
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SERQ: SALIENCY-AWARE LOW-RANK ERROR
RECONSTRUCTION FOR LLM QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training quantization (PTQ) has emerged as a prevailing technique for de-
ploying large language models (LLMs) efficiently in terms of both memory and
computation, across edge devices and server platforms. Existing PTQ methods
primarily aim to reduce precision in weights and activations by mitigating quan-
tization errors caused by channel-wise outlier activations (e.g., pre-quantization
scaling, online transformations, or low-rank error reconstruction). Among these
approaches, error reconstruction with low-rank adaptation (LoRA) has proven par-
ticularly effective, as it introduces a lightweight auxiliary computation path with-
out requiring heavy optimization or additional online layers. However, prior stud-
ies reveal severe accuracy degradation under W4A4 settings, and conventional
low-rank adaptations rely on two sequential factors, necessitating intermediate
quantization during inference and thereby limiting low-precision efficiency. In this
work, we propose SERQ, a saliency-aware error reconstruction method for low-
bit LLM inference that employs a single low-rank compensation matrix. SERQ
preserves efficient 4-bit matrix multiplication in linear layers by jointly mitigating
quantization errors arising from both activation and weight saliency through three
stages: (1) static activation flattening, (2) saliency-aware error reconstruction, and
(3) offline weight permutation. The method incurs additional computation only
for low-rank error reconstruction via a single decomposition, while all other oper-
ations are performed offline, thereby keeping latency overhead minimal. Empir-
ically, SERQ outperforms prior error reconstruction methods under both W4A8
and W4A4 settings, and achieves higher accuracy than state-of-the-art rotation-
based W4A4 approaches, while substantially reducing calibration complexity.

1 INTRODUCTION

The demand for efficient deployment of large language models (LLMs) has been rapidly increasing
across both server and edge platforms. Quantization has emerged as one of the most effective ap-
proaches to reduce the substantial memory and computational costs associated with LLM inference.
In particular, post-training quantization (PTQ) techniques (Nagel et al. (2021)) enable low-precision
representations of weights and activations involved in large-scale computations, thereby avoiding
expensive fine-tuning while maintaining competitive performance.

A central challenge in minimizing quantization errors for LLMs lies in addressing outlier activa-
tions across channels. To alleviate this issue, several distribution-flattening approaches have been
proposed, including pre-quantization scaling methods (Xiao et al. (2024); Shao et al. (2024)) and
online transformation-based techniques that leverage random Hadamard or learned transformations
(Ashkboos et al. (2024); Liu et al. (2025)). While recent rotation transformation methods have
demonstrated effectiveness in enabling 4-bit integer (INT4) quantization, they typically rely on
computationally expensive calibration procedures or suffer from performance variability induced
by random matrices, thereby limiting their practicality in general deployment.

An alternative strategy for mitigating activation outliers is matrix decomposition. Recent advances
have introduced low-rank error reconstruction methods that integrate quantization with low-rank
adaptation (LoRA) (Dettmers et al. (2023); Saha et al. (2024); Zhang et al. (2024); Zhao et al.
(2024)). These approaches leverage low-rank decompositions in matrix multiplication to reduce
quantization error by compensating for it through separate low-rank factors. For example, L2QER

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Zhang et al. (2024)) introduces a fully quantized path for low-rank error reconstruction, yielding
near-zero accuracy loss under the 4-bit weight, 8-bit activation (W4A8) configuration. Despite their
superior adaptability, these methods have not yet achieved W4A4 quantization without noticeable
performance degradation. Furthermore, they remain unsuitable for fully low-precision execution,
as decomposed matrices are multiplied sequentially, producing intermediate values, requiring an
additional on-the-fly quantization process.

In this work, we propose SERQ, a saliency-aware error reconstruction method that enables low-
precision LLM inference (e.g., W4A4, W4A8) using a single low-rank decomposition. Unlike stan-
dard low-rank approximations that rely on two low-rank factors, our method unifies error correction
into a single matrix by jointly addressing activation and weight saliency. This design avoids the
overhead of an additional sequential low-rank branch during inference, while effectively mitigat-
ing quantization errors arising from both activation outliers and salient weights. As a result, SERQ
achieves more efficient low-precision inference while maintaining high accuracy, outperforming
prior quantization approaches in the challenging W4A4 precision setting.

To the best of our knowledge, this is the first work to realize 4-bit matrix multiplication in linear
layers by employing low-rank error reconstruction, a method recognized for its adaptability and
minimal calibration overhead. Following this principle, SERQ introduces no additional layers for
online processing and avoids costly calibration procedures such as hyperparameter search, or other
compute-intensive training operations. Our contributions are summarized as follows.

• We propose SERQ, a novel W4A4 quantization scheme for LLMs that employs a single
saliency-guided low-rank matrix for accurate error reconstruction. Our method operates
in three steps: static activation flattening, saliency-aware error reconstruction, and offline
weight permutation.

• SERQ enables 4-bit matrix multiplication (e.g. INT4, MXFP4) in linear layers, thereby
minimizing inference overhead in low-rank computation. Moreover, the proposed flat-
tening and permutation schemes are merged into weight parameters and preprocessed in
adjacent layers, allowing them to be fully managed offline with no additional latency.

• We validate our scheme across various LLMs with comprehensive evaluations. Compared
to prior LoRA-based methods, our approach achieves superior performance in both W4A8
and W4A4 configurations while using only a single low-rank matrix. Furthermore, we com-
pare against state-of-the-art rotation-based W4A4 quantization approaches, demonstrating
superior accuracy while significantly reducing calibration complexity.

2 BACKGROUND AND MOTIVATION

2.1 LLM QUANTIZATION

Quantization maps high-precision values to low-precision representations, improving both memory
and compute efficiency. The basic integer quantization with max-scaling can be expressed as:

Xq = clip(⌈X/s⌋), s = max(|X|)/(2n−1 − 1), X̂ = s ·Xq (1)

where s is the scale factor, n is the bit-width, ⌈·⌋ denotes round-to-nearest, and clip() clamps values
to [−2n−1 − 1, 2n−1 − 1]. Reducing bit-width provides near-linear storage compression, allevi-
ating the growing memory demands of model parameters and KV-cache. At runtime, quantization
also reduces memory traffic, thereby improving bandwidth efficiency. When activations are quan-
tized in addition to weights, the core linear operation can be executed as an integer GEMM, further
accelerating inference latency and throughput. For a transformer linear projection y = Wx,

y ≈ sW (WqXq)sX (2)

As widely recognized, the accuracy of LLM quantization for both weights and activations critically
depends on how activation outliers are handled. Numerous approaches have been proposed to miti-
gate the quantization error introduced by such outliers. Early methods, such as SmoothQuant (Xiao
et al. (2024)) and OmniQuant (Shao et al. (2024)), employ distribution-flattening techniques that
balance activations and weights through pre-quantization scaling. Another line of work decomposes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

matrix multiplication by assigning a separate high-precision path for outliers, as in LLM.int8()
(Dettmers et al. (2022)) and QUIK (Ashkboos et al. (2023)). However, these primitive techniques
exhibit significant accuracy degradation when applied to sub-8-bit LLMs.

More recently, online transformation techniques that rotate tensors to flatten the distribution have
demonstrated effectiveness for 4-bit quantization with minimal latency overhead. Quarot (Ashkboos
et al. (2024)) applies random Hadamard transformations, while SpinQuant (Liu et al. (2025)) learns
rotation matrices to suppress outliers and reduce the performance variance. While effective in the
W4A4 setting, existing methods still incur notable accuracy loss and either suffer from high variance
due to random Hadamard matrices or require costly training to optimize transformation matrices,
limiting deployment practicality. Meanwhile, LoRA-based LLM quantization has emerged as a
powerful approach for mitigating quantization errors. In a similar vein, error reconstruction with
low-rank factors via matrix decomposition has proven particularly effective, while avoiding heavy
optimization or additional online layers. Further details are discussed in section 2.2.

