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Abstract

Discrepancies in generation quality across demographic groups pose a substantial
and critical challenge in image generative models. However, the Fréchet Inception
Distance (FID) score, which is widely used as an image quality evaluation metric
for generative models, introduces unintended bias when assessing quality across
sensitive attributes. This undermines the reliability of the evaluation procedure.
This paper addresses this limitation by introducing the Difference in Quality
Assessment (DQA) score, a novel approach that quantifies the reliability of existing
evaluation metrics, e.g. FID. DQA assesses discrepancies in evaluated quality
across demographic groups under strictly controlled conditions to effectively gauge
metric reliability. Our findings reveal that traditional quality evaluation metrics can
yield biased assessments across groups due to inappropriate reference set selection
and inherent biases in image encoder in FID. Furthermore, we propose DQA-
Guidance within diffusion model sampling to reduce quality disparities across
groups. Experimental results demonstrate the utility of the DQA score in identifying
biased evaluation metrics and present effective strategies to mitigate these biases.
This work contributes to the development of reliable and fair evaluation metrics for
generative models and provides actionable methods to address quality disparities
in image generation across groups.

1 Introduction

In recent years, image generative models such as Generative Adversarial Networks (GANSs) [21]],
Denoising Diffusion Probabilistic Models (DDPMs) [27], and text-to-image generation [47, 49]]
systems have brought bias concerns to the forefront of generative modeling. While substantial
research has focused on distributional fairness to ensure balanced sample generation across sensitive
attributes [13} (54} 137, 142130, the fairness in generation quality across demographic groups remains
an equally critical yet underexplored issue. For example, Fig. [T] demonstrates the existing bias in
generation quality by producing better quality of image for certain demographic group.

Furthermore, in the classification task, text-to-image generative models can be used as data augmen-
tation tools to improve classifier performance [32]. However, if the quality of generated images is
inconsistent across demographic groups, it can negatively impact classification performance for cer-
tain groups, exacerbating fairness issues in prediction and introducing biases in decision-making. We
empirically demonstrate in Appendix [B]that discrepancies in image generation quality can adversely
affect real-world applications, e.g. medical imaging [20], particularly in classification performance
and fairness [35]]. We also show that achieving fair quality in generated images can lead to improved
outcomes, underscoring the necessity of addressing this issue.

In response, recent studies [44} 41]] have highlighted quality discrepancies in generative models
related to gender-profession biases, relying on the Fréchet Inception Distance (FID) [26] to assess

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38

39
40
41
42
43

44
45
46
47
48
49
50
51
52

53
54
55

56
57

58

59
60
61
62
63
64
65
66

67
68
69

70
71

72

73
74

]

Input: “A photo of a female who works as a nurse” FID: 109.37 Input: “A photo of a male who works as a nurse”  FID: 140.29

Figure 1: Using the same prompt template and seed, a generative model may produce varying image
quality across different demographic groups, e.g., generating higher-quality nurse images for females
while producing obscured objects, distorted limbs, or grayscale images for male nurses.

the quality of generated images. However, our analysis reveals that FID is unreliable for evaluating
fairness in image quality for two reasons.

First, FID is sensitive to the selection of reference dataset due to distinct group distributions. As
demonstrated in our synthetic data analysis in Sec.[3]and Fig. 3] the reference should be chosen group-
specific manner. Choosing combined dataset as reference for FID not only leads to inaccurate quality
evaluations for each group but also misidentifies the direction of bias, making FID an unreliable
metric for detecting fairness issues in generative models observed in [44] [41].

Secondly, even with group-specific evaluation, traditional encoders can remain unreliable due to
inherent biases in image encoders, which may produce inconsistent representations for images
of similar quality across demographic groups. For example, as shown in Fig. 2] biased encoders
such as InceptionV3 [56] and CLIP [46]] yield unreliable evaluation results, misassessing certain
demographic groups as having better image quality. We identify that this inconsistency arises from
the biased representations produced by the encoder. To validate this issue, we use a t-SNE [59] plot
of embeddings from a biased encoder, shown in Fig. ] (b). The plot reveals a clear gender-based
separation despite similar image quality, highlighting the encoder’s failure to reliably evaluate quality
discrepancies across demographic groups. Further details are provided in Sec.[3.2]

In summary, although quality bias exists in generative models, the commonly used evaluation metric,
FID, and potential alternatives leveraging different backbone networks are not reliable for
assessing this bias. This raises the following key questions:

Q1: Which image encoder for evaluation metric can reliably assess quality bias, and
how can it be quantified?

Q2: What strategies can effectively mitigate quality bias in generative models?

To address the first question, we introduce a novel score, the Difference in Quality Assessment
(DQA), which serves as a reliability score for assessing the reliability of evaluation metrics’ fairness
across demographic groups. DQA quantifies whether an encoder introduces bias, by measuring
discrepancies in evaluation results across demographic groups based on strictly controlled test dataset.
An encoder with a lower DQA value is interpreted as more reliable and suitable for group-specific
quality assessments to be used as an evaluation metric for image quality. DQA can identify the
most reliable pre-trained foundational models in quality evaluation in Sec.[d] supporting fairness and
reliability in future generative model applications for downstream tasks.

Furthermore, to address the second question, we propose a DQA-based regularization method, DQA-
Guidance for diffusion models’ sampling stage, which enhances both quality fairness and overall
generation quality without re-training the diffusion model, as discussed in Sec. 3]

Overall, unlike prior work that has predominantly focused on distributional fairness, this study is the
first to systematically address fairness in generation quality by introducing:

« areliable diagnostic tool (DQA) to evaluate quality bias across demographic groups, and

* a practical mitigation strategy (DQA-Guidance) to reduce quality disparities during
image generation.
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Figure 2: Using the same distance metric (Fréchet Distance, smaller is better), we compare image
quality across varying professions and genders, with each set consisting of 1,000 images. Each image
set is carefully controlled to include both well-generated and poorly-generated images. We evaluate
image quality with three image encoders: InceptionV3 (FID), CLIP, and DINO. A biased encoder
in quality evaluation leads to two forms of unreliable measurement. First, as shown in green box,
InceptionV3 and CLIP exhibit significant measurement gaps across demographic groups for images
of the same quality, whereas DINO shows relatively smaller discrepancies. Second, as shown in red
box, InceptionV3 and CLIP misleadingly assess poor-quality images as having better quality for
certain gender-profession subset, while DINO more accurately reflects true quality assessments.

2 Related Work

2.1 Generated Image Quality Assessment

FID is a widely used metric for assessing the quality of generated images by measuring the
Wasserstein-2 distance [60] between embeddings of synthetic and real images extracted by the
InceptionV3 [56]]. This embedding-based distance measurement has thus become standard in gener-
ative model research [52,[33] (62} [3]]. To enhance representational richness and relax distributional
assumptions, MMD with the CLIP encoder [46] has been proposed [29]. While prior studies
[5. 14} 28] have highlighted the unreliability of evaluation metrics under finite or imbalanced sample
conditions, the reliability of these metrics from a fairness perspective remains largely unexplored.

