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Abstract001

We present a novel metric for the evaluation of002
morphological plausibility of subword segmen-003
tation. Unlike the typically used morpheme004
boundary or retrieval F-score, which requires005
gold segmentation data that is either unavail-006
able or of inconsistent quality across many lan-007
guages, our approach utilizes morpho-syntactic008
features. These are available in resources such009
as Universal Dependencies or UniMorph for010
a much wider range of languages. The metric011
works by probabilistically aligning subwords012
with morphological features through an IBM013
Model 1. Our experiments show that the met-014
ric correlates well with traditional morpheme015
boundary recall while being more broadly ap-016
plicable across languages with different mor-017
phological systems.018

1 Introduction019

Subword tokenization is a fundamental preprocess-020

ing step in modern NLP systems. When evaluat-021

ing tokenizers, researchers consider both extrinsic022

metrics (downstream task performance) and intrin-023

sic properties, including morphological plausibil-024

ity—how well tokenization aligns with morpho-025

logical segmentation (Uzan et al., 2024; Libovický026

and Helcl, 2024; Arnett and Bergen, 2025)—along-027

side statistical measures like compression ratio028

and vocabulary coverage (Limisiewicz et al., 2023;029

Zouhar et al., 2023; Schmidt et al., 2024).030

Evaluating morphological plausibility faces chal-031

lenges due to unavailable or inconsistent gold stan-032

dard segmentation data, which biases experiments033

toward high-resource languages. Even among034

these languages, cross-dataset inconsistencies ex-035

ist. For example, the German word Wolkenkratzer036

("skyscraper") is segmented as Wolke + n + kratz037

+ er in German-CELEX (Gulikers et al., 1995) but038

left unsegmented in German MorphyNet (Batsuren039

et al., 2021), raising concerns about evaluation va-040

lidity.041

Word Morpho-syntactic
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Figure 1: The workflow subword tokenization evalua-
tion for morphological plausibility: Instead of compar-
ing subwords with morpheme segmentation, we align
morpho-syntactic features with subwods using IBM
Model 1 to compute our proposed alignment score .

Additionally, some tokenizers employ non- 042

concatenative approaches, using latent variables 043

(Samuel and Øvrelid, 2023), incomplete text cover- 044

age (Hofmann et al., 2022), or additional tags for 045

casing and diacritics (Popel et al., 2022; Forsythe, 046

2023). For these approaches, traditional morpheme 047

boundary metrics are not well-defined. 048

We address these limitations with a novel metric 049

that evaluates morphological plausibility without 050

gold segmentation data, instead utilizing morpho- 051

syntactic features from resources like UniMorph 052

(Batsuren et al., 2022b), available for 169 lan- 053

guages. These features enable cross-lingual com- 054

parison through a language-independent schema, 055

such as the Dutch word adviseren (“to advise”) 056

tagged as V;SBJV;PRS;PL. 057

Our method uses IBM Model 1 (Brown et al., 058

1993) to align morphological features with subword 059

tokens, which is applicable to both concatenative 060

and non-concatenative tokenization schemes. We 061

extract alignment probabilities between subword 062

tokens and morpho-syntactic features and aggre- 063

gate them into a single measure. The metric shows 064

a strong correlation with traditional boundary re- 065
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Word Segmentation Morpho-syntactic Feature

rýžový rýž|ov|ý ADJ;ACC;MASC;INAN;SG
bázeň báz|eň N;ACC;SG;FEM
projet pro|je|t V;V.PTCP;MASC;PASS;SG

Table 1: The curated dataset by combining the seg-
mentation from Universal Segmentations and morpho-
syntactic features from UniMorph.

