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ABSTRACT

Medical image segmentation typically adopts a point-wise convolutional segmenta-
tion head to predict dense labels, where each output channel is heuristically tied to a
specific class. This rigid design limits both feature sharing and semantic generaliza-
tion. In this work, we propose a unified decoupled segmentation head that separates
multi-class prediction into class-agnostic mask prediction and class label predic-
tion using shared object queries. Furthermore, we introduce a Full-Scale Aware
Deformable Transformer module that enables low-resolution encoder features to
attend across full-resolution encoder features via deformable attention, achieving
memory-efficient and spatially aligned full-scale fusion. Our proposed method,
named MaskMed, achieves state-of-the-art performance, surpassing nnUNet by
+2.0% Dice on AMOS 2022 and +6.9% Dice on BTCV.

1 INTRODUCTION

Medical image segmentation plays a critical role in a wide range of clinical and diagnostic applications,
including organ delineation, tumor quantification, and treatment planning. The dominant paradigm
in modern medical segmentation systems, such as UNet Ronneberger et al. (2015) and its variants
(e.g., nnUNet Isensee et al. (2021), UNETR Hatamizadeh et al. (2022), nnFormer Zhou et al. (2021),
SwinUNETR Tang et al. (2022)), adopts a simple yet effective architecture: an encoder–decoder
architecture coupled with a lightweight segmentation head. In most cases, this segmentation head
consists of a point-wise convolution that directly maps deep feature channels to class logits, followed
by a softmax activation and optimized using cross-entropy or Dice loss.

Despite its empirical success, the widely adopted point-wise convolutional segmentation head intro-
duces a rigid inductive bias in how semantic classes are predicted. Specifically, it can be interpreted
as a learnable linear projection matrix multiplied by an explicitly predefined channel-to-class identity
matrix. The learnable linear projection matrix maps high-level feature representations to a fixed
number of output channels, while the manual channel-to-class identity matrix enforces a one-to-one
mapping between channel indices and semantic category labels. This hand-crafted structure assumes
that each output channel is solely responsible for a specific class, regardless of context.

Such a design imposes two key limitations. First, it restricts the model’s ability to learn flexible, data-
driven associations between spatial patterns and class semantics. The head operates independently
per channel, preventing joint reasoning across categories. Second, it discards the potential for
feature sharing or contextual adaptation, which are essential for modeling ambiguous or overlapping
structures in medical images.

To address these limitations, we propose a unified and fully decoupled segmentation head that predicts
sets of binary masks and their associated class labels in parallel, without hard-coded bindings between
channels and classes. This design enables dynamic, compositional reasoning, where mask and class
embeddings are learned independently and can interact adaptively. Notably, traditional point-wise
convolutional heads can be viewed as a special case of our framework, where class embeddings are
fixed as identity mappings and masks are generated by direct channel-wise linear projection. By
breaking this rigid structure, our unified segmentation head improves both the expressiveness and
performance of medical image segmentation models.

Another insight is that, although spatial granularity varies across decoder stages, the semantic queries
responsible for mask and class prediction should remain consistent. Therefore, we introduce a shared
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query mechanism across all decoder levels, where queries and masks are propagated hierarchically
and refined via masked cross-attention. This mechanism allows low-level predictions to guide
higher-level attention toward important spatial regions, leading to improved segmentation accuracy.
This design forms our final Masked Multi-Scale Segmentation Head architecture, which effectively
integrates multi-scale information while maintaining semantic coherence across decoder stages.

To further enhance the representational capacity and information flow between the encoder and
decoder, we explore more effective strategies for fusing multi-scale features. A straightforward
approach is to apply attention-based modules to the encoder’s hierarchical outputs for global context
modeling. However, such designs are typically memory-intensive and limited to low-resolution
features due to the quadratic complexity of standard attention mechanisms. Inspired by deformable
attention Zhu et al. (2021); Cheng et al. (2022), we propose the Full-Scale Aware Deformable
Transformer (FSAD-Transformer), which enables efficient and adaptive aggregation of features across
all resolution levels of the encoder with low computational cost.

Our main contributions can be summarized as follows:

• We propose MaskMed, a unified segmentation head framework that generalizes traditional point-
wise segmentation heads into a fully decoupled design, where binary mask prediction and class
prediction are independently learned and jointly optimized.

• To establish precise supervision, we introduce bipartite matching between predicted mask-label
pairs and ground truth, marking the first application of this strategy in medical image segmentation.

• We develop a Masked Multi-Scale Segmentation Head that uses a shared query mechanism across
decoder stages, enabling consistent semantic prediction while refining spatial details hierarchically
with masked attention.

• We introduce the Full-Scale Aware Deformable Transformer to efficiently fuse full-scale encoder
features by attending to sparse yet informative regions across all spatial resolutions.

• MaskMed achieves new state-of-the-art performance, outperforming nnUNet by +2.0% Dice on
AMOS 2022 Ji et al. (2022) and +6.9% Dice on BTCV Landman et al. (2015).

2 RELATED WORK

Medical Image Segmentation. Deep learning has significantly advanced medical image segmen-
tation, with fully convolutional architectures like U-Net Ronneberger et al. (2015) serving as the
foundation. nnU-Net Isensee et al. (2021) further automated architecture and hyperparameter tuning,
achieving state-of-the-art performance across numerous 3D benchmarks. With the emergence of
transformers, a new wave of methods has extended these architectures by incorporating self-attention
mechanisms, including UNETR Hatamizadeh et al. (2022), Swin UNETR Tang & et al. (2022), and
nnFormer Zhou et al. (2021). These models typically adopt an encoder–decoder framework where
transformers enhance long-range dependency modeling. However, despite innovations in feature
encoding, most existing methods still rely on simple point-wise convolution segmentation heads for
final mask prediction. These segmentation heads operate by projecting the high-dimensional feature
maps into a fixed number of output channels, where each channel is assigned to a specific semantic
class. This rigid channel-to-class assignment enforces a hard-coded one-to-one mapping, which
poses two major limitations: i) it constrains the model’s expressiveness by preventing dynamic or
compositional reasoning across classes, and ii) it treats all output channels independently, ignoring
potential inter-class correlations or shared structures. Such designs lack flexibility and scalability.