2.2 Fairness in Generative Models

Many studies have explored fairness in generative models but have primarily focused on addressing
distributional bias, aiming to achieve an equal number of generated samples across demographic
groups from a neutral prompt such as fine-tuning the entire model [13} [54], utilizing a pretrained
classifier 142]), and manipulating intermediate embeddings [30]]. Some works concentrated on
new metric evaluating such biases [12} [51].

In contrast, beyond distributional bias, Perera and Patel [44] and Naik and Nushi [41] highlighted
that quality bias in generated images across demographic groups, particularly in associating certain
careers with specific genders. However, methods for mitigating quality bias have not been presented
in the literature. We are the first to propose guiding the diffusion model’s sampling stage to ensure
fairness in image quality.

3 Bias in Image Quality Assessment for Generative Models

Recent studies have highlighted concerns about quality bias in generated images [44] 41]]. To evaluate
the quality of generated images and quantify this bias, the Fréchet Inception Distance (FID) [26]] is
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Figure 3: Illustration of quality bias in evaluation metrics using distance measures such as Maximum
Mean Discrepancy (MMD) and Fréchet Distance (FD). The left figure depicts a fair scenario where
generated data embeddings for both groups exhibit the same distribution shift, while the right figure
shows an unfair scenario, with embeddings for one generated group skewed towards the other. Using
group-specific references (e.g., Agen <+ Arer) more accurately captures distribution shifts compared
to an all-reference approach (e.g., Agen, <+ Apey U Byrey), which can produce misleading values in
cases of biased image encoders. Thus, group-specific distance measures more accurately evaluate the
quality under the biased representation.

widely used as a metric for assessing the similarity between the distributions of real and generated
images. FID calculates the statistical distance between embeddings extracted from the InceptionV3
model [56] for both generated images and a reference dataset [7, (19,50} 45]]. However, relying on
FID for quality evaluation has significant limitations, as discussed below.

3.1 Selection of Reference Dataset

Firstly, the measurement method should be group-specific to accurately capture differences across
demographic groups. To formalize, let D(-, ) denote a distance measurement such as Maximum
Mean Discrepancy (MMD) [46] or Fréchet Distance (FD), and let f represent an image encoder.
Define two demographic groups A and B, with corresponding reference datasets, Ar and By,
and generated datasets, Agen and Bye,. The combined reference and generated datasets are given
by Lot = Aret U Brer and Lyen = Agen U Bgen. In FID, D represents FD while f is typically the
InceptionV3 model [56]. In the quality bias literature [44} 41], the generation quality of each group is
calculated by D(f(A gen) f(Zeer)) and D(f(Bgen), f(Zrer)) for groups A and B, respectively, while
the bias measurement is given by D( f(Agen), f(Zrer)) — D(f(Been), f (Zrer) ). Here, the magnitude
represents the degree of bias, while the sign indicates its direction.

However, as demonstrated in our synthetic data analysis in Fig. 3] using a unified reference dataset
can mask or amplify biases, potentially leading to unfair assessments of image quality across
different groups. In this figure, blue and orange points represent reference embeddings for two
demographic groups, while green and red points denote generated embeddings for each group. Fig.[3]
(a) depicts a scenario where the embeddings of the generated data are similarly out-of-distribution
from their respective reference datasets, suggesting a fair assessment. In contrast, Fig.[3](b) shows a
scenario where the generated data embeddings for one group are skewed toward the other group’s
reference data, indicating potential quality bias. According to Fig. 3] (b), the quality evaluation
results for group B should be worse (higher) than for group A. However, when using the combined
reference set, as denoted as “All Ref.", the measured distances indicate D(f(Agen), f(Zrer)) >
D(f(Bgen), f(Zrer)), which is misleading. In contrast, in Fig. 3| (b), using group-specific references
yields D(f(Agen), f(Arer)) < D(f(Bgen), f(Brer)), providing an accurate evaluation. Thus, the
quality bias evaluation should be D(f(Agen), f(Arer)) — D(f(Bgen), f(Bref)), in a group-specific
manner, rather than D(f(Agen), f(Zrer)) — D(f (Bgen), f(Zret))
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(a) Example of Unreliable Image Quality Evaluatlon (b) t-SNE Visualization of Unreliable Image Quality Evaluation

Figure 4: (a) Images in green boxes represent “good" quality generated images, while red boxes
denote “poor" quality images. A biased encoder embeds poor-quality images by associating specific
genders with certain professions, leading to skewed evaluation results as these images are unfairly
placed far from their respective reference groups. (b) The t-SNE visualization using a CLIP [46]
image encoder illustrates this issue. Poor-quality images for certain gender and profession (e.g., red
boxes in (a)) demonstrate a tendency for being embedded within the wrong gender cluster, resulting
in biased evaluation outcomes despite similar quality levels.

3.2 Bias in Image Encoder Used in Evaluation

Secondly, when discrepancies in group-specific quality evaluations are observed, it remains unclear
whether these differences stem from actual variations in image quality or from biases inherent in
the image encoder. A biased encoder can distort embeddings, impacting the interpretation of image
quality across groups and leading to skewed evaluation results, as observed in Fig. 2] We illustrate this
issue in Fig.[](a), and verify this in Fig. ] (b) using t-SNE plot. In Fig& (b), although well-generated
images are correctly located closer to each reference (See Appendix [C)), a poorly generated image of
a “male nurse” may be embedded closer to the “female nurse” reference due to encoder bias, rather
than reflecting its true quality. Conversely, a similarly poor-quality image of a “female nurse” remains
within the in-distribution region of the “female nurse” reference, indicating inconsistency in quality
evaluation across demographic groups. This leads to inaccuracies in both quality assessment and
quality bias evaluation, such that |D(f(Agen), f(Arer)) — D(f(Bgen): f(Brer))| > 0, even though
TrueQuality(Agen) =~ TrueQuality(Bgen). The t-SNE plot for well-generated images is shown in
Appendix [C| further highlighting the unreliability of the image encoder with respect to image quality.

Given these limitations, it is crucial to identify evaluation metrics that can reliably distinguish between
distribution shifts caused by actual quality discrepancies and those stemming from biases in the image
encoder. By employing group-specific measurement and introducing a reliability score for evaluation
metrics using a dataset with controlled quality, we gain a clearer understanding of the sources of
quality bias and can improve the fairness and accuracy of image quality assessments across different
demographic groups.

