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Abstract

Discrepancies in generation quality across demographic groups pose a substantial1

and critical challenge in image generative models. However, the Fréchet Inception2

Distance (FID) score, which is widely used as an image quality evaluation metric3

for generative models, introduces unintended bias when assessing quality across4

sensitive attributes. This undermines the reliability of the evaluation procedure.5

This paper addresses this limitation by introducing the Difference in Quality6

Assessment (DQA) score, a novel approach that quantifies the reliability of existing7

evaluation metrics, e.g. FID. DQA assesses discrepancies in evaluated quality8

across demographic groups under strictly controlled conditions to effectively gauge9

metric reliability. Our findings reveal that traditional quality evaluation metrics can10

yield biased assessments across groups due to inappropriate reference set selection11

and inherent biases in image encoder in FID. Furthermore, we propose DQA-12

Guidance within diffusion model sampling to reduce quality disparities across13

groups. Experimental results demonstrate the utility of the DQA score in identifying14

biased evaluation metrics and present effective strategies to mitigate these biases.15

This work contributes to the development of reliable and fair evaluation metrics for16

generative models and provides actionable methods to address quality disparities17

in image generation across groups.18

1 Introduction19

In recent years, image generative models such as Generative Adversarial Networks (GANs) [21],20

Denoising Diffusion Probabilistic Models (DDPMs) [27], and text-to-image generation [47, 49]21

systems have brought bias concerns to the forefront of generative modeling. While substantial22

research has focused on distributional fairness to ensure balanced sample generation across sensitive23

attributes [13, 54, 37, 42, 30], the fairness in generation quality across demographic groups remains24

an equally critical yet underexplored issue. For example, Fig. 1 demonstrates the existing bias in25

generation quality by producing better quality of image for certain demographic group.26

Furthermore, in the classification task, text-to-image generative models can be used as data augmen-27

tation tools to improve classifier performance [32]. However, if the quality of generated images is28

inconsistent across demographic groups, it can negatively impact classification performance for cer-29

tain groups, exacerbating fairness issues in prediction and introducing biases in decision-making. We30

empirically demonstrate in Appendix B that discrepancies in image generation quality can adversely31

affect real-world applications, e.g. medical imaging [20], particularly in classification performance32

and fairness [35]. We also show that achieving fair quality in generated images can lead to improved33

outcomes, underscoring the necessity of addressing this issue.34

In response, recent studies [44, 41] have highlighted quality discrepancies in generative models35

related to gender-profession biases, relying on the Fréchet Inception Distance (FID) [26] to assess36
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Input: “A photo of a female who works as a nurse” Input: “A photo of a male who works as a nurse”FID: 109.37 FID: 140.29

Figure 1: Using the same prompt template and seed, a generative model may produce varying image
quality across different demographic groups, e.g., generating higher-quality nurse images for females
while producing obscured objects, distorted limbs, or grayscale images for male nurses.

the quality of generated images. However, our analysis reveals that FID is unreliable for evaluating37

fairness in image quality for two reasons.38

First, FID is sensitive to the selection of reference dataset due to distinct group distributions. As39

demonstrated in our synthetic data analysis in Sec. 3 and Fig. 3, the reference should be chosen group-40

specific manner. Choosing combined dataset as reference for FID not only leads to inaccurate quality41

evaluations for each group but also misidentifies the direction of bias, making FID an unreliable42

metric for detecting fairness issues in generative models observed in [44, 41].43

Secondly, even with group-specific evaluation, traditional encoders can remain unreliable due to44

inherent biases in image encoders, which may produce inconsistent representations for images45

of similar quality across demographic groups. For example, as shown in Fig. 2, biased encoders46

such as InceptionV3 [56] and CLIP [46] yield unreliable evaluation results, misassessing certain47

demographic groups as having better image quality. We identify that this inconsistency arises from48

the biased representations produced by the encoder. To validate this issue, we use a t-SNE [59] plot49

of embeddings from a biased encoder, shown in Fig. 4 (b). The plot reveals a clear gender-based50

separation despite similar image quality, highlighting the encoder’s failure to reliably evaluate quality51

discrepancies across demographic groups. Further details are provided in Sec. 3.2.52

In summary, although quality bias exists in generative models, the commonly used evaluation metric,53

FID, and potential alternatives leveraging different backbone networks [29] are not reliable for54

assessing this bias. This raises the following key questions:55

Q1: Which image encoder for evaluation metric can reliably assess quality bias, and56

how can it be quantified?57

Q2: What strategies can effectively mitigate quality bias in generative models?58

To address the first question, we introduce a novel score, the Difference in Quality Assessment59

(DQA), which serves as a reliability score for assessing the reliability of evaluation metrics’ fairness60

across demographic groups. DQA quantifies whether an encoder introduces bias, by measuring61

discrepancies in evaluation results across demographic groups based on strictly controlled test dataset.62

An encoder with a lower DQA value is interpreted as more reliable and suitable for group-specific63

quality assessments to be used as an evaluation metric for image quality. DQA can identify the64

most reliable pre-trained foundational models in quality evaluation in Sec. 4, supporting fairness and65

reliability in future generative model applications for downstream tasks.66

Furthermore, to address the second question, we propose a DQA-based regularization method, DQA-67

Guidance for diffusion models’ sampling stage, which enhances both quality fairness and overall68

generation quality without re-training the diffusion model, as discussed in Sec. 5.69

Overall, unlike prior work that has predominantly focused on distributional fairness, this study is the70

first to systematically address fairness in generation quality by introducing:71

• a reliable diagnostic tool (DQA) to evaluate quality bias across demographic groups, and72

• a practical mitigation strategy (DQA-Guidance) to reduce quality disparities during73

image generation.74
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DINO: 13.00

Inception: 18.0%
CLIP: 10.7%
DINO: 1.6%

Quality Gap
Inception: 213.04
CLIP: 1.50
DINO: 15.04

Inception: 224.97
CLIP: 1.72
DINO: 14.46

Inception: 5.6%
CLIP: 14.5%
DINO: -4.1%

Quality Gap

Poor male-firefighters are measured
as better quality than 
well-generated female.

Poor female-nurse are measured
as better quality than 
well-generated male.

Figure 2: Using the same distance metric (Fréchet Distance, smaller is better), we compare image
quality across varying professions and genders, with each set consisting of 1,000 images. Each image
set is carefully controlled to include both well-generated and poorly-generated images. We evaluate
image quality with three image encoders: InceptionV3 (FID), CLIP, and DINO. A biased encoder
in quality evaluation leads to two forms of unreliable measurement. First, as shown in green box,
InceptionV3 and CLIP exhibit significant measurement gaps across demographic groups for images
of the same quality, whereas DINO shows relatively smaller discrepancies. Second, as shown in red
box, InceptionV3 and CLIP misleadingly assess poor-quality images as having better quality for
certain gender-profession subset, while DINO more accurately reflects true quality assessments.

2 Related Work75

2.1 Generated Image Quality Assessment76

FID is a widely used metric for assessing the quality of generated images by measuring the77

Wasserstein-2 distance [60] between embeddings of synthetic and real images extracted by the78

InceptionV3 [56]. This embedding-based distance measurement has thus become standard in gener-79

ative model research [52, 33, 62, 3]. To enhance representational richness and relax distributional80

assumptions, MMD with the CLIP encoder [46] has been proposed [29]. While prior studies81

[5, 14, 28] have highlighted the unreliability of evaluation metrics under finite or imbalanced sample82

conditions, the reliability of these metrics from a fairness perspective remains largely unexplored.83

2.2 Fairness in Generative Models84

Many studies have explored fairness in generative models but have primarily focused on addressing85

distributional bias, aiming to achieve an equal number of generated samples across demographic86

groups from a neutral prompt such as fine-tuning the entire model [13, 54], utilizing a pretrained87

classifier [37, 42], and manipulating intermediate embeddings [30]. Some works concentrated on88

new metric evaluating such biases [12, 51].89

In contrast, beyond distributional bias, Perera and Patel [44] and Naik and Nushi [41] highlighted90

that quality bias in generated images across demographic groups, particularly in associating certain91

careers with specific genders. However, methods for mitigating quality bias have not been presented92

in the literature. We are the first to propose guiding the diffusion model’s sampling stage to ensure93

fairness in image quality.94

3 Bias in Image Quality Assessment for Generative Models95

Recent studies have highlighted concerns about quality bias in generated images [44, 41]. To evaluate96

the quality of generated images and quantify this bias, the Fréchet Inception Distance (FID) [26] is97
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(a) Example of Fair Image Encoder (b) Example of Unfair Image Encoder

Similar shift ⇒ Similar Distance Skewed Shift ⇒	Skewed Distance

Shift Group B

Shift in Group A

Shift Group B

Misleading
Distance
Measure

No-Shift Group A

Figure 3: Illustration of quality bias in evaluation metrics using distance measures such as Maximum
Mean Discrepancy (MMD) and Fréchet Distance (FD). The left figure depicts a fair scenario where
generated data embeddings for both groups exhibit the same distribution shift, while the right figure
shows an unfair scenario, with embeddings for one generated group skewed towards the other. Using
group-specific references (e.g., Agen ↔ Aref ) more accurately captures distribution shifts compared
to an all-reference approach (e.g., Agen ↔ Aref ∪Bref ), which can produce misleading values in
cases of biased image encoders. Thus, group-specific distance measures more accurately evaluate the
quality under the biased representation.