Mask Classification and Decoupled Prediction. In the vision community, recent work such as
MaskFormer Cheng & et al. (2021) and Mask2Former Cheng & et al. (2022) proposed a new paradigm
for segmentation: treating it as a mask classification task. Instead of directly predicting multi-class
maps, these approaches decouple the task into predicting a set of class-agnostic binary masks and their
associated class labels, enabling better generalization and alignment with instance-level structures.
This formulation also naturally facilitates the use of bipartite matching (e.g., via the Hungarian
algorithm) for optimal supervision. In medical image segmentation, this decoupled formulation has
not been explored. To the best of our knowledge, we are the first to adopt a fully decoupled design
with bipartite matching, enabling more flexible and instance-aware segmentation.

Deformable Modules in Vision Deformable modules have significantly advanced visual recognition
by adapting receptive fields to object shapes and scales, such as Deformable Convolutional Networks

2
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Figure 1: Illustration of different segmentation head architectures evolving from the conventional UNet-based
design (a, b) to our proposed decoupled mask and class embedding framework (f).

(DCNs) Dai et al. (2017), introduced learnable spatial offsets into convolutional kernels, enabling
spatially adaptive feature extraction. This idea was later extended to the attention paradigm. In
particular, Deformable DETR Zhu et al. (2021) and Xia et al. (2022) proposed a sparse, content-
adaptive attention mechanism that restricts computation to a small set of key sampling points,
dramatically reducing the memory and convergence burden of standard transformers. In medical
imaging, deformable components have been used for tasks like registration Chen et al. (2022), but
their use in segmentation remains limited. We address this gap by introducing a Full-Scale Aware
Deformable Transformer that applies deformable attention for efficient, global feature fusion across
encoder scales in high-resolution 3D medical segmentation.

3 THE PROPOSED METHOD

3.1 RETHINKING SEGMENTATION HEADS.

Medical image segmentation is conventionally formulated using convolution-based encoder–decoder
architectures such as U-Net, as illustrated in Fig.1(a). These models typically attach multiple point-
wise convolutional segmentation heads (SegHeads) at different decoding stages (Fig.1(b)). The
encoder extracts hierarchical feature representations, while the decoder reconstructs a high-resolution
feature map F ∈ RB×C×D×H×W enriched with high-level semantic information, where B is the
batch size, C denotes the number of feature channels, and (D,H,W ) are the spatial dimensions.
Each SegHead, typically implemented as a point-wise convolution, projects the feature map from
C channels to N class logits, yielding an output of shape (B,N,D,H,W ), where N denotes the
number of semantic classes. A softmax operation is applied along the channel dimension to yield
voxel-wise class probabilities.

As illustrated in Fig. 1(b), the point-wise convolutional SegHead can be interpreted as a learnable
linear projection with parameterized by a weight matrix of size C × N . This layer maps the
semantically rich decoder features to a set of logit masks, each corresponding to a specific semantic
class. Conceptually, this is followed by an implicit identity matrix Icls ∈ RN×N , which enforces a
rigid one-to-one assignment between output channels and semantic classes. Under this formulation,
each channel index in the logit masks is assumed to represent a single semantic class exclusively (i.e.,
the i-th channel contributes 100% to the i-th class). This fixed channel-to-class mapping is consistent
with the one-hot assumption embedded in the identity matrix. The final predictions are obtained by
applying a softmax operation along the channel dimension, and supervised using a combination of
Dice loss and Binary Cross Entropy (BCE) loss against the ground truth labels. The formulation:

L =

N∑
i=1

LDice+BCE

(
Ŷi,Yi

)
, Ŷi = softmax([F ·Mmask · Icls]i) (1)

To enable more flexible and expressive representation learning, we progressively evolve this baseline
through a series of architectural modifications:

• Learnable Class Embedding via Point-wise Projection (Fig. 1(c)): To move beyond the rigid
one-hot assumption imposed by the identity matrix, we replace the fixed class embeddings with a
learnable parameter matrix implemented as a point-wise (1× 1× 1) convolution. This modification
enables the model to learn the contribution of each logit mask to the final class prediction in a
flexible manner, rather than relying on static, predefined mappings. Each class embedding becomes
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a trainable vector that can better capture inter-class relationships and adapt to the feature distribution
during training. The formulation can be expressed as:

L =

N∑
i=1

LDice+BCE

(
Ŷi,Yi

)
, Ŷi = softmax([F ·Mmask ·Mcls]i) (2)

• Data-Driven Class Embedding via Transformer (Fig. 1(d)): To further enhance the modeling
capacity and contextual awareness of the class embeddings, we incorporate a Transformer-based
module consisting of self-attention, cross-attention, and feed-forward layers. Initialized with a
set of learnable queries EQ ∈ RN×E , this module dynamically generates class embeddings by
conditioning on the semantic feature maps. This fully data-driven formulation allows the class
embeddings to be informed by global context and spatial semantics, providing a more expressive
alternative to static or point-wise embeddings. The formulation can be expressed as:

L =

N∑
i=1

LDice+BCE

(
Ŷi,Yi

)
, Ŷi = softmax([F ·Mmask · f(EQ,F)cls]i) (3)

• Data-Driven Mask and Class Embedding via Transformer (Fig. 1(e)): We further enhance the
segmentation head by replacing the point-wise convolutional mask embedding with a Transformer-
based module, mirroring the design of the class embedding branch. This design enables both class
and mask embeddings to be learned in a unified, data-driven manner. The formulation can be
expressed as:

L =

N∑
i=1

LDice+BCE

(
Ŷi,Yi

)
, Ŷi = softmax([F · f(EQ,F)mask · f(EQ,F)cls]i) (4)

• Decoupled Multi-Class Masks to Binary Masks with Classifiers (Fig. 1(f)): We propose a fully
decoupled segmentation head that separates multi-class mask prediction into binary mask prediction
with class prediction. Specifically, the model predicts N class-agnostic binary masks independently,
where each mask captures a potential object or region of interest. These masks are supervised
using standard binary segmentation losses (e.g., Dice + BCE). In parallel, a classification branch
assigns a semantic class to each predicted binary mask by computing a class token and applying a
cross-entropy loss. To replace the rigid channel-to-class mapping in conventional segmentation
heads, we introduce a bipartite matching mechanism during training. This enables each predicted
mask-class pair (i.e., object query) to flexibly match the ground truth with the best similarity. Given
a matching σ, the formulation can be expressed as:

L =

N∑
i=1

[
LDice+BCE

(
sigmoid

(
[F · f(EQ,F)mask]σ(i)

)
,Yi

)
+ LCE

(
[f(EQ,F)cls]σ(i) , yi

)]
(5)

Notably, all previous segmentation head variants, ranging from the classical UNet with fixed identity-
based class embeddings to transformer-enhanced designs (Fig.1(c–e)), can be regarded as special
cases of our final decoupled formulation (Fig.1(f)). These earlier designs implicitly entangle mask pre-
diction and classification via fixed projections or shared embeddings. In contrast, our fully decoupled
design explicitly separates the generation of binary masks from semantic classification, allowing each
to be optimized independently. This separation not only removes rigid architectural assumptions (e.g.,
one-hot class encodings) but also improves modeling flexibility, facilitates overlapping or ambiguous
regions, and enhances generalization to complex scenarios in medical image segmentation.

3.2 MASKED MULTI-SCALE SEGMENTATION HEAD.

Building upon the unified segmentation head introduced in the previous section, we propose a
series of architectural refinements aimed at improving both efficiency and segmentation quality. In
conventional UNet-style architectures, deep supervision is commonly employed, where each decoder
stage produces predictions at different resolutions to accelerate convergence. We adopt a similar
approach, applying deep supervision by assigning an independent query set to each decoder stage.

However, this setup neglects semantic consistency across stages. While spatial resolution varies, the
underlying semantic queries responsible for mask and class prediction should ideally remain coherent.
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Figure 2: Model Architecture Overview. (a) Our full model adopts an encoder-decoder framework with a
Full-Scale Aware Deformable Transformer (FSAD-Transformer) module bridging multi-scale encoder features
and decoder inputs. (b) The Masked Multi-Scale Segmentation Head uses a shared query set to decode both
mask and class embeddings via transformer layers. (c) The FSAD-Transformer allows deformable attention
across the full feature hierarchy, using multi-scale queries and full-resolution value features.

To address this, we introduce a shared query mechanism across all decoder stages. A single set of
learnable queries is initialized at the lowest-resolution decoder output, and the output from each
stage’s transformer is propagated upward as input to the next higher-resolution stage. This design
enforces cross-scale consistency, encourages more stable optimization, and enhances generalization.

To further improve stage-wise feature refinement, we introduce a masked attention mechanism.
Specifically, the predicted masks from a lower-resolution stage are used as spatial priors for the
next stage’s transformer, effectively guiding attention toward task-relevant regions and suppressing
background noise. This leads to our proposed Masked Multi-Scale Segmentation Head, illustrated in
Fig. 1(a), (b).

Fig. 1(b) also details the inner structure of our transformer module. Each transformer block receives a
shared set of learnable queries as input. At each stage, the decoder feature map F serves as the key and
value in the masked cross-attention. To reduce memory consumption, especially for high-resolution
features, we apply spatial average pooling on F to reduce its spatial dimensions before use. The
transformer block includes masked cross-attention, followed by standard self-attention and feed-
forward layers. The output hidden features are passed to the next stage as the input query. Meanwhile,
two lightweight MLP branches are employed to predict the mask embeddings and class embeddings.
The mask embedding is multiplied with the input feature map F to obtain dense segmentation masks.
The class embedding is used to predict the associated semantic classifier.

3.3 FULL-SCALE AWARE DEFORMABLE TRANSFORMER

Building upon the previous section, which established an encoder-decoder structure enhanced by a
unified Masked Multi-Scale Segmentation Head, we next focus on improving the fusion of encoder
features into the decoder via skip connections. This component is essential for preserving spatial
details and achieving accurate high-resolution segmentation.

A straightforward strategy would be to enhance the skip-connected encoder features using a standard
Transformer, capturing long-range dependencies across the spatial dimensions. Unlike the object
query to image feature attention paradigm used in the segmentation head, this module requires
attention among the image features themselves, capturing intra-feature context, which results in
huge memory consumption. Due to memory constraints inherent to volumetric medical data, a
standard Transformer can only process a limited number of scales of skip connections. In our initial
exploration, we applied Transformers only to the bottom three encoder stages, which have the smallest
spatial resolutions. Higher-resolution features had to be excluded from global reasoning, resulting in
suboptimal feature integration.