4 Reliability of Evaluation Metric for Generated Image Quality

In this section, we introduce a novel method to assess the reliability of evaluation metrics for gener-
ated image quality, focusing primarily on metrics that measure the distributional distance between
generated and reference datasets. This emphasis arises from concerns that biased image encoders
might handle poor-quality images inconsistently across sensitive groups, even when distances are
calculated in a group-specific manner, as discussed in Sec. [3.1]and Sec.[3.2}
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4.1 Difference in Quality Assessment

We consider two generated datasets, Agen, and By, €ach containing images of comparable quality
and equal quantity. In our experiments, we use MMD as a distance metric D(, -) instead of FD due
to its efficiency and freedom from distributional assumptions [29]. Difference in Quality Assessment
(DQA) aims to identify bias in the evaluation metric D(f(-), f(-)). Recalling the combined reference
and generated datasets as Zret = Aret U Brer and Zgen = Agen U Bgen, DQA is formulated as:

|D(f(Agen)a f(Aref)) - D(f(Bgen)a f(Bref))|
D (f (Igen)a f (Iref))

By employing group-specific distance measurements, Eq. () isolates the bias inherent in the encoder
by comparing the embeddings of generated images with consistent quality across different demo-
graphic groups. The numerator captures the difference in quality between generated data for groups
A and B relative to their respective reference sets. A large numerator implies significant quality
disparity between groups, whereas a small or zero value suggests that the encoder treats both groups
equally. The denominator captures the global generation quality by measuring the distance between
the combined reference and generated datasets. A smaller denominator value indicates generated data
closely matches the reference set, while a larger value signifies deviation. Hence, DQA quantifies the
relative quality discrepancy between groups compared to the overall distribution shift in generation.
A low DQA suggests fair treatment of both groups by the encoder, while a high DQA indicates
significant bias. Therefore, DQA serves as a reliability score for quantifying bias in image encoders.

DQA = ey

4.2 Constructing the Evaluation Dataset for DQA

To effectively apply the DQA score for finding reliable image encoders in practice, it is essential to
construct controlled reference and generated datasets. To assess the reliability of image encoders,
we construct a dataset with six different versions, ranging from well-generated to poorly generated
sets, capturing realistic scenarios encountered in text-to-image generation of human images using
Stable Diffusion XL (SDXL) [45]. Following the recommended settings from [40]] as our baseline,
we degrade image quality in various ways by adjusting hyperparameters. The scenarios include the
baseline, weak guidance, reduced sampling steps in diffusion, increased noise influence on the initial
image, and the absence of refinement methods. The baseline serves as the reference dataset, while
the other scenarios represent controlled generated datasets. For each image seed, we prepare datasets
under all six scenarios. We generate 250 images for each combination of profession, gender, and race,
resulting in 20,000 images per scenario (10 professions, 2 genders, and 4 races). This ensures that
each attribute has the same number of reference images, avoiding inaccuracies caused by imbalanced
attribute distributions [28]]. Detailed descriptions of each degradation, along with the professions and
races used, are provided in Appendix [D] and visualizations are presented in Fig. [5](a).

4.3 DQA for Multiple Attributes (e.g., Race)

Let Eq.(I) be denoted as DQA(Agen, Bgen; f) for groups A and B given encoder f. Let G =
{G1,- -+, G, } represent the set of n groups. We aggregate pairwise DQA across all combinations to
provide a comprehensive measure of fairness in image quality assessment across multiple attributes.

AvgDQA(G) = -~ > DQA(G;,Gj; f), @)

(Z) 1<i<j<n

4.4 Reliability Analysis for Pre-trained Image Encoders

To assess the reliability of image encoders in evaluating generated image quality fairly across
demographic groups, we apply the DQA score to various pre-trained models, considering differences
in architecture, training dataset, and training scheme. In this analysis, we calculate the average DQA
score across all degradation types.

We evaluate models including InceptionV3, VGG [53]], ResNet-50 (RN50) [24]], ViT-B/16 [17], and
Swin Transformer [39], all trained on the ImageNet-1K (IN-1K) [[16]] dataset using supervised learning.
We also compare models trained on IN-1K and IN-21K [48]] for ViT-B/16 and Swin Transformer
architectures to examine the effect of training dataset size. Additionally, we explore different training
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Figure 5: (a) Examples of generated images under controlled degradation scenarios. The figure
illustrates samples from both the well-generated baseline (reference, T1) and the intentionally
degraded cases (T2 - T6), where image quality is systematically reduced by adjusting specific
hyperparameters. This controlled degradation enables effective measurement of the DQA score to
assess the reliability of an image encoder. (b) Across all pre-trained encoders and various degradation
in generated images, DINO-RNS50 achieves the lowest DQA in average for both gender and race bias,
indicating it is the most reliable encoder for evaluating the quality of generated images.

schemes by evaluating models trained with self-supervised methods like MoCo-RN50 [25], MSN-ViT
[T]], and DINO [8] and CLIP using both RN50 and ViT-B/16 architectures.

Impact of Training Scheme on DQA. Our results, summarized in Fig. [3] (b) indicates that self-
supervised models using the RN50 architecture, particularly DINO-RN50 and MoCo-RN50, achieve
the lower DQA scores in general compared to supervised models. This suggests that the combination
of self-supervised learning and the RN50 architecture effectively reduces bias, leading to fairer em-
beddings across demographic groups. We analyze this as self-supervised models learn representations
without explicit labels, which helps them avoid inheriting biases tied to label information.

Impact of Backbone Network on DQA. In contrast, self-supervised models using the ViT archi-
tecture, such as DINO-ViT and MSN-ViT, exhibit slightly higher DQA scores, implying that RN50
may be better suited for learning unbiased representations in self-supervised settings. We analyze
the architectural differences between convolutional neural networks (CNNs) [33] and Transformers
[61]. RN50, as a CNN, incorporates locality and spatial patterns through its convolutional layers.
This structure allows CNNs to capture both local and global image features, making them more
robust to distortions in the image [58]]. In contrast, Transformer-based models rely on self-attention
mechanisms that process images as sequences of tokens, without the same spatial locality constraints
[58]. The token-based approach enables the model to capture complex global dependencies, but it
may also make it more sensitive to specific variations in distorted images [22]], resulting in larger
discrepancies between reference and generated datasets.

Impact of Training Dataset on DQA. We also examine the effect of training dataset size by
comparing models trained on IN-1K and IN-21K for both ViT-B/16 and Swin Transformer. The
results show that models trained on the larger dataset, IN-21K, actually exhibit higher DQA scores
compared to their IN-1K counterparts. This suggests that increasing the dataset size alone does not
necessarily improve fairness in the encoder’s representations. Similarly, models like CLIP, despite
being trained on large-scale image-text datasets, show higher DQA scores especially in racial bias,
indicating that large-scale multimodal training does not necessarily guarantee fairness in embeddings.

4.5 Validity of DQA

To validate the effectiveness of DQA for quality assessment, we apply it to data augmentation in a
medical image classification task. As detailed in Appendix [B] datasets generated by text-to-image
models for medical images can be used for data augmentation but often exacerbate fairness issues due
to quality bias in the generative model, resulting in significant performance gaps across demographic
groups in classification. Leveraging a reliable image encoder, we construct both fair and unfair
generated datasets based on their DQA scores as detailed in Algorithm [I] Fair dataset enhances
classification fairness when used for augmentation, whereas unfair dataset exacerbates disparities.
This demonstrates DQA’s ability to identify reliable image encoders and its practical utility in enabling
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Table 1: Experimental results for generation quality and quality disparities with DQA-Guidance.