widely used as a metric for assessing the similarity between the distributions of real and generated98

images. FID calculates the statistical distance between embeddings extracted from the InceptionV399

model [56] for both generated images and a reference dataset [7, 19, 50, 45]. However, relying on100

FID for quality evaluation has significant limitations, as discussed below.101

3.1 Selection of Reference Dataset102

Firstly, the measurement method should be group-specific to accurately capture differences across103

demographic groups. To formalize, let D(·, ·) denote a distance measurement such as Maximum104

Mean Discrepancy (MMD) [46] or Fréchet Distance (FD), and let f represent an image encoder.105

Define two demographic groups A and B, with corresponding reference datasets, Aref and Bref,106

and generated datasets, Agen and Bgen. The combined reference and generated datasets are given107

by Iref = Aref ∪ Bref and Igen = Agen ∪ Bgen. In FID, D represents FD while f is typically the108

InceptionV3 model [56]. In the quality bias literature [44, 41], the generation quality of each group is109

calculated by D(f(Agen), f(Iref)) and D(f(Bgen), f(Iref)) for groups A and B, respectively, while110

the bias measurement is given by D(f(Agen), f(Iref))−D(f(Bgen), f(Iref)). Here, the magnitude111

represents the degree of bias, while the sign indicates its direction.112

However, as demonstrated in our synthetic data analysis in Fig. 3, using a unified reference dataset113

can mask or amplify biases, potentially leading to unfair assessments of image quality across114

different groups. In this figure, blue and orange points represent reference embeddings for two115

demographic groups, while green and red points denote generated embeddings for each group. Fig. 3116

(a) depicts a scenario where the embeddings of the generated data are similarly out-of-distribution117

from their respective reference datasets, suggesting a fair assessment. In contrast, Fig. 3 (b) shows a118

scenario where the generated data embeddings for one group are skewed toward the other group’s119

reference data, indicating potential quality bias. According to Fig. 3 (b), the quality evaluation120

results for group B should be worse (higher) than for group A. However, when using the combined121

reference set, as denoted as “All Ref.", the measured distances indicate D(f(Agen), f(Iref)) ≫122

D(f(Bgen), f(Iref)), which is misleading. In contrast, in Fig. 3 (b), using group-specific references123

yields D(f(Agen), f(Aref)) ≪ D(f(Bgen), f(Bref)), providing an accurate evaluation. Thus, the124

quality bias evaluation should be D(f(Agen), f(Aref)) − D(f(Bgen), f(Bref)), in a group-specific125

manner, rather than D(f(Agen), f(Iref))−D(f(Bgen), f(Iref)).126

4



Firefighter Nurse

(a) Example of Unreliable Image Quality Evaluation  

Far

Close

Far

Female

Male Poor-generated Female-Firefighter
embedded too far from the reference

Close

Close Close Close

Close

(b) t-SNE Visualization of Unreliable Image Quality Evaluation

Poor-generated Male-Nurse
embedded too far from the reference

Figure 4: (a) Images in green boxes represent “good" quality generated images, while red boxes
denote “poor" quality images. A biased encoder embeds poor-quality images by associating specific
genders with certain professions, leading to skewed evaluation results as these images are unfairly
placed far from their respective reference groups. (b) The t-SNE visualization using a CLIP [46]
image encoder illustrates this issue. Poor-quality images for certain gender and profession (e.g., red
boxes in (a)) demonstrate a tendency for being embedded within the wrong gender cluster, resulting
in biased evaluation outcomes despite similar quality levels.

3.2 Bias in Image Encoder Used in Evaluation127

Secondly, when discrepancies in group-specific quality evaluations are observed, it remains unclear128

whether these differences stem from actual variations in image quality or from biases inherent in129

the image encoder. A biased encoder can distort embeddings, impacting the interpretation of image130

quality across groups and leading to skewed evaluation results, as observed in Fig. 2. We illustrate this131

issue in Fig. 4 (a), and verify this in Fig. 4 (b) using t-SNE plot. In Fig. 4 (b), although well-generated132

images are correctly located closer to each reference (See Appendix C), a poorly generated image of133

a “male nurse” may be embedded closer to the “female nurse” reference due to encoder bias, rather134

than reflecting its true quality. Conversely, a similarly poor-quality image of a “female nurse” remains135

within the in-distribution region of the “female nurse” reference, indicating inconsistency in quality136

evaluation across demographic groups. This leads to inaccuracies in both quality assessment and137

quality bias evaluation, such that |D(f(Agen), f(Aref))−D(f(Bgen), f(Bref))| ≫ 0, even though138

TrueQuality(Agen) ≈ TrueQuality(Bgen). The t-SNE plot for well-generated images is shown in139

Appendix C, further highlighting the unreliability of the image encoder with respect to image quality.140

Given these limitations, it is crucial to identify evaluation metrics that can reliably distinguish between141

distribution shifts caused by actual quality discrepancies and those stemming from biases in the image142

encoder. By employing group-specific measurement and introducing a reliability score for evaluation143

metrics using a dataset with controlled quality, we gain a clearer understanding of the sources of144

quality bias and can improve the fairness and accuracy of image quality assessments across different145

demographic groups.146

4 Reliability of Evaluation Metric for Generated Image Quality147

In this section, we introduce a novel method to assess the reliability of evaluation metrics for gener-148

ated image quality, focusing primarily on metrics that measure the distributional distance between149

generated and reference datasets. This emphasis arises from concerns that biased image encoders150

might handle poor-quality images inconsistently across sensitive groups, even when distances are151

calculated in a group-specific manner, as discussed in Sec. 3.1 and Sec. 3.2.152
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4.1 Difference in Quality Assessment153

We consider two generated datasets, Agen and Bgen, each containing images of comparable quality154

and equal quantity. In our experiments, we use MMD as a distance metric D(·, ·) instead of FD due155

to its efficiency and freedom from distributional assumptions [29]. Difference in Quality Assessment156

(DQA) aims to identify bias in the evaluation metric D(f(·), f(·)). Recalling the combined reference157

and generated datasets as Iref = Aref ∪Bref and Igen = Agen ∪Bgen, DQA is formulated as:158

DQA =

∣∣D(
f(Agen), f(Aref)

)
−D

(
f(Bgen), f(Bref)

)∣∣
D
(
f(Igen), f(Iref)

) (1)

By employing group-specific distance measurements, Eq. (1) isolates the bias inherent in the encoder159

by comparing the embeddings of generated images with consistent quality across different demo-160

graphic groups. The numerator captures the difference in quality between generated data for groups161

A and B relative to their respective reference sets. A large numerator implies significant quality162

disparity between groups, whereas a small or zero value suggests that the encoder treats both groups163

equally. The denominator captures the global generation quality by measuring the distance between164

the combined reference and generated datasets. A smaller denominator value indicates generated data165

closely matches the reference set, while a larger value signifies deviation. Hence, DQA quantifies the166

relative quality discrepancy between groups compared to the overall distribution shift in generation.167

A low DQA suggests fair treatment of both groups by the encoder, while a high DQA indicates168

significant bias. Therefore, DQA serves as a reliability score for quantifying bias in image encoders.169

4.2 Constructing the Evaluation Dataset for DQA170

To effectively apply the DQA score for finding reliable image encoders in practice, it is essential to171

construct controlled reference and generated datasets. To assess the reliability of image encoders,172

we construct a dataset with six different versions, ranging from well-generated to poorly generated173

sets, capturing realistic scenarios encountered in text-to-image generation of human images using174

Stable Diffusion XL (SDXL) [45]. Following the recommended settings from [40] as our baseline,175

we degrade image quality in various ways by adjusting hyperparameters. The scenarios include the176

baseline, weak guidance, reduced sampling steps in diffusion, increased noise influence on the initial177

image, and the absence of refinement methods. The baseline serves as the reference dataset, while178

the other scenarios represent controlled generated datasets. For each image seed, we prepare datasets179

under all six scenarios. We generate 250 images for each combination of profession, gender, and race,180

resulting in 20,000 images per scenario (10 professions, 2 genders, and 4 races). This ensures that181

each attribute has the same number of reference images, avoiding inaccuracies caused by imbalanced182

attribute distributions [28]. Detailed descriptions of each degradation, along with the professions and183

races used, are provided in Appendix D, and visualizations are presented in Fig. 5 (a).184

4.3 DQA for Multiple Attributes (e.g., Race)185

Let Eq.(1) be denoted as DQA(Agen, Bgen; f) for groups A and B given encoder f . Let G =186

{G1, · · · , Gn} represent the set of n groups. We aggregate pairwise DQA across all combinations to187

provide a comprehensive measure of fairness in image quality assessment across multiple attributes.188

AvgDQA(G) = 1(
n
2

) ∑
1≤i<j≤n

DQA(Gi, Gj ; f), (2)

4.4 Reliability Analysis for Pre-trained Image Encoders189

To assess the reliability of image encoders in evaluating generated image quality fairly across190

demographic groups, we apply the DQA score to various pre-trained models, considering differences191

in architecture, training dataset, and training scheme. In this analysis, we calculate the average DQA192

score across all degradation types.193

We evaluate models including InceptionV3, VGG [55], ResNet-50 (RN50) [24], ViT-B/16 [17], and194

