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ABSTRACT

Post-training quantization (PTQ) has emerged as a prevailing technique for de-
ploying large language models (LLMs) efficiently in terms of both memory and
computation, across edge devices and server platforms. Existing PTQ methods
primarily aim to reduce precision in weights and activations by mitigating quan-
tization errors caused by channel-wise outlier activations (e.g., pre-quantization
scaling, online transformations, or low-rank error reconstruction). Among these
approaches, error reconstruction with low-rank adaptation (LoRA) has proven par-
ticularly effective, as it introduces a lightweight auxiliary computation path with-
out requiring heavy optimization or additional online layers. However, prior stud-
ies reveal severe accuracy degradation under W4A4 settings, and conventional
low-rank adaptations rely on two sequential factors, necessitating intermediate
quantization during inference and thereby limiting low-precision efficiency. In this
work, we propose SERQ, a saliency-aware error reconstruction method for low-
bit LLM inference that employs a single low-rank compensation matrix. SERQ
preserves efficient 4-bit matrix multiplication in linear layers by jointly mitigating
quantization errors arising from both activation and weight saliency through three
stages: (1) static activation flattening, (2) saliency-aware error reconstruction, and
(3) offline weight permutation. The method incurs additional computation only
for low-rank error reconstruction via a single decomposition, while all other oper-
ations are performed offline, thereby keeping latency overhead minimal. Empir-
ically, SERQ outperforms prior error reconstruction methods under both W4A8
and W4A4 settings, and achieves higher accuracy than state-of-the-art rotation-
based W4A4 approaches, while substantially reducing calibration complexity.

1 INTRODUCTION

The demand for efficient deployment of large language models (LLMs) has been rapidly increasing
across both server and edge platforms. Quantization has emerged as one of the most effective ap-
proaches to reduce the substantial memory and computational costs associated with LLM inference.
In particular, post-training quantization (PTQ) techniques (Nagel et al. (2021)) enable low-precision
representations of weights and activations involved in large-scale computations, thereby avoiding
expensive fine-tuning while maintaining competitive performance.

A central challenge in minimizing quantization errors for LLMs lies in addressing outlier activa-
tions across channels. To alleviate this issue, several distribution-flattening approaches have been
proposed, including pre-quantization scaling methods (Xiao et al. (2024); Shao et al. (2024)) and
online transformation-based techniques that leverage random Hadamard or learned transformations
(Ashkboos et al. (2024); Liu et al. (2025)). While recent rotation transformation methods have
demonstrated effectiveness in enabling 4-bit integer (INT4) quantization, they typically rely on
computationally expensive calibration procedures or suffer from performance variability induced
by random matrices, thereby limiting their practicality in general deployment.

An alternative strategy for mitigating activation outliers is matrix decomposition. Recent advances
have introduced low-rank error reconstruction methods that integrate quantization with low-rank
adaptation (LoRA) (Dettmers et al. (2023); Saha et al. (2024); Zhang et al. (2024); Zhao et al.
(2024)). These approaches leverage low-rank decompositions in matrix multiplication to reduce
quantization error by compensating for it through separate low-rank factors. For example, L2QER
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(Zhang et al. (2024)) introduces a fully quantized path for low-rank error reconstruction, yielding
near-zero accuracy loss under the 4-bit weight, 8-bit activation (W4A8) configuration. Despite their
superior adaptability, these methods have not yet achieved W4A4 quantization without noticeable
performance degradation. Furthermore, they remain unsuitable for fully low-precision execution,
as decomposed matrices are multiplied sequentially, producing intermediate values, requiring an
additional on-the-fly quantization process.

In this work, we propose SERQ, a saliency-aware error reconstruction method that enables low-
precision LLM inference (e.g., W4A4, W4A8) using a single low-rank decomposition. Unlike stan-
dard low-rank approximations that rely on two low-rank factors, our method unifies error correction
into a single matrix by jointly addressing activation and weight saliency. This design avoids the
overhead of an additional sequential low-rank branch during inference, while effectively mitigat-
ing quantization errors arising from both activation outliers and salient weights. As a result, SERQ
achieves more efficient low-precision inference while maintaining high accuracy, outperforming
prior quantization approaches in the challenging W4A4 precision setting.

To the best of our knowledge, this is the first work to realize 4-bit matrix multiplication in linear
layers by employing low-rank error reconstruction, a method recognized for its adaptability and
minimal calibration overhead. Following this principle, SERQ introduces no additional layers for
online processing and avoids costly calibration procedures such as hyperparameter search, or other
compute-intensive training operations. Our contributions are summarized as follows.

• We propose SERQ, a novel W4A4 quantization scheme for LLMs that employs a single
saliency-guided low-rank matrix for accurate error reconstruction. Our method operates
in three steps: static activation flattening, saliency-aware error reconstruction, and offline
weight permutation.

• SERQ enables 4-bit matrix multiplication (e.g. INT4, MXFP4) in linear layers, thereby
minimizing inference overhead in low-rank computation. Moreover, the proposed flat-
tening and permutation schemes are merged into weight parameters and preprocessed in
adjacent layers, allowing them to be fully managed offline with no additional latency.

• We validate our scheme across various LLMs with comprehensive evaluations. Compared
to prior LoRA-based methods, our approach achieves superior performance in both W4A8
and W4A4 configurations while using only a single low-rank matrix. Furthermore, we com-
pare against state-of-the-art rotation-based W4A4 quantization approaches, demonstrating
superior accuracy while significantly reducing calibration complexity.

2 BACKGROUND AND MOTIVATION

2.1 LLM QUANTIZATION

Quantization maps high-precision values to low-precision representations, improving both memory
and compute efficiency. The basic integer quantization with max-scaling can be expressed as:

Xq = clip(⌈X/s⌋), s = max(|X|)/(2n−1 − 1), X̂ = s ·Xq (1)

where s is the scale factor, n is the bit-width, ⌈·⌋ denotes round-to-nearest, and clip() clamps values
to [−2n−1 − 1, 2n−1 − 1]. Reducing bit-width provides near-linear storage compression, allevi-
ating the growing memory demands of model parameters and KV-cache. At runtime, quantization
also reduces memory traffic, thereby improving bandwidth efficiency. When activations are quan-
tized in addition to weights, the core linear operation can be executed as an integer GEMM, further
accelerating inference latency and throughput. For a transformer linear projection y = Wx,

y ≈ sW (WqXq)sX (2)

As widely recognized, the accuracy of LLM quantization for both weights and activations critically
depends on how activation outliers are handled. Numerous approaches have been proposed to miti-
gate the quantization error introduced by such outliers. Early methods, such as SmoothQuant (Xiao
et al. (2024)) and OmniQuant (Shao et al. (2024)), employ distribution-flattening techniques that
balance activations and weights through pre-quantization scaling. Another line of work decomposes
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matrix multiplication by assigning a separate high-precision path for outliers, as in LLM.int8()
(Dettmers et al. (2022)) and QUIK (Ashkboos et al. (2023)). However, these primitive techniques
exhibit significant accuracy degradation when applied to sub-8-bit LLMs.