call across diverse languages. The alignment-based066

approach rests on the principle that morphemes067

and morphological features are inherently linked.068

Well-segmented subwords should capture units that069

consistently express particular grammatical func-070

tions, leading to strong feature-subword alignments.071

Poor segmentation produces arbitrary character se-072

quences that align weakly with any specific fea-073

tures, resulting in lower scores.074

We conceptualize the workflow as illustrated075

in Figure 1. The data curation block deals with076

collecting datasets with morpheme segmentation077

and morpho-syntactic features mapped to the word078

forms. We train tokenizers and the IBM Model 1079

using the created data structure (Table 1) and pro-080

pose an alignment score that quantifies the mor-081

phological plausibility. The datasets along with the082

experimental codes1 are also released.083

2 Related Work084

Most frequently used subword tokenizers are085

trained with a statistical heuristic, such as greed-086

ily shortening the training corpus (Sennrich et al.,087

2016) or minimizing negative log likelihood of the088

training data in a unigram model (Kudo, 2018).089

The properties of the resulting tokenizer depend090

not only on the algorithm itself but also, to a large091

extent, on data preprocessing and the languages in092

the training data mix.093

Intrinsic evaluation of tokenizers includes094

information-theoretical properties, such as com-095

pression ratio or Renyi efficiency (Zouhar et al.,096

2023). In multilingual setups, the evaluation can in-097

clude vocabulary allocation for different languages098

(Limisiewicz et al., 2023) or literal and semantic099

token overlap between languages (Hämmerl et al.,100

2025).101

Morphological qualities of word segmentation102

are usually evaluated either via morpheme preci-103

sion and recall in more linguistic contexts (Bat-104

suren et al., 2022a) or via morpheme boundary105

1https://anonymous.4open.science/r/
morph-tok-eval-C27B/

precision and recall in the context of subword seg- 106

mentation (Uzan et al., 2024; Libovický and Helcl, 107

2024). 108

IBM Models for word alignment in statistical 109

machine translation were previously shown to be 110

able to discover the relationship between mor- 111

phemes and morpho-syntactic features (Stephen 112

et al., 2024) and can be used for unsupervised 113

extraction of morphological categories for mor- 114

phemes. These results indicate that the alignment 115

probabilities might be a good indicator of the mor- 116

phological quality of subword segmentation. 117

3 The Alignment Score 118

Our metric uses IBM Model 1 (Brown et al., 1993) 119

to establish probabilistic alignments between sub- 120

word tokens and morphological features. It oper- 121

ates as an expectation-maximization algorithm that 122

learns translation probabilities between source and 123

target elements by iteratively maximizing the like- 124

lihood of observing the target given the source, 125

without requiring any initial alignment. In our 126

context, it discovers the probability distribution 127

P (f | s) between subword s tokens and morpho- 128

logical features f by treating each subword-feature 129

pair as a potential alignment, then converging to- 130

ward alignments that best explain the observed co- 131

occurrences in the data. 132

The morphological plausibility score for tok- 133

enizer T 134

1

|W |
∑
w∈W

1

|Sw|
∑
s∈Sw

aggf∈Fw
P (f | s) (1) 135

where W is our corpus, Fw are features for word 136

w, Sw are subwords of w, agg is a function that 137

aggregates the probability scores for a single sub- 138

word. We implement different aggregation func- 139

tions: maximum, minimum, sum of the probabili- 140

ties, sum of their logarithms, and mean. 141

To eliminate noisy alignments, we only consider 142

probabilities P (f | s) over a certain threshold, 143

which is a hyperparameter of our method. 144

4 Experiments 145

We validate the proposed metric by measuring the 146

Spearman correlation of the proposed metric and 147

the established way of measuring morphological 148

plausibility via morpheme boundary precision, re- 149

call, and F1 score. 150
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Type Ag-
gre-
gate

Boundary Precision Boundary Recall

cs de en fi hr hy kn nl sk cs de en fi hr hy kn nl sk

Joint

Sum .06 -.28 -.67 -.14 -.13 .32 -.65 -.24 .30 .94 .84 .67 .78 .74 .73 .91 .80 .71
Log .27 .72 .79 -.15 -.35 -.08 -.78 .81 .16 -.67 -.84 -.78 -.69 -.29 .49 .99 -.95 .86
Mean .05 -.35 -.70 -.17 -.13 .32 -.65 -.24 -.32 .94 .87 .71 .82 .74 .73 .91 .80 .70
Min .04 -.36 -.70 -.15 -.13 .32 -.65 -.24 -.32 .94 .88 .71 .95 .74 .73 .91 .80 .70
Max .05 -.35 -.70 -.13 -.13 .32 -.65 -.24 -.33 .94 .87 .71 .79 .74 .73 .91 .80 .70