Swin Transformer [39], all trained on the ImageNet-1K (IN-1K) [16] dataset using supervised learning.195

We also compare models trained on IN-1K and IN-21K [48] for ViT-B/16 and Swin Transformer196

architectures to examine the effect of training dataset size. Additionally, we explore different training197
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Baseline (T1) Weak Guidance (T2) Fewer Steps (T3)

Strong Noise (T4) No Refiner (T5) T2+T3+T4 (T6)

(a) Example of Dataset for DQA with Controlled Degradation (b) DQA of Various Models for Controlled Evaluation Dataset

Figure 5: (a) Examples of generated images under controlled degradation scenarios. The figure
illustrates samples from both the well-generated baseline (reference, T1) and the intentionally
degraded cases (T2 - T6), where image quality is systematically reduced by adjusting specific
hyperparameters. This controlled degradation enables effective measurement of the DQA score to
assess the reliability of an image encoder. (b) Across all pre-trained encoders and various degradation
in generated images, DINO-RN50 achieves the lowest DQA in average for both gender and race bias,
indicating it is the most reliable encoder for evaluating the quality of generated images.

schemes by evaluating models trained with self-supervised methods like MoCo-RN50 [25], MSN-ViT198

[1], and DINO [8] and CLIP using both RN50 and ViT-B/16 architectures.199

Impact of Training Scheme on DQA. Our results, summarized in Fig. 5 (b) indicates that self-200

supervised models using the RN50 architecture, particularly DINO-RN50 and MoCo-RN50, achieve201

the lower DQA scores in general compared to supervised models. This suggests that the combination202

of self-supervised learning and the RN50 architecture effectively reduces bias, leading to fairer em-203

beddings across demographic groups. We analyze this as self-supervised models learn representations204

without explicit labels, which helps them avoid inheriting biases tied to label information.205

Impact of Backbone Network on DQA. In contrast, self-supervised models using the ViT archi-206

tecture, such as DINO-ViT and MSN-ViT, exhibit slightly higher DQA scores, implying that RN50207

may be better suited for learning unbiased representations in self-supervised settings. We analyze208

the architectural differences between convolutional neural networks (CNNs) [53] and Transformers209

[61]. RN50, as a CNN, incorporates locality and spatial patterns through its convolutional layers.210

This structure allows CNNs to capture both local and global image features, making them more211

robust to distortions in the image [58]. In contrast, Transformer-based models rely on self-attention212

mechanisms that process images as sequences of tokens, without the same spatial locality constraints213

[58]. The token-based approach enables the model to capture complex global dependencies, but it214

may also make it more sensitive to specific variations in distorted images [22], resulting in larger215

discrepancies between reference and generated datasets.216

Impact of Training Dataset on DQA. We also examine the effect of training dataset size by217

comparing models trained on IN-1K and IN-21K for both ViT-B/16 and Swin Transformer. The218

results show that models trained on the larger dataset, IN-21K, actually exhibit higher DQA scores219

compared to their IN-1K counterparts. This suggests that increasing the dataset size alone does not220

necessarily improve fairness in the encoder’s representations. Similarly, models like CLIP, despite221

being trained on large-scale image-text datasets, show higher DQA scores especially in racial bias,222

indicating that large-scale multimodal training does not necessarily guarantee fairness in embeddings.223

4.5 Validity of DQA224

To validate the effectiveness of DQA for quality assessment, we apply it to data augmentation in a225

medical image classification task. As detailed in Appendix B, datasets generated by text-to-image226

models for medical images can be used for data augmentation but often exacerbate fairness issues due227

to quality bias in the generative model, resulting in significant performance gaps across demographic228

groups in classification. Leveraging a reliable image encoder, we construct both fair and unfair229

generated datasets based on their DQA scores as detailed in Algorithm 1. Fair dataset enhances230

classification fairness when used for augmentation, whereas unfair dataset exacerbates disparities.231

This demonstrates DQA’s ability to identify reliable image encoders and its practical utility in enabling232

7



Table 1: Experimental results for generation quality and quality disparities with DQA-Guidance.

Method Avg.MMD Mean
|Dmale −Dfemale|

Max
|Dmale −Dfemale|

Baseline (Stable Diffusion) 109.93 12.57 17.77
+ DQA-Guidance (λ1 = 20, λ2 = 100) 103.89 6.21 6.94
+ DQA-Guidance (λ1 = 20, λ2 = 1000) 85.72 10.16 11.87

DQA-based data augmentation. These findings underscore the benefit of DQA in generative models233

for classification applications, as further elaborated in Appendix B.234

5 Mitigating Quality Bias in Diffusion Models235

DQA serves not only as a reliability indicator for the evaluation metric but can also act as an236

energy function in generative models to regularize equal image quality across demographic groups.237

Specifically, we employ guided diffusion [66, 38, 18, 2] during sampling in diffusion models rather238

than training a model from scratch. By interpreting DQA as an energy function, its gradient can be239

integrated into the diffusion sampling process following energy-based guidance principles, steering240

the generation process toward desired outcomes without modifying the pre-trained model parameters.241

5.1 DQA-Guidance for Diffusion242

In our context, the DQA score quantifies relative discrepancies in image quality assessments across243

demographic groups. By computing the gradient of DQA with respect to latent variables zt at each244

diffusion timestep, we obtain the latent direction that reduces this discrepancy. Incorporating this245

gradient into noise prediction adjusts the sampling trajectory to favor samples that minimize quality246

differences across groups.247

Assume we identify a reliable image encoder f∗ for evaluating generated image quality. Let g be248

the base generative model that samples from latent variable zAt and zBt for each group. We apply249

DQA-Guidance in diffusion modeling by taking the gradient of DQA with respect to zt = [zAt ; z
B
t ]:250

ϵ̃θ(zt) = ϵθ(zt) + σtλ1∇ztDQA(g(zAt ), g(z
B
t ); f∗), (3)

where ϵθ(zt) is the estimated noise, θ represents the pre-trained weights of the diffusion model,251

σt scales the gradient term according to the noise level at timestep t, and λ1 is a hyperparameter252

controlling the strength of the DQA-Guidance in diffusion process.253

Since reducing DQA (Eq.(1)) could unintentionally increase the denominator (representing the overall254

quality), we introduce a regularizer to ensure that both the numerator and denominator are minimized.255

Specifically, we add the gradient of the denominator of DQA, the overall distributional distance256

between generated and reference datasets D
(
f∗(Igen), f

∗(Iref)
)
, to improve overall quality,257

ϵ̃θ(zt) = ϵθ(zt) + σt∇zt

(
λ1DQA(g(zAt ), g(z

B
t ); f∗) + λ2D

(
f∗(Igen), f

∗(Iref)
))

, (4)

where λ2 is a hyperparameter balancing the influence of the quality regularizer. Consequently, by258

treating DQA as an energy function and integrating the gradients of both DQA and the overall quality259

term into the sampling process, the model is guided to reduce quality disparities across demographic260

groups while preserving high image fidelity.261

5.2 Experimental Details for DQA-Guidance262

To verify the effectiveness of DQA-Guidance in mitigating quality bias, we conduct human image263

generation experiments using Stable Diffusion [49]. We utilize the well-generated (Baseline) dataset264

introduced in Appendix D, which contains images generated by the state-of-the-art SDXL model265

[45], as a reference set to maintain consistent quality and context across demographic groups during266

the diffusion process. DQA-Guidance is applied to Stable Diffusion to mitigate quality disparities267

while enhancing overall image quality. An extension of DQA-Guidance for medical image generation268

with ImageGen [50] is presented in Appendix H.269
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Figure 6: Qualitative results of DQA-Guidance. The examples demonstrate improvements in artifact
reduction, color correction, and texture and background refinement (red circles). These enhancements
illustrate the impact of DQA-Guidance in balancing quality across demographic groups.

5.3 Result Analysis for DQA-Guidance270

Table 1 demonstrates the impact of DQA-Guidance on image generation. DQA-Guidance not only271

reduces quality disparities, but also substantially enhances overall image quality. These findings272

indicate that DQA serves not only as a reliable fairness evaluation metric but also as an effective273

regularizer when applied during the sampling stage of diffusion models. Moreover, increasing values274

of λ2 are intuitively associated with improved generation quality. Qualitative results are presented275

in Fig. 6, highlighting reductions in artifacts and more balanced image quality across groups. The276

effects and sensitivity of the hyperparameters λ1 and λ2 are further discussed in the Appendix E.277

5.4 Potential Limitation278

DQA-Guidance is the first approach to demonstrate that quality bias-aware guidance can effectively279

steer diffusion models toward fairer outputs. As our work represents the first attempt to mitigate280

fairness issues in generative models from a quality perspective, Table 1 lacks comparative methods.281