More recently, online transformation techniques that rotate tensors to flatten the distribution have
demonstrated effectiveness for 4-bit quantization with minimal latency overhead. Quarot (Ashkboos
et al. (2024)) applies random Hadamard transformations, while SpinQuant (Liu et al. (2025)) learns
rotation matrices to suppress outliers and reduce the performance variance. While effective in the
W4A4 setting, existing methods still incur notable accuracy loss and either suffer from high variance
due to random Hadamard matrices or require costly training to optimize transformation matrices,
limiting deployment practicality. Meanwhile, LoRA-based LLM quantization has emerged as a
powerful approach for mitigating quantization errors. In a similar vein, error reconstruction with
low-rank factors via matrix decomposition has proven particularly effective, while avoiding heavy
optimization or additional online layers. Further details are discussed in section 2.2.

2.2 LOW-RANK ERROR RECONSTRUCTION

Recent advances in LoRA for parameter-efficient fine-tuning of foundation LLMs suggest its po-
tential for applicability to LLM quantization as well. LoRA has been adapted to compensate for
quantization errors by leveraging the auxiliary path of low-rank matrices, a strategy we refer to as
low-rank error reconstruction. This approach introduces a LoRA-style compensator that restores
the principal quantization error without requiring heavy retraining or complex deployment modifi-
cations. Concretely, it corrects the quantization error of a full-precision weight matrix W d×d, where
d denotes the hidden dimension of a layer, by augmenting its low-bit proxy with low-rank factors.

Ŵ = Q(W ) +L1L2, L1L2 ≈ W – Q(W ) (3)

Where Q(W ) is the quantized weight, L1 ∈ Rd×r, L2 ∈ Rr×d, and r ≪ d is the rank. The
parameter and compute overhead of the low-rank factors is only 2rd; with commonly used ranks
r ∈ {32, 64} (e.g., d = 4096), this amounts to about 1.6-3.1%. Moreover, the LoRA-path is simple
and lightweight, which makes it highly applicable across diverse model architectures and hardware
platforms. Consequently, it has emerged as a prominent and widely adopted quantization method.

Gradient-based Methods. Gradient-based methods compensate the quantization errors by lever-
aging loss gradients on a small calibration set to learn low-rank factors, typically instantiating a
compensator L1L2 that reduces mismatch between the full-precision model and its quantized coun-
terpart. QLoRA (Dettmers et al. (2023)) advanced this line of work by fine-tuning LoRA adapters
on top of 4-bit weights, recovering task performance with modest resource overhead. At sub-4-bit
precision, methods such as LQ-LoRA (Guo et al. (2024)), LoftQ (Li et al. (2023)) and QA-LoRA
(Xu et al. (2023)) consistently mitigate degradation and sustain competitive accuracy, highlighting
the viability of ultra-low-bit quantization.

SVD-based Methods. Another approach is to reconstruct quantization errors by low-rank matri-
ces obtained via singular-value decomposition (SVD). This approach forms the compensator L1L2

from the quantization error E by exploiting its rapidly decaying singular spectrum, allowing the
dominant error to be captured with compact low-rank factors. Recent methods such as ZeroQuant-
v2 (Yao et al. (2023)), CALDERA (Saha et al. (2024)), and L2QER (Zhang et al. (2024)) adopt this
SVD-based optimization to extract low-rank factors in a training-free and lightweight calibration
process. In particular, L2QER formalizes weight–activation quantization using SVD-based error re-
construction, preserving integer matrix multiplications across both the main and low-rank branches.

2.3 DEPLOYMENT OF LOW-RANK ERROR RECONSTRUCTION

In low-rank error reconstruction, a linear layer introduces an additional computation path for the
low-rank branch, which cannot be parallelized cleanly with the main branch. Consider the case
where both weights and activations are quantized. To enable the main branch to leverage low-
precision matrix multiplication (e.g., INT4 or MXFP4 GEMM kernels), the LoRA-augmented linear
layer must be evaluated in its decomposed form, such as Xq(Wq + L1L2) = XqWq +XqL1L2.
This requires two sequential matrix multiplications with low-rank matrices. Although each operation
is relatively inexpensive, the overhead becomes non-negligible when the main branch benefits from
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Figure 1: Computation flow of a linear layer under different matrix decomposition methods.
LLM.int8() employs a mixed-precision scheme of INT8 and FP16 by assigning separate com-
putation paths for outliers and non-outliers. L2QER applies SVD-based error reconstruction with
a mixed-precision path of INT4 and INT8. In contrast, the proposed SERQ leverages a saliency-
guided low-rank matrix and provides a unified computation path with INT4 or MXFP4 precision.

highly optimized low-precision GEMM kernels. To address this, L2QER (Zhang et al. (2024)) quan-
tizes the low-rank matrices as well, allowing the entire computation to proceed in a fully quantized
path, as expressed in XqWq+Q(XqL1,q)L2,q . However, this formulation introduces an additional
on-the-fly quantization step for intermediate results between the sequential multiplications, resulting
in inefficiency for low-precision deployment.

Figure 1 shows the overall datapath of prior approaches compared to ours, all based on decomposed
matrix multiplication. Prior to error reconstruction methods, LLM.int8() (Dettmers et al. (2022))
handled outliers via a separate high-precision path, but this required on-the-fly scattering and FP16
computation, introducing substantial latency. An error reconstruction method L2QER (Zhang et al.
(2024)) later achieved a fully quantized datapath with mixed precision, yet still relied on on-the-fly
quantization and two additional narrow matrix multiplications, resulting in latency and degraded
accuracy in the W4A4 setting. In contrast, we propose SERQ, a novel error-reconstruction method
that employs a single low-rank matrix, eliminating on-the-fly quantization and enabling a fully 4-bit
end-to-end computation path. Further details are provided in section 3.

3 METHOD

We present SERQ, a saliency-aware error reconstruction method that jointly accounts for weight
and activation saliency within a single low-rank matrix. We first show that saliency plays a central
role in compensating weight-side quantization error, motivating a saliency-guided low-rank design.
We then detail how SERQ incorporates activation saliency into the weight matrix, enabling error
reconstruction based on integrated weight saliency while minimally impacting inference latency.

3.1 SALIENCY-AWARE LOW-RANK ADAPTATION

Prior error-reconstruction methods typically approximate the full-weight quantization error E =
W − Q(W ) using a truncated SVD of the weight matrix, E ≈ UrΣrV

T
r , where Ur ∈ Rd×r

and V T
r ∈ Rr×d contain the top-r singular vectors and Σr ∈ Rr×r is the diagonal matrix of

the corresponding singular values. While effective, this global decomposition overlooks where the
error actually concentrates: the fixed rank budget is distributed across all rows and columns, diluting
capacity on the most problematic regions (e.g., salient weights). In addition, quantizing the low-rank
factors themselves introduces further loss, undermining the efficiency of error reconstruction.