To address this, we explored replacing self-attention with deformable attention, inspired by De-
formable DETR. By focusing computation on a sparse set of sampling points, deformable attention
dramatically reduces memory usage while retaining the ability to learn semantically meaningful
receptive fields. This allowed us to incorporate four encoder stages into the global context modeling.
Nevertheless, higher-resolution encoder features still remained unused, limiting the effectiveness of
full-scale fusion.

Our key insight is that, although feature maps from different stages vary in resolution, they encode
spatially aligned structures. Voxels at corresponding positions across scales describe the same
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Method Spleen R.Kd L.Kd GB Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Average

UNETR Hatamizadeh et al. (2022) 0.928 0.913 0.903 0.719 0.763 0.955 0.849 0.922 0.838 0.766 0.663 0.663 0.662 0.815 0.744 0.807
nnFormer Zhou et al. (2021) 0.950 0.948 0.944 0.789 0.784 0.967 0.914 0.931 0.868 0.828 0.654 0.695 0.759 0.865 0.773 0.845
SwinUNETR Hatamizadeh et al. (2021) 0.954 0.954 0.950 0.819 0.852 0.972 0.919 0.955 0.911 0.875 0.775 0.801 0.816 0.895 0.812 0.884
SwinUNETRv2 He et al. (2023) 0.959 0.962 0.958 0.842 0.867 0.976 0.933 0.957 0.920 0.889 0.783 0.812 0.843 0.913 0.836 0.897
3D UX-Net Lee et al. (2022) 0.955 0.956 0.953 0.826 0.858 0.972 0.922 0.955 0.915 0.881 0.781 0.809 0.820 0.902 0.823 0.889
nn-UNet Isensee et al. (2019) 0.951 0.961 0.956 0.826 0.869 0.973 0.931 0.957 0.923 0.880 0.784 0.809 0.846 0.898 0.827 0.893
MaskSAM Xie et al. (2024) 0.963 0.973 0.969 0.872 0.876 0.982 0.940 0.962 0.922 0.888 0.794 0.813 0.851 0.920 0.854 0.905
MaskFormer Cheng & et al. (2021) 0.946 0.959 0.953 0.790 0.835 0.969 0.914 0.948 0.905 0.853 0.735 0.671 0.814 0.865 0.787 0.863
Mask2Former Cheng & et al. (2022) 0.954 0.966 0.962 0.819 0.855 0.972 0.934 0.954 0.917 0.874 0.760 0.779 0.844 0.891 0.809 0.886
MaskMed (Ours) 0.971 0.970 0.969 0.880 0.890 0.981 0.950 0.961 0.929 0.904 0.801 0.826 0.875 0.931 0.859 0.913

Table 1: Comparison of MaskMed with state-of-the-art methods on the AMOS test set, evaluated by Dice Score.
For a fair comparison, all results are based on 5-fold cross-validation without any ensembles. Bold indicates the
best. Both MaskFormer and Mask2Former are adapted to 3D.

anatomical region at different semantic levels. To leverage this, we propose the Full-Scale Aware
Deformable Transformer (Fig. 1(c)). In this design, we use full-scale encoder features as the value
inputs, while queries are extracted only from the lowest four stages. The key innovation lies in
enabling each query to attend to full-scale features across all encoder stages, thereby promoting
full-resolution context awareness.

To further reduce memory overhead, query-specific attention offsets and weights are learned via
compact MLP projections, following the deformable attention paradigm. Each query aggregates
information from a sparse set of K sampling points across the full feature pyramid, allowing it to
access rich multi-scale context at minimal computational cost. This architecture not only enables
dense, deformable, and full-scale feature fusion, but also aligns well with the anatomical consistency
across spatial scales in medical imaging.

3.4 THE PROPOSED ARCHITECTURE

As illustrated in Fig. 2 (a), our framework, named MaskMed, adopts a hierarchical encoder-decoder
design enhanced with a full-resolution cross-scale fusion module and a unified segmentation head. The
encoder extracts multi-scale features from volumetric medical images, which are then progressively
decoded via upsampling blocks and skip connections. To effectively bridge the semantic gap between
encoder and decoder features, we introduce a Full-Scale Aware Deformable Transformer (FSAD-
Transformer) that enables efficient, deformable attention across the entire feature hierarchy.

At the end of the decoder, we deploy a Masked Multi-Scale Segmentation Head, which leverages a
shared query set and hierarchical attention refinement to produce accurate mask and class predictions.
Unlike traditional segmentation heads that rely on point-wise convolutions and fixed class-channel
mappings, our segmentation head produces class-agnostic binary masks and corresponding semantic
class embeddings in a decoupled fashion. By avoiding rigid one-hot mappings and incorporating
hierarchical masked attention, the head enables consistent and interpretable predictions across scales.

Our proposed unified design integrates full-resolution deformable context aggregation and a unified
query-driven segmentation head into a single framework. This enables dense, instance-aware pre-
dictions while maintaining spatial precision and semantic consistency. By decoupling binary mask
generation from class assignment and enforcing full-scale feature interaction, the model achieves
greater flexibility, improved generalization, and stronger interpretability in medical segmentation.

3.5 MATCHING AND LOSSES.

Following Cheng et al. (2021); Carion et al. (2020), the overall loss function comprises a standard
cross-entropy loss for class predictions and a combination of binary cross-entropy and Dice loss for
the final binary mask predictions (Lfinal

mask). To determine the optimal one-to-one assignment between
predictions and ground truth, we employ bipartite matching Cheng et al. (2021); Carion et al. (2020)
between the ground truth segments and the final predictions at the final stage of the segmentation head.
This process yields a set of matched indices from the N candidate pairs of binary mask predictions
and class predictions. These indices are then used consistently across all segmentation head stages to
compute the training losses. Importantly, bipartite matching is performed only once per forward pass,
based on the final-stage predictions.