We will continue seeking appropriate baselines for future evaluation.282

In terms of practicality, DQA-Guidance introduces additional computational cost, requiring an283

auxiliary image encoder and gradient computation, which may increase memory usage. However,284

it opens a promising direction for fairness-aware generation, and future work may explore more285

efficient variants of this strategy.286

Additionally, although our controlled dataset enables systematic evaluation, it may not fully reflect287

human-perceived image quality. Developing human-validated reference datasets, such as those288

based on perceptual surveys, would further enhance the validity of DQA and provide a more robust289

benchmark for auditing image evaluation metrics.290

6 Conclusion and Societal Impact291

This paper addresses the underexplored issue of quality disparities in image generation and introduces292

the Difference in Quality Assessment (DQA) score, a novel metric for evaluating the reliability of293

quality assessment methods. Through extensive analysis, we reveal that commonly used metrics, such294

as FID, can introduce unintended biases, resulting in misinterpretation of quality discrepancies. DQA295

mitigates these issues by identifying reliable image encoders, enabling fairer and more dependable296

quality evaluations. We further extend its utility through DQA-Guidance, which steers diffusion297

models toward reducing quality disparities while preserving image fidelity. Overall, our work offers298

an equitable and reliable generative AI, fostering responsible innovation in technologies that promote299

societal fairness and support decision-making.300
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A Details of Synthetic Data in Figure 3482

To construct the synthetic dataset, we generated non-Gaussian data for groups A and B by combining483

multivariate normal and exponential distributions. Each group has distinct means, covariances, and484

exponential scaling factors to ensure variability and non-Gaussian characteristics in the data. For485

group A, we define the mean as µA and covariance as ΣA. Samples for group A were drawn from486

a multivariate normal distribution, N (µA,ΣA), and combined with exponential noise with a scale487

parameter λA. Similarly, for group B, we define the mean as µB and covariance as ΣB . Samples are488

drawn from N (µB ,ΣB) and combined with exponential noise with a scale parameter λB .489

Aref = N (µA,ΣA) + Exp(λA)

Bref = N (µB ,ΣB) + Exp(λB)

To introduce distribution shift as examples for fair and unfair case, translations are applied to each490

group. Let tA and tB represent the translations for groups A and B respectively. The test data for491

each group is generated as:492

Agen = N (µA,ΣA) + tA + Exp(λA)

Bgen = N (µB ,ΣB) + tB + Exp(λB)

where µA = [µA1, µA2] and ΣA =

[
σ2
A1 0
0 σ2

A2

]
denote the mean and covariance of group A,493

µB = [µB1, µB2] and ΣB =

[
σ2
B1 0
0 σ2

B2

]
denote the mean and covariance of group B, λA and λB494

represent the exponential scaling factors for groups A and B, and tA and tB are translations applied495

to groups A and B, respectively.496

Using this structure, we introduce non-Gaussianity through the combination of multivariate normal497

and exponential distributions with group-specific parameters µA,ΣA, λA, and µB ,ΣB , λB . Test498

(generated) datasets maintain only the mean parameters for each group, but covariance and scaling499

factors are shifted as well as translations to mimic the distribution shift in generative models.500

For the reference set, we choose µA1 = µA2 = 0, σ2
A1 = σ2

A2 = 1, λA = 1, µB1 = µB2 = 15,501

σ2
B1 = σ2

B2 = 8, and λB = 2. For the generated set, we change the covariance as σ2
A1 = σ2

A2 = 3502

and σ2
B1 = σ2

B2 = 12, and shift the scaling λA ← λA + 0.2, and λB ← λB + 0.2. Moreover, we503

apply different scaling and translations for fair and unfair synthetic dataset. Specifically, we choose504

tA = [3, 3] and tB = [−3,−3], to depict a fair scenario, while tA = [1, 1] and tB = [−11,−11] are505

chosen to simulate unfairly skewed distribution for group B.506

B Impact of Quality Bias in Generative Models in Downstream Task and507

Validity of DQA508

B.1 Negative Impact of Quality Bias in Generative Models509

Unfairness in generated image quality across demographic groups poses a critical issue in generative510

modeling. Generative models, especially those trained on uncurated datasets, often produce images of511

systematically lower quality for specific demographic groups, such as those defined by gender, race,512

or age. This quality discrepancy not only undermines visual representation fairness but also risks513

reinforcing biases when these generated images are used for data augmentation in training pipelines,514

potentially transferring such biases into downstream models. Addressing this issue requires robust515

strategies to ensure consistent image quality across all demographic attributes.516

To highlight the practical implications of quality bias, we conduct a classification task with a ResNet-517

50 model [24] using chest X-ray images from the Chest X-ray dataset [63], a dataset known to exhibit518

fairness issues, as evidenced by differing AUC scores across demographic groups [35]. To enhance519

classifier’s performance, a user might employ text-to-medical-image generation models [50] trained520

on the ROCO dataset [43] as a data augmentation strategy. In our initial experiments, we generate521

1,000 images per gender and class for augmentation. The details of Chest X-ray dataset and the522

generation details are introduced in Appendix F.523

However, despite using an equal quantity of generated images for each demographic group, fairness524

issues in the classification model not only persist but, as shown in Table 2, even worsen. This is525
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evidenced by higher values of Avg(∆AUC) and max(∆AUC), calculated as526

Avg(∆AUC) =
1

|C|
∑
c∈C
|AUCmale

c − AUCfemale
c |, max(∆AUC) = max

c∈C
|AUCmale

c − AUCfemale
c |,

where C denotes the set of classes. These results imply that generated images may exacerbate fairness527

issues, likely due to quality discrepancies across demographic groups.528

Table 2: Comparison of classification performance and fairness metrics using different data augmen-
tation strategies on the Chest X-ray dataset. Blue indicates an improvement in fairness, while Red
denotes a deterioration compared to the baseline. All augmented data are generated by a text-to-
medical-image model, with Fair and Unfair subsets selected from the entire generated dataset using
Algorithm 1. Full augmentation worsens fairness, suggesting quality bias issues in the generated
images. Data augmentation with the Fair Subset uses generated data of equal quality across genders,
identified by lower DQA scores, yields lower Avg(∆AUC) and max(∆AUC) values without apply-
ing any fairness-specific technique. This outcome suggests that DQA effectively identifies reliable
evaluation metrics for assessing fairness in generated image quality.

Overall AUC AUCmale AUCfemale Avg(∆AUC) ↓ max(∆AUC) ↓ DQA

Baseline 83.10±0.13 72.78±0.33 71.96±0.35 2.40±0.36 7.08±1.82 -
Full

Augmentation 85.35±0.12 78.12±0.32 77.71±0.33 2.45±0.35 8.13±2.04 -

Fair Subset
(DQA ↓) 85.27±0.12 77.35±0.35 77.24±0.35 2.16±0.36 6.98±2.54 0.0868

Unfair Subset
(DQA ↑) 85.54±0.12 77.95±0.32 77.81±0.33 2.62±0.39 8.93±2.46 0.5495

B.2 Validity of DQA529

To validate the effectiveness of DQA in identifying reliable image encoders for quality assessment,530

we construct both fair and unfair generated datasets in terms of quality as identified by their DQA531

scores. The fair generated dataset is expected to enhance fairness in classification when used for data532

augmentation, while the unfair generated dataset is anticipated to exacerbate fairness issues.533

These datasets are characterized by lower (fair) and higher (unfair) DQA scores, evaluated using534

a reliable image encoder f∗. Specifically, let Agen and Bgen represent two groups of generated535

data, with subsets SA ⊂ Agen and SB ⊂ Bgen, each of size k = 0.2 × |Agen|. We define the536

fair and unfair subsets as (Sfair
A , Sfair

B ) = argminm DQA(S
(m)
A , S

(m)
B ; f∗) and (Sunfair

A , Sunfair
B ) =537

argmaxm DQA(S
(m)
A , S

(m)
B ; f∗), selected from M candidate subsets {(S(m)

A , S
(m)
B )}Mm=1.538

To construct meaningful candidate pairs, we employ influence scores as a probabilistic measure of539

each image’s impact on the DQA score, calculated via influence functions [15]. These scores are540

normalized and used in a multinomial sampling scheme, allowing us to prioritize high-impact images541

in both fair and unfair selection processes. Algorithm 1 in Appendix B.3 details the steps for sampling542

fair and unfair subsets, using influence-based probabilities to guide the selection.543

For the classification task, we train a ResNet-50 model on the Chest X-ray diagnosis dataset, as544

outlined in Sec. B.1. Initial experiments in Sec. B.1 used an augmentation set containing 1000 images545

per gender and class. For DQA-guided augmentation, we add either the fair subset (Sfair
A , Sfair

B ) or546

the unfair subset (Sunfair
A , Sunfair

B ), each consisting of 200 images per gender and class, to assess how547

these augmentations impact model performance and demographic fairness. This setup enables a548

comparative evaluation of overall accuracy and fairness across demographic groups, thereby justifying549

the validity of DQA as an indicator of reliability.550

The experimental results, shown in Table 2, demonstrate the effectiveness of the DQA score: the fair551

subset identified by low DQA improves fairness in classification AUC scores across demographic552

groups, even though DQA is not specifically designed for classification fairness, whereas the unfair553

subset (high DQA) worsens fairness outcomes.554
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B.3 Fair/Unfair Subset Sampling Algorithm with DQA555

Algorithm 1 Finding Fair and Unfair Subsets Using Influence Scores for DQA
1: Input: Generated datasets Agen and Bgen; reference datasets Aref and Bref; reliable encoder f∗;

subset size k; number of samples M ; small constant ϵ
2: Output: Fair/Unfair subsets (Sfair

A , Sfair
B ), (Sunfair

A , Sunfair
B )

3: FA, FB , FAref , FBref ← {f∗(xi) | xi ∈ Agen, Bgen, Aref, Bref}
4: DQAoriginal ← DQA(FA, FB , FAref , FBref)
5: for each xi ∈ Agen and xj ∈ Bgen do
6: F−i