Building on the theoretical insight that quantization errors vary across weight rows in linear opera-
tions, AWQ (Lin et al. (2024)) demonstrates that protecting only a small fraction (∼1%) of salient
channels (i.e., their corresponding weight rows) using the activation distribution can substantially
reduce the error. Motivated by this, we evaluate error reconstruction using SVD with a fixed rank
size but restricted to salient rows selected by activation scales (see Appendix A.1). We find that
selecting only a small number of salient rows for SVD improves perplexity compared to using the
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Figure 2: (a) Overall SERQ implementation. During calibration, saliency rows are determined via
activation scaling, followed by weight row permutation. During inference, error reconstruction is
performed through a residual path computed only on the salient components, alongside the main
path. (b) Computation flow of a decoder layer. The merged row- and column-wise weight permuta-
tion enables offline preprocessing of both current weight rows and subsequent activation channels.

entire matrix. In other words, rather than extracting ranks from the full weight matrix via SVD, we
directly identify rank candidates based on row-wise saliency, allowing to reconstruct quantization
error only on the most influential data. A narrowed matrix containing salient rows, where the row
size equals the rank size, is sufficient for error reconstruction, enabling a single matrix decomposi-
tion for the low-rank branch. In section 3.2, we describe how to integrate activation statistics into
the weight matrix to determine salient rows that disproportionately affect linear operations, and how
to jointly reconstruct the error to improve accuracy using a full low-precision computing path.

3.2 IMPLEMENTATION

Static Activation Flattening. Activation quantization is notoriously fragile due to channel-wise
outliers. Existing methods often rely on online outlier-handling techniques (e.g., rotation transforms
or auxiliary layers), which are effective but introduce additional latency. Instead, since our method
provides a residual path for error reconstruction at the linear layer, we avoid the online flattening
process and revisit SmoothQuant (Xiao et al. (2024)), which flattens activation distributions using
static per-channel scaling. Specifically, activations are scaled by a factor s, and the corresponding
scale is folded into the weights. The operation in a linear layer can therefore be expressed as:

Y = XW = (X · diag(s−1))(diag(s) ·W ) = X̃W̃ (4)

The scaling factors are obtained during calibration and merged into adjacent layers offline, incur-
ring no runtime overhead. While this strategy alleviates outliers, it shifts the quantization burden
onto the weights, increasing the difficulty of weight quantization. However, unlike standalone prior
approaches, the combined use of low-rank reconstruction enables effective compensation for the
induced weight errors. Concretely, SERQ identifies salient weights after the flattening step and
restores the residuals using a single low-rank matrix.

Saliency-Aware Error Reconstruction. The per-channel static flattening process pushes the scale
of activation outliers into the corresponding weight rows. Assuming that the original weights fol-
low a normal distribution, the salient rows in the folded weights can be identified directly by their
scales. These rows subsequently accumulate significant errors when repeatedly multiplied with the
activation matrix. To mitigate this, we introduce a low-rank compensator matrix R ∈ Rr×d that
corrects the quantization errors in the r salient weight rows, denoted W̃s. Considering the weight
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rows permuted in descending order of saliency (P ), the folded matrix Ŵ and the saliency-aware
low-rank matrix R can be defined as:

Ŵ = P · diag(s) ·W = P · W̃ = [W̃s; W̃r], R = W̃s −Q(W̃s) (5)

Here, Wr denotes the remaining weight rows. As shown, the residual errors of the salient rows are
captured by the low-rank matrix to be used for reconstruction during matrix multiplication via an
additional path. Then the overall linear operation can be described as:

Y = (X · diag(s) · P−1)(P · diag(s) ·W ) = X̂Ŵ (6)

Q(X̂) ·Q(Ŵ ) = Q([X̃s X̃r]) ·Q([W̃s; W̃r]) + Q(X̃s) ·R

≈ X̂q · Ŵq + X̃s,q ·Q(R)
(7)

Importantly, we quantize the low-rank matrix as well, enabling pure low-precision computation
across the entire path. Unlike SVD, directly extracting salient rows requires only a single matrix
multiplication in the residual path, thereby eliminating intermediate quantization. Furthermore, only
the activation channels corresponding to the salient rows (X̃s ∈ Rs len×r) participate in the residual
operation, enabling a computation-efficient low-rank multiplication of Rs×r × Rr×d. The overall
SERQ process, including both calibration and inference, is illustrated in Figure 1(a).

Offline Weight Permutation. We have aforementioned that the weights and activations must be
properly reordered based on their saliency (e.g. X̂ = [X̃s X̃r], Ŵ = [W̃s; W̃r]). To address this,
we propose a mergeable weight permutation scheme that eliminates latency overhead during infer-
ence. Both the rows and columns of the weight matrix are permuted offline according to the saliency
order, enabling matrix multiplication to be executed directly on the appropriately reordered weights
and activations. Figure 2(b) illustrates the computation flow of a single decoder layer, highlighting
the offline permutation step. Based on saliency levels determined during calibration, row-wise per-
mutations are prearranged for all weight parameters. The corresponding activations must follow the
same channel order, which can be achieved by applying column-wise permutations to the preceding
layer’s weight matrix. For example, the permutation order P4 of the down-projection layer can be
propagated to the weight columns of the preceding up- and gate-projection layers, ensuring that the
activation outputs are produced in the desired order. Consequently, the resulting activations natu-
rally align with P4, allowing the down-projection to operate without additional reordering. In this
way, all linear layers avoid on-the-fly reordering, and inference proceeds without latency overhead.

4 EXPERIMENTS

4.1 SETTINGS

Models and Tasks. We conduct experiments on LLaMA-2 (7B and 13B; Touvron et al. (2023)),
LLaMA-3 (3.1 8B and 3.2 1B/3B; Grattafiori et al. (2024)), and Qwen-2.5 3B (Qwen et al. (2025))
models. Our evaluation covers eight zero-shot commonsense reasoning tasks—PIQA (Bisk et al.
(2019)), SIQA (Sap et al. (2019)), ARC-Easy/Challenge (Clark et al. (2018)), HellaSwag (Zellers
et al. (2019)), Winogrande (Sakaguchi et al. (2021)), BoolQ (Clark et al. (2019)), and OpenBookQA
(Mihaylov et al. (2018))—and also provides perplexity scores on the WikiText2 test set (Merity et al.
(2016)) as well as the MMLU benchmark (Hendrycks et al. (2021)). We further report results on
generation tasks using the GSM8K (Cobbe et al. (2021)) and LongBench (Bai et al. (2024)) datasets.

Implementation Details. The calibration set is constructed from 128 random samples of the
WikiText-2 dataset (Merity et al. (2016)) to identify salient rows. SERQ uses a rank size of 128,
which is equivalent in effective bit width to using two low-rank matrices of rank 64. For quantization,
the group size is set to 128, and weights are quantized using either GPTQ (Frantar et al. (2023)) or
round-to-nearest (RTN) symmetric integer quantization, while activations are quantized with RTN
asymmetric integer quantization. For the W4A4 configuration, we also provide the standard 4-bit
Microscaling (MX) format, MXFP4, alongside the integer format, to demonstrate its implementation
and measured speed on an NVIDIA RTX PRO 6000 GPU with Blackwell architecture support for
MX format kernels (Rouhani et al. (2023)) (See Appendix A.2).
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Table 1: Comparison with matrix decomposition methods. We compare perplexity scores, average
zero-shot common sense reasoning accuracy, and average MMLU accuracy. Results under different
precision settings are obtained by modifying their publicly released codebase (See Appendix A.5).