Mean Max
MethOd AngMD ‘Dmule - Dfemale‘ |Dmale - Dfemale|
Baseline (Stable Diffusion) 109.93 12.57 17.77
+ DQA-Guidance (A\; = 20, Ao = 100) 103.89 6.21 6.94
+ DQA-Guidance (A\; = 20, Ao = 1000) 85.72 10.16 11.87

DQA-based data augmentation. These findings underscore the benefit of DQA in generative models
for classification applications, as further elaborated in Appendix [B]

5 Mitigating Quality Bias in Diffusion Models

DQA serves not only as a reliability indicator for the evaluation metric but can also act as an
energy function in generative models to regularize equal image quality across demographic groups.
Specifically, we employ guided diffusion [[66} 38\ 18} 2] during sampling in diffusion models rather
than training a model from scratch. By interpreting DQA as an energy function, its gradient can be
integrated into the diffusion sampling process following energy-based guidance principles, steering
the generation process toward desired outcomes without modifying the pre-trained model parameters.

5.1 DQA-Guidance for Diffusion

In our context, the DQA score quantifies relative discrepancies in image quality assessments across
demographic groups. By computing the gradient of DQA with respect to latent variables z; at each
diffusion timestep, we obtain the latent direction that reduces this discrepancy. Incorporating this
gradient into noise prediction adjusts the sampling trajectory to favor samples that minimize quality
differences across groups.

Assume we identify a reliable image encoder f* for evaluating generated image quality. Let g be
the base generative model that samples from latent variable ztA and 22 for each group. We apply
DQA-Guidance in diffusion modeling by taking the gradient of DQA with respect to z; = [z7}; 27]:

€o(z1) = eg(z) + oMV, DQA(g(2{), 9(z0); 7)), 3)

where €y(z;) is the estimated noise, 6 represents the pre-trained weights of the diffusion model,
oy scales the gradient term according to the noise level at timestep ¢, and A; is a hyperparameter
controlling the strength of the DQA-Guidance in diffusion process.

Since reducing DQA (Eq.(T))) could unintentionally increase the denominator (representing the overall
quality), we introduce a regularizer to ensure that both the numerator and denominator are minimized.
Specifically, we add the gradient of the denominator of DQA, the overall distributional distance
between generated and reference datasets D ( [*(Zgen), f* (Iref)>, to improve overall quality,

o(z1) = eo() + 01V, (MDQA(9(2Y), 9(F): ) + XaD(F* (L) £ (Tet)) ). (4

where )\, is a hyperparameter balancing the influence of the quality regularizer. Consequently, by
treating DQA as an energy function and integrating the gradients of both DQA and the overall quality
term into the sampling process, the model is guided to reduce quality disparities across demographic
groups while preserving high image fidelity.

5.2 Experimental Details for DQA-Guidance

To verify the effectiveness of DQA-Guidance in mitigating quality bias, we conduct human image
generation experiments using Stable Diffusion [49]. We utilize the well-generated (Baseline) dataset
introduced in Appendix [D] which contains images generated by the state-of-the-art SDXL model
[45]], as a reference set to maintain consistent quality and context across demographic groups during
the diffusion process. DQA-Guidance is applied to Stable Diffusion to mitigate quality disparities
while enhancing overall image quality. An extension of DQA-Guidance for medical image generation
with ImageGen [50] is presented in Appendix [H]
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Figure 6: Qualitative results of DQA-Guidance. The examples demonstrate improvements in artifact
reduction, color correction, and texture and background refinement (red circles). These enhancements
illustrate the impact of DQA-Guidance in balancing quality across demographic groups.

5.3 Result Analysis for DQA-Guidance

Table [T|demonstrates the impact of DQA-Guidance on image generation. DQA-Guidance not only
reduces quality disparities, but also substantially enhances overall image quality. These findings
indicate that DQA serves not only as a reliable fairness evaluation metric but also as an effective
regularizer when applied during the sampling stage of diffusion models. Moreover, increasing values
of Ao are intuitively associated with improved generation quality. Qualitative results are presented
in Fig.[6] highlighting reductions in artifacts and more balanced image quality across groups. The
effects and sensitivity of the hyperparameters A1 and ), are further discussed in the Appendix [E]

5.4 Potential Limitation

DQA-Guidance is the first approach to demonstrate that quality bias-aware guidance can effectively
steer diffusion models toward fairer outputs. As our work represents the first attempt to mitigate
fairness issues in generative models from a quality perspective, Table [I|lacks comparative methods.
We will continue seeking appropriate baselines for future evaluation.

In terms of practicality, DQA-Guidance introduces additional computational cost, requiring an
auxiliary image encoder and gradient computation, which may increase memory usage. However,
it opens a promising direction for fairness-aware generation, and future work may explore more
efficient variants of this strategy.

Additionally, although our controlled dataset enables systematic evaluation, it may not fully reflect
human-perceived image quality. Developing human-validated reference datasets, such as those
based on perceptual surveys, would further enhance the validity of DQA and provide a more robust
benchmark for auditing image evaluation metrics.

6 Conclusion and Societal Impact

This paper addresses the underexplored issue of quality disparities in image generation and introduces
the Difference in Quality Assessment (DQA) score, a novel metric for evaluating the reliability of
quality assessment methods. Through extensive analysis, we reveal that commonly used metrics, such
as FID, can introduce unintended biases, resulting in misinterpretation of quality discrepancies. DQA
mitigates these issues by identifying reliable image encoders, enabling fairer and more dependable
quality evaluations. We further extend its utility through DQA-Guidance, which steers diffusion
models toward reducing quality disparities while preserving image fidelity. Overall, our work offers
an equitable and reliable generative Al, fostering responsible innovation in technologies that promote
societal fairness and support decision-making.
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A Details of Synthetic Data in Figure [3|

To construct the synthetic dataset, we generated non-Gaussian data for groups A and B by combining
multivariate normal and exponential distributions. Each group has distinct means, covariances, and
exponential scaling factors to ensure variability and non-Gaussian characteristics in the data. For
group A, we define the mean as p 4 and covariance as X 4. Samples for group A were drawn from
a multivariate normal distribution, V(s 4, 3 4), and combined with exponential noise with a scale
parameter A 4. Similarly, for group B, we define the mean as p; and covariance as ¥ 5. Samples are
drawn from A (g5, X 5) and combined with exponential noise with a scale parameter A p.