A , F−j
B ← FA \ {f∗(xi)}, FB \ {f∗(xj)}

7: δAi ← DQAoriginal − DQA(F−i
A , FB , FAref , FBref)

8: δBj ← DQAoriginal − DQA(FA, F
−j
B , FAref , FBref)

9: end for
10: Adjust influence scores for sampling:
11: For fair subsets, invert influence scores:
12: pA,fair

i , pB,fair
j ← −δAi −min{−δAi }+ϵ∑

i(−δAi −min{−δAi })+ϵ
,

−δBj −min{−δBj }+ϵ∑
j(−δBj −min{−δBj })+ϵ

13: For unfair subsets, use original influence scores:

14: pA,unfair
i , pB,unfair

j ← δAi −min{δAi }+ϵ∑
i(δ

A
i −min{δAi })+ϵ

,
δBj −min{δBj }+ϵ∑
j(δ

B
j −min{δBj })+ϵ

15: Initialize: best_DQA←∞, worst_DQA← −∞
16: for m = 1 to M do
17: Sample fair/unfair candidate subsets:
18: S

(m,fair)
A , S

(m,fair)
B ← Sample(Agen, k, p

A,fair
i ),Sample(Bgen, k, p

B,fair
j )

19: DQA(m,fair) ← DQA(S
(m,fair)
A , S

(m,fair)
B , FAref , FBref)

20: Compute DQA for fair/unfair candidate:
21: if DQA(m,fair) < best_DQA then
22: best_DQA← DQA(m,fair)

23: (Sfair
A , Sfair

B )← (S
(m,fair)
A , S

(m,fair)
B )

24: end if
25: S

(m,unfair)
A , S

(m,unfair)
B ← Sample(Agen, k, p

A,unfair
i ),Sample(Bgen, k, p

B,unfair
j )

26: DQA(m,unfair) ← DQA(S
(m,unfair)
A , S

(m,unfair)
B , FAref , FBref)

27: if DQA(m,unfair) > worst_DQA then
28: worst_DQA← DQA(m,unfair)

29: (Sunfair
A , Sunfair

B )← (S
(m,unfair)
A , S

(m,unfair)
B )

30: end if
31: end for
32: Return: (Sfair

A , Sfair
B ), (Sunfair

A , Sunfair
B )

C Supplementary for Fig. 4: Illustration for Well-Generated Sample556

Figu. 4 shows how poor-quality images are frequently misembedded into the wrong gender cluster557

due to encoder bias and sensitivity to image degradation. To complement this, Fig. 7 presents the558

case of well-generated images. While the encoder fails to reliably embed poor-quality images in559

Fig. 4, well-generated samples in Fig. 7 demonstrate clearer separation between gender groups and560

are mostly placed correctly within their demographic clusters. This comparison underscores the561

unreliability of the encoder, which performs inconsistently depending on the quality of the input562

images.563

D Constructing Evaluation Dataset for DQA564

We consider realistic scenarios encountered in text-to-image generation for human image datasets565

using Stable Diffusion Inpainting [49]. Our baseline follows the recommended settings from [40],566

where image quality degradation is achieved by adjusting specific hyperparameters. Each modification567
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Firefighter Nurse

(a) Example of Unreliable Image Quality Evaluation  

Far

Close

Far

Female

Male
Well-generated Female-Firefighter
embedded close to the reference

Close

Close Close Close

Close

(b) t-SNE Visualization of Unreliable Image Quality Evaluation

Well-generated Male-Nurse
embedded close to the reference

Figure 7: (a) Images in green boxes represent “good” quality generated images, while red boxes
indicate “poor” quality images. Poor-quality images are prone to misembedding by the encoder, as
shown in Fig. 4. (b) t-SNE visualization of well-generated images using a CLIP [46] image encoder
shows clear separation between gender clusters and correct placement of most samples, highlighting
the encoder’s unreliable behavior under poor-quality conditions.

is grounded in prior literature, ensuring that the degradations reflect practical and interpretable568

variations in generation quality. Specifically, the baseline parameters include a sampling step size of569

T = 40, noise strength sn = 0.7, guidance scale sg = 7.5, and a refinement phase during the last 20570

1. Baseline: Uses sufficient diffusion steps with a balanced influence between the initial571

image and noise. This represents high-quality generation with the standard configuration572

(T, sn, sg, τrefine) = (40, 0.7, 7.5, 0.2).573

2. Weak Guidance: In classifier-free guidance (CFG), a higher guidance scale enforces574

stronger adherence to the text prompt, while lower values weaken this connection. We re-575

duce sg to simulate a scenario where the model struggles to align the image with the576

intended prompt, leading to reduced coherence or incomplete rendering of attributes577

(40, 0.7, 1.0, 0.2).578

3. Fewer Steps: As established in [31], reducing the number of diffusion steps often results579

in poorer visual quality due to incomplete denoising. We halve T to 20 to intentionally580

increase residual noise and visible artifacts, thereby decreasing the model’s capacity to refine581

image details (20, 0.7, 7.5, 0.2).582

4. Strong Noise: For inpainting, increased noise strength sn preserves more of the original583

image, which can hinder the model’s ability to apply the target attribute modifications. By584

increasing sn to 0.9, we introduce more randomness, degrading coherence and making the585

attribute editing task more difficult (40, 0.9, 7.5, 0.2).586

5. No Refiner: According to the SDXL paper, a dedicated refiner network improves vi-587

sual fidelity and detail. Removing the refiner by setting τrefine = 0.0 allows us to di-588

rectly test the quality drop, particularly in terms of fine-grained details and overall realism589

(40, 0.7, 7.5, 0.0).590

6. Combination: We combine the weak guidance, fewer steps, and strong noise conditions to591

create an extremely degraded setting. This tests the model’s robustness under simultaneous592

quality impairments (20, 0.9, 1.0, 0.0).593

We select 10 professions commonly referenced in the literature [40, 23, 12], including flight attendant,594

nurse, secretary, teacher, veterinarian, engineer, pilot, firefighter, surgeon, and builder. Additionally,595
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we include four racial groups identified in [40]: Asian, Black, Indian, and White Caucasian. Example596

datasets illustrating the applied degradations are shown in Figure 8.597
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Figure 8: Examples of constructed evaluation datasets for DQA under various text-to-image genera-
tion scenarios to controlled degradation of generated image. The scenarios include Baseline, Weak
Guidance (T2), Fewer Steps (T3), Strong Noise (T4), No Refiner, and a combination of T2, T3, and
T4. Each setting adjusts specific hyperparameters of Stable Diffusion Inpainting [49] to simulate
realistic degradations in image quality. The datasets represent 10 professions and 4 racial groups,
illustrating the diversity and quality variations used for evaluation while four professions (Nurse,
Pilot, Flight Attendant (FA), and fire fighter (FF)) are presented in the example.
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E Ablation Study: Impact of Hyperparameter598

Fig. 9 demonstrates the clear impact of DQA-Guidance on image generation. Compared to the599

baseline (λ1 = 0), increasing λ1 effectively reduces quality disparities in generated images while600

substantially improving overall image quality, especially λ1 = 20 and λ1 = 30. However, setting λ1601

too high introduces excessive noise, leading to a decline in image quality. These findings suggest602

that DQA not only provides a reliable measure for evaluating fairness but also serves as an effective603

regularizer, enhancing fairness in image generation when applied as guidance in diffusion models.604

Additionally, larger values of λ2 intuitively contribute to improved generation quality, as demonstrated605

in Fig. 9 (b).

Figure 9: Experimental results for generation quality and quality disparities with DQA-Guidance with
Stable DIffusion. The left plot shows the impact of λ1 on generation quality for each demographic
group (lower values indicate better quality) and displays the average and maximum quality gap across
all disease classes (lower values indicate reduced disparity). The right plot illustrates the effect of λ2

on overall generation quality. Here, λ1 = 0 denotes no DQA-Guidance, while higher λ1 values reflect
a stronger influence of DQA-Guidance. DQA-Guidance effectively enhances generation quality and
reduces quality disparities across demographic groups.

606

F Details in Chest X-ray Dataset and Generation607

F.1 Details of the Chest X-ray Dataset608

We use the NIH ChestX-ray14 dataset [63], a large repository containing 112,120 chest X-ray images609

from 30,805 patients, annotated with 14 common thoracic disease categories, including Hernia,610

Pneumonia, Fibrosis, Emphysema, Edema, Cardiomegaly, Pleural Thickening, Consolidation, Mass,611

Pneumothorax, Nodule, Atelectasis, Effusion, and Infiltration. By including ‘No Findings’ as a612

benign case, the dataset expands to 15 classes. It also includes demographic information, with613

approximately 56.5% male and 43.5% female patients.614

F.2 Details of Synthetic Chest X-ray Generation615

To generate synthetic Chest X-ray images, we use a pre-trained ImageGen model [50] trained on616

the ROCO dataset [43], which contains paired image and text data for medical purposes. The617

pretrained model is available on HuggingFace [64] under the model ID Nihirc/Prompt2MedImage.618

We generate 1,000 images per gender and class, resulting in a total of 30,000 images across 2 genders619

and 15 classes. The input prompt format for generation is “Chest X-ray image of a {GENDER}620

patient showing a/an {DISEASE}."621
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(a) Example of Transforms Mimicking Image Generation Failure (b) DQA of Various Models for Distorted Images  

Figure 10: (a) To assess the DQA across varying qualities of generated medical images, we simulate
generative model failures by applying transformations to test images that reflect common failure
patterns in generative models. (b) By incrementally applying these transformations and evaluating the
reliability of various pretrained encoders, we find that a ResNet-50 model pretrained on ImageNet-1K
demonstrates greater reliability in quality assessment, consistently handling poor-quality images
across demographic groups by showing lowest DQA in average. In contrast, the same model trained
on reference data shows higher DQA scores, indicating unreliable image quality assessment.