LLaMA-2 7B LLaMA-2 13B LLaMA-3 8B

#Bits Method #Eff. (w) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 5.47 64.09 41.83 4.88 66.53 52.04 6.13 67.16 62.13

W4A8

LLM.int4() -† 7.28 59.64 29.01 5.35 65.01 47.12 10.82 60.86 46.72
L2QER 4.35 5.83 63.35 39.4 5.08 66.39 50.98 7.16 65.68 57.81
SERQ (RTN) 4.24 5.64 63.41 40.21 5 65.86 50.9 6.71 66.4 58.49
SERQ (GPTQ) 4.24 5.59 63.04 40.29 4.98 65.66 49.46 6.52 66.23 60.25

W4A4

LLM.int4() -† 6.32e+2 34.85 24.41 2.21e+3 34.74 23.04 4.87e+2 36.12 23.61
L2QER 4.24 7.37 57.67 29.63 6.27 61.15 40.7 11.44 55.44 38.33
L2QER-MXFP4 4.37 6.3 60.95 35.22 5.46 64.12 47.27 7.83 63.33 53.82
SERQ (RTN) 4.24 6.03 61.77 38.03 5.24 65.14 49.22 8.07 62.49 51.84
SERQ (GPTQ) 4.24 5.97 61.87 37.03 5.2 64.82 47.17 7.75 62.41 53.8
SERQ-MXFP4 4.37 6.22 61.26 35.25 5.39 64.35 47.19 7.63 62.71 53.48

LLaMA-3.2 1B LLaMA-3.2 3B Qwen-2.5-3B

#Bits Method #Eff. (w) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 9.75 54.82 36.76 7.81 62.66 54.06 8.03 63.82 65.12

W4A8

LLM.int4() -† 32.39 44.56 24.01 12.47 56.06 41.48 9.98e+5 35.59 25.52
L2QER 4.35 12.06 50.97 31.23 8.78 60.36 51.24 12.25 54.71 26
SERQ (RTN) 4.24 11.14 52.76 32.77 8.38 61.27 51.45 8.67 63.78 62.79
SERQ (GPTQ) 4.24 10.45 53.93 27.1 8.18 61.54 50.24 8.36 63.7 63.25

W4A4

LLM.int4() -† 1.7e+3 35.19 24.11 4.37e+2 35.77 23.5 8.51e+5 36.67 22.97
L2QER 4.24 30.83 42.17 25.67 14.11 50.92 32.25 221.5 38.37 23.81
L2QER-MXFP4 4.37 13.78 50.22 27.1 9.59 58.41 46.85 10.46 60.56 55.87
SERQ (RTN) 4.24 13.57 50.15 29.11 9.43 58.4 46.36 9.66 61.24 59.52
SERQ (GPTQ) 4.24 12.52 50.44 26.34 9.15 58.5 45.7 9.35 60.78 59.55
SERQ-MXFP4 4.37 13.71 49.94 27.23 8.74 57.5 41.33 9.79 60.43 56.13

Compared Methods. We primarily compare our method against the state-of-the-art error recon-
struction approach L2QER under both W4A4 and W4A8 configurations. As a baseline for ma-
trix decomposition with low-rank error reconstruction, we include LLM.int4(), the 4-bit vari-
ant of LLM.int8() (Dettmers et al. (2022)). We further compare against state-of-the-art W4A4
quantization methods that employ distribution-flattening techniques, including the rotation-based
approaches Quarot Ashkboos et al. (2024) and SpinQuant Liu et al. (2025).

4.2 EVALUATION RESULTS

Comparison with Low-Rank Matrix Decomposition Methods. We evaluate the W4A8 and
W4A4 precision configurations to demonstrate the effectiveness of SERQ in low-rank error recon-
struction. Both L2QER and SERQ are compared under the same group size, with low-rank ma-
trix dimensions matched to ensure the same parameter counts. The difference in effective weight
bit-width under W4A8 arises because L2QER employs 8-bit precision for its low-rank matrices,
whereas SERQ preserves 4-bit precision. As shown in Table 1, SERQ consistently outperforms
LLM.int4() and L2QER across most tasks, while achieving the lowest effective bit-width. No-
tably, SERQ is compatible with both RTN and GPTQ for weight quantization. Details of applying
GPTQ robustly to SERQ are provided in Appendix A.3.

The accuracy gap is more pronounced under the W4A4 setting. While prior INT4 quantization
methods suffer from severe degradation in most cases, SERQ maintains high accuracy across all
tasks. L2QER performs especially poorly on LLaMA-3 models, failing to preserve accuracy when
both activations and low-rank matrices are quantized to 4-bit. We further provide MXFP4 imple-
mentations with the default group size of 32. Although MXFP4 proves adequate for both methods,
the sequential reconstruction path in L2QER, which requires two low-rank matrices, introduces sig-
nificant latency overhead, which is examined in detail in the GPU performance analysis.

Comparison with W4A4 Distribution Flattening Methods. Rotation-based methods are recog-
nized as state-of-the-art W4A4 quantization approaches, achieving the lowest effective bit-width
with minimal additional parameters. We therefore compare two representative rotation meth-
ods, Quarot and SpinQuant, along with SmoothQuant’s distribution-flattening baseline (Xiao et al.
(2024)). The reported accuracies for rotation methods are obtained without key-value quantiza-
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Table 2: Comparison with W4A4 distribution flattening methods. Latency overhead is measured as
the additional computation time per linear layer relative to 4-bit GEMM (See Appendix A.5).

LLaMA-2 7B LLaMA-2 13B
#Bits Method #Eff.

(w-bits)
Training-

free
Latency
overhead PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 16 ✓ 81.4% 5.47 64.09 41.83 4.88 66.53 52.04

W4A4

SmoothQ ∼4 ✓ ✗ 1.51e+4 35.44 26.04 1.32e+4 34.53 23.85
SmoothQ(g128) 4.13 ✓ ✗ 7.49 57.15 30.4 6.31 61.28 39.83
QuaRot ∼4 ✓ 19.8% 6.15 59.53 33.58 5.41 62.55 47.25
SpinQuant ✗ 19.8% 6.0 61 34.8 5.2 64.8 47.8
SERQ-MXFP4 4.37 ✓ 18.7% 6.22 61.26 35.25 5.39 64.35 47.19

LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B

#Bits Method PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑) PPL(↓) 0-shot(↑) MMLU(↑)

FP16 baseline 6.13 67.16 62.13 9.75 54.82 36.76 7.81 62.66 54.06

W4A4

SmoothQ 4.71e+5 36.34 25.17 1.53e+5 35.59 24.37 3.73e+4 35.72 23.41
SmoothQ(g128) 17.26 48.97 29.3 69.22 40.04 24.43 53.33 44.17 27.31
QuaRot 8.41 59.12 47.29 13.17 50.03 26.64 9.73 55.76 44.75
SpinQuant 8.26 61.75 49.93 13.47 48.95 26.38 10.15 56.88 42.42
SERQ-MXFP4 7.63 62.71 53.48 13.71 49.94 27.23 8.74 57.5 41.33
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Figure 3: GPU performance comparison. Latency overhead introduced by the residual path is re-
ported. SERQ is particularly effective for larger row-sized matrices (See Appendix A.4).

tion for fair comparison, using GPTQ without grouping for compatibility with low-precision GPU
kernels. Consistently, although SERQ combined with GPTQ yields the best accuracy in our ex-
periments, we primarily report results for its MXFP4 variant to ensure fair comparison under GPU
kernels optimized for speed. As shown in Table 2, SpinQuant generally outperforms Quarot due to
its learned rotation matrices, but this advantage diminishes on compact Llama-3.2 models, where
both methods suffer from significant degradation. In contrast, SERQ achieves consistently higher
accuracy, with the improvements most pronounced on Llama-3 models. Although SERQ incurs a
slightly higher effective bit-width due to the inclusion of low-rank matrices and scaling factors in
MX formatting, its per-layer latency overhead is lower than that of rotation-based methods.

