wants to train for k iterations
and it receives activations of k iterations from the guests. This is discussed in more detail in a future section.

9



(a) Guests (c) Owner

(b) Hosts

Figure 3: A DVFL system with three guests (a) and two hosts (b). Guests train their local models on
unsupervised objectives and hosts also train their aggregating models on unsupervised objectives.
After that, the label owner (c) trains a transfer learning model (such as a linear classifier head) on the
encodings from the hosts.

model, we only use 20 epochs to train the DVFL guests. Guests need not remain online for any more
time than required to train 20 epochs. So, not only does this allow for more flexibility, it also helps
fault tolerance.

Computational Resources In order to maintain this asynchronicity, hosts need to maintain the
activation replay buffer. For each message it receives, the size of the buffer grows by batchsize×Wg .
Further, these expensive memory read/write operations also add time complexity to DVFL hosts’
training. This overhead does not exist in standard VFL. This it is DVFL’s primary drawback4. This
extra computation can be mitigated to some extent since some models can be trained for fewer epochs
as discussed above.

Also, it is important to note that it is not strictly necessary to save all activations. If a host trains for
≤ the number of epochs that guests train/communicate for, it does not need to reuse activations. In
that case, a host model input can be deleted after it is used once.

In general, it is not necessary for any pair of participants (either belonging to any set: be it G, H or
{owner}) to train their model for the same number of iterations. This flexibility comes at the cost of
space, but the upside from a system design and fault tolerance perspective is salient.

D Models, Hyperparameters and Implementation Details

D.1 Models

The “global", single-participant neural network (see Figure 3) being split is a shallow multi-layer
perceptron. It is parameterized by Wg and Wh. Wg is the dimension of the concatenated output of all
guests viz. the input to a host. Wh is the output dimension of a single host.

D.1.1 MNIST

Our batch sizes are 64.

4The other source of overhead is the calculation of the self-supervised/unsupervised loss. For example,
consider our experiments with MSE as the guest and host objectives. Along with our model, we need to train a
decoder head that projects the guest output onto a space of the same dimension as input. Modern contrastive
self-supervised losses e.g. Chen et al. [4], Zbontar et al. [28] typically also use a shallow projector network from
the desired representation onto a latent space. The loss is calculated using the projected vectors. Intuitively, in
the absence of a pre-computed ground truth label, the model must perform extra computation to generate the
self-supervisory signals. However, the significance of this overhead depends heavily on implementation and is
not strictly a bottleneck.
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Table 3: Ablation study of model width (particularly, the dimensions of the outputs which are
communicated) on model performance with DVFL. Our experiments in the main paper use Wg = 320
and Wh = 160. We run a hyperparameter sweep for each cell

Wh
TEST ACCURACY (%)

Wg = 200 Wg = 240 Wg = 320 Wg = 400

120 97.43 97.28 97.09 97.34
160 97.60 97.86 97.89 97.69
200 97.81 97.89 98.15 98.30

Table 4: Model dimensions used in our experiments on tabular datasets. The dimension of the input
to a guest gi’s model is di. Wg is the dimension of the concatenated output of the guests’ models.
Wh is the dimension of the output of one host’s model.

DATASET Wg Wh
ACTIVATION

GUEST HOST

Credit Card
∑

i⌈
3di

4 ⌉ 10 Leaky ReLU Leaky ReLU

Parkinsons
∑

i⌊
di

4 ⌋
∑

i⌊
di
4 ⌋

4 Leaky ReLU ReLU
CalTech-7 256× |G| 256 Leaky ReLU ReLU

Handwritten
∑

i⌈
3di

4 ⌉ 3
∑

i⌈
3di
4 ⌉

4 Leaky ReLU ReLU

The “guest" models have 2 layers, which squeeze the flattened 784
|G| -long input vector dimension to

400
|G| via LeakyReLU, and then to Wg

|G| with ReLU activation.

The “host" models squeeze the Wg-dimensional input to Wg+3Wh

4 and then to Wh via LeakyReLU,
with Leaky ReLU activation (with negative half-plane slope = 0.01).

The “owner" model squeezes the Wh × |H| dimensional input to Wh and then to 40 with Leaky
ReLU activations and finally to a 10-class prediction with an implicit softmax via the cross entropy
loss function.

For DVFL experiments, the guest, host, and owner modules are separate objects simulated to reside
on separate devices. In order to produce a reconstruction, they also contain decoder MLPs which
undo the squeezing operation. The guest decoder is activated by a sigmoid function (since the input
image is normalized to the range [0, 1]) and the host decoder is activated by a ReLU function (since
the output of the guest model is also activated by a ReLU function and therefore cannot be negative).