G DQA analysis for Medical Image622

G.1 Constructing Reference Dataset for Medical Image623

In the medical image, we utilize the Chest X-ray diagnosis dataset in Sec. B.1 as the reference, given624

its consistent image quality across genders, controlled through human annotations. This consistency625

makes it an effective benchmark for quality assessment. Specifically, we designate the training set626

of Chest X-ray images as the reference dataset, while the test set and its transformations are used627

as a mimic of the generated dataset to help identify a reliable image encoder. In more detail, the628

real test data remains in-distribution relative to the training dataset, while we simulate generative629

model failures [6] by applying transformations to the test set, creating poor-quality images as shown630

in Fig. 10 (a).631

G.2 Reliability Analysis for Image Encoders for Medical Image632

For medical images, we assess encoders such as InceptionV3 and RN50 pretrained on IN-1K,633

alongside RN50 models trained directly on the Chest X-ray dataset using supervised learning, self-634

supervised learning (SimCLR) [10], and supervised learning on a single-gender subset. The RN50635

pretrained on IN-1K achieves the lowest DQA score, suggesting that pretraining on a diverse dataset636

helps mitigate biases inherent in domain-specific data. In contrast, models trained directly on medical637

images exhibit higher DQA scores, potentially due to the amplification of existing biases within the638

specialized dataset.639

H DQA-Guidance for Medical Image640

H.1 Experimental Details641

To verify the effectiveness of DQA-Guidance in mitigating quality bias, we utilize a medical dataset642

and a generative model for medical images, consistent with the setup in previous sections. Specifically,643

we apply Eq. (4) to the text-to-medical-image model during the sampling stage, generating 100 images644

per gender and class, resulting in a total of 3000 images (2 genders and 15 classes). For each gender,645

the prompt “Chest X-ray image of a {GENDER} patient showing a {DISEASE_NAME}." is646

used, with the Chest X-ray training data for each gender serving as a reference to compute empirical647

DQA during the sampling stage. In the experiments, we vary λ1 while fixing λ2 = 0 to examine the648

impact of DQA-Guidance on both generation quality and the quality gap between groups.649
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H.2 Result Analysis for DQA-Guidance650

Fig. 11 demonstrates the clear impact of DQA-Guidance on medical image generation. Compared to651

the baseline (λ1 = 0), increasing λ1 effectively reduces quality disparities in generated images while652

substantially improving overall image quality. However, setting λ1 too high introduces excessive653

noise, leading to a decline in image quality. These findings suggest that DQA not only provides a654

reliable measure for evaluating fairness but also serves as an effective regularizer, enhancing fairness655

in image generation when applied as guidance in diffusion models. Additionally, larger values of656

λ2 intuitively contribute to improved generation quality. Qualitative results of DQA-Guidance is657

shown in Fig. 12. Similar to DQA-Guidance for human images, the improvements primarily focus658

on refining texture. While these improvements may appear subtle from a user’s perspective, the659

measured quality confirms that the hyperparameters λ1 and λ2 play a significant role in enhancing660

overall quality and reducing quality disparities.661

Figure 11: Experimental results for generation quality and quality disparities with DQA-Guidance.
The left plot shows the impact of λ1 on generation quality for each demographic group in Chest X-ray
image generation (lower values indicate better quality) and displays the average and maximum quality
gap across all disease classes (lower values indicate reduced disparity). The right plot illustrates the
effect of λ2 on overall generation quality. Here, λ1 = 0 denotes no DQA guidance, while higher λ1

values reflect a stronger influence of DQA-Guidance. DQA-Guidance effectively enhances generation
quality and reduces quality disparities across demographic groups.

I DQA on Different Types of Image Quality Assessment662

In addition to our approach, other methods for assessing image quality include visual question663

answering (VQA) [40] and neural networks specifically trained for quality evaluation [34, 57, 9].664

In [40], VQA models are asked questions such as Prompt 1: “Is this image real or fake?" or Prompt665

2: “Are this person’s limbs distorted?" to detect unreal aspects of a given image. However, as the666

image encoder used in VQA models may exhibit bias, the distribution of VQA answers could also be667

biased. To quantify this bias, we adapt DQA in Eq. (1) by replacing D(f(·), f(·)) with p(h(·), T ),668

where h denotes the VQA model and p represents the probability of detecting abnormalities based on669

the text prompt T . This approach utilizes the probability of realism detected by the VQA model as670

the image quality assessment metric.671

DQAVQA =
|p(h(Agen))− p(h(Bgen))|

p(h(Igen))

We also adapt DQA to image quality assessment (IQA) models that output indicators of general672

image quality. For example, TOPIQ [9] is a supervised network designed for image quality evaluation.673

It is trained on datasets such as FLIVE [65] for general images or CGFIQA [11] for facial images,674

using a regression task to predict quality scores. Let s(·) an IQA model’s outcome, then we adapt675

DQA in Eq. (1) by replacing D(f(·), f(·)) with s̄(·), the mean of quality score over each group.676

DQAIQA =
|s̄(Agen)− s̄(Bgen)|

s̄(Igen)

To summarize the quality assessment methods utilized throughout the paper:677
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Figure 12: Qualitative results of DQA-Guidance for medical image generation. The examples
highlight improvements primarily in texture refinement, demonstrating the method’s ability to
enhance overall image quality while addressing disparities across different conditions.

(a) DQA for visual question answering (VQA) models (b) DQA for image quality assessment (IQA) models

Figure 13: DQA on different types of image quality assessments. We compare DQA scores for gender
and racial fairness across VQA models (BLIP and PaliGemma) under two prompts, as well as IQA
models trained on general and facial datasets. Results highlight varying tendencies in DQA across
models and prompts, with racial fairness remaining a significant challenge and facial dataset-trained
IQA models showing higher DQA scores.

• Distance-based methods: Measure the similarity between the feature distributions of678

generated images and real images to determine image quality (e.g., FID).679

• VQA-based methods: Assess visual realism and detect whether images are free from680

noticeable distortions or errors.681

• General IQA methods: Evaluate objective image quality metrics such as blur, noise,682

sharpness, and color saturation.683

We use BLIP [36] and PaliGemma [4] as representative VQA models with two different prompts.684

Additionally, we utilize two pre-trained versions of TOPIQ for general IQA: one trained on the685

FLIVE dataset for general images and another trained on the CGFIQA dataset for facial images.686

The experimental results for these different types of image quality assessments are visualized in687

Fig. 13. Interestingly, VQA models exhibit varying tendencies. For gender-based DQA, PaliGemma688
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demonstrates reliability with low DQA for Prompt 1 but shows relatively high DQA for Prompt 2.689

Conversely, BLIP achieves reliable results with Prompt 2 but exhibits high DQA for Prompt 1. For690

racial DQA, both models exhibit similar tendencies with gender-based DQA; however, the overall691

DQA values are significantly higher, indicating that racial bias remains a pressing concern in fair692

evaluation.693

In the case of IQA models, the version trained on a general dataset exhibits greater reliability with694

low DQA, whereas the version trained on facial datasets demonstrates significantly higher DQA. This695

result highlights potential challenges in achieving fairness when applying models trained on specific696

datasets.697

J Impact of DQA-Guidance on Downstream Tasks698

In line with Appendix B.2, we further investigate the impact of DQA-Guidance on fairness in AUC699

across gender in medical image classification. We compare the classification performance using700

different versions of generated samples. For this analysis, we use 100 images per gender and class701

as augmentation, while Table 2 reports results based on 1,000 images per gender and class for full702

augmentation and 200 images per gender and class for fair and unfair subsets.703

Table 3 shows the classification performance when generative samples created with DQA-Guidance704

are used for data augmentation. To isolate the impact of λ1, we eliminate the influence of λ2 by705

setting λ2 = 0.706

Compared to baseline augmentation (No Guidance), DQA-Guidance improves the overall AUC and707

significantly reduces both the mean and maximum AUC gaps between demographic groups. This708

enhancement is achieved without explicit fairness constraints, relying solely on improved quality709

parity between groups.710

Table 3: Classification performance and fairness metrics on the Chest X-ray dataset using DQA-
Guidance for data augmentation. The table compares results across augmentation strategies using
100 images per gender and class. λ1 is varied while λ2 is set to 0 to isolate its effect. Compared to
No Guidance, DQA-Guidance improves overall AUC and significantly reduces both the mean and
maximum AUC gaps between demographic groups, demonstrating its effectiveness in enhancing
quality parity without applying explicit fairness constraints.