2.2 LOW-RANK ERROR RECONSTRUCTION

Recent advances in LoRA for parameter-efficient fine-tuning of foundation LLMs suggest its po-
tential for applicability to LLM quantization as well. LoRA has been adapted to compensate for
quantization errors by leveraging the auxiliary path of low-rank matrices, a strategy we refer to as
low-rank error reconstruction. This approach introduces a LoRA-style compensator that restores
the principal quantization error without requiring heavy retraining or complex deployment modifi-
cations. Concretely, it corrects the quantization error of a full-precision weight matrix W d×d, where
d denotes the hidden dimension of a layer, by augmenting its low-bit proxy with low-rank factors.

Ŵ = Q(W) +L1L2, L1L2 ≈ W – Q(W) (3)

Where Q(W) is the quantized weight, L1 ∈ Rd×r, L2 ∈ Rr×d, and r ≪ d is the rank. The
parameter and compute overhead of the low-rank factors is only 2rd; with commonly used ranks
r ∈ {32, 64} (e.g., d = 4096), this amounts to about 1.6-3.1%. Moreover, the LoRA-path is simple
and lightweight, which makes it highly applicable across diverse model architectures and hardware
platforms. Consequently, it has emerged as a prominent and widely adopted quantization method.

Gradient-based Methods. Gradient-based methods compensate the quantization errors by lever-
aging loss gradients on a small calibration set to learn low-rank factors, typically instantiating a
compensator L1L2 that reduces mismatch between the full-precision model and its quantized coun-
terpart. QLoRA (Dettmers et al. (2023)) advanced this line of work by fine-tuning LoRA adapters
on top of 4-bit weights, recovering task performance with modest resource overhead. At sub-4-bit
precision, methods such as LQ-LoRA (Guo et al. (2024)), LoftQ (Li et al. (2023)) and QA-LoRA
(Xu et al. (2023)) consistently mitigate degradation and sustain competitive accuracy, highlighting
the viability of ultra-low-bit quantization.

SVD-based Methods. Another approach is to reconstruct quantization errors by low-rank matri-
ces obtained via singular-value decomposition (SVD). This approach forms the compensator L1L2

from the quantization error E by exploiting its rapidly decaying singular spectrum, allowing the
dominant error to be captured with compact low-rank factors. Recent methods such as ZeroQuant-
v2 (Yao et al. (2023)), CALDERA (Saha et al. (2024)), and L2QER (Zhang et al. (2024)) adopt this
SVD-based optimization to extract low-rank factors in a training-free and lightweight calibration
process. In particular, L2QER formalizes weight–activation quantization using SVD-based error re-
construction, preserving integer matrix multiplications across both the main and low-rank branches.

2.3 DEPLOYMENT OF LOW-RANK ERROR RECONSTRUCTION

In low-rank error reconstruction, a linear layer introduces an additional computation path for the
low-rank branch, which cannot be parallelized cleanly with the main branch. Consider the case
where both weights and activations are quantized. To enable the main branch to leverage low-
precision matrix multiplication (e.g., INT4 or MXFP4 GEMM kernels), the LoRA-augmented linear
layer must be evaluated in its decomposed form, such as Xq(Wq + L1L2) = XqWq +XqL1L2.
This requires two sequential matrix multiplications with low-rank matrices. Although each operation
is relatively inexpensive, the overhead becomes non-negligible when the main branch benefits from

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FP16 INT8 INT4

Scatter

𝑿

𝑿

𝑿

𝑾

𝑾

𝑿

𝑾

𝑳𝟏
𝑳𝟐

𝑿

𝑿

𝑾

𝑹

𝑿

𝑿

𝑿

LLM.int8() LQER SERQ

Quant

𝑾

Figure 1: Computation flow of a linear layer under different matrix decomposition methods.
LLM.int8() employs a mixed-precision scheme of INT8 and FP16 by assigning separate com-
putation paths for outliers and non-outliers. L2QER applies SVD-based error reconstruction with
a mixed-precision path of INT4 and INT8. In contrast, the proposed SERQ leverages a saliency-
guided low-rank matrix and provides a unified computation path with INT4 or MXFP4 precision.

highly optimized low-precision GEMM kernels. To address this, L2QER (Zhang et al. (2024)) quan-
tizes the low-rank matrices as well, allowing the entire computation to proceed in a fully quantized
path, as expressed in XqWq+Q(XqL1,q)L2,q . However, this formulation introduces an additional
on-the-fly quantization step for intermediate results between the sequential multiplications, resulting
in inefficiency for low-precision deployment.

Figure 1 shows the overall datapath of prior approaches compared to ours, all based on decomposed
matrix multiplication. Prior to error reconstruction methods, LLM.int8() (Dettmers et al. (2022))
handled outliers via a separate high-precision path, but this required on-the-fly scattering and FP16
computation, introducing substantial latency. An error reconstruction method L2QER (Zhang et al.
(2024)) later achieved a fully quantized datapath with mixed precision, yet still relied on on-the-fly
quantization and two additional narrow matrix multiplications, resulting in latency and degraded
accuracy in the W4A4 setting. In contrast, we propose SERQ, a novel error-reconstruction method
that employs a single low-rank matrix, eliminating on-the-fly quantization and enabling a fully 4-bit
end-to-end computation path. Further details are provided in section 3.

3 METHOD

We present SERQ, a saliency-aware error reconstruction method that jointly accounts for weight
and activation saliency within a single low-rank matrix. We first show that saliency plays a central
role in compensating weight-side quantization error, motivating a saliency-guided low-rank design.
We then detail how SERQ incorporates activation saliency into the weight matrix, enabling error
reconstruction based on integrated weight saliency while minimally impacting inference latency.

3.1 SALIENCY-AWARE LOW-RANK ADAPTATION

Prior error-reconstruction methods typically approximate the full-weight quantization error E =
W − Q(W) using a truncated SVD of the weight matrix, E ≈ UrΣrV

T
r , where Ur ∈ Rd×r

and V T
r ∈ Rr×d contain the top-r singular vectors and Σr ∈ Rr×r is the diagonal matrix of

the corresponding singular values. While effective, this global decomposition overlooks where the
error actually concentrates: the fixed rank budget is distributed across all rows and columns, diluting
capacity on the most problematic regions (e.g., salient weights). In addition, quantizing the low-rank
factors themselves introduces further loss, undermining the efficiency of error reconstruction.

Building on the theoretical insight that quantization errors vary across weight rows in linear opera-
tions, AWQ (Lin et al. (2024)) demonstrates that protecting only a small fraction (∼1%) of salient
channels (i.e., their corresponding weight rows) using the activation distribution can substantially
reduce the error. Motivated by this, we evaluate error reconstruction using SVD with a fixed rank
size but restricted to salient rows selected by activation scales (see Appendix A.1). We find that
selecting only a small number of salient rows for SVD improves perplexity compared to using the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a)

Self-Attention
𝑊𝑄𝑷𝟏 So

ftm
ax

R
o
P
E

R
o
P
E Q
u
an
t

L
ayer-n

o
rm

Q
u
an
t 𝑊𝑜

𝑷𝟑

𝑊𝐾𝑷𝟏

𝑊𝑉

𝑷𝟐

𝑷𝟏

𝑷𝟐

𝑷𝟏, 𝑷𝟐, 𝑷𝟑, 𝑷𝟒 : Permute

𝑊𝑢𝑷𝟑

𝑷𝟒

𝑊𝑔

L
ayer-n

o
rm

Q
u
an
t

SiL
U

Q
u
an
t

𝑊𝑑𝑷𝟒

𝑷𝟏

𝑷𝟑

𝑷𝟒

Feed-Forward Network(b)

Calibration

𝑿 ∈ ℝ𝒔_𝒍𝒆𝒏×𝒅

𝐒𝐄𝐑𝑸

𝑹𝑰𝑵𝑻
out-
liers

෢𝑾 ∈ ℝ𝒅×𝒅

𝒄

𝒄

Permute

𝑾 ∈ ℝ𝒅×𝒅
Inference

𝑿

𝑹𝑰𝑵𝑻

𝑾𝑰𝑵𝑻 ∈ ℝ𝒅×𝒅

Figure 2: (a) Overall SERQ implementation. During calibration, saliency rows are determined via
activation scaling, followed by weight row permutation. During inference, error reconstruction is
performed through a residual path computed only on the salient components, alongside the main
path. (b) Computation flow of a decoder layer. The merged row- and column-wise weight permuta-
tion enables offline preprocessing of both current weight rows and subsequent activation channels.

entire matrix. In other words, rather than extracting ranks from the full weight matrix via SVD, we
directly identify rank candidates based on row-wise saliency, allowing to reconstruct quantization
error only on the most influential data. A narrowed matrix containing salient rows, where the row
size equals the rank size, is sufficient for error reconstruction, enabling a single matrix decomposi-
tion for the low-rank branch. In section 3.2, we describe how to integrate activation statistics into
the weight matrix to determine salient rows that disproportionately affect linear operations, and how
to jointly reconstruct the error to improve accuracy using a full low-precision computing path.