Split

Sum -.03 -.31 -.70 -.15 .02 .15 -.67 -.17 -.35 .98 .87 .71 .82 .60 .81 .95 .72 .71
Log .21 .60 .79 .09 -.55 -.29 -.71 .15 .44 -.96 -.88 -.78 -.84 -.27 -.64 .91 -.60 -.84
Mean -.04 -.34 -.72 -.11 -.16 .12 -.67 -.16 -.34 .98 .88 .72 .91 .81 .83 .96 .72 .72
Min -.05 -.36 -.72 -.02 -.00 -.05 -.63 -.14 -.33 .98 .89 .72 .94 .82 .88 .90 .70 .73
Max -.04 -.35 -.71 -.10 -.19 .14 -.66 -.16 -.34 .98 .88 .71 .80 .76 .82 .97 .71 72

Table 2: The Spearman correlation of our metric scores using different aggregates over full and split tags across
languages. The threshold of the alignment probabilities obtained through IBM Model 1 is 0.01.
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Figure 2: The Spearman correlation of our metric scores with boundary recall, precision, and F1 score for Finnish.
Plots for other languages are in the Appendix.

4.1 Linguistic Resources151

We use segmentation resources from Universal Seg-152

mentations (Žabokrtský et al., 2022), a data re-153

source that houses harmonized datasets for morpho-154

logical segmentation. The data resources used are155

Armenian-MorphyNet (hy), Finnish-MorphyNet156

(fi), Kannada-KCIS (kn), English-CELEX (en),157

German-CELEX (de), Dutch-CELEX (nl), Czech-158

DeriNet (cs), and Serbo-Croatian-MorphyNet (hr).159

Additionally, we use the Slovak (sk) dataset by160

Ološtiak et al. (2015).161

We use UniMorph (Batsuren et al., 2022b) for162

extracting the morpho-syntactic feature tags for the163

word forms.164

We test two approaches to feature representa-165

tion: “Joint” tags containing complete morphologi-166

cal information, and “Split” tags where composite167

features are separated into atomic units (e.g., ‘V’168

for verb and ‘SG’ for singular are considered sepa-169

rate units). Even though considering the morpho-170

syntactic features jointly makes more sense lin-171

guistically, treating them independently provides172

a richer training signal for estimating probabilities 173

with the IBM model. 174

The data for training the tokenizers and the met- 175

ric was created by mapping the word forms along 176

with their morphological segmentation with Uni- 177

Morph feature tags. 178

4.2 Subword Tokenizers 179

We evaluate several standard subword tokenizers: 180

Byte-Pair-Encoding (Sennrich et al., 2016), Word- 181

Piece (Schuster and Nakajima, 2012), and the Uni- 182

gram model (Kudo, 2018). We train the tokenizers 183

using 1M sentences from the CC100 corpus (Wen- 184

zek et al., 2020) for the respective languages with 185

vocabulary sizes of 2k, 4k, 8k, 16k, 24k, 32k, 40k, 186

48k, 56k, 64k, 72k, and 80k. Additionally, we 187

add character segmentation and gold morphologi- 188

cal segmentation to the correlation study. 189

We segment the UniMorph vocabulary using the 190

tokenizers and run the IBM model for 10 epochs, 191

which is enough for convergence. We evaluate the 192

metric with 11 thresholds between 0.01 and 0.5. 193
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4.3 Results194