Specifically, the desired final output is represented as z = {(pi,mi)}Ni=1, where N pairs of binary
masks {mfinal

i |mfinal
i ∈ [0, 1]H×W }Ni=1 are associated with class probability distributions pi ∈ ∆K+1.

The distribution includes K category labels and an auxiliary "no object" label (∅). The set of Ngt

ground truth segments is represented as zgt = {(cgti ,mgt
i )|cgti ∈ {1, ...,K},mgt

i ∈ {0, 1}H×W }Ngt

i=1 .
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Method Spl. R.Kd L.Kd GB Eso. Liv. Stom. Aorta IVC Veins Panc. AG DSC

TransUNet Chen et al. (2021) 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838
3D UX-Net Lee et al. (2022) 0.946 0.942 0.943 0.593 0.722 0.964 0.734 0.872 0.849 0.722 0.809 0.671 0.814
UNETR Hatamizadeh et al. (2022) 0.968 0.924 0.941 0.750 0.766 0.971 0.913 0.890 0.847 0.788 0.767 0.741 0.856
Swin-UNETR Hatamizadeh et al. (2021) 0.971 0.936 0.943 0.794 0.773 0.975 0.921 0.892 0.853 0.812 0.794 0.765 0.869
nnUNet Isensee et al. (2019) 0.942 0.894 0.910 0.704 0.723 0.948 0.824 0.877 0.782 0.720 0.680 0.616 0.802
nnFormer Zhou et al. (2021) 0.935 0.949 0.950 0.641 0.795 0.968 0.901 0.897 0.859 0.778 0.856 0.739 0.856
MaskFormer Cheng & et al. (2021) 0.963 0.946 0.950 0.561 0.755 0.969 0.892 0.894 0.858 0.738 0.826 0.674 0.835
Mask2Former Cheng & et al. (2022) 0.965 0.949 0.950 0.626 0.772 0.970 0.897 0.897 0.865 0.752 0.835 0.706 0.849
MaskMed (Ours) 0.970 0.952 0.956 0.680 0.792 0.974 0.922 0.915 0.887 0.799 0.875 0.742 0.872

Table 2: Comparison of MaskMed with state-of-the-art methods on BTCV dataset (DSC in %). The best results
are highlighted in bold. Both MaskFormer and Mask2Former are adapted to 3D.

Since we set N ≥ Ngt, the ground truth set is padded with "no object" tokens (∅) to enable
one-to-one matching. Given a matching σ, the main loss is formulated as:

Lmask-cls =

L∑
l=1

wl ·
N∑
j=1

[− log pσ(j)(c
gt
j ) + 1cgtj ̸=∅L

final
mask(m

final
σ(j),m

gt
j )]. (6)

where the wi denotes the deep supervision weights for different stages. The wi decrease by half with
each reduction in resolution (i.e., w2 = 1

2w1, w3 = 1
4w1). The weights are normalized to sum to 1.

Additionally, the resolution of w1 is twice that of w2 and four times that of w3.

4 EXPERIMENTS

Datasets and Evaluation Metrics: We conduct experiments using two publicly available datasets:
the AMOS22 Abdominal CT Organ Segmentation dataset Ji et al. (2022) and the BTCV challenge
dataset Landman et al. (2015). (i) The AMOS22 dataset contains 300 abdominal CT scans with
manual annotations for 16 anatomical structures, which serve as the basis for multi-organ segmentation
tasks. The testing set comprises 200 images, and we evaluate our model using the AMOS22
leaderboard. (ii) The BTCV dataset includes 30 cases of abdominal CT scans. Following established
split strategies Hatamizadeh et al. (2021), we use 24 cases for training and 6 cases for validation.
Performance is assessed using average Dice Similarity Coefficient (DSC) across 13 abdominal organs.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Results on AMOS 2022 Dataset. We evaluate our method, MaskMed, on the AMOS 2022 bench-
mark and compare it against several recent state-of-the-art 3D medical image segmentation models,
including CNN-based (nnU-Net Isensee et al. (2019); Lee et al. (2022)), transformer-based (UN-
ETR Hatamizadeh et al. (2022), SwinUNETR Hatamizadeh et al. (2021), and nnFormer Zhou et al.
(2021)), and hybrid approaches (3D UX-Net Lee et al. (2022)). As shown in Tab. 1, our method
achieves the highest average Dice Score of 0.913, outperforming the strong baseline nnU-Net (0.893)
by a margin of +2.0%, and surpassing the best-performing prior method, MaskSAM (0.905), by
+0.8%. To ensure a fair comparison, we adapt both MaskFormer and Mask2Former to the 3D setting
by converting all convolutional and attention modules to their 3D counterparts. Our MaskMed
outperforms 3D MaskFormer (+5.0%) and 3D Mask2Former (+2.7%) on AMOS.

MaskMed delivers consistent improvements across a wide range of anatomical structures. Notably, it
achieves the best Dice on 12 out of 15 organs, including large improvements on challenging regions
such as the Esophagus (0.890 vs. 0.876 of MaskSAM), Duodenum (0.875 vs. 0.851), and Pancreas
(0.904 vs. 0.889). On major organs like the Right Kidney, Liver, and Aorta, our model also achieves
top performance with scores of 0.970, 0.981, and 0.961 respectively. These results highlight the
effectiveness of our decoupled segmentation framework and the full-scale deformable fusion design
in capturing both fine-grained spatial details and high-level semantic context for complex volumetric
segmentation tasks.