3.2 IMPLEMENTATION

Static Activation Flattening. Activation quantization is notoriously fragile due to channel-wise
outliers. Existing methods often rely on online outlier-handling techniques (e.g., rotation transforms
or auxiliary layers), which are effective but introduce additional latency. Instead, since our method
provides a residual path for error reconstruction at the linear layer, we avoid the online flattening
process and revisit SmoothQuant (Xiao et al. (2024)), which flattens activation distributions using
static per-channel scaling. Specifically, activations are scaled by a factor s, and the corresponding
scale is folded into the weights. The operation in a linear layer can therefore be expressed as:

Y = XW = (X · diag(s−1))(diag(s) ·W) = X̃W̃ (4)

The scaling factors are obtained during calibration and merged into adjacent layers offline, incur-
ring no runtime overhead. While this strategy alleviates outliers, it shifts the quantization burden
onto the weights, increasing the difficulty of weight quantization. However, unlike standalone prior
approaches, the combined use of low-rank reconstruction enables effective compensation for the
induced weight errors. Concretely, SERQ identifies salient weights after the flattening step and
restores the residuals using a single low-rank matrix.

Saliency-Aware Error Reconstruction. The per-channel static flattening process pushes the scale
of activation outliers into the corresponding weight rows. Assuming that the original weights fol-
low a normal distribution, the salient rows in the folded weights can be identified directly by their
scales. These rows subsequently accumulate significant errors when repeatedly multiplied with the
activation matrix. To mitigate this, we introduce a low-rank compensator matrix R ∈ Rr×d that
corrects the quantization errors in the r salient weight rows, denoted W̃s. Considering the weight

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

rows permuted in descending order of saliency (P), the folded matrix Ŵ and the saliency-aware
low-rank matrix R can be defined as:

Ŵ = P · diag(s) ·W = P · W̃ = [W̃s; W̃r], R = W̃s −Q(W̃s) (5)

Here, Wr denotes the remaining weight rows. As shown, the residual errors of the salient rows are
captured by the low-rank matrix to be used for reconstruction during matrix multiplication via an
additional path. Then the overall linear operation can be described as:

Y = (X · diag(s) · P−1)(P · diag(s) ·W) = X̂Ŵ (6)

Q(X̂) ·Q(Ŵ) = Q([X̃s X̃r]) ·Q([W̃s; W̃r]) + Q(X̃s) ·R

≈ X̂q · Ŵq + X̃s,q ·Q(R)
(7)

Importantly, we quantize the low-rank matrix as well, enabling pure low-precision computation
across the entire path. Unlike SVD, directly extracting salient rows requires only a single matrix
multiplication in the residual path, thereby eliminating intermediate quantization. Furthermore, only
the activation channels corresponding to the salient rows (X̃s ∈ Rs len×r) participate in the residual
operation, enabling a computation-efficient low-rank multiplication of Rs×r × Rr×d. The overall
SERQ process, including both calibration and inference, is illustrated in Figure 1(a).

Offline Weight Permutation. We have aforementioned that the weights and activations must be
properly reordered based on their saliency (e.g. X̂ = [X̃s X̃r], Ŵ = [W̃s; W̃r]). To address this,
we propose a mergeable weight permutation scheme that eliminates latency overhead during infer-
ence. Both the rows and columns of the weight matrix are permuted offline according to the saliency
order, enabling matrix multiplication to be executed directly on the appropriately reordered weights
and activations. Figure 2(b) illustrates the computation flow of a single decoder layer, highlighting
the offline permutation step. Based on saliency levels determined during calibration, row-wise per-
mutations are prearranged for all weight parameters. The corresponding activations must follow the
same channel order, which can be achieved by applying column-wise permutations to the preceding
layer’s weight matrix. For example, the permutation order P4 of the down-projection layer can be
propagated to the weight columns of the preceding up- and gate-projection layers, ensuring that the
activation outputs are produced in the desired order. Consequently, the resulting activations natu-
rally align with P4, allowing the down-projection to operate without additional reordering. In this
way, all linear layers avoid on-the-fly reordering, and inference proceeds without latency overhead.

4 EXPERIMENTS

4.1 SETTINGS

Models and Tasks. We conduct experiments on LLaMA-2 (7B and 13B; Touvron et al. (2023)),
LLaMA-3 (3.1 8B and 3.2 1B/3B; Grattafiori et al. (2024)), and Qwen-2.5 3B (Qwen et al. (2025))
models. Our evaluation covers eight zero-shot commonsense reasoning tasks—PIQA (Bisk et al.
(2019)), SIQA (Sap et al. (2019)), ARC-Easy/Challenge (Clark et al. (2018)), HellaSwag (Zellers
et al. (2019)), Winogrande (Sakaguchi et al. (2021)), BoolQ (Clark et al. (2019)), and OpenBookQA
(Mihaylov et al. (2018))—and also provides perplexity scores on the WikiText2 test set (Merity et al.
(2016)) as well as the MMLU benchmark (Hendrycks et al. (2021)). We further report results on
generation tasks using the GSM8K (Cobbe et al. (2021)) and LongBench (Bai et al. (2024)) datasets.

Implementation Details. The calibration set is constructed from 128 random samples of the
WikiText-2 dataset (Merity et al. (2016)) to identify salient rows. SERQ uses a rank size of 128,
which is equivalent in effective bit width to using two low-rank matrices of rank 64. For quantization,
the group size is set to 128, and weights are quantized using either GPTQ (Frantar et al. (2023)) or
round-to-nearest (RTN) symmetric integer quantization, while activations are quantized with RTN
asymmetric integer quantization. For the W4A4 configuration, we also provide the standard 4-bit
Microscaling (MX) format, MXFP4, alongside the integer format, to demonstrate its implementation
and measured speed on an NVIDIA RTX PRO 6000 GPU with Blackwell architecture support for
MX format kernels (Rouhani et al. (2023)) (See Appendix A.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with matrix decomposition methods. We compare perplexity scores, average
zero-shot common sense reasoning accuracy, and average MMLU accuracy. Results under different
precision settings are obtained by modifying their publicly released codebase (See Appendix A.5).