Aref = N(/J/Av ZA) + Exp(/\A)
Byt = N(NBa ZB) + Exp(/\B)
To introduce distribution shift as examples for fair and unfair case, translations are applied to each

group. Let t 4 and t g represent the translations for groups A and B respectively. The test data for
each group is generated as:

Agen =N(ps,24)+ta+Exp(ra)
Been = N (g, XB) +ts +Exp(Ap)

2
where @, = [pa1,ptaz] and X4 = [081 Ug } denote the mean and covariance of group A,
2

2
0B1

pp = [puB1,up2) and Xp = [ 0 (2) ] denote the mean and covariance of group B, A4 and Ap

0B2
represent the exponential scaling factors for groups A and B, and t 4 and t g are translations applied
to groups A and B, respectively.

Using this structure, we introduce non-Gaussianity through the combination of multivariate normal
and exponential distributions with group-specific parameters pt 4, >4, A4, and pg, Xp, Ap. Test
(generated) datasets maintain only the mean parameters for each group, but covariance and scaling
factors are shifted as well as translations to mimic the distribution shift in generative models.

For the reference set, we choose pa1 = paz =0, 0%, = 045 = 1, A4 = 1, up1 = pps = 15,
0%, = 0%, = 8,and A\ = 2. For the generated set, we change the covariance as 0%, = 04, = 3
and 0%, = 0%, = 12, and shift the scaling A4 < A4 + 0.2, and A\ < Ap + 0.2. Moreover, we
apply different scaling and translations for fair and unfair synthetic dataset. Specifically, we choose
t4 = [3,3] and t5 = [—3, —3], to depict a fair scenario, while t 4 = [1,1] and t g = [-11, —11] are
chosen to simulate unfairly skewed distribution for group B.

B Impact of Quality Bias in Generative Models in Downstream Task and
Validity of DQA

B.1 Negative Impact of Quality Bias in Generative Models

Unfairness in generated image quality across demographic groups poses a critical issue in generative
modeling. Generative models, especially those trained on uncurated datasets, often produce images of
systematically lower quality for specific demographic groups, such as those defined by gender, race,
or age. This quality discrepancy not only undermines visual representation fairness but also risks
reinforcing biases when these generated images are used for data augmentation in training pipelines,
potentially transferring such biases into downstream models. Addressing this issue requires robust
strategies to ensure consistent image quality across all demographic attributes.

To highlight the practical implications of quality bias, we conduct a classification task with a ResNet-
50 model [24] using chest X-ray images from the Chest X-ray dataset [63]], a dataset known to exhibit
fairness issues, as evidenced by differing AUC scores across demographic groups [35]]. To enhance
classifier’s performance, a user might employ text-to-medical-image generation models [S0] trained
on the ROCO dataset [43]] as a data augmentation strategy. In our initial experiments, we generate
1,000 images per gender and class for augmentation. The details of Chest X-ray dataset and the
generation details are introduced in Appendix [F|

However, despite using an equal quantity of generated images for each demographic group, fairness
issues in the classification model not only persist but, as shown in Table |2} even worsen. This is
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evidenced by higher values of Avg(AAUC) and max(AAUC), calculated as

1 . . .
Avg(AAUC) = al D JAUCTY — AUCE™"|,  max(AAUC) = max |AUC™Male _ ayClemale|
ceC N
where C denotes the set of classes. These results imply that generated images may exacerbate fairness

issues, likely due to quality discrepancies across demographic groups.

Table 2: Comparison of classification performance and fairness metrics using different data augmen-
tation strategies on the Chest X-ray dataset. Blue indicates an improvement in fairness, while Red
denotes a deterioration compared to the baseline. All augmented data are generated by a text-to-
medical-image model, with Fair and Unfair subsets selected from the entire generated dataset using
Algorithm[1] Full augmentation worsens fairness, suggesting quality bias issues in the generated
images. Data augmentation with the Fair Subset uses generated data of equal quality across genders,
identified by lower DQA scores, yields lower Avg(AAUC) and max(AAUC) values without apply-
ing any fairness-specific technique. This outcome suggests that DQA effectively identifies reliable
evaluation metrics for assessing fairness in generated image quality.

Overall AUC ~ AUC™® AUCk™  Ayg(AAUC) | max(AAUC)] DQA

Baseline 83.1040.13  72.784033 71.96+0.35  2.40+0.36 7.0841.82 -
Full 85354012  78.124032 77714033  2.4540.35 8.13:£2.04 ;
Augmentation
Ff‘gg/‘ibff‘ 85.2740.12  77.354035 77244035  2.16+0.36 6.98+2.54 0.0868
U“(%gi“%set 85.5440.12  77.954032 77.814033  2.62--0.39 8.9342.46 0.5495

B.2 Validity of DQA

To validate the effectiveness of DQA in identifying reliable image encoders for quality assessment,
we construct both fair and unfair generated datasets in terms of quality as identified by their DQA
scores. The fair generated dataset is expected to enhance fairness in classification when used for data
augmentation, while the unfair generated dataset is anticipated to exacerbate fairness issues.

These datasets are characterized by lower (fair) and higher (unfair) DQA scores, evaluated using
a reliable image encoder f*. Specifically, let A,ye, and B,, represent two groups of generated
data, with subsets Sy C Agen and Sp C Bgen, ach of size k& = 0.2 X |Agen|. We define the

fair and unfair subsets as (S%r, SHr) = argmin,, DQA(SX“), S)(Bm); f*) and (Svpfair | Gunfair) —
arg max,,, DQA(SU™, U™ %), selected from M candidate subsets {(S5™, S\™)}M

m=1-
To construct meaningful candidate pairs, we employ influence scores as a probabilistic measure of
each image’s impact on the DQA score, calculated via influence functions [[15]]. These scores are
normalized and used in a multinomial sampling scheme, allowing us to prioritize high-impact images
in both fair and unfair selection processes. Algorithm[I)in Appendix [B.3|details the steps for sampling
fair and unfair subsets, using influence-based probabilities to guide the selection.

For the classification task, we train a ResNet-50 model on the Chest X-ray diagnosis dataset, as
outlined in Sec. Initial experiments in Sec. [B.T|used an augmentation set containing 1000 images
per gender and class. For DQA-guided augmentation, we add either the fair subset (S&ir, Sfir) or
the unfair subset (SYair SUfain) "each consisting of 200 images per gender and class, to assess how
these augmentations impact model performance and demographic fairness. This setup enables a
comparative evaluation of overall accuracy and fairness across demographic groups, thereby justifying
the validity of DQA as an indicator of reliability.

