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Abstract

We present a novel metric for the evaluation of
morphological plausibility of subword segmen-
tation. Unlike the typically used morpheme
boundary or retrieval F-score, which requires
gold segmentation data that is either unavail-
able or of inconsistent quality across many lan-
guages, our approach utilizes morpho-syntactic
features. These are available in resources such
as Universal Dependencies or UniMorph for
a much wider range of languages. The metric
works by probabilistically aligning subwords
with morphological features through an IBM
Model 1. Our experiments show that the met-
ric correlates well with traditional morpheme
boundary recall while being more broadly ap-
plicable across languages with different mor-
phological systems.

1 Introduction

Subword tokenization is a fundamental preprocess-
ing step in modern NLP systems. When evaluat-
ing tokenizers, researchers consider both extrinsic
metrics (downstream task performance) and intrin-
sic properties, including morphological plausibil-
ity—how well tokenization aligns with morpho-
logical segmentation (Uzan et al., 2024; Libovicky
and Helcl, 2024; Arnett and Bergen, 2025)—along-
side statistical measures like compression ratio
and vocabulary coverage (Limisiewicz et al., 2023;
Zouhar et al., 2023; Schmidt et al., 2024).

Evaluating morphological plausibility faces chal-
lenges due to unavailable or inconsistent gold stan-
dard segmentation data, which biases experiments
toward high-resource languages. Even among
these languages, cross-dataset inconsistencies ex-
ist. For example, the German word Wolkenkratzer
("skyscraper") is segmented as Wolke + n + kratz
+ er in German-CELEX (Gulikers et al., 1995) but
left unsegmented in German MorphyNet (Batsuren
et al., 2021), raising concerns about evaluation va-
lidity.
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Figure 1: The workflow subword tokenization evalua-
tion for morphological plausibility: Instead of compar-
ing subwords with morpheme segmentation, we align
morpho-syntactic features with subwods using IBM
Model 1 to compute our proposed alignment score .

Additionally, some tokenizers employ non-
concatenative approaches, using latent variables
(Samuel and @vrelid, 2023), incomplete text cover-
age (Hofmann et al., 2022), or additional tags for
casing and diacritics (Popel et al., 2022; Forsythe,
2023). For these approaches, traditional morpheme
boundary metrics are not well-defined.

We address these limitations with a novel metric
that evaluates morphological plausibility without
gold segmentation data, instead utilizing morpho-
syntactic features from resources like UniMorph
(Batsuren et al., 2022b), available for 169 lan-
guages. These features enable cross-lingual com-
parison through a language-independent schema,
such as the Dutch word adviseren (“to advise™)
tagged as V;SBJV;PRS;PL.

Our method uses IBM Model 1 (Brown et al.,
1993) to align morphological features with subword
tokens, which is applicable to both concatenative
and non-concatenative tokenization schemes. We
extract alignment probabilities between subword
tokens and morpho-syntactic features and aggre-
gate them into a single measure. The metric shows
a strong correlation with traditional boundary re-



Word Segmentation Morpho-syntactic Feature
ry7ovy ryzlovly ADJ ; ACC;MASC ; INAN; SG
bazen bazlen N;ACC; SG; FEM
projet proljelt V;V.PTCP;MASC;PASS; SG

Table 1: The curated dataset by combining the seg-
mentation from Universal Segmentations and morpho-
syntactic features from UniMorph.

call across diverse languages. The alignment-based
approach rests on the principle that morphemes
and morphological features are inherently linked.
Well-segmented subwords should capture units that
consistently express particular grammatical func-
tions, leading to strong feature-subword alignments.
Poor segmentation produces arbitrary character se-
quences that align weakly with any specific fea-
tures, resulting in lower scores.

We conceptualize the workflow as illustrated
in Figure 1. The data curation block deals with
collecting datasets with morpheme segmentation
and morpho-syntactic features mapped to the word
forms. We train tokenizers and the IBM Model 1
using the created data structure (Table 1) and pro-
pose an alignment score that quantifies the mor-
phological plausibility. The datasets along with the
experimental codes' are