For SplitNN experiments, the guest encoder architecture is identical to DVFL. The host model is a
sequential module of the DVFL host encoder followed by the owner classifier.

We try DVFL for Wg ∈ {400, 320, 240, 200} and Wh ∈ {200, 160, 120}. The classification accura-
cies are presented in Table 3. There two competing factors: the number of parameters (a monotonic
function of Wg×Wh) and the compression from host to guest. While more parameters implies a more
generalizable (and hence hopefully accurate) model, an increase in Wg for a fixed Wh seems to suffer
from some information loss, especially for larger Wh. It could be that the model eschews an encoding
with more classification-relevant information when encodings with more reconstruction-relevant
information are available thanks to the larger parameter space.

In the main paper, we use Wg = 320 and Wh = 160 for our experiments on MNIST. This choice
enables good model performance while also demonstrating host models’ ability to compress the data.

D.2 Fault Simulation

We simulate faults based on six hyperparameters:
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1. Connection Faults: During each connection round, for each pair (gj , hi) we draw a sample
from a uniform distribution with support [0, 1]. We track the current status of each connection
using flags.

• R
(d)
connection: If the connection between (gj , hi) was alive on the last iteration, we kill it

if the sampled value is greater than R
(u)
connection.

• R
(u)
connection: If the connection between (gj , hi) was dead on the last iteration, we revive

it if the sampled value is lesser than R
(u)
connection.

In DVFL, we only write gj’s activations to register Bj,i if. Similarly, for SplitNN, we check
and update the flag before any forward pass from or backward pass to the split layer.

2. Guest Faults: Whenever a guest is called (i.e. there is a forward or backward pass), for
each gj we draw a sample from a uniform distribution with support [0, 1].

• R
(d)
guest: If the guest gj was alive on the last call, we kill it if the sampled value is greater

than R
(u)
guest.

• R
(u)
guest: If the guest gj was dead on the last call, we revive it if the sampled value is

lesser than R
(u)
guest.

In DVFL, we only update θj if the guest gj is alive. If it is a connection epoch, we only
write gj’s activations to Bj,i∀i ∈ {1, 2, . . . , |H|} if the guest is alive. Similarly, in SplitNN,
we only allow a guest to send a forward pass and receive gradients if it is alive.

3. Host Faults: During each training iteration, for each hi we draw a sample from a uniform
distribution with support [0, 1].

• R
(d)
host: If the guest hj was alive on the last call, we kill it if the sampled value is greater

than R
(u)
host.

• R
(u)
host: If the guest hj was dead on the last call, we revive it if the sampled value is

lesser than R
(u)
host.

In DVFL, we only update θH,i if the host is alive. If it is a communication epoch, we also
drop the last item in input buffer Ai. In the case of SplitNN, we assume the host is able
to call on the guests before failing. When a SplitNN host fails, it does not compute any
gradients.
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NeurIPS Paper Checklist

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our primary claims are that

(a) DVFL performs comparably to VFL: Indeed, our implementation of DVFL using an
autoencoder achieves ≈ 97.8% on MNIST to ≈ 97.9% for SplitNN. In the Appendix,
we show DVFL’s fault-free performance on benchmark VFL datasets (including tabular
ones, which are typically difficult for neural networks) is also only marginally worse
than VFL, while both VFL and DVFL outperform FedVS [15], a state-of-the-art fault
tolerance and privacy solution for VFL.

(b) DVFL can handle faults: Unlike standard SplitNN, training can continue under crash
faults. The degradation of performance is graceful, moreso than if we were to imple-
ment a fault handling strategy directly with VFL.

(c) DVFL is secure against gradient based attacks: Trivially, gradient-based inference
attacks are not possible since there is no gradient feedback from other devices.

(d) DVFL meaningfully exploits its full dataset: Performance on DVFL is better than VFL
trained on only the intersection of datasets.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: It’s Section 6.4

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The work is a system-level design and empirical results are presented. It is
trivial that gradient inference attacks are impossible when there are no external gradients.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithm used is described in pseudocode. The models, optimizers,
hyperparameters are fully specified in the appendix. Our statistical methodology is described
in the table captions.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: N/A for the workshop version.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: Available in Appendix §D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our main claims are, in fact, bolstered by the standard deviations being lower
for our method than the baseline.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: High-level discussion in §D

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Dedicated section that discusses both: §??

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks– our work promotes data privacy and security,
as well as large-scale democratic participation in distributed learning.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the datasets used.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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