The experimental results, shown in Tablc@], demonstrate the effectiveness of the DQA score: the fair
subset identified by low DQA improves fairness in classification AUC scores across demographic
groups, even though DQA is not specifically designed for classification fairness, whereas the unfair
subset (high DQA) worsens fairness outcomes.
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B.3 Fair/Unfair Subset Sampling Algorithm with DQA

Algorithm 1 Finding Fair and Unfair Subsets Using Influence Scores for DQA

1: Input: Generated datasets Age, and B,e; reference datasets Ay and B; reliable encoder f*;
subset size k; number of samples ) ; small constant e

2: Output: Fair/Unfair subsets (Sfir, §iir) -(Gunfair - Gunair)

3: FA> FB; FAmm FB,-ef — {f*(xz) | T € Agena Bgena Arefa Bref}
4: DQAoriginal — DQA(FAv Fg, FAref7 FBref)

5: for each z; € Agen and 2 € Byeq do

6:  Fy' Fp’ < Fa\{f*(z)}, Fp \ {f*(z;)}

7: 6 < DQA gy — DQA(F ", Fp, Fa,. Fp,)

8: 6F DQAoriginal - DQA(FA7 ngv FAref’ FBref)

9: end7 for
10: Adjust influence scores for sampling:
11: For fair subsets, invert influence scores:

. pAfair B fair —52 —min{—62}+e —6P —min{ 57 }+e
CPi P S (A —min{—6A}) e’ >, (8P —min{—67})te

—_
[\

13: For unfair subsets, use original influence scores:
14: pAunfair B unfair 62 —min{6# }+e 67 —min{57 }+e¢
DD Py >, (A —min{6/ ) e’ 3, (3F —min{oP }) +e
15: Initialize: best_ DQA < oo, worst_DQA <+ —oo
16: for m = 1to M do
17:  Sample fair/unfair candidate subsets:
18: Sj(4m,fa1r)7 S(Bm,falr) “ Sample(Agen, k’p?,falr), Sample(Bgen, k)ij,falr)
19: DA™ « DQA(SY™™M, STy Py )
20:  Compute DQA for fair/unfair candidate:
21:  if DQA™ ™Y < best DQA then
22: best_DQA « DQA (™) ‘
23: (S,f:irv Sféljr) - (qumfalr), Sgrz,falr))
24:  end if . " ) )
75- ng,un cur)7 S](Bm,un air) - Sample(Agen, k’p;él,unfalr)7 Sample(Bgen, k7p;3,unfa1r)
26: DQA(m,unfair) « DQA(SI(qm,unfzur)7 S(Bm,unfalr)) FA,ef7 FBM)
27: if DQAU™™ ) > worst_DQA then
28: worst_DQA <+ DQA ("m-unfair)
29: (S}Tfﬁir Sglfair) o (ng,unfair) S](Bm,unfair))
30:  end if
31: end for

32: Return: (S&r, Sir), (Supfair | Gunfair)

C Supplementary for Fig. [d: Illustration for Well-Generated Sample

Figu. 4| shows how poor-quality images are frequently misembedded into the wrong gender cluster
due to encoder bias and sensitivity to image degradation. To complement this, Fig. [7] presents the
case of well-generated images. While the encoder fails to reliably embed poor-quality images in
Fig. [ well-generated samples in Fig.[7|demonstrate clearer separation between gender groups and
are mostly placed correctly within their demographic clusters. This comparison underscores the
unreliability of the encoder, which performs inconsistently depending on the quality of the input
images.

D Constructing Evaluation Dataset for DQA

We consider realistic scenarios encountered in text-to-image generation for human image datasets
using Stable Diffusion Inpainting [49]. Our baseline follows the recommended settings from [40],
where image quality degradation is achieved by adjusting specific hyperparameters. Each modification
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Figure 7: (a) Images in green boxes represent “good” quality generated images, while red boxes
indicate “poor” quality images. Poor-quality images are prone to misembedding by the encoder, as
shown in Fig.[] (b) t-SNE visualization of well-generated images using a CLIP [46] image encoder
shows clear separation between gender clusters and correct placement of most samples, highlighting
the encoder’s unreliable behavior under poor-quality conditions.

is grounded in prior literature, ensuring that the degradations reflect practical and interpretable
variations in generation quality. Specifically, the baseline parameters include a sampling step size of
T = 40, noise strength s,, = 0.7, guidance scale s, = 7.5, and a refinement phase during the last 20

1.

Baseline: Uses sufficient diffusion steps with a balanced influence between the initial
image and noise. This represents high-quality generation with the standard configuration
(T, 81, Sgs Trefine) = (40,0.7,7.5,0.2).

. Weak Guidance: In classifier-free guidance (CFG), a higher guidance scale enforces

stronger adherence to the text prompt, while lower values weaken this connection. We re-
duce s, to simulate a scenario where the model struggles to align the image with the
intended prompt, leading to reduced coherence or incomplete rendering of attributes
(40,0.7,1.0,0.2).

. Fewer Steps: As established in [31]], reducing the number of diffusion steps often results

in poorer visual quality due to incomplete denoising. We halve T' to 20 to intentionally
increase residual noise and visible artifacts, thereby decreasing the model’s capacity to refine
image details (20,0.7,7.5,0.2).

. Strong Noise: For inpainting, increased noise strength s,, preserves more of the original

image, which can hinder the model’s ability to apply the target attribute modifications. By
increasing s, to 0.9, we introduce more randomness, degrading coherence and making the
attribute editing task more difficult (40, 0.9, 7.5, 0.2).

. No Refiner: According to the SDXL paper, a dedicated refiner network improves vi-

sual fidelity and detail. Removing the refiner by setting Tiefine = 0.0 allows us to di-
rectly test the quality drop, particularly in terms of fine-grained details and overall realism
(40,0.7,7.5,0.0).

. Combination: We combine the weak guidance, fewer steps, and strong noise conditions to

create an extremely degraded setting. This tests the model’s robustness under simultaneous
quality impairments (20, 0.9, 1.0, 0.0).

We select 10 professions commonly referenced in the literature [40, 23], 12], including flight attendant,
nurse, secretary, teacher, veterinarian, engineer, pilot, firefighter, surgeon, and builder. Additionally,
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se6  we include four racial groups identified in [40]: Asian, Black, Indian, and White Caucasian. Example
so7  datasets illustrating the applied degradations are shown in Figure [§]

Baseline (T1) Weak Guidance (T2)  Fewer Steps (T3) Strong Noise (T4) No Refiner (T5) T2+T3+T4 (T6)

Asian Female Nurse

Black Female FF Asian Male FA Indian Female FA Indian Male Pilot Caucasian Female Pilot Black Male Nurse

Caucasian Male FF

Figure 8: Examples of constructed evaluation datasets for DQA under various text-to-image genera-
tion scenarios to controlled degradation of generated image. The scenarios include Baseline, Weak
Guidance (T2), Fewer Steps (T3), Strong Noise (T4), No Refiner, and a combination of T2, T3, and
T4. Each setting adjusts specific hyperparameters of Stable Diffusion Inpainting [49] to simulate
realistic degradations in image quality. The datasets represent 10 professions and 4 racial groups,
illustrating the diversity and quality variations used for evaluation while four professions (Nurse,
Pilot, Flight Attendant (FA), and fire fighter (FF)) are presented in the example.
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E Ablation Study: Impact of Hyperparameter

Fig. [0 demonstrates the clear impact of DQA-Guidance on image generation. Compared to the
baseline (A\; = 0), increasing \; effectively reduces quality disparities in generated images while
substantially improving overall image quality, especially Ay = 20 and A\; = 30. However, setting \;
too high introduces excessive noise, leading to a decline in image quality. These findings suggest
that DQA not only provides a reliable measure for evaluating fairness but also serves as an effective
regularizer, enhancing fairness in image generation when applied as guidance in diffusion models.
Additionally, larger values of A5 intuitively contribute to improved generation quality, as demonstrated

in Fig.[9| (b).
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Figure 9: Experimental results for generation quality and quality disparities with DQA-Guidance with
Stable DIffusion. The left plot shows the impact of A; on generation quality for each demographic
group (lower values indicate better quality) and displays the average and maximum quality gap across
all disease classes (lower values indicate reduced disparity). The right plot illustrates the effect of Ay
on overall generation quality. Here, \; = 0 denotes no DQA-Guidance, while higher \; values reflect
a stronger influence of DQA-Guidance. DQA-Guidance effectively enhances generation quality and
reduces quality disparities across demographic groups.