Results on BTCV Dataset. We present the quantitative results of our experiments on the BTCV
dataset in Tab. 2, comparing our proposed MaskMed against several leading convolution-based
methods ( nnUNet Isensee et al. (2019)), transformer-based methods (TransUNet Chen et al. (2021),
SwinUNet Cao et al. (2021), nnFormer Zhou et al. (2021)). MaskMed achieves the highest average
Dice score of 0.872. For fair comparison, both MaskFormer and Mask2Former are also adapted to
3D. our method MaskMed outperforming 3D MaskFormer (83.5%) and 3D Mask2Former (84.9%)
by +3.7% and +2.3%, respectively.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method DSC

nnU-Net (fixed CLS Emb) 0.878
nnU-Net w/ Larger Decoder 0.890
MLP-based CLS Emb 0.880
Attention-based CLS Emb 0.885
Attention-based CLS & Mask Emb 0.891
Decouple CLS & Mask Emb 0.903

Table 3: Different SegHeads.

Method DSC

One query per stage 0.903
One query per model (One_Q / M) 0.906
One_Q / M + Masked Attn 0.909
One_Q / M + Masked Attn + StandardTrans 0.901
One_Q / M + Masked Attn + DeformableTrans 0.907
One_Q / M + Masked Attn + FSAD-Transformer 0.913

Table 4: Different proposed modules.

CNN : Transformer DSC

1:1 collapse
1:0.5 0.822
1:0.1 0.913
1:0.05 0.908

Table 5: Learning rate ratios.

# Object Query DSC

1× N 0.913
2× N 0.904
3× N 0.900
4× N 0.891

Table 6: # Object query.

λClass : λMaskBCE : λMaskDice DSC

2 : 5 : 5 0.902
4 : 5 : 5 0.889
2 : 10 : 10 0.913
4 : 10 : 10 0.910

Table 7: Loss ratios.

Our model delivers state-of-the-art accuracy on 5 out of 13 organs, including R. Kidney (0.952), L.
Kidney (0.956), IVC (0.887), and Pancreas (0.875). The consistent gains across both large (e.g., Liver
0.974) and small structures (e.g., Pancreas, Veins) demonstrate the robustness of our decoupled head
and deformable feature fusion design.

4.2 ABLATION STUDY ON ARCHITECTURE

Segmentation Head Variants. As shown in Tab. 3, starting from the baseline nnU-Net with fixed
class embeddings (0.878 DSC), replacing the class projection with an MLP brings a small improve-
ment (0.880), while introducing attention-based class embeddings further increases performance to
0.885. Adding attention-based mask embeddings boosts results to 0.891. The best performance is
achieved by fully decoupling class and mask embeddings, reaching 0.903 DSC. These results confirm
the effectiveness of our decoupled design in enabling more flexible and expressive segmentation.

Masked Multi-Scale Segmentation Head. Tab. 4 shows that using a shared query set across
decoder stages improves DSC from 0.903 to 0.906. Introducing inter-stage masked attention further
increases it to 0.909, demonstrating that spatial priors propagated across scales enhance coherence
and prediction quality.

Full-Scale Aware Deformable Transformer. Tab. 4 shows that replacing standard skip connections
with a Transformer bridge leads to lower performance (0.901) due to limited scale coverage and high
memory cost. Switching to deformable attention improves performance to 0.907. Our Full-Scale
Aware Deformable Transformer achieves the highest DSC of 0.913 by enabling dense, memory-
efficient, and anatomically aligned feature fusion across all encoder stages.

Impact of Model Capacity. To ensure the performance gain is not simply due to increased parameters,
we scaled up the nnU-Net decoder to match our segmentation head in size in Tab. 3. This led to only
a minor DSC improvement from 0.878 to 0.890, while our full model achieves 0.903. The 1.3% gap
confirms the effectiveness of our design beyond parameter count.

4.3 ABLATION ON OPTIMIZATION SENSITIVITY.

To investigate the optimization dynamics and hyperparameter sensitivity of our proposed model,
we conduct ablation studies on three critical factors: (1) learning rate ratios between CNN and
Transformer components, (2) number of object queries, and (3) loss weight ratios among class and
mask prediction losses. Results are summarized in Tab. 5, Tab. 6, and Tab. 7, respectively.

Learning Rate Ratio. We find that using the same learning rate for both the CNN encoder and
Transformer components leads to unstable training and collapse, as shown in Tab. 5. Specifically,
setting the Transformer learning rate equal to the CNN’s (1:1) results in model failure. This aligns
with prior findings that Transformers often require lower learning rates in low-data regimes. The
best performance (DSC = 0.913) is achieved when the Transformer learning rate is set to 1/10 of the
CNN’s (i.e., 1:0.1), while further reduction to 1:0.05 slightly underperforms at 0.908 DSC.

Number of Object Queries. In contrast to prior works like MaskFormer and Mask2Former on
natural images, where object queries are often over-provisioned to ensure full coverage, we observe
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MLP-based Class Emb Coupled Transformer-based Class Emb Decoupled Transformer-based Class Emb
GT

0 1 3 7 10 11

0 1 3 7 10 118 13

Labels

Labels

Fixed Class Emb

Figure 3: Visualization of Class Embedding for different segmentation heads.

that in medical image segmentation, using a minimal number of object queries, which is equal to the
number of semantic classes, yields the best performance and fastest convergence. In Tab. 6, using
exactly N queries gives the highest DSC of 0.913, while increasing the number to 2N , 3N , or 4N
leads to consistent degradation in performance (DSC drops to 0.904, 0.900, and 0.891, respectively).