GPU Performance Comparison. To examine inference performance with the proposed method,
we measure execution time using low precision GEMM kernels implemented in the NVIDIA CUT-
LASS library (cut (2025)). Since the fifth generation Blackwell Tensor Core architecture does not
support INT4 GEMM kernels, while being substantially faster than the previous Ampere generation,
we evaluate rotation-based methods in the FP4 format on the same latest core. Mixed precision com-
putation for L2QER with W4A8 is measured with the MXFP mixed-precision kernel, while the Fast
Hadamard transform for online rotation is executed using an FP32 kernel (Ashkboos et al. (2024)).

We benchmark the latency of linear operations across different dimension sizes in the LLaMA-3
8B decoder layer, and also report the overall speedup relative to an FP16 GEMM baseline. As
shown in the left panel of Figure 3, SERQ outperforms both A4W4 and A4W8 settings of L2QER,
while maintaining competitive perplexity. Compared directly with L2QER under A4W4, our single
matrix error reconstruction path reduces latency overhead by up to 4.5× compared to the LoRA path,
which requires two sequential low rank multiplications, thereby delivering the highest speedup. The
right panel of Figure 3 compares performance against rotation-based methods. Since key-value
quantization is excluded, the only online rotation occurs between the up or gate projection layer and
the down projection layer. However, due to the unbalanced matrix dimensions, rotation introduces a
significant overhead, about 1.6× greater than SERQ, which increases the latency of a single decoder
layer. As a result, SERQ achieves the best perplexity score while delivering comparable speedups
to rotation-based methods, with only about one percent additional latency overhead.
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Table 3: Effect of rank size on perplexity.

#Rank LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B
0 9.8 15.09 10.21

16 8.28 14.32 9.71

32 8.24 14.09 9.59

64 8.18 13.97 9.57

128 8.07 13.57 9.43

256 7.98 13.25 9.32

Table 4: Effect of calibration data on perplexity.
Datasets #Sample LLaMA-3 8B LLaMA-3.2 1B LLaMA-3.2 3B

512 8.07 13.57 9.43

Wiki 128 7.98 13.6 9.43

32 8.08 13.51 9.45

512 7.91 13.63 9.47

Pile 128 7.96 13.54 9.44

32 8.18 13.44 9.52

Table 5: Generation task evaluation. SERQ is evaluated on GSM8K and LongBench datasets.
GSM8K 5-shot(↑) LongBench(↑)

Model #Bits Method flexible extract strict match qmsum samsum repobench-p
FP16 baseline 48.07 47.69 23.43 46.26 66.56

LLaMA-3 8B
W4A8

LLM.int4() 7.88 4.62 13.29 34.2 44.93
L2QER 36.24 35.33 7.28 25.81 47.03
SERQ 42.61 42.38 22.97 44.27 63.34

W4A4 L2QER 7.96 7.66 0.09 1.98 5.65
SERQ 23.65 23.12 19.08 40.85 54.78

FP16 baseline 26.08 25.93 23.94 42.98 64.42

LLaMA-3.2 3B
W4A8

LLM.int4() 6.76 6.44 15.83 36.42 35.24
L2QER 18.95 18.42 21.53 40.63 60.18
SERQ 21.68 21.23 22.25 42.47 60.78

W4A4 L2QER 3.56 2.73 14.92 33.87 41.99
SERQ 16.22 15.77 19.31 42.14 53.67

4.3 ABLATION STUDIES

Sensitivity on the Rank Size. SERQ constructs a low rank matrix of size r. While we fix the
rank size to align with prior methods, we also analyze its impact separately. We evaluate three
models, LLaMA-3 8B and LLaMA-3.2 1B and 3B, by varying the rank size, which corresponds to
the number of salient rows. As shown in Table 3, perplexity decreases monotonically with larger
ranks, indicating improved accuracy. However, the improvement quickly saturates, and even the
smallest setting of r = 16 (equivalent to rank 8 in LoRA) yields competitive results.

Sensitivity on Calibration Samples. Table 4 reports perplexity scores obtained with varying
calibration dataset sizes, which are used to determine saliency. We further evaluate our scheme
on the Pile dataset Gao et al. (2020) to assess sensitivity to both sample size and dataset choice.
The results indicate that SERQ is robust to the calibration dataset size and dataset characteristics,
achieving similar perplexity scores across all settings.

Evaluation on Generation Tasks. While prior work on linear layer quantization primarily focuses
on prefill-sensitive tasks (See section 4.1), we additionally evaluate generation tasks to demonstrate
accuracy in generation. We conduct experiments on GSM8K (Cobbe et al. (2021)) and LongBench
(Bai et al. (2024)) under W4A8 and W4A4 settings using LLaMA-3 8B and LLaMA-3.1 3B models.
Compared with other matrix decomposition methods, SERQ achieves superior performance with
only minor accuracy degradation in the W4A8 setting. Although the W4A4 setting leads to a notable
accuracy drop overall, SERQ maintains reliable results where other methods fail.

5 CONCLUSION

In this work, we introduced SERQ, a saliency-aware error reconstruction method that enables end-
to-end 4-bit quantization of both weights and activations using a single low rank matrix. By com-
bining static activation flattening with mergeable weight permutation, SERQ identifies salient rows
in the weight matrix without incurring additional latency overhead and reconstructs them through
an auxiliary low rank branch. SERQ consistently outperforms prior matrix decomposition and dis-
tribution flattening methods, including state-of-the-art LoRA-based and rotation-based approaches,
in terms of accuracy. Our implementation with the MXFP4 data format on NVIDIA Blackwell
architecture further demonstrates that the auxiliary branch introduces minimal latency overhead,
achieving significant speedups while preserving accuracy in low precision computation.
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A APPENDIX

A.1 EXPERIMENTS ON LOW-RANK SALIENCY

In this analysis, we vary the number of weight rows included in SVD, selected by saliency in de-
scending order of activation channel scales, to examine the trade-off between loss from rank reduc-
tion and the coverage of error reconstruction. To isolate the quantization effects of the weight matrix,
we apply W4A16 quantization with a group size of 128 and fix the SVD rank size to 64. Figure 4
shows that decomposing only salient weights is more effective for reducing quantization error, as the
perplexity score decreases slightly on the leftmost side when using row size 64. This result indicates
that restricting reconstruction to salient rows not only avoids accuracy degradation but also yields
consistent improvement across all tested LLaMA models. We observe about 1 to 4 percent improve-
ments compared to using the same limited rank to cover the full weight matrix. Expanding beyond
the salient subset offers little or even negative benefit, since the additional low rank factorization loss
outweighs the marginal coverage. These findings motivate a single-layer reconstruction, rather than
two low-rank factors, and support a saliency-aware error reconstruction strategy that keeps both the
main and auxiliary paths in pure 4-bit, achieving efficiency without sacrificing accuracy.

Figure 4: The trade-off between loss from rank reduction and the coverage of error reconstruction.
The figure shows that higher accuracy is achieved by reconstructing errors for salient rows with
smaller ranks, rather than covering a larger portion of the weight matrix.