F Details in Chest X-ray Dataset and Generation

F.1 Details of the Chest X-ray Dataset

We use the NIH ChestX-ray14 dataset [63]], a large repository containing 112,120 chest X-ray images
from 30,805 patients, annotated with 14 common thoracic disease categories, including Hernia,
Pneumonia, Fibrosis, Emphysema, Edema, Cardiomegaly, Pleural Thickening, Consolidation, Mass,
Pneumothorax, Nodule, Atelectasis, Effusion, and Infiltration. By including ‘No Findings’ as a
benign case, the dataset expands to 15 classes. It also includes demographic information, with
approximately 56.5% male and 43.5% female patients.

F.2 Details of Synthetic Chest X-ray Generation

To generate synthetic Chest X-ray images, we use a pre-trained ImageGen model [50] trained on
the ROCO dataset [43], which contains paired image and text data for medical purposes. The
pretrained model is available on HuggingFace [64] under the model ID Nihirc/Prompt2MedImage.
We generate 1,000 images per gender and class, resulting in a total of 30,000 images across 2 genders
and 15 classes. The input prompt format for generation is “Chest X-ray image of a { GENDER}
patient showing a/an {DISEASE}."
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Figure 10: (a) To assess the DQA across varying qualities of generated medical images, we simulate
generative model failures by applying transformations to test images that reflect common failure
patterns in generative models. (b) By incrementally applying these transformations and evaluating the
reliability of various pretrained encoders, we find that a ResNet-50 model pretrained on ImageNet-1K
demonstrates greater reliability in quality assessment, consistently handling poor-quality images
across demographic groups by showing lowest DQA in average. In contrast, the same model trained
on reference data shows higher DQA scores, indicating unreliable image quality assessment.

G DQA analysis for Medical Image

G.1 Constructing Reference Dataset for Medical Image

In the medical image, we utilize the Chest X-ray diagnosis dataset in Sec. as the reference, given
its consistent image quality across genders, controlled through human annotations. This consistency
makes it an effective benchmark for quality assessment. Specifically, we designate the training set
of Chest X-ray images as the reference dataset, while the test set and its transformations are used
as a mimic of the generated dataset to help identify a reliable image encoder. In more detail, the
real test data remains in-distribution relative to the training dataset, while we simulate generative
model failures [6] by applying transformations to the test set, creating poor-quality images as shown

in Fig.[T0] (a).

G.2 Reliability Analysis for Image Encoders for Medical Image

For medical images, we assess encoders such as InceptionV3 and RN50 pretrained on IN-1K,
alongside RN50 models trained directly on the Chest X-ray dataset using supervised learning, self-
supervised learning (SimCLR) [10], and supervised learning on a single-gender subset. The RN50
pretrained on IN-1K achieves the lowest DQA score, suggesting that pretraining on a diverse dataset
helps mitigate biases inherent in domain-specific data. In contrast, models trained directly on medical
images exhibit higher DQA scores, potentially due to the amplification of existing biases within the
specialized dataset.

H DQA-Guidance for Medical Image

H.1 Experimental Details

To verify the effectiveness of DQA-Guidance in mitigating quality bias, we utilize a medical dataset
and a generative model for medical images, consistent with the setup in previous sections. Specifically,
we apply Eq. (@) to the text-to-medical-image model during the sampling stage, generating 100 images
per gender and class, resulting in a total of 3000 images (2 genders and 15 classes). For each gender,
the prompt “Chest X-ray image of a {GENDER]} patient showing a {DISEASE_NAME}." is
used, with the Chest X-ray training data for each gender serving as a reference to compute empirical
DQA during the sampling stage. In the experiments, we vary A; while fixing Ay = 0 to examine the
impact of DQA-Guidance on both generation quality and the quality gap between groups.

20



650

651
652
653
654
655
656
657
658
659
660

662

663

665
666

668
669
670
671

672
673
674
675
676

677

H.2 Result Analysis for DQA-Guidance

Fig. [[T]demonstrates the clear impact of DQA-Guidance on medical image generation. Compared to
the baseline (A1 = 0), increasing \; effectively reduces quality disparities in generated images while
substantially improving overall image quality. However, setting A; too high introduces excessive
noise, leading to a decline in image quality. These findings suggest that DQA not only provides a
reliable measure for evaluating fairness but also serves as an effective regularizer, enhancing fairness
in image generation when applied as guidance in diffusion models. Additionally, larger values of
Ao intuitively contribute to improved generation quality. Qualitative results of DQA-Guidance is
shown in Fig.[T2] Similar to DQA-Guidance for human images, the improvements primarily focus
on refining texture. While these improvements may appear subtle from a user’s perspective, the
measured quality confirms that the hyperparameters A; and A, play a significant role in enhancing
overall quality and reducing quality disparities.
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Figure 11: Experimental results for generation quality and quality disparities with DQA-Guidance.
The left plot shows the impact of A\; on generation quality for each demographic group in Chest X-ray
image generation (lower values indicate better quality) and displays the average and maximum quality
gap across all disease classes (lower values indicate reduced disparity). The right plot illustrates the
effect of A2 on overall generation quality. Here, A\; = 0 denotes no DQA guidance, while higher \;
values reflect a stronger influence of DQA-Guidance. DQA-Guidance effectively enhances generation
quality and reduces quality disparities across demographic groups.

I DQA on Different Types of Image Quality Assessment

In addition to our approach, other methods for assessing image quality include visual question
answering (VQA) [40] and neural networks specifically trained for quality evaluation [34} 57, 9].