Loss Ratio Sensitivity. We ablate the relative weights between classification loss (λCLS), binary cross-
entropy for masks (λMaskBCE ), and Dice loss (λMaskDice ). As shown in Tab. 7, the optimal configuration
is found to be 2:10:10, achieving a DSC of 0.913. Using lower mask loss weights (e.g., 5:5) results in
under-optimized segmentation masks (DSC 0.902), while increasing the classification weight to 4
degrades class discriminability (DSC 0.889 and 0.910, respectively for 4:5:5 and 4:10:10).

4.4 VISUALIZATION OF CLASS EMBEDDINGS

We present the visualizations of class embeddings under two different input images in the first and
second rows of Figures 3, respectively. The rightmost column shows the ground truth (GT) for
reference. We display only a single slice for clarity, along with the corresponding image labels.
Since the MLP-based class become fixed after training, we only present their visualizations once.
In these visualizations, the x-axis in Figure 3 represents the class indices (for class embeddings).
The y-axis denotes the number of queries. For MLP-based class embeddings, once trained, the
vectors tend to become fixed and nearly averaged across channels and each query shows moderate
activations across all dimensions. In contrast, our data-driven Transformer-based class embeddings
are dynamically adapted to the input data distribution. More importantly, in the decoupled formulation,
the learned class embeddings demonstrate explicitly semantic separation: specific labels exhibit
stronger activations along distinct channels, rather than relying on fixed channel indices to represent
semantic classes. As shown in the Figure 3, the prominent yellow activation blocks are sharply
aligned with specific classes, indicating that the decoupled class embeddings capture distinct semantic
concepts with clear channel-wise activation patterns. This contrasts with the MLP-based baseline,
where the activations are more diffuse and less semantically structured.

5 CONCLUSION AND FUTURE WORK

In conclusion, we present MaskMed, a new paradigm that breaks away from traditional segmentation
head designs by decoupling mask generation and class prediction. Our unified architecture, enhanced
with a full-scale aware deformable transformer for effective fusion of hierarchical encoder features,
significantly improves segmentation accuracy and robustness. MaskMed achieves state-of-the-art
performance on AMOS 2022 (91.3% Dice) and BTCV (87.2%). We believe MaskMed opens new
directions for building more flexible and interpretable medical segmentation models.

Future Work. We believe that increasing the number of object queries could further improve
performance by allowing richer and more redundant representations, though this requires addressing
potential convergence issues. A larger query pool also enables label augmentation, where each class
is augmented with multiple mask variants to guide different queries. While our initial attempt to
apply contrastive loss between mask and class embeddings was unsuccessful, it remains a promising
direction. Moreover, our model shows strong potential in handling multi-instance segmentation for
classes with complex anatomical variability, such as brain neuron segmentation.
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Figure 4: Visualization of Class Emb

Figure 5: Visualization of Mask Emb

A VISUALIZATION FOR MASK EMB AND CLASS EMB

We present the visualizations of mask embeddings and class embeddings under two different input
images in the first and second rows of Figures 4, 6, respectively. The rightmost column shows
the ground truth (GT) for reference. We display only a single slice for clarity, along with the
corresponding image labels. Since the MLP-based class and mask embeddings become fixed after
training, we only present their visualizations once. In these visualizations, the x-axis in Figure 4
and Figure 6 represents the class indices (for class embeddings) and feature channels (for mask
embeddings), respectively. The y-axis denotes the number of queries.

A.1 VISUALIZATION OF CLASS EMBEDDINGS

We visualize the learned class embeddings in Figure 4. For MLP-based class embeddings, once
trained, the vectors tend to become fixed and nearly averaged across channels and each query shows
moderate activations across all dimensions. In contrast, our data-driven Transformer-based class
embeddings are dynamically adapted to the input data distribution. More importantly, in the decoupled
formulation, the learned class embeddings demonstrate clear semantic separation: specific labels
exhibit stronger activations along distinct channels, rather than relying on fixed channel indices to
represent semantic classes. As shown in the Figure 4, the prominent yellow activation blocks are
sharply aligned with specific classes, indicating that the decoupled class embeddings capture distinct
semantic concepts with clear channel-wise activation patterns. This contrasts with the MLP-based
baseline, where the activations are more diffuse and less semantically structured.

A.2 VISUALIZATION OF MASK EMBEDDINGS

We visualize the learned class embeddings in Figure 6. Our decoupled Data-driven Transformer-based
mask embeddings exhibit diverse patterns across the channel dimension, reflecting spatially adaptive
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Figure 6: Details of our FSAD-Transformer.

and query-specific attention. This contrasts with point-wise convolution heads, which rely on fixed
filters and lack flexibility.

B DETAILS OF DEFORMABLE TRANSFORMER

In Figure 6, we present the details of our Full-Scales Awared Transformer (FSAD-Transformer).
Full-scale features are first passed through the proposed FSAD-Attention module, followed by
a LayerNorm and a residual connection. This is then fed into a Feed-Forward Network (FFN)
and another LayerNorm, which is again followed by a residual connection. The overall structure
resembles a standard Transformer block, but with the self-attention mechanism replaced by our
proposed FSAD-Attention.

FSAD-Attention. The full-scale features are used as the value, while the smallest three scales
among them are selected as the key. The key features are passed through two separate MLP layers to
generate the attention weights and offsets, respectively. The value features are processed by an MLP
to produce an output, which is then sampled using the learned offsets via a grid sampling operation.
The sampled features are subsequently weighted by the attention weights to produce the final output.