Overall AUC AUCmale AUCfemale Avg(∆AUC) ↓ max(∆AUC) ↓
Baseline

(No Augmentation) 83.10±0.13 72.78±0.33 71.96±0.35 2.40±0.36 7.08±1.82

No Guidance 85.21±0.12 77.46±0.30 77.00±0.33 2.52±0.33 8.96±2.04

DQA-Guidance
(λ1 = 10) 85.26±0.12 76.28±0.33 76.40±0.37 2.17±0.35 8.07±2.43

DQA-Guidance
(λ1 = 20) 85.74±0.12 77.90±0.34 78.04±0.32 2.22±0.38 7.82±2.86

DQA-Guidance
(λ1 = 100) 85.55±0.12 77.65±0.35 77.22±0.35 2.31±0.36 7.81±2.42

DQA-Guidance
(λ1 = λ2 = 100) 85.70±0.11 78.06±0.35 77.62±0.34 2.28±0.38 8.06±2.66

K Experimental Result with Fréchet distance711

The effectiveness of DQA-Guidance is demonstrated in Table 1, using the MMD metric with the712

DINO-RN50 encoder. In addition, we report the Fréchet Distance for generated images with and713

without DQA-Guidance to further evaluate generation quality and disparities across demographic714

groups in Table 4.715
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Table 4: Experimental results for generation quality and quality disparities with DQA-Guidance.

Method Avg.MMD Mean
|Dmale −Dfemale|

Max
|Dmale −Dfemale|

Baseline (Stable Diffusion) 29.09 1.26 1.77
+ DQA-Guidance (λ1 = 20, λ2 = 100) 28.53 0.09 0.12
+ DQA-Guidance (λ1 = 20, λ2 = 1000) 26.27 0.29 0.44

L Computational Resource716

Table 5: Compute Resources Used for Experiments

Component Details
CPU AMD EPYC 7313 16-Core Processor
GPU NVIDIA RTX A5000

M Licenses for existing assets717

Table 6: Licenses for each asset

Dataset License
ROCO Dataset CC BY-NC-SA 4.0

Stable Diffusion creativeml-openrail-m
SDXL openrail++

Prompt2MedImage wtfpl

24



NeurIPS Paper Checklist718

The checklist is designed to encourage best practices for responsible machine learning research,719

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove720

the checklist: The papers not including the checklist will be desk rejected. The checklist should721

follow the references and follow the (optional) supplemental material. The checklist does NOT count722

towards the page limit.723

Please read the checklist guidelines carefully for information on how to answer these questions. For724

each question in the checklist:725

• You should answer [Yes] , [No] , or [NA] .726

• [NA] means either that the question is Not Applicable for that particular paper or the727

relevant information is Not Available.728

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).729

The checklist answers are an integral part of your paper submission. They are visible to the730

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it731

(after eventual revisions) with the final version of your paper, and its final version will be published732

with the paper.733

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.734

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a735

proper justification is given (e.g., "error bars are not reported because it would be too computationally736

expensive" or "we were unable to find the license for the dataset we used"). In general, answering737

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we738

acknowledge that the true answer is often more nuanced, so please just use your best judgment and739

write a justification to elaborate. All supporting evidence can appear either in the main paper or the740

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification741

please point to the section(s) where related material for the question can be found.742

IMPORTANT, please:743

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",744

• Keep the checklist subsection headings, questions/answers and guidelines below.745

• Do not modify the questions and only use the provided macros for your answers.746

1. Claims747

Question: Do the main claims made in the abstract and introduction accurately reflect the748

paper’s contributions and scope?749

Answer: [Yes]750

Justification: Abstract and introduction accurately reflect the paper’s contributions, scope,751

and all necessary claims.752

Guidelines:753

• The answer NA means that the abstract and introduction do not include the claims754

made in the paper.755

• The abstract and/or introduction should clearly state the claims made, including the756

contributions made in the paper and important assumptions and limitations. A No or757

NA answer to this question will not be perceived well by the reviewers.758

• The claims made should match theoretical and experimental results, and reflect how759

much the results can be expected to generalize to other settings.760

• It is fine to include aspirational goals as motivation as long as it is clear that these goals761

are not attained by the paper.762

2. Limitations763

Question: Does the paper discuss the limitations of the work performed by the authors?764

Answer: [Yes]765
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Justification: The limitation of work is dicussed in Section 5.4.766

Guidelines:767

• The answer NA means that the paper has no limitation while the answer No means that768

the paper has limitations, but those are not discussed in the paper.769

• The authors are encouraged to create a separate "Limitations" section in their paper.770

• The paper should point out any strong assumptions and how robust the results are to771

violations of these assumptions (e.g., independence assumptions, noiseless settings,772

model well-specification, asymptotic approximations only holding locally). The authors773

should reflect on how these assumptions might be violated in practice and what the774

implications would be.775

• The authors should reflect on the scope of the claims made, e.g., if the approach was776

only tested on a few datasets or with a few runs. In general, empirical results often777

depend on implicit assumptions, which should be articulated.778

• The authors should reflect on the factors that influence the performance of the approach.779

For example, a facial recognition algorithm may perform poorly when image resolution780

is low or images are taken in low lighting. Or a speech-to-text system might not be781

used reliably to provide closed captions for online lectures because it fails to handle782

technical jargon.783

• The authors should discuss the computational efficiency of the proposed algorithms784

and how they scale with dataset size.785

• If applicable, the authors should discuss possible limitations of their approach to786

address problems of privacy and fairness.787

• While the authors might fear that complete honesty about limitations might be used by788

reviewers as grounds for rejection, a worse outcome might be that reviewers discover789

limitations that aren’t acknowledged in the paper. The authors should use their best790

judgment and recognize that individual actions in favor of transparency play an impor-791

tant role in developing norms that preserve the integrity of the community. Reviewers792

will be specifically instructed to not penalize honesty concerning limitations.793

3. Theory assumptions and proofs794

Question: For each theoretical result, does the paper provide the full set of assumptions and795

a complete (and correct) proof?796

Answer: [NA]797

Justification: No theoretical result is included in the paper.798

Guidelines:799

• The answer NA means that the paper does not include theoretical results.800

• All the theorems, formulas, and proofs in the paper should be numbered and cross-801

referenced.802

• All assumptions should be clearly stated or referenced in the statement of any theorems.803

• The proofs can either appear in the main paper or the supplemental material, but if804

they appear in the supplemental material, the authors are encouraged to provide a short805

proof sketch to provide intuition.806

• Inversely, any informal proof provided in the core of the paper should be complemented807

by formal proofs provided in appendix or supplemental material.808

• Theorems and Lemmas that the proof relies upon should be properly referenced.809

4. Experimental result reproducibility810

Question: Does the paper fully disclose all the information needed to reproduce the main ex-811

perimental results of the paper to the extent that it affects the main claims and/or conclusions812

of the paper (regardless of whether the code and data are provided or not)?813

Answer: [Yes]814

Justification: The details of experimental setting is presented, while code and data are815

available via supplementary materials.816

Guidelines:817
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• The answer NA means that the paper does not include experiments.818

• If the paper includes experiments, a No answer to this question will not be perceived819

well by the reviewers: Making the paper reproducible is important, regardless of820

whether the code and data are provided or not.821

• If the contribution is a dataset and/or model, the authors should describe the steps taken822

to make their results reproducible or verifiable.823

• Depending on the contribution, reproducibility can be accomplished in various ways.824

For example, if the contribution is a novel architecture, describing the architecture fully825

might suffice, or if the contribution is a specific model and empirical evaluation, it may826

be necessary to either make it possible for others to replicate the model with the same827

dataset, or provide access to the model. In general. releasing code and data is often828

one good way to accomplish this, but reproducibility can also be provided via detailed829

instructions for how to replicate the results, access to a hosted model (e.g., in the case830

of a large language model), releasing of a model checkpoint, or other means that are831

appropriate to the research performed.832

• While NeurIPS does not require releasing code, the conference does require all submis-833

sions to provide some reasonable avenue for reproducibility, which may depend on the834

nature of the contribution. For example835

(a) If the contribution is primarily a new algorithm, the paper should make it clear how836

to reproduce that algorithm.837

(b) If the contribution is primarily a new model architecture, the paper should describe838

the architecture clearly and fully.839

(c) If the contribution is a new model (e.g., a large language model), then there should840

either be a way to access this model for reproducing the results or a way to reproduce841

the model (e.g., with an open-source dataset or instructions for how to construct842

the dataset).843

(d) We recognize that reproducibility may be tricky in some cases, in which case844

authors are welcome to describe the particular way they provide for reproducibility.845

In the case of closed-source models, it may be that access to the model is limited in846

some way (e.g., to registered users), but it should be possible for other researchers847

to have some path to reproducing or verifying the results.848

5. Open access to data and code849

Question: Does the paper provide open access to the data and code, with sufficient instruc-850

tions to faithfully reproduce the main experimental results, as described in supplemental851

material?852

Answer: [Yes]853

Justification: The data is publicly available, or reproducible by image generation with open854

access code. The code for DQA-Guidance is available in the supplementary material, and855

will be published on GitHub after the acceptance of the paper.856

Guidelines:857

• The answer NA means that paper does not include experiments requiring code.858

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/859

public/guides/CodeSubmissionPolicy) for more details.860

• While we encourage the release of code and data, we understand that this might not be861

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not862

including code, unless this is central to the contribution (e.g., for a new open-source863

benchmark).864

• The instructions should contain the exact command and environment needed to run to865

reproduce the results. See the NeurIPS code and data submission guidelines (https:866