A.2 MICROSCALING (MX) FORMAT

The Microscaling (MX) format Rouhani et al. (2023) is a block-scaled, low-precision representa-
tion that associates each small block with a single scale and quantized elements, thereby retaining
dynamic range while enabling efficient 4–8 bit computation. Concretely, data are partitioned into
blocks; each block stores one scale, estimated from its maximum value, and the elements within the
block are stored in low-bit precision—either in floating-point formats (MXFP8, MXFP6, MXFP4)
or in integer format (MXINT8). Note that INT4 is not included among MX variants. All elements
are defined relative to the block’s shared scale, which is fixed at 8-bit precision.

In contrast, naive single-scale low-bit formats often degrade sharply on LLMs: a few outliers in-
flate the global scale, wasting quantization levels and clipping inlier values. By adopting a block-
level granularity (typically set to 32), MX preserves usable dynamic range and maintains effective
quantization. As a result, MX-based models achieve low-precision inference with minimal accu-
racy loss, reduced memory and bandwidth, and hardware-friendly execution, since computations
reduce to standard low-bit arithmetic plus lightweight per-block scaling. Owing to its effectiveness
for low-precision quantization in deep learning, NVIDIA’s Blackwell architecture, equipped with
fifth-generation Tensor Cores, provides CUTLASS kernels supporting MX data formats for LLM
workloads.
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A.3 GPTQ IMPLEMENTATION

Recently GPTQ has shown strong performance in weight-only quantization. It performs a
lightweight, Hessian-guided optimization: quantizing weights along principal curvature directions
and allowing the remaining (unquantized) weights to compensate the induced error. However,
this procedure is not independent of error-reconstruction pipelines. As GPTQ updates proceed,
the compensation steps shift the weight distribution, so the naı̈ve error-reconstruction modeling
E = W − Q(W ) = UΣV T —i.e., using a fixed pre-quantized weight and a post-quantized
weight—no longer yields a clean comparison, making the simple SVD-based approximation less
well-aligned and less effective. before quantization to apply GPTQ effectively in the weight matrix.
Specifically, we substitute the low rank matrix R into the salient weight rows W̃s prior to the itera-
tive GPTQ process, where R = Q(W̃s) and the salient rows are assigned the error W̃s −Q(W̃s).
This substitution diverts activation-driven outlier effects away from the main weights and stabilizes
the weight distribution. Afterward, GPTQ on the main path yields higher error reconstruction ef-
ficiency and simplifies implementation by avoiding dequantization and requantization cycles when
building the error reconstruction term. In this way, GPTQ targets a better conditioned main weight,
while the low rank path captures the salient components.

A.4 GPU PERFORMANCE ANALYSIS DETAILS

This section reports the absolute latency obtained with NVIDIA Blackwell CUTLASS kernels when
operating on linear layers of different sizes used in LLM models. We also provide the inference
overhead introduced by low rank factors, where SERQ includes an additional multiplication path
using R, and L2QER includes the factors L1 and L2.

Table 6: GPU latency results in linear layers.

Inference overhead (MXFP4)
Sequence Length Weight Size FP16(µs) MXFP4(µs) R(µs) L1(µs) L2(µs) L1L2(µs)

2048

2048 × 2048 71.402 27.457 10.501 16.606 12.009 28.615

2048 × 8192 207.482 72.7 20.934 16.606 24.86 41.466

8192 × 2048 212.87 88.738 10.501 43.235 12.009 55.244

4096 × 4096 211.894 70.255 14.637 26.833 14.66 41.493

4096 × 11008 519.322 181.359 27.0112 26.833 31.034 57.867

11008 × 4096 512.25 175.964 14.637 55.51 14.66 70.171

4096 × 14336 643.27 235.397 38.342 26.833 40.638 67.472

14336 × 4096 655.757 226.379 14.637 69.887 14.659 84.547

8192 × 8192 755.494 260.054 20.934 43.235 24.86 68.095

8192 × 28672 2604.973 946.403 174.537 43.235 174.857 218.09

28672 × 8192 2444.912 946.787 20.934 132.005 24.86 156.865

4096

2048 × 2048 122.298 37.664 14.4035 16.669 14.662 31.331

2048 × 8192 403.859 142.159 56.211 16.669 55.991 72.66

8192 × 2048 394.138 132.903 14.4035 43.292 14.662 57.954

4096 × 4096 382.79 136.076 20.936 26.805 25.155 51.96

4096 × 11008 1009.898 355.986 129.704 26.8045 129.876 156.681

11008 × 4096 986.624 345.739 20.938 55.947 25.155 81.1

4096 × 14336 1262.093 477.976 175.101 26.8045 175.268 202.073

14336 × 4096 986.97 445.022 20.938 70.016 25.155 95.171

8192 × 8192 1560.854 506.364 56.211 43.292 55.991 99.283

8192 × 28672 4868.259 1911.05 355.274 43.292 355.969 399.261

28672 × 8192 4849.363 1853.27 56.211 132.019 55.991 188.01
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A.5 OVERALL LLM ACCURACY RESULTS

We report overall accuracy results on the evaluated benchmarks, which are not captured in Tables 1
and 2 since they only present average values. Tables 7 and 8 provide detailed accuracy results for
low-rank matrix decomposition methods under the W4A8 and W4A4 settings, respectively. Table 9
reports detailed results for different distribution flattening methods.

Table 7: Accuracy results of low-rank matrix decomposition methods when tested with W4A8 set-
tings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

LLM.int4() 7.28 69.3 76.39 43.76 68.48 43.43 71.19 64.96 39.6 59.64 26.23 27.9 33.54 29.84 29.01
L2QER 5.83 75.99 78.51 44.98 74.75 44.03 75.14 68.98 44.4 63.35 37.39 43.13 43.48 34.76 39.4
SERQ (RTN) 5.64 76.85 78.4 44.93 73.7 45.31 75.12 68.75 44.2 63.41 37.39 45.93 45.47 33.65 40.21
SERQ (GPTQ) 5.59 77 78.78 44.83 73.15 44.2 75.05 68.27 43 63.04 37.9 45.22 44.85 34.54 40.29

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

LLM.int4() 5.35 79.91 79.38 46.52 75.34 49.15 77.46 69.69 42.6 65.01 44.31 53.07 54.76 38 47.12
L2QER 5.08 81.41 79.87 46.37 76.85 50.17 78.52 72.3 45.6 66.39 46.63 58.71 59.02 42.02 50.98
SERQ (RTN) 5 80.18 80.36 46.47 76.3 48.38 78.7 71.67 44.8 65.86 47.08 57.64 58.99 42.09 50.9
SERQ (GPTQ) 4.98 79.54 79.38 46.26 76.18 47.27 78.83 72.45 45.4 65.66 45.59 55.52 58.01 40.91 49.46

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

LLM.int4() 10.82 75.23 74.97 44.22 67.38 42.24 72.63 70.01 40.2 60.86 42.34 53.91 52.65 40.41 46.72
L2QER 7.16 80.67 79.54 45.29 75.34 51.28 77.01 72.53 43.8 65.68 52.01 66.4 67.66 48.37 57.81
SERQ (RTN) 6.71 81.41 80.2 45.7 77.44 50.77 77.61 73.64 44.4 66.4 51.9 67.94 69.16 48.59 58.49
SERQ (GPTQ) 6.52 80.8 80.9 46.21 76.52 51.02 78.25 72.53 43.6 66.23 53.07 69.46 70.62 51.76 60.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