C IMPLEMENTATION DETAILS

We adopt the nnUNet framework for training, modifying only the network architecture while keeping
all other configurations consistent. Data augmentation strategies follow those used in nnUNet.
The initial learning rate is set to 0.001, and we apply a polynomial decay strategy as defined in
Eq. equation 7:

lri(e) = λi · init_lr ·
(
1− e

MAX_EPOCH

)0.9

, i ∈ {CNN,Transformer} (7)

where e denotes the current epoch, and MAX_EPOCH is set to 1000, with each epoch consisting of
250 iterations. And λi is a scaling factor that controls the learning rate ratio between the CNN and
Transformer modules. We set λCNN = 1.0 and λTrans = 0.1 in our experiments. We use SGD as the
optimizer with a momentum of 0.99. The weight decay is set to 3× 10−5. The batch size is set to
2 for all experiments. The loss function is a combination of cross-entropy loss and Dice loss. We
employ a 5-fold cross-validation strategy for results presented in Tab. 1.

D ANALYSIS OF OUR MASKMED

D.1 COMPARISONS WITH MASKFORMER AND MASK2FORMER

In this section, we compared our MaskMed with MaskFormer and Mask2Former. Figure 7 illustrates
the comparison details. The main distinctions of our method from these baselines are as follows:

• UNet as Backbone: Directly training a 3D version of Mask2Former leads to unstable optimization
and frequent collapse, due to the mismatch between CNN encoders and transformer decoders.
Meanwhile, the two models utilizes the Feature Pyramid Network (FPN) to gradually upscale
the image features, which is different from traditional UNet architecture. Therefore, we build
on the widely adopted UNet in medical image segmentation as the backbone and introduce
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Figure 7: Compared our MaskMed with MaskFormer and Mask2Former.

segmentation heads (SegHead) to decouple class and mask embeddings. To stabilize training, we
apply differentiated learning rates for CNN-based modules (UNet) and Transformer-based modules
(SegHead and FSAD-Transformer).

• Multi-scale interaction between Class and Mask Embeddings: In MaskFormer and
Mask2Former, mask predictions are produced only at the final resolution, where the highest-
resolution FPN features are multiplied by mask embeddings from different layers in the transformer
decoder. Both mask and class embeddings are derived from interactions between the low-resolution
FPN input and an initial query, leading to a substantial semantic gap between them. In contrast, our
method introduces stage-wise interactions between shared class embeddings and multi-scale de-
coder features from the UNet, significantly shortening the semantic path and improving alignment
between class and mask representations.

• FSAD-Transformer for full-scale feature aggregation: We propose the FSAD-Transformer, a
novel module that aggregates skip connections from all encoder stages into a unified Transformer
block. This design enables global feature fusion across scales, which is especially effective in
capturing long-range dependencies. In contrast, Mask2Former employs a Deformable Transformer
that leverages only the final three encoder features.

• 3D MaskMed vs. 2D MaskFormer and Mask2Former: All modules in our framework are
implemented in 3D, making them more suitable for volumetric medical image segmentation
compared to the 2D designs of MaskFormer and Mask2Former.

Our framework is inspired by Mask2Former and DETR. However, to the best of our knowledge, no
prior work in the past four years has successfully applied a decoupled class/mask prediction paradigm
to 3D medical image segmentation, let alone demonstrated strong performance. Our work establishes
this first successful adaptation, supported by both technical innovations and empirical results.

We believe our work opens up a new research direction by successfully demonstrating the feasibility
of a decoupled paradigm in 3D medical image segmentation. While our method addresses several
key challenges, it also reveals many open questions worth further investigation. We hope our work
lays a solid foundation for future research in this direction.

D.2 THE NECESSITY OF OUR DECOUPLED FRAMEWORK

We believe it is necessary for the medical image segmentation community to consider adopting this
design for the following key reasons:

• Flexibility: Our decoupled framework allows separate modeling of class and mask predictions,
enabling task-specific customization. Unlike traditional architectures that predict all categories
simultaneously via a softmax function, our method can easily adapt to different segmentation
scenarios.

• Interpretability: As shown in our supplementary material, the class embeddings capture the
semantic information explicitly, and the mask embeddings explicitly capture spatial mask structures.
The decouple method provides valuable interpretability, offering a new paradigm for understanding
medical segmentation models.

• Strong Performance: Our decoupled design, particularly the addition of SegHead and FSAD-
Transformer, consistently achieves state-of-the-art results across multiple benchmarks. This demon-
strates that the proposed framework is not only theoretically motivated but also practically effective.

In summary, our approach introduces a flexible, interpretable, and high-performing segmentation
paradigm that we believe can benefit future research in medical image segmentation.
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E USAGE OF LARGE LANGUAGE MODELS

In this paper, we only use Large Language Models to aid or polish writing.

15


	Introduction
	Related Work
	The Proposed Method
	Rethinking Segmentation Heads.
	Masked Multi-Scale Segmentation Head.
	Full-Scale Aware Deformable Transformer
	The Proposed Architecture
	Matching and Losses.

	Experiments
	Comparison with State-of-the-Art Methods
	Ablation Study on Architecture
	Ablation on Optimization Sensitivity.
	Visualization of Class Embeddings

	Conclusion and Future Work
	Visualization for Mask Emb and Class Emb
	Visualization of Class Embeddings
	Visualization of Mask Embeddings

	Details of Deformable Transformer
	Implementation Details
	Analysis of our MaskMed
	Comparisons with MaskFormer and Mask2Former
	The Necessity of our Decoupled Framework