LLaMA-2 7B LLaMA-2 13B LLaMA-3 8B

#Bits Method #Eff. (w) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 5.47 64.09 41.83 4.88 66.53 52.04 6.13 67.16 62.13

W4A8

LLM.int4() -† 7.28 59.64 29.01 5.35 65.01 47.12 10.82 60.86 46.72
L2QER 4.35 5.83 63.35 39.4 5.08 66.39 50.98 7.16 65.68 57.81
SERQ (RTN) 4.24 5.64 63.41 40.21 5 65.86 50.9 6.71 66.4 58.49
SERQ (GPTQ) 4.24 5.59 63.04 40.29 4.98 65.66 49.46 6.52 66.23 60.25

W4A4

LLM.int4() -† 6.32e+2 34.85 24.41 2.21e+3 34.74 23.04 4.87e+2 36.12 23.61
L2QER 4.24 7.37 57.67 29.63 6.27 61.15 40.7 11.44 55.44 38.33
L2QER-MXFP4 4.37 6.3 60.95 35.22 5.46 64.12 47.27 7.83 63.33 53.82
SERQ (RTN) 4.24 6.03 61.77 38.03 5.24 65.14 49.22 8.07 62.49 51.84
SERQ (GPTQ) 4.24 5.97 61.87 37.03 5.2 64.82 47.17 7.75 62.41 53.8
SERQ-MXFP4 4.37 6.22 61.26 35.25 5.39 64.35 47.19 7.63 62.71 53.48

LLaMA-3.2 1B LLaMA-3.2 3B Qwen-2.5-3B

#Bits Method #Eff. (w) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 9.75 54.82 36.76 7.81 62.66 54.06 8.03 63.82 65.12

W4A8

LLM.int4() -† 32.39 44.56 24.01 12.47 56.06 41.48 9.98e+5 35.59 25.52
L2QER 4.35 12.06 50.97 31.23 8.78 60.36 51.24 12.25 54.71 26
SERQ (RTN) 4.24 11.14 52.76 32.77 8.38 61.27 51.45 8.67 63.78 62.79
SERQ (GPTQ) 4.24 10.45 53.93 27.1 8.18 61.54 50.24 8.36 63.7 63.25

W4A4

LLM.int4() -† 1.7e+3 35.19 24.11 4.37e+2 35.77 23.5 8.51e+5 36.67 22.97
L2QER 4.24 30.83 42.17 25.67 14.11 50.92 32.25 221.5 38.37 23.81
L2QER-MXFP4 4.37 13.78 50.22 27.1 9.59 58.41 46.85 10.46 60.56 55.87
SERQ (RTN) 4.24 13.57 50.15 29.11 9.43 58.4 46.36 9.66 61.24 59.52
SERQ (GPTQ) 4.24 12.52 50.44 26.34 9.15 58.5 45.7 9.35 60.78 59.55
SERQ-MXFP4 4.37 13.71 49.94 27.23 8.74 57.5 41.33 9.79 60.43 56.13

Compared Methods. We primarily compare our method against the state-of-the-art error recon-
struction approach L2QER under both W4A4 and W4A8 configurations. As a baseline for ma-
trix decomposition with low-rank error reconstruction, we include LLM.int4(), the 4-bit vari-
ant of LLM.int8() (Dettmers et al. (2022)). We further compare against state-of-the-art W4A4
quantization methods that employ distribution-flattening techniques, including the rotation-based
approaches Quarot Ashkboos et al. (2024) and SpinQuant Liu et al. (2025).

4.2 EVALUATION RESULTS

Comparison with Low-Rank Matrix Decomposition Methods. We evaluate the W4A8 and
W4A4 precision configurations to demonstrate the effectiveness of SERQ in low-rank error recon-
struction. Both L2QER and SERQ are compared under the same group size, with low-rank ma-
trix dimensions matched to ensure the same parameter counts. The difference in effective weight
bit-width under W4A8 arises because L2QER employs 8-bit precision for its low-rank matrices,
whereas SERQ preserves 4-bit precision. As shown in Table 1, SERQ consistently outperforms
LLM.int4() and L2QER across most tasks, while achieving the lowest effective bit-width. No-
tably, SERQ is compatible with both RTN and GPTQ for weight quantization. Details of applying
GPTQ robustly to SERQ are provided in Appendix A.3.

The accuracy gap is more pronounced under the W4A4 setting. While prior INT4 quantization
methods suffer from severe degradation in most cases, SERQ maintains high accuracy across all
tasks. L2QER performs especially poorly on LLaMA-3 models, failing to preserve accuracy when
both activations and low-rank matrices are quantized to 4-bit. We further provide MXFP4 imple-
mentations with the default group size of 32. Although MXFP4 proves adequate for both methods,
the sequential reconstruction path in L2QER, which requires two low-rank matrices, introduces sig-
nificant latency overhead, which is examined in detail in the GPU performance analysis.

Comparison with W4A4 Distribution Flattening Methods. Rotation-based methods are recog-
nized as state-of-the-art W4A4 quantization approaches, achieving the lowest effective bit-width
with minimal additional parameters. We therefore compare two representative rotation meth-
ods, Quarot and SpinQuant, along with SmoothQuant’s distribution-flattening baseline (Xiao et al.
(2024)). The reported accuracies for rotation methods are obtained without key-value quantiza-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison with W4A4 distribution flattening methods. Latency overhead is measured as
the additional computation time per linear layer relative to 4-bit GEMM (See Appendix A.5).

LLaMA-2 7B LLaMA-2 13B
#Bits Method #Eff.

(w-bits)
Training-

free
Latency
overhead PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 ✓ 81.4% 5.47 64.09 41.83 4.88 66.53 52.04

W4A4

SmoothQ ∼4 ✓ ✗ 1.51e+4 35.44 26.04 1.32e+4 34.53 23.85
SmoothQ(g128) 4.13 ✓ ✗ 7.49 57.15 30.4 6.31 61.28 39.83
QuaRot ∼4 ✓ 19.8% 6.15 59.53 33.58 5.41 62.55 47.25
SpinQuant ✗ 19.8% 6.0 61 34.8 5.2 64.8 47.8
SERQ-MXFP4 4.37 ✓ 18.7% 6.22 61.26 35.25 5.39 64.35 47.19

LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B

#Bits Method PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 6.13 67.16 62.13 9.75 54.82 36.76 7.81 62.66 54.06

W4A4

SmoothQ 4.71e+5 36.34 25.17 1.53e+5 35.59 24.37 3.73e+4 35.72 23.41
SmoothQ(g128) 17.26 48.97 29.3 69.22 40.04 24.43 53.33 44.17 27.31
QuaRot 8.41 59.12 47.29 13.17 50.03 26.64 9.73 55.76 44.75
SpinQuant 8.26 61.75 49.93 13.47 48.95 26.38 10.15 56.88 42.42
SERQ-MXFP4 7.63 62.71 53.48 13.71 49.94 27.23 8.74 57.5 41.33

4096, 4096 4096, 14336 14336, 4096 One Decoder Layer
0

500

1000

1500

2000

2500

3000

3500

4000

5

6

7

8

9

P
er

p
le

xi
ty

L
at

en
cy

 (
u

s)

Method

 L2QER-A8

 L2QER-A4

 SERQ

4096, 4096 4096, 14336 14336, 4096 One Decoder Layer
0

500

1000

1500

2000

2500

4

5

6

7

8

9

P
er

p
le

x
it

y

L
at

en
cy

 (
u

s)

Method

 QuaRot

 SpinQuant

 FlatQuant

 SERQ

4096, 4096 4096, 14336 14336, 4096 One Decoder Layer
0

500

1000

1500

2000

2500

3000

3500

4000

5

6

7

8

9

P
er

p
le

xi
ty

L
at

en
cy

 (
u

s)

Method

 L2QER-A8

 L2QER-A4

 SERQ

4096, 4096 4096, 14336 14336, 4096 One Decoder Layer
0

500

1000

1500

2000

2500

4

5

6

7

8

9

P
er

p
le

x
it

y

L
at

en
cy

 (
u

s)

Method

 QuaRot

 SpinQuant

 FlatQuant

 SERQ

[4
096×4096]

[4
096×14336]

[1
4336×4096]

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

Method L2QER-A8 L2QER-A4 SERQ

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

[4
096×4096]

[4
096×14336]

[1
4336×4096]

0

200

400

600

800

L
at

en
cy

 (
μ

s)

Method QuaRot SpinQuant SERQ

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

Method L2QER-A8 L2QER-A4 SERQ

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

Method QuaRot SpinQuant SERQ

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

Method L2QER-A8 L2QER-A4 SERQ

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

Method QuaRot SpinQuant SERQ

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

Method L2QER-A8 L2QER-A4 SERQ PPL

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

Method QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.4

0.8

1.2

1.6

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

Method L2QER-A8 L2QER-A4 SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

Method QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ PPL

GEMM 1st LoRA 2nd LoRA

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Decoder

Layer

0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Overall
0.0

0.5

1.0

1.5

2.0

5

6

7

8

9
P

er
p

le
xi

ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

200

400

600

800

L
at

en
cy

 (
μ

s)