In [40]], VQA models are asked questions such as Prompt 1: “Is this image real or fake?" or Prompt
2: “Are this person’s limbs distorted?" to detect unreal aspects of a given image. However, as the
image encoder used in VQA models may exhibit bias, the distribution of VQA answers could also be
biased. To quantify this bias, we adapt DQA in Eq. (I)) by replacing D(f(-), f(-)) with p(h(-), T),
where h denotes the VQA model and p represents the probability of detecting abnormalities based on
the text prompt 7. This approach utilizes the probability of realism detected by the VQA model as
the image quality assessment metric.

|p(h(Agen)) - p(h(Bgen)) |

P(W(Zgen))
We also adapt DQA to image quality assessment (IQA) models that output indicators of general
image quality. For example, TOPIQ [9] is a supervised network designed for image quality evaluation.
It is trained on datasets such as FLIVE [65] for general images or CGFIQA [[11] for facial images,

using a regression task to predict quality scores. Let s(-) an IQA model’s outcome, then we adapt
DQA in Eq. (1)) by replacing D(f(-), f(-)) with 5(-), the mean of quality score over each group.

|5(Agen) — S(Bgen)|
5(Zgen)

To summarize the quality assessment methods utilized throughout the paper:

DQAY* =
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Figure 12: Qualitative results of DQA-Guidance for medical image generation. The examples
highlight improvements primarily in texture refinement, demonstrating the method’s ability to
enhance overall image quality while addressing disparities across different conditions.

Gender DOA Average Race DQA Average

(a) DQA for visual question answering (VQA) models  (b) DQA for image quality assessment (IQA) models

Figure 13: DQA on different types of image quality assessments. We compare DQA scores for gender
and racial fairness across VQA models (BLIP and PaliGemma) under two prompts, as well as IQA
models trained on general and facial datasets. Results highlight varying tendencies in DQA across
models and prompts, with racial fairness remaining a significant challenge and facial dataset-trained
IQA models showing higher DQA scores.

* Distance-based methods: Measure the similarity between the feature distributions of
generated images and real images to determine image quality (e.g., FID).

* VQA-based methods: Assess visual realism and detect whether images are free from
noticeable distortions or errors.

* General IQA methods: Evaluate objective image quality metrics such as blur, noise,
sharpness, and color saturation.

We use BLIP [36] and PaliGemma [4]] as representative VQA models with two different prompts.
Additionally, we utilize two pre-trained versions of TOPIQ for general IQA: one trained on the
FLIVE dataset for general images and another trained on the CGFIQA dataset for facial images.

The experimental results for these different types of image quality assessments are visualized in
Fig.[13] Interestingly, VQA models exhibit varying tendencies. For gender-based DQA, PaliGemma
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demonstrates reliability with low DQA for Prompt 1 but shows relatively high DQA for Prompt 2.
Conversely, BLIP achieves reliable results with Prompt 2 but exhibits high DQA for Prompt 1. For
racial DQA, both models exhibit similar tendencies with gender-based DQA; however, the overall
DQA values are significantly higher, indicating that racial bias remains a pressing concern in fair
evaluation.

In the case of IQA models, the version trained on a general dataset exhibits greater reliability with
low DQA, whereas the version trained on facial datasets demonstrates significantly higher DQA. This
result highlights potential challenges in achieving fairness when applying models trained on specific
datasets.

J Impact of DQA-Guidance on Downstream Tasks

In line with Appendix [B.2] we further investigate the impact of DQA-Guidance on fairness in AUC
across gender in medical image classification. We compare the classification performance using
different versions of generated samples. For this analysis, we use 100 images per gender and class
as augmentation, while Table [2]reports results based on 1,000 images per gender and class for full
augmentation and 200 images per gender and class for fair and unfair subsets.

Table [3]shows the classification performance when generative samples created with DQA-Guidance
are used for data augmentation. To isolate the impact of \;, we eliminate the influence of A5 by
setting Ay = 0.

Compared to baseline augmentation (No Guidance), DQA-Guidance improves the overall AUC and
significantly reduces both the mean and maximum AUC gaps between demographic groups. This
enhancement is achieved without explicit fairness constraints, relying solely on improved quality
parity between groups.

Table 3: Classification performance and fairness metrics on the Chest X-ray dataset using DQA-
Guidance for data augmentation. The table compares results across augmentation strategies using
100 images per gender and class. \; is varied while A5 is set to O to isolate its effect. Compared to
No Guidance, DQA-Guidance improves overall AUC and significantly reduces both the mean and
maximum AUC gaps between demographic groups, demonstrating its effectiveness in enhancing
quality parity without applying explicit fairness constraints.

Overall AUC ~ AUC™" AUCP™'  Ayg(AAUC) |  max(AAUC) |

Bascline 83.10+0.13  72.7840.33 71.96+035  2.40+0.36 7.08+1.82
(No Augmentation)

No Guidance 85.2140.12  77.46£0.30 77.00£0.33  2.52+0.33 8.962.04
D%ﬁ;i‘“fg;lce 8526+0.12 76284033 76404037 2174035 8.0742.43
D(%’;;G:‘“gg;“’e 85.7440.12  77.9040.34 78.04+032 2224038 7.8242.86
D?ﬁ‘i“i%%r;ce 85.55+0.12  77.65+035 77.22+035  2.3140.36 7.8142.42
DQA-Guidance g5 701011 78.064035 77.62£034  2.28+0.38 8.0642.66

(A1 = Ao = 100)

K Experimental Result with Fréchet distance

The effectiveness of DQA-Guidance is demonstrated in Table [T} using the MMD metric with the
DINO-RNS50 encoder. In addition, we report the Fréchet Distance for generated images with and
without DQA-Guidance to further evaluate generation quality and disparities across demographic
groups in Table[d]
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Table 4: Experimental results for generation quality and quality disparities with DQA-Guidance.

Mean Max
MethOd AngMD ‘D’mu,le - Dfe'male‘ |Dmale - Dfemale|
Baseline (Stable Diffusion) 29.09 1.26 1.77
+ DQA-Guidance (\; = 20, A2 = 100) 28.53 0.09 0.12
+ DQA-Guidance (A\; = 20, Ao = 1000) 26.27 0.29 0.44

716 L Computational Resource

Table 5: Compute Resources Used for Experiments

Component Details
CPU AMD EPYC 7313 16-Core Processor
GPU NVIDIA RTX A5000

77 M Licenses for existing assets

Table 6: Licenses for each asset

Dataset License

ROCO Dataset CCBY-NC-SA 4.0
Stable Diffusion creativeml-openrail-m
SDXL openrail++
Prompt2MedImage witfpl
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction accurately reflect the paper’s contributions, scope,
and all necessary claims.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitation of work is dicussed in Section[5.4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical result is included in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of experimental setting is presented, while code and data are
available via supplementary materials.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is publicly available, or reproducible by image generation with open
access code. The code for DQA-Guidance is available in the supplementary material, and
will be published on GitHub after the acceptance of the paper.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details of experimental setting are provided.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: For classification task, Table @ the confidence interval is presented.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computational resource is mentioned in Appendix [[]
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed our code according to the NeurIPS Code of Ethics, and no
deviation or issue is detected.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Mentioned in the Conclusion section
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
* We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses are mentioned in Appendix [M} while each paper are correctly cited
in the main contents.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLM is used only for refining authors’ original writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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