LLM.int4() 32.39 51.07 63.82 38.74 42.09 28.24 46.89 55.25 30.4 44.56 25.1 24.24 23.17 22.96 24.01
L2QER 12.06 60.67 70.73 41.45 53.45 32.68 59.04 56.91 32.8 50.97 28.59 35.92 33.99 27.85 31.23
SERQ (RTN) 11.14 62.75 72.85 42.07 56.69 34.39 60.74 56.35 36.2 52.76 32.56 36.53 33.44 28.7 32.77
SERQ (GPTQ) 10.45 63.24 72.47 42.02 58.92 36.95 61.7 58.96 37.2 53.93 27.72 29 27.72 23.69 27.1

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

LLM.int4() 12.47 67.55 73.99 42.94 62.58 37.46 66.57 61.8 35.6 56.06 37.26 46.6 47.71 36.63 41.48
L2QER 8.78 71.8 76.61 45.8 66.29 41.47 71.13 67.8 42 60.36 46.93 58.32 59.67 42.47 51.24
SERQ (RTN) 8.38 71.22 76.55 46.16 69.19 44.28 72.31 69.85 40.6 61.27 46.91 59.86 59.02 42.53 51.45
SERQ (GPTQ) 8.18 71.19 76.44 46.83 68.9 45.39 72.4 69.14 42 61.54 46.76 58.93 56.65 40.63 50.24

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

Qwen-2.5 3B

baseline 8.03 77.58 78.73 50.1 73.11 47.1 73.62 68.51 41.8 63.82 56.77 71.07 76.15 60.96 65.12

LLM.int4() 9.98e+5 37.86 51.52 34.19 24.58 26.19 26.51 51.3 32.6 35.59 27.14 24.01 23.79 26.26 25.52
L2QER 12.25 68.1 73.07 42.99 47.22 37.54 66.57 64.01 38.2 54.71 26.82 26.97 25.22 24.58 26
SERQ (RTN) 8.67 76.85 77.75 50.41 76.68 48.38 72.13 65.82 42.2 63.78 55.39 68.46 73.71 57.6 62.79
SERQ (GPTQ) 8.36 77.68 77.86 49.23 75.46 48.63 72.35 66.61 41.8 63.7 55.07 69.46 74.65 58.2 63.25

A.6 LLM USAGE

In this paper, we used a large language model to aid and polish the manuscript to improve the overall
writing quality.
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Table 8: Accuracy results of low-rank matrix decomposition methods when tested with W4A4 set-
tings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

LLM.int4() 6.32e+2 43.3 49.84 34.08 27.44 25.43 26.46 50.28 22 34.85 25.04 23.46 24.6 24.2 24.41
L2QER 7.37 66.73 76.28 43.09 65.95 39.51 70.24 61.56 38 57.67 33.41 39.59 38.48 30.45 29.63
L2QER-MXFP4 6.3 73.33 76.71 44.37 70.71 42.41 72.3 66.93 40.8 60.95 33.41 39.59 38.48 30.45 35.22
SERQ (RTN) 6.03 75.96 77.26 43.96 72.26 44.8 73.71 65.98 40.2 61.77 35.28 42.87 41.7 33.78 38.03
SERQ (GPTQ) 5.97 74.56 78.13 44.22 72.9 43.09 73.88 66.61 41.6 61.87 34.67 41.33 40.92 32.54 37.03
SERQ-MXFP4 6.22 73 77.2 44.17 70.2 43.69 72.59 68.19 41 61.26 32.16 40.01 39.1 31.43 35.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

LLM.int4() 2.21e+3 40.24 49.89 35.11 26.64 26.19 26.08 49.8 24 34.74 24.1 23.04 22.26 22.2 23.04
L2QER 6.27 74.31 76.99 44.42 71.25 44.88 73.71 63.61 40 61.15 38.55 44.06 45.73 35.68 40.7
L2QER-MXFP4 5.46 77.86 78.13 46.47 74.37 47.1 75.8 70.24 43 64.12 43.34 52.98 54.6 40.37 47.27
SERQ (RTN) 5.24 78.35 80.25 46.37 76.39 46.42 78.11 70.64 44.6 65.14 45.89 55.29 56.45 41.14 49.22
SERQ (GPTQ) 5.2 78.29 29.27 46.06 75.63 46.5 78.01 70.01 44.8 64.82 43.83 53.3 55.48 38 47.17
SERQ-MXFP4 5.39 77.86 78.73 45.19 75.59 48.12 76.18 70.09 43 64.35 43.59 52.33 54.6 40.28 47.19

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

LLM.int4() 4.87e+2 50.89 50.22 32.65 27.95 23.29 28.29 48.3 27.4 36.12 25.16 23.56 22.55 22.39 23.61
L2QER 11.44 61.71 72.63 42.02 62.37 39.59 67.29 60.54 37.4 55.44 35.47 42.68 42.7 34.06 38.33
L2QER-MXFP4 7.83 76.12 77.97 44.01 74.66 48.29 74.6 69.38 41.6 63.33 48.57 61.15 62.89 45.58 53.82
SERQ (RTN) 8.07 74.5 76.06 44.37 71.93 46.67 72.98 70.64 42.8 62.49 46.14 60.22 60.32 43.83 51.84
SERQ (GPTQ) 7.75 76.85 77.8 43.55 72.43 44.88 73.6 69.38 40.8 62.41 48.42 61.6 62.2 45.92 53.8
SERQ-MXFP4 7.63 76.15 77.2 44.11 72.69 45.39 75.13 68.43 42.6 62.71 47.72 60.7 63.18 46.84 53.48

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

LLM.int4() 1.7e+3 41.13 51.03 33.73 26.89 22.61 26.92 51.38 27.8 35.19 24.21 24.59 24.47 23.15 24.11
L2QER 30.83 51.19 60.01 36.18 40.95 26.62 43.41 52.57 26.4 42.17 25.02 26.68 25.41 25.88 25.67
L2QER-MXFP4 13.78 61.44 69.26 42.32 53.91 30.03 55.04 56.75 33 50.22 26.67 28.68 26.86 25.15 27.1
SERQ (RTN) 13.57 57.68 69.26 40.28 55.93 32.94 56.63 55.25 33.2 50.15 28.78 30.51 29.64 27.69 29.11
SERQ (GPTQ) 12.52 59.85 70.13 40.58 53.41 32.68 57.84 54.62 34.4 50.44 26.93 27.84 26.13 24.2 26.34
SERQ-MXFP4 13.71 60.03 68.77 40.58 54.08 31.83 55.34 56.67 32.2 49.94 27.55 28.23 27.49 25.5 27.23

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

LLM.int4() 4.37e+2 45.41 52.67 33.93 28.07 22.61 27.94 49.49 26 35.77 25.02 24.27 22.07 21.88 23.5
L2QER 14.11 57.37 69.21 40.53 53.28 34.04 60.73 58.17 34 50.92 30.44 34.63 33.99 30.89 32.25
L2QER-MXFP4 9.59 67.92 74.86 44.78 65.57 41.47 68.37 63.93 40.4 58.41 42.47 54.3 52.68 40.37 46.85
SERQ (RTN) 9.43 67.74 73.72 45.45 66.33 42.32 69.09 64.96 37.6 58.4 43.06 53.91 51.09 39.23 46.36
SERQ (GPTQ) 9.15 67.52 74.48 45.29 64.73 42.06 69.57 66.38 38 58.5 42.27 53.97 50.37 38.09 45.7
SERQ-MXFP4 8.74 68.56 73.83 45.24 61.83 40.02 67.16 64.33 39 57.5 38.68 47.89 45.82 34.44 41.33