QuaRot SpinQuant SERQ PPL

Overall
0.0

0.5

1.0

1.5

2.0

5

6

7

8

9

P
er

p
le

xi
ty

Sp
ee

d
u

p

(4096,

 4096)

(4096,

 14336)

(14336,

 4096)

0

300

600

900

1200

L
at

en
cy

 (
μ

s)

L2QER-A8 L2QER-A4 SERQ LoRA Path PPL

Figure 3: GPU performance comparison. Latency overhead introduced by the residual path is re-
ported. SERQ is particularly effective for larger row-sized matrices (See Appendix A.4).

tion for fair comparison, using GPTQ without grouping for compatibility with low-precision GPU
kernels. Consistently, although SERQ combined with GPTQ yields the best accuracy in our ex-
periments, we primarily report results for its MXFP4 variant to ensure fair comparison under GPU
kernels optimized for speed. As shown in Table 2, SpinQuant generally outperforms Quarot due to
its learned rotation matrices, but this advantage diminishes on compact Llama-3.2 models, where
both methods suffer from significant degradation. In contrast, SERQ achieves consistently higher
accuracy, with the improvements most pronounced on Llama-3 models. Although SERQ incurs a
slightly higher effective bit-width due to the inclusion of low-rank matrices and scaling factors in
MX formatting, its per-layer latency overhead is lower than that of rotation-based methods.

GPU Performance Comparison. To examine inference performance with the proposed method,
we measure execution time using low precision GEMM kernels implemented in the NVIDIA CUT-
LASS library (cut (2025)). Since the fifth generation Blackwell Tensor Core architecture does not
support INT4 GEMM kernels, while being substantially faster than the previous Ampere generation,
we evaluate rotation-based methods in the FP4 format on the same latest core. Mixed precision com-
putation for L2QER with W4A8 is measured with the MXFP mixed-precision kernel, while the Fast
Hadamard transform for online rotation is executed using an FP32 kernel (Ashkboos et al. (2024)).

We benchmark the latency of linear operations across different dimension sizes in the LLaMA-3
8B decoder layer, and also report the overall speedup relative to an FP16 GEMM baseline. As
shown in the left panel of Figure 3, SERQ outperforms both A4W4 and A4W8 settings of L2QER,
while maintaining competitive perplexity. Compared directly with L2QER under A4W4, our single
matrix error reconstruction path reduces latency overhead by up to 4.5× compared to the LoRA path,
which requires two sequential low rank multiplications, thereby delivering the highest speedup. The
right panel of Figure 3 compares performance against rotation-based methods. Since key-value
quantization is excluded, the only online rotation occurs between the up or gate projection layer and
the down projection layer. However, due to the unbalanced matrix dimensions, rotation introduces a
significant overhead, about 1.6× greater than SERQ, which increases the latency of a single decoder
layer. As a result, SERQ achieves the best perplexity score while delivering comparable speedups
to rotation-based methods, with only about one percent additional latency overhead.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effect of rank size on perplexity.

#Rank LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B
0 9.8 15.09 10.21

16 8.28 14.32 9.71

32 8.24 14.09 9.59

64 8.18 13.97 9.57

128 8.07 13.57 9.43

256 7.98 13.25 9.32

Table 4: Effect of calibration data on perplexity.
Datasets #Sample LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B

512 8.07 13.57 9.43

Wiki 128 7.98 13.6 9.43

32 8.08 13.51 9.45

512 7.91 13.63 9.47

Pile 128 7.96 13.54 9.44

32 8.18 13.44 9.52

Table 5: Generation task evaluation. SERQ is evaluated on GSM8K and LongBench datasets.
GSM8K 5-shot(↑) LongBench(↑)

Model #Bits Method flexible extract strict match qmsum samsum repobench-p
FP16 baseline 48.07 47.69 23.43 46.26 66.56

LLaMA-3 8B
W4A8

LLM.int4() 7.88 4.62 13.29 34.2 44.93
L2QER 36.24 35.33 7.28 25.81 47.03
SERQ 42.61 42.38 22.97 44.27 63.34

W4A4 L2QER 7.96 7.66 0.09 1.98 5.65
SERQ 23.65 23.12 19.08 40.85 54.78

FP16 baseline 26.08 25.93 23.94 42.98 64.42

LLaMA-3.2 3B
W4A8

LLM.int4() 6.76 6.44 15.83 36.42 35.24
L2QER 18.95 18.42 21.53 40.63 60.18
SERQ 21.68 21.23 22.25 42.47 60.78

W4A4 L2QER 3.56 2.73 14.92 33.87 41.99
SERQ 16.22 15.77 19.31 42.14 53.67

4.3 ABLATION STUDIES

Sensitivity on the Rank Size. SERQ constructs a low rank matrix of size r. While we fix the
rank size to align with prior methods, we also analyze its impact separately. We evaluate three
models, LLaMA-3 8B and LLaMA-3.2 1B and 3B, by varying the rank size, which corresponds to
the number of salient rows. As shown in Table 3, perplexity decreases monotonically with larger
ranks, indicating improved accuracy. However, the improvement quickly saturates, and even the
smallest setting of r = 16 (equivalent to rank 8 in LoRA) yields competitive results.

Sensitivity on Calibration Samples. Table 4 reports perplexity scores obtained with varying
calibration dataset sizes, which are used to determine saliency. We further evaluate our scheme
on the Pile dataset Gao et al. (2020) to assess sensitivity to both sample size and dataset choice.
The results indicate that SERQ is robust to the calibration dataset size and dataset characteristics,
achieving similar perplexity scores across all settings.

Evaluation on Generation Tasks. While prior work on linear layer quantization primarily focuses
on prefill-sensitive tasks (See section 4.1), we additionally evaluate generation tasks to demonstrate
accuracy in generation. We conduct experiments on GSM8K (Cobbe et al. (2021)) and LongBench
(Bai et al. (2024)) under W4A8 and W4A4 settings using LLaMA-3 8B and LLaMA-3.1 3B models.
Compared with other matrix decomposition methods, SERQ achieves superior performance with
only minor accuracy degradation in the W4A8 setting. Although the W4A4 setting leads to a notable
accuracy drop overall, SERQ maintains reliable results where other methods fail.

5 CONCLUSION

In this work, we introduced SERQ, a saliency-aware error reconstruction method that enables end-
to-end 4-bit quantization of both weights and activations using a single low rank matrix. By com-
bining static activation flattening with mergeable weight permutation, SERQ identifies salient rows
in the weight matrix without incurring additional latency overhead and reconstructs them through
an auxiliary low rank branch. SERQ consistently outperforms prior matrix decomposition and dis-
tribution flattening methods, including state-of-the-art LoRA-based and rotation-based approaches,
in terms of accuracy. Our implementation with the MXFP4 data format on NVIDIA Blackwell
architecture further demonstrates that the auxiliary branch introduces minimal latency overhead,
achieving significant speedups while preserving accuracy in low precision computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nvidia cutlass documentation. https://docs.nvidia.com/cutlass/index.html,
2025. Accessed: 2025-09-25.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large language
models, 2023. URL https://arxiv.org/abs/2310.09259.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms, 2024. URL https://arxiv.org/abs/2404.00456.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/
abs/2210.17323.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020. URL https://arxiv.org/
abs/2101.00027.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Han Guo, Philip Greengard, Eric P. Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning, 2024. URL https://arxiv.org/
abs/2311.12023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models, 2023. URL
https://arxiv.org/abs/2310.08659.

10

https://docs.nvidia.com/cutlass/index.html
https://arxiv.org/abs/2310.09259
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2311.12023
https://arxiv.org/abs/2311.12023
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2310.08659

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangx-
uan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quan-
tization for on-device llm compression and acceleration. In P. Gibbons, G. Pekhimenko,
and C. De Sa (eds.), Proceedings of Machine Learning and Systems, volume 6, pp. 87–
100, 2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations, 2025. URL https://arxiv.org/abs/2405.16406.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization. CoRR, abs/2106.08295,
2021. URL https://arxiv.org/abs/2106.08295.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Ven-
mugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gau-
rav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Mi-
cikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
croscaling data formats for deep learning, 2023. URL https://arxiv.org/abs/2310.
10537.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J. Goldsmith, and Mert Pilanci. Com-
pressing large language models using low rank and low precision decomposition, 2024. URL
https://arxiv.org/abs/2405.18886.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.
09728.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models, 2024. URL https://arxiv.org/abs/2308.13137.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https://arxiv.
org/abs/2307.09288.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

11

https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2405.18886
https://doi.org/10.1145/3474381
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models, 2023. URL https://arxiv.org/abs/2309.14717.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation, 2023.
URL https://arxiv.org/abs/2303.08302.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Cheng Zhang, Jianyi Cheng, George A. Constantinides, and Yiren Zhao. Lqer: Low-rank quantiza-
tion error reconstruction for llms, 2024. URL https://arxiv.org/abs/2402.02446.

Weibo Zhao, Yubin Shi, Xinyu Lyu, Wanchen Sui, Shen Li, and Yong Li. Aser: Activa-
tion smoothing and error reconstruction for large language model quantization, 2024. URL
https://arxiv.org/abs/2411.07762.

12

https://arxiv.org/abs/2309.14717
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2402.02446
https://arxiv.org/abs/2411.07762

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTS ON LOW-RANK SALIENCY

In this analysis, we vary the number of weight rows included in SVD, selected by saliency in de-
scending order of activation channel scales, to examine the trade-off between loss from rank reduc-
tion and the coverage of error reconstruction. To isolate the quantization effects of the weight matrix,
we apply W4A16 quantization with a group size of 128 and fix the SVD rank size to 64. Figure 4
shows that decomposing only salient weights is more effective for reducing quantization error, as the
perplexity score decreases slightly on the leftmost side when using row size 64. This result indicates
that restricting reconstruction to salient rows not only avoids accuracy degradation but also yields
consistent improvement across all tested LLaMA models. We observe about 1 to 4 percent improve-
ments compared to using the same limited rank to cover the full weight matrix. Expanding beyond
the salient subset offers little or even negative benefit, since the additional low rank factorization loss
outweighs the marginal coverage. These findings motivate a single-layer reconstruction, rather than
two low-rank factors, and support a saliency-aware error reconstruction strategy that keeps both the
main and auxiliary paths in pure 4-bit, achieving efficiency without sacrificing accuracy.

Figure 4: The trade-off between loss from rank reduction and the coverage of error reconstruction.
The figure shows that higher accuracy is achieved by reconstructing errors for salient rows with
smaller ranks, rather than covering a larger portion of the weight matrix.

A.2 MICROSCALING (MX) FORMAT

The Microscaling (MX) format Rouhani et al. (2023) is a block-scaled, low-precision representa-
tion that associates each small block with a single scale and quantized elements, thereby retaining
dynamic range while enabling efficient 4–8 bit computation. Concretely, data are partitioned into
blocks; each block stores one scale, estimated from its maximum value, and the elements within the
block are stored in low-bit precision—either in floating-point formats (MXFP8, MXFP6, MXFP4)
or in integer format (MXINT8). Note that INT4 is not included among MX variants. All elements
are defined relative to the block’s shared scale, which is fixed at 8-bit precision.

In contrast, naive single-scale low-bit formats often degrade sharply on LLMs: a few outliers in-
flate the global scale, wasting quantization levels and clipping inlier values. By adopting a block-
level granularity (typically set to 32), MX preserves usable dynamic range and maintains effective
quantization. As a result, MX-based models achieve low-precision inference with minimal accu-
racy loss, reduced memory and bandwidth, and hardware-friendly execution, since computations
reduce to standard low-bit arithmetic plus lightweight per-block scaling. Owing to its effectiveness
for low-precision quantization in deep learning, NVIDIA’s Blackwell architecture, equipped with
fifth-generation Tensor Cores, provides CUTLASS kernels supporting MX data formats for LLM
workloads.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 GPTQ IMPLEMENTATION

Recently GPTQ has shown strong performance in weight-only quantization. It performs a
lightweight, Hessian-guided optimization: quantizing weights along principal curvature directions
and allowing the remaining (unquantized) weights to compensate the induced error. However,
this procedure is not independent of error-reconstruction pipelines. As GPTQ updates proceed,
the compensation steps shift the weight distribution, so the naı̈ve error-reconstruction modeling
E = W − Q(W) = UΣV T —i.e., using a fixed pre-quantized weight and a post-quantized
weight—no longer yields a clean comparison, making the simple SVD-based approximation less
well-aligned and less effective. before quantization to apply GPTQ effectively in the weight matrix.
Specifically, we substitute the low rank matrix R into the salient weight rows W̃s prior to the itera-
tive GPTQ process, where R = Q(W̃s) and the salient rows are assigned the error W̃s −Q(W̃s).
This substitution diverts activation-driven outlier effects away from the main weights and stabilizes
the weight distribution. Afterward, GPTQ on the main path yields higher error reconstruction ef-
ficiency and simplifies implementation by avoiding dequantization and requantization cycles when
building the error reconstruction term. In this way, GPTQ targets a better conditioned main weight,
while the low rank path captures the salient components.

A.4 GPU PERFORMANCE ANALYSIS DETAILS

This section reports the absolute latency obtained with NVIDIA Blackwell CUTLASS kernels when
operating on linear layers of different sizes used in LLM models. We also provide the inference
overhead introduced by low rank factors, where SERQ includes an additional multiplication path
using R, and L2QER includes the factors L1 and L2.

Table 6: GPU latency results in linear layers.

Inference overhead (MXFP4)
Sequence Length Weight Size FP16(µs) MXFP4(µs) R(µs) L1(µs) L2(µs) L1L2(µs)

2048

2048 × 2048 71.402 27.457 10.501 16.606 12.009 28.615

2048 × 8192 207.482 72.7 20.934 16.606 24.86 41.466

8192 × 2048 212.87 88.738 10.501 43.235 12.009 55.244

4096 × 4096 211.894 70.255 14.637 26.833 14.66 41.493

4096 × 11008 519.322 181.359 27.0112 26.833 31.034 57.867

11008 × 4096 512.25 175.964 14.637 55.51 14.66 70.171

4096 × 14336 643.27 235.397 38.342 26.833 40.638 67.472

14336 × 4096 655.757 226.379 14.637 69.887 14.659 84.547

8192 × 8192 755.494 260.054 20.934 43.235 24.86 68.095

8192 × 28672 2604.973 946.403 174.537 43.235 174.857 218.09

28672 × 8192 2444.912 946.787 20.934 132.005 24.86 156.865

4096

2048 × 2048 122.298 37.664 14.4035 16.669 14.662 31.331

2048 × 8192 403.859 142.159 56.211 16.669 55.991 72.66

8192 × 2048 394.138 132.903 14.4035 43.292 14.662 57.954

4096 × 4096 382.79 136.076 20.936 26.805 25.155 51.96

4096 × 11008 1009.898 355.986 129.704 26.8045 129.876 156.681

11008 × 4096 986.624 345.739 20.938 55.947 25.155 81.1

4096 × 14336 1262.093 477.976 175.101 26.8045 175.268 202.073

14336 × 4096 986.97 445.022 20.938 70.016 25.155 95.171

8192 × 8192 1560.854 506.364 56.211 43.292 55.991 99.283

8192 × 28672 4868.259 1911.05 355.274 43.292 355.969 399.261

28672 × 8192 4849.363 1853.27 56.211 132.019 55.991 188.01

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.5 OVERALL LLM ACCURACY RESULTS

We report overall accuracy results on the evaluated benchmarks, which are not captured in Tables 1
and 2 since they only present average values. Tables 7 and 8 provide detailed accuracy results for
low-rank matrix decomposition methods under the W4A8 and W4A4 settings, respectively. Table 9
reports detailed results for different distribution flattening methods.

Table 7: Accuracy results of low-rank matrix decomposition methods when tested with W4A8 set-
tings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

LLM.int4() 7.28 69.3 76.39 43.76 68.48 43.43 71.19 64.96 39.6 59.64 26.23 27.9 33.54 29.84 29.01
L2QER 5.83 75.99 78.51 44.98 74.75 44.03 75.14 68.98 44.4 63.35 37.39 43.13 43.48 34.76 39.4
SERQ (RTN) 5.64 76.85 78.4 44.93 73.7 45.31 75.12 68.75 44.2 63.41 37.39 45.93 45.47 33.65 40.21
SERQ (GPTQ) 5.59 77 78.78 44.83 73.15 44.2 75.05 68.27 43 63.04 37.9 45.22 44.85 34.54 40.29

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

LLM.int4() 5.35 79.91 79.38 46.52 75.34 49.15 77.46 69.69 42.6 65.01 44.31 53.07 54.76 38 47.12
L2QER 5.08 81.41 79.87 46.37 76.85 50.17 78.52 72.3 45.6 66.39 46.63 58.71 59.02 42.02 50.98
SERQ (RTN) 5 80.18 80.36 46.47 76.3 48.38 78.7 71.67 44.8 65.86 47.08 57.64 58.99 42.09 50.9
SERQ (GPTQ) 4.98 79.54 79.38 46.26 76.18 47.27 78.83 72.45 45.4 65.66 45.59 55.52 58.01 40.91 49.46

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

LLM.int4() 10.82 75.23 74.97 44.22 67.38 42.24 72.63 70.01 40.2 60.86 42.34 53.91 52.65 40.41 46.72
L2QER 7.16 80.67 79.54 45.29 75.34 51.28 77.01 72.53 43.8 65.68 52.01 66.4 67.66 48.37 57.81
SERQ (RTN) 6.71 81.41 80.2 45.7 77.44 50.77 77.61 73.64 44.4 66.4 51.9 67.94 69.16 48.59 58.49
SERQ (GPTQ) 6.52 80.8 80.9 46.21 76.52 51.02 78.25 72.53 43.6 66.23 53.07 69.46 70.62 51.76 60.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

LLM.int4() 32.39 51.07 63.82 38.74 42.09 28.24 46.89 55.25 30.4 44.56 25.1 24.24 23.17 22.96 24.01
L2QER 12.06 60.67 70.73 41.45 53.45 32.68 59.04 56.91 32.8 50.97 28.59 35.92 33.99 27.85 31.23
SERQ (RTN) 11.14 62.75 72.85 42.07 56.69 34.39 60.74 56.35 36.2 52.76 32.56 36.53 33.44 28.7 32.77
SERQ (GPTQ) 10.45 63.24 72.47 42.02 58.92 36.95 61.7 58.96 37.2 53.93 27.72 29 27.72 23.69 27.1

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

LLM.int4() 12.47 67.55 73.99 42.94 62.58 37.46 66.57 61.8 35.6 56.06 37.26 46.6 47.71 36.63 41.48
L2QER 8.78 71.8 76.61 45.8 66.29 41.47 71.13 67.8 42 60.36 46.93 58.32 59.67 42.47 51.24
SERQ (RTN) 8.38 71.22 76.55 46.16 69.19 44.28 72.31 69.85 40.6 61.27 46.91 59.86 59.02 42.53 51.45
SERQ (GPTQ) 8.18 71.19 76.44 46.83 68.9 45.39 72.4 69.14 42 61.54 46.76 58.93 56.65 40.63 50.24

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

Qwen-2.5 3B

baseline 8.03 77.58 78.73 50.1 73.11 47.1 73.62 68.51 41.8 63.82 56.77 71.07 76.15 60.96 65.12

LLM.int4() 9.98e+5 37.86 51.52 34.19 24.58 26.19 26.51 51.3 32.6 35.59 27.14 24.01 23.79 26.26 25.52
L2QER 12.25 68.1 73.07 42.99 47.22 37.54 66.57 64.01 38.2 54.71 26.82 26.97 25.22 24.58 26
SERQ (RTN) 8.67 76.85 77.75 50.41 76.68 48.38 72.13 65.82 42.2 63.78 55.39 68.46 73.71 57.6 62.79
SERQ (GPTQ) 8.36 77.68 77.86 49.23 75.46 48.63 72.35 66.61 41.8 63.7 55.07 69.46 74.65 58.2 63.25

A.6 LLM USAGE

In this paper, we used a large language model to aid and polish the manuscript to improve the overall
writing quality.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Accuracy results of low-rank matrix decomposition methods when tested with W4A4 set-
tings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

LLM.int4() 6.32e+2 43.3 49.84 34.08 27.44 25.43 26.46 50.28 22 34.85 25.04 23.46 24.6 24.2 24.41
L2QER 7.37 66.73 76.28 43.09 65.95 39.51 70.24 61.56 38 57.67 33.41 39.59 38.48 30.45 29.63
L2QER-MXFP4 6.3 73.33 76.71 44.37 70.71 42.41 72.3 66.93 40.8 60.95 33.41 39.59 38.48 30.45 35.22
SERQ (RTN) 6.03 75.96 77.26 43.96 72.26 44.8 73.71 65.98 40.2 61.77 35.28 42.87 41.7 33.78 38.03
SERQ (GPTQ) 5.97 74.56 78.13 44.22 72.9 43.09 73.88 66.61 41.6 61.87 34.67 41.33 40.92 32.54 37.03
SERQ-MXFP4 6.22 73 77.2 44.17 70.2 43.69 72.59 68.19 41 61.26 32.16 40.01 39.1 31.43 35.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

LLM.int4() 2.21e+3 40.24 49.89 35.11 26.64 26.19 26.08 49.8 24 34.74 24.1 23.04 22.26 22.2 23.04
L2QER 6.27 74.31 76.99 44.42 71.25 44.88 73.71 63.61 40 61.15 38.55 44.06 45.73 35.68 40.7
L2QER-MXFP4 5.46 77.86 78.13 46.47 74.37 47.1 75.8 70.24 43 64.12 43.34 52.98 54.6 40.37 47.27
SERQ (RTN) 5.24 78.35 80.25 46.37 76.39 46.42 78.11 70.64 44.6 65.14 45.89 55.29 56.45 41.14 49.22
SERQ (GPTQ) 5.2 78.29 29.27 46.06 75.63 46.5 78.01 70.01 44.8 64.82 43.83 53.3 55.48 38 47.17
SERQ-MXFP4 5.39 77.86 78.73 45.19 75.59 48.12 76.18 70.09 43 64.35 43.59 52.33 54.6 40.28 47.19

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

LLM.int4() 4.87e+2 50.89 50.22 32.65 27.95 23.29 28.29 48.3 27.4 36.12 25.16 23.56 22.55 22.39 23.61
L2QER 11.44 61.71 72.63 42.02 62.37 39.59 67.29 60.54 37.4 55.44 35.47 42.68 42.7 34.06 38.33
L2QER-MXFP4 7.83 76.12 77.97 44.01 74.66 48.29 74.6 69.38 41.6 63.33 48.57 61.15 62.89 45.58 53.82
SERQ (RTN) 8.07 74.5 76.06 44.37 71.93 46.67 72.98 70.64 42.8 62.49 46.14 60.22 60.32 43.83 51.84
SERQ (GPTQ) 7.75 76.85 77.8 43.55 72.43 44.88 73.6 69.38 40.8 62.41 48.42 61.6 62.2 45.92 53.8
SERQ-MXFP4 7.63 76.15 77.2 44.11 72.69 45.39 75.13 68.43 42.6 62.71 47.72 60.7 63.18 46.84 53.48

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

LLM.int4() 1.7e+3 41.13 51.03 33.73 26.89 22.61 26.92 51.38 27.8 35.19 24.21 24.59 24.47 23.15 24.11
L2QER 30.83 51.19 60.01 36.18 40.95 26.62 43.41 52.57 26.4 42.17 25.02 26.68 25.41 25.88 25.67
L2QER-MXFP4 13.78 61.44 69.26 42.32 53.91 30.03 55.04 56.75 33 50.22 26.67 28.68 26.86 25.15 27.1
SERQ (RTN) 13.57 57.68 69.26 40.28 55.93 32.94 56.63 55.25 33.2 50.15 28.78 30.51 29.64 27.69 29.11
SERQ (GPTQ) 12.52 59.85 70.13 40.58 53.41 32.68 57.84 54.62 34.4 50.44 26.93 27.84 26.13 24.2 26.34
SERQ-MXFP4 13.71 60.03 68.77 40.58 54.08 31.83 55.34 56.67 32.2 49.94 27.55 28.23 27.49 25.5 27.23

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

LLM.int4() 4.37e+2 45.41 52.67 33.93 28.07 22.61 27.94 49.49 26 35.77 25.02 24.27 22.07 21.88 23.5
L2QER 14.11 57.37 69.21 40.53 53.28 34.04 60.73 58.17 34 50.92 30.44 34.63 33.99 30.89 32.25
L2QER-MXFP4 9.59 67.92 74.86 44.78 65.57 41.47 68.37 63.93 40.4 58.41 42.47 54.3 52.68 40.37 46.85
SERQ (RTN) 9.43 67.74 73.72 45.45 66.33 42.32 69.09 64.96 37.6 58.4 43.06 53.91 51.09 39.23 46.36
SERQ (GPTQ) 9.15 67.52 74.48 45.29 64.73 42.06 69.57 66.38 38 58.5 42.27 53.97 50.37 38.09 45.7
SERQ-MXFP4 8.74 68.56 73.83 45.24 61.83 40.02 67.16 64.33 39 57.5 38.68 47.89 45.82 34.44 41.33

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

Qwen-2.5-3B

baseline 8.03 77.58 78.73 50.1 73.11 47.1 73.62 68.51 41.8 63.82 56.77 71.07 76.15 60.96 65.12

LLM.int4() 8.51e+5 51.96 50.49 34.19 24.58 25.09 26.52 49.96 30.6 36.67 24.12 23.66 21.9 21.63 22.97
L2QER 221.5 40.09 56.91 35.06 35.44 25.17 33.78 51.93 28.6 38.37 24.65 24.91 22.56 22.68 23.81
L2QER-MXFP4 10.46 72.51 75.84 47.13 73.4 45.31 67.21 64.25 38.8 60.56 49.8 61.25 64.61 51.09 55.87
SERQ (RTN) 9.66 72.6 75.63 49.03 72.14 44.11 70 64.64 41.8 61.24 52.52 65.88 69.97 53.5 59.52
SERQ (GPTQ) 9.35 74.74 75.73 45.55 72.14 45.31 69.92 63.22 39.6 60.78 52.54 65.92 70.43 53.12 59.55
SERQ-MXFP4 9.79 75.17 74.81 46.88 69.57 44.28 68.85 63.85 40 60.43 49.8 61.92 64.9 51.32 56.13

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Accuracy results of distribution flattening methods when tested with W4A4 settings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

SmoothQ 1.51e+4 44.16 49.95 34.49 25.97 27.82 26.39 47.51 27.2 35.44 25.48 22.98 29.48 26.55 26.04
SmoothQ(g128) 7.49 68.59 74.48 41.45 65.4 39.85 67.99 61.64 37.8 57.15 28.63 31.9 32.92 29.12 30.4
QuaRot 6.15 72.84 77.2 33.06 71.59 43 72.3 64.64 41.6 59.53 32.52 36.85 36.72 28.86 33.58
SpinQuant 6 73.8 76 44.1 43.6 71.3 73.2 65.4 40.4 61 33.9 38.5 37.5 29.5 34.8
SERQ-MXFP4 6.22 73 77.2 44.17 70.2 43.69 72.59 68.19 41 61.26 32.16 40.01 39.1 31.43 35.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

SmoothQ 1.32e+4 38.47 49.24 34.7 26.81 27.73 25.72 47.75 25.8 34.53 24.48 26.62 23.4 23.85 23.85
SmoothQ(g128) 6.31 75.23 76.93 43.19 70.5 44.45 72.52 68.43 39 61.28 35.9 44.13 45.76 35.68 39.83
QuaRot 5.41 78.47 78.89 33.32 73.7 46.25 76.29 70.48 43 62.55 43.68 52.85 55.41 39.11 47.25
SpinQuant 5.2 78.2 79.3 46.3 49 76.3 77.1 69.5 42.8 64.8 43.5 53.1 55.4 39.1 47.8
SERQ-MXFP4 5.39 77.86 78.73 45.19 75.59 48.12 76.18 70.09 43 64.35 43.59 52.33 54.6 40.28 47.19

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

SmoothQ 4.71e+5 50.61 51.69 33.78 24.2 26.02 26.65 49.57 28.2 36.34 26.65 24.36 24.21 24.71 25.17
SmoothQ(g128) 17.26 61.83 64.2 39.92 46.59 30.38 55.61 59.59 33.6 48.97 29.33 30.16 29.61 28.1 29.3
QuaRot 8.41 70.49 77.04 32.96 69.57 43.26 72.22 64.64 42.8 59.12 42.76 53.56 53.56 41.74 47.29
SpinQuant 8.26 73.4 75.2 44.4 72 46.9 71.9 67.7 42.4 61.75 45.8 56.5 57.2 42.5 49.93
SERQ-MXFP4 7.63 76.15 77.2 44.11 72.69 45.39 75.13 68.43 42.6 62.71 47.72 60.7 63.18 46.84 53.48

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

SmoothQ 1.53e+5 39.14 51.8 32.7 26.35 28.16 25.44 50.12 31 35.59 24.59 24.46 24.89 23.44 24.37
SmoothQ(g128) 69.22 51.62 56.09 35.26 36.99 26.11 37.9 49.33 27 40.04 24.65 26.1 23.24 23.63 24.43
QuaRot 13.17 60.21 69.7 39.92 54.17 32.17 55.65 55.25 33.2 50.03 26.55 27.62 25.71 26.74 26.64
SpinQuant 13.47 60.1 68.8 39 50.2 30.6 55.4 55.5 32.2 48.95 26.4 27.7 26 25.5 26.38
SERQ-MXFP4 13.71 60.03 68.77 40.58 54.08 31.83 55.34 56.67 32.2 49.94 27.55 28.23 27.49 25.5 27.23

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

SmoothQ 3.73e+4 40.46 51.52 33.32 25.34 26.11 26.38 51.46 31.2 35.72 23.91 23.53 23.33 22.61 23.41
SmoothQ(g128) 53.33 53.7 62.51 37.41 42.89 27.99 49.04 53.2 26.6 44.17 27.38 27.81 27.62 26.42 27.31
QuaRot 9.73 66.15 73.34 43.45 59.81 37.29 68.12 60.85 37.2 55.76 41.23 51.05 50.76 37.93 44.75
SpinQuant 10.15 68.5 73 43.2 62.8 38.9 67.6 63.1 38 56.88 39.9 47.1 47.7 36.4 42.42
SERQ-MXFP4 8.74 68.56 73.83 45.24 61.83 40.02 67.16 64.33 39 57.5 38.68 47.89 45.82 34.44 41.33

17

	Introduction
	Background and Motivation
	LLM Quantization
	Low-Rank Error Reconstruction
	Deployment of Low-Rank Error Reconstruction

	Method
	Saliency-Aware Low-Rank Adaptation
	Implementation

	Experiments
	Settings
	Evaluation Results
	Ablation Studies

	Conclusion
	Appendix
	Experiments on Low-Rank Saliency
	Microscaling (MX) Format
	GPTQ Implementation
	GPU Performance Analysis Details
	Overall LLM Accuracy Results
	LLM Usage