We measure the correlation between the pro-195

posed morphological plausibility metric and tradi-196

tional boundary-based metrics across 9 languages197

with different morphological structures. Table 2198

presents the Spearman correlation coefficients be-199

tween our alignment-based scores and boundary200

precision/recall measures.201

Correlation with Boundary Metrics. Our202

alignment-based metric correlates strongly with tra-203

ditional boundary recall measures across the evalu-204

ated languages. Most languages show high positive205

correlations (> 0.70) when using Sum, Mean, Min,206

and Max aggregation functions (See Appendix A).207

Czech (cs) exhibits particularly strong correlations,208

reaching 0.94-0.98 for boundary recall. Correla-209

tions with boundary precision vary more, with sev-210

eral negative correlations observed, suggesting our211

metric aligns more closely with the recall aspect of212

morphological segmentation, rather than precision,213

which measures over-segmentation.214

Impact of Feature Representation. Split repre-215

sentation generally produces stronger correlations216

with boundary recall, particularly for morphologi-217

cally complex languages like Finnish (fi) and Ar-218

menian (hy). For Finnish (compare Table 2 and Fig-219

ure 2), the correlation increases from 0.79 (Joint-220

Mean) to 0.91 (Split-Mean).221

Aggregation Function Analysis. Sum, Mean,222

Min, and Max aggregation functions show similar223

performance patterns, with strong positive corre-224

lations with boundary recall. The Log aggrega-225

tion function often yields inverse correlations (e.g.,226

−0.96 for Czech, −0.88 for German). The Mean227

aggregation function performs consistently across228

languages, with an average correlation of 0.86 with229

boundary recall when using split features.230

Cross-lingual Observations. Performance231

varies across language families. The three232

Germanic languages (German, English, and Dutch)233

exhibit consistent correlation patterns, while234

Finnish and Kannada show some of the strongest235

correlations with the Min aggregation function236

(0.94 and 0.90 respectively). Czech and Slovak237

correlate well with boundary recall but show more238

variable relationships with precision.239

5 Discussion 240

The metric’s inherent tendency to penalize over- 241

segmentation can be seen through the weak corre- 242

lation with the boundary precision scores. How- 243

ever, we observe consistent patterns of correlations 244

across languages, which provides a strong signal 245

for the metric’s cross-lingual viability. The metric 246

is also able to capture the distinct morphology of 247

languages well. Split representations have higher 248

correlations with boundary recall (especially Mean 249

and Max functions) for Armenian, Czech, Finnish, 250

Kannada, Serbo-Croatian, and Slovak, illustrating 251

that the metric is sensitive towards agglutination 252

and allomorphy. This is additionally supported by 253

almost identical results for Joint and Split represen- 254

tations for English and German, where we find a 255

weaker fusional morphology. 256

6 Conclusion 257

In this paper, we propose a new metric to as- 258

sess the morphological plausibility of subword 259

segmentation, addressing limitations of traditional 260

evaluation metrics. We use datasets where the 261

morpho-syntactic features of the word forms are 262

also mapped, along with their morpheme segmenta- 263

tion. The morpho-syntactic features are taken from 264

UniMorph, and the gold morpheme segmentation is 265

accessed from Universal Segmentations. We train 266

our tokenizers with varying vocabulary sizes using 267

Byte-Pair-Encoding, WordPiece, and the Unigram 268

model. The resulting subword tokens per word 269

form are, respectively, aligned with the morpho- 270

syntactic features using the IBM Model 1. The 271

resulting alignment probabilities are aggregated in 272

multiple ways to obtain a statistically robust array 273

of results. These results are correlated with the 274

traditional boundary precision, recall, and F1 score 275

obtained by comparing the tokenizer outputs with 276

the gold morpheme segmentation data in hand. 277

Our proposed metric correlates strongly with 278

boundary recall across languages with varied mor- 279

phological systems, making it a capable contender 280

for testing morphological plausibility. 281

Limitations 282

The current stream of experiments is correlated 283

with the existing gold segmentation data, which 284

could potentially carry some inherent flaws. We 285

do not run any checks whatsoever to quantify the 286

accuracy of the gold segmentation data. 287
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Figure 3: The correlation of the alignment-based score with boundary recall for all languages.
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Figure 4: The correlation of the alignment-based score with boundary precision for all languages.
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Figure 5: The correlation of the alignment-based score with F1 score for all languages.
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