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

Qwen-2.5-3B

baseline 8.03 77.58 78.73 50.1 73.11 47.1 73.62 68.51 41.8 63.82 56.77 71.07 76.15 60.96 65.12

LLM.int4() 8.51e+5 51.96 50.49 34.19 24.58 25.09 26.52 49.96 30.6 36.67 24.12 23.66 21.9 21.63 22.97
L2QER 221.5 40.09 56.91 35.06 35.44 25.17 33.78 51.93 28.6 38.37 24.65 24.91 22.56 22.68 23.81
L2QER-MXFP4 10.46 72.51 75.84 47.13 73.4 45.31 67.21 64.25 38.8 60.56 49.8 61.25 64.61 51.09 55.87
SERQ (RTN) 9.66 72.6 75.63 49.03 72.14 44.11 70 64.64 41.8 61.24 52.52 65.88 69.97 53.5 59.52
SERQ (GPTQ) 9.35 74.74 75.73 45.55 72.14 45.31 69.92 63.22 39.6 60.78 52.54 65.92 70.43 53.12 59.55
SERQ-MXFP4 9.79 75.17 74.81 46.88 69.57 44.28 68.85 63.85 40 60.43 49.8 61.92 64.9 51.32 56.13
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Table 9: Accuracy results of distribution flattening methods when tested with W4A4 settings.

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-7B

baseline 5.47 77.74 79.05 46.11 74.49 46.25 76 68.9 44.2 64.09 39.72 47.12 47.45 34.28 41.83

SmoothQ 1.51e+4 44.16 49.95 34.49 25.97 27.82 26.39 47.51 27.2 35.44 25.48 22.98 29.48 26.55 26.04
SmoothQ(g128) 7.49 68.59 74.48 41.45 65.4 39.85 67.99 61.64 37.8 57.15 28.63 31.9 32.92 29.12 30.4
QuaRot 6.15 72.84 77.2 33.06 71.59 43 72.3 64.64 41.6 59.53 32.52 36.85 36.72 28.86 33.58
SpinQuant 6 73.8 76 44.1 43.6 71.3 73.2 65.4 40.4 61 33.9 38.5 37.5 29.5 34.8
SERQ-MXFP4 6.22 73 77.2 44.17 70.2 43.69 72.59 68.19 41 61.26 32.16 40.01 39.1 31.43 35.25

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-2-13B

baseline 4.88 80.61 80.52 47.39 77.53 49.23 79.38 72.38 45.2 66.53 47.89 59.29 61.16 42.21 52.04

SmoothQ 1.32e+4 38.47 49.24 34.7 26.81 27.73 25.72 47.75 25.8 34.53 24.48 26.62 23.4 23.85 23.85
SmoothQ(g128) 6.31 75.23 76.93 43.19 70.5 44.45 72.52 68.43 39 61.28 35.9 44.13 45.76 35.68 39.83
QuaRot 5.41 78.47 78.89 33.32 73.7 46.25 76.29 70.48 43 62.55 43.68 52.85 55.41 39.11 47.25
SpinQuant 5.2 78.2 79.3 46.3 49 76.3 77.1 69.5 42.8 64.8 43.5 53.1 55.4 39.1 47.8
SERQ-MXFP4 5.39 77.86 78.73 45.19 75.59 48.12 76.18 70.09 43 64.35 43.59 52.33 54.6 40.28 47.19

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3-8B

baseline 6.13 81.07 80.74 47.08 77.69 52.99 79.2 73.48 45 67.16 54.81 70.55 73.25 53.89 62.13

SmoothQ 4.71e+5 50.61 51.69 33.78 24.2 26.02 26.65 49.57 28.2 36.34 26.65 24.36 24.21 24.71 25.17
SmoothQ(g128) 17.26 61.83 64.2 39.92 46.59 30.38 55.61 59.59 33.6 48.97 29.33 30.16 29.61 28.1 29.3
QuaRot 8.41 70.49 77.04 32.96 69.57 43.26 72.22 64.64 42.8 59.12 42.76 53.56 53.56 41.74 47.29
SpinQuant 8.26 73.4 75.2 44.4 72 46.9 71.9 67.7 42.4 61.75 45.8 56.5 57.2 42.5 49.93
SERQ-MXFP4 7.63 76.15 77.2 44.11 72.69 45.39 75.13 68.43 42.6 62.71 47.72 60.7 63.18 46.84 53.48

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-1B

baseline 9.75 63.67 74.48 42.84 60.44 36.18 63.73 59.83 37.4 54.82 34.92 41.1 39.78 32.29 36.76

SmoothQ 1.53e+5 39.14 51.8 32.7 26.35 28.16 25.44 50.12 31 35.59 24.59 24.46 24.89 23.44 24.37
SmoothQ(g128) 69.22 51.62 56.09 35.26 36.99 26.11 37.9 49.33 27 40.04 24.65 26.1 23.24 23.63 24.43
QuaRot 13.17 60.21 69.7 39.92 54.17 32.17 55.65 55.25 33.2 50.03 26.55 27.62 25.71 26.74 26.64
SpinQuant 13.47 60.1 68.8 39 50.2 30.6 55.4 55.5 32.2 48.95 26.4 27.7 26 25.5 26.38
SERQ-MXFP4 13.71 60.03 68.77 40.58 54.08 31.83 55.34 56.67 32.2 49.94 27.55 28.23 27.49 25.5 27.23

0-Shot Common Sense Reasoning tasks MMLU

Model Methods PPL
(↓)

BoolQ
(↑)

PIQA
(↑)

SIQA
(↑)

ARC-e
(↑)

ARC-c
(↑)

HellaS.
(↑)

WinoG.
(↑)

OBQA
(↑)

Avg.
(↑)

Human.
(↑)

Other
(↑)

SocialS.
(↑)

STEM
(↑)

Avg.
(↑)

LLaMA-3.2-3B

baseline 7.81 72.97 77.53 46.93 71.59 46.25 73.49 69.53 43 62.66 48.78 63.08 62.59 44.72 54.06

SmoothQ 3.73e+4 40.46 51.52 33.32 25.34 26.11 26.38 51.46 31.2 35.72 23.91 23.53 23.33 22.61 23.41
SmoothQ(g128) 53.33 53.7 62.51 37.41 42.89 27.99 49.04 53.2 26.6 44.17 27.38 27.81 27.62 26.42 27.31
QuaRot 9.73 66.15 73.34 43.45 59.81 37.29 68.12 60.85 37.2 55.76 41.23 51.05 50.76 37.93 44.75
SpinQuant 10.15 68.5 73 43.2 62.8 38.9 67.6 63.1 38 56.88 39.9 47.1 47.7 36.4 42.42
SERQ-MXFP4 8.74 68.56 73.83 45.24 61.83 40.02 67.16 64.33 39 57.5 38.68 47.89 45.82 34.44 41.33
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