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.867

• The authors should provide instructions on data access and preparation, including how868

to access the raw data, preprocessed data, intermediate data, and generated data, etc.869

• The authors should provide scripts to reproduce all experimental results for the new870

proposed method and baselines. If only a subset of experiments are reproducible, they871

should state which ones are omitted from the script and why.872
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• At submission time, to preserve anonymity, the authors should release anonymized873

versions (if applicable).874

• Providing as much information as possible in supplemental material (appended to the875

paper) is recommended, but including URLs to data and code is permitted.876

6. Experimental setting/details877

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-878

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the879

results?880

Answer: [Yes]881

Justification: The details of experimental setting are provided.882

Guidelines:883

• The answer NA means that the paper does not include experiments.884

• The experimental setting should be presented in the core of the paper to a level of detail885

that is necessary to appreciate the results and make sense of them.886

• The full details can be provided either with the code, in appendix, or as supplemental887

material.888

7. Experiment statistical significance889

Question: Does the paper report error bars suitably and correctly defined or other appropriate890

information about the statistical significance of the experiments?891

Answer: [Yes]892

Justification: For classification task, Table 2, the confidence interval is presented.893

Guidelines:894

• The answer NA means that the paper does not include experiments.895

• The authors should answer "Yes" if the results are accompanied by error bars, confi-896

dence intervals, or statistical significance tests, at least for the experiments that support897

the main claims of the paper.898

• The factors of variability that the error bars are capturing should be clearly stated (for899

example, train/test split, initialization, random drawing of some parameter, or overall900

run with given experimental conditions).901

• The method for calculating the error bars should be explained (closed form formula,902

call to a library function, bootstrap, etc.)903

• The assumptions made should be given (e.g., Normally distributed errors).904

• It should be clear whether the error bar is the standard deviation or the standard error905

of the mean.906

• It is OK to report 1-sigma error bars, but one should state it. The authors should907

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis908

of Normality of errors is not verified.909

• For asymmetric distributions, the authors should be careful not to show in tables or910

figures symmetric error bars that would yield results that are out of range (e.g. negative911

error rates).912

• If error bars are reported in tables or plots, The authors should explain in the text how913

they were calculated and reference the corresponding figures or tables in the text.914

8. Experiments compute resources915

Question: For each experiment, does the paper provide sufficient information on the com-916

puter resources (type of compute workers, memory, time of execution) needed to reproduce917

the experiments?918

Answer: [Yes]919

Justification: Computational resource is mentioned in Appendix L.920

Guidelines:921

• The answer NA means that the paper does not include experiments.922
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,923

or cloud provider, including relevant memory and storage.924

• The paper should provide the amount of compute required for each of the individual925

experimental runs as well as estimate the total compute.926

• The paper should disclose whether the full research project required more compute927

than the experiments reported in the paper (e.g., preliminary or failed experiments that928

didn’t make it into the paper).929

9. Code of ethics930

Question: Does the research conducted in the paper conform, in every respect, with the931

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?932

Answer: [Yes]933

Justification: We have reviewed our code according to the NeurIPS Code of Ethics, and no934

deviation or issue is detected.935

Guidelines:936

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.937

• If the authors answer No, they should explain the special circumstances that require a938

deviation from the Code of Ethics.939

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-940

eration due to laws or regulations in their jurisdiction).941

10. Broader impacts942

Question: Does the paper discuss both potential positive societal impacts and negative943

societal impacts of the work performed?944

Answer: [Yes]945

Justification: Mentioned in the Conclusion section946

Guidelines:947

• The answer NA means that there is no societal impact of the work performed.948

• If the authors answer NA or No, they should explain why their work has no societal949

impact or why the paper does not address societal impact.950

• Examples of negative societal impacts include potential malicious or unintended uses951

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations952

(e.g., deployment of technologies that could make decisions that unfairly impact specific953

groups), privacy considerations, and security considerations.954

• The conference expects that many papers will be foundational research and not tied955

to particular applications, let alone deployments. However, if there is a direct path to956

any negative applications, the authors should point it out. For example, it is legitimate957

to point out that an improvement in the quality of generative models could be used to958

generate deepfakes for disinformation. On the other hand, it is not needed to point out959

that a generic algorithm for optimizing neural networks could enable people to train960

models that generate Deepfakes faster.961

• The authors should consider possible harms that could arise when the technology is962

being used as intended and functioning correctly, harms that could arise when the963

technology is being used as intended but gives incorrect results, and harms following964

from (intentional or unintentional) misuse of the technology.965

• If there are negative societal impacts, the authors could also discuss possible mitigation966

strategies (e.g., gated release of models, providing defenses in addition to attacks,967

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from968

feedback over time, improving the efficiency and accessibility of ML).969

11. Safeguards970

Question: Does the paper describe safeguards that have been put in place for responsible971

release of data or models that have a high risk for misuse (e.g., pretrained language models,972

image generators, or scraped datasets)?973

Answer: [NA]974
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Justification: The paper poses no such risks.975

Guidelines:976

• The answer NA means that the paper poses no such risks.977

• Released models that have a high risk for misuse or dual-use should be released with978

necessary safeguards to allow for controlled use of the model, for example by requiring979

that users adhere to usage guidelines or restrictions to access the model or implementing980

safety filters.981

• Datasets that have been scraped from the Internet could pose safety risks. The authors982

should describe how they avoided releasing unsafe images.983

• We recognize that providing effective safeguards is challenging, and many papers do984

not require this, but we encourage authors to take this into account and make a best985

faith effort.986

12. Licenses for existing assets987

Question: Are the creators or original owners of assets (e.g., code, data, models), used in988

the paper, properly credited and are the license and terms of use explicitly mentioned and989

properly respected?990

Answer: [Yes]991

Justification: Licenses are mentioned in Appendix M, while each paper are correctly cited992

in the main contents.993

Guidelines:994

• The answer NA means that the paper does not use existing assets.995

• The authors should cite the original paper that produced the code package or dataset.996

• The authors should state which version of the asset is used and, if possible, include a997

URL.998

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.999

• For scraped data from a particular source (e.g., website), the copyright and terms of1000

service of that source should be provided.1001

• If assets are released, the license, copyright information, and terms of use in the1002

package should be provided. For popular datasets, paperswithcode.com/datasets1003

has curated licenses for some datasets. Their licensing guide can help determine the1004

license of a dataset.1005

• For existing datasets that are re-packaged, both the original license and the license of1006

the derived asset (if it has changed) should be provided.1007

• If this information is not available online, the authors are encouraged to reach out to1008

the asset’s creators.1009

13. New assets1010

Question: Are new assets introduced in the paper well documented and is the documentation1011

provided alongside the assets?1012

Answer: [NA]1013

Justification: The paper does not release new assets.1014

Guidelines:1015

• The answer NA means that the paper does not release new assets.1016

• Researchers should communicate the details of the dataset/code/model as part of their1017

submissions via structured templates. This includes details about training, license,1018

limitations, etc.1019

• The paper should discuss whether and how consent was obtained from people whose1020

asset is used.1021

• At submission time, remember to anonymize your assets (if applicable). You can either1022

create an anonymized URL or include an anonymized zip file.1023

14. Crowdsourcing and research with human subjects1024
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Question: For crowdsourcing experiments and research with human subjects, does the paper1025

include the full text of instructions given to participants and screenshots, if applicable, as1026

well as details about compensation (if any)?1027

Answer: [NA]1028

Justification: This paper does not involve crowdsourcing nor research with human subjects.1029

Guidelines:1030

• The answer NA means that the paper does not involve crowdsourcing nor research with1031

human subjects.1032

• Including this information in the supplemental material is fine, but if the main contribu-1033

tion of the paper involves human subjects, then as much detail as possible should be1034

included in the main paper.1035

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1036

or other labor should be paid at least the minimum wage in the country of the data1037

collector.1038

15. Institutional review board (IRB) approvals or equivalent for research with human1039

subjects1040

Question: Does the paper describe potential risks incurred by study participants, whether1041

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1042

approvals (or an equivalent approval/review based on the requirements of your country or1043

institution) were obtained?1044

Answer: [NA]1045

Justification: This paper does not involve crowdsourcing nor research with human subjects.1046

Guidelines:1047

• The answer NA means that the paper does not involve crowdsourcing nor research with1048

human subjects.1049

• Depending on the country in which research is conducted, IRB approval (or equivalent)1050

may be required for any human subjects research. If you obtained IRB approval, you1051

should clearly state this in the paper.1052

• We recognize that the procedures for this may vary significantly between institutions1053

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1054

guidelines for their institution.1055

• For initial submissions, do not include any information that would break anonymity (if1056

applicable), such as the institution conducting the review.1057

16. Declaration of LLM usage1058

Question: Does the paper describe the usage of LLMs if it is an important, original, or1059

non-standard component of the core methods in this research? Note that if the LLM is used1060

only for writing, editing, or formatting purposes and does not impact the core methodology,1061

scientific rigorousness, or originality of the research, declaration is not required.1062

Answer: [No]1063

Justification: LLM is used only for refining authors’ original writing.1064

Guidelines:1065

• The answer NA means that the core method development in this research does not1066

involve LLMs as any important, original, or non-standard components.1067

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1068

for what should or should not be described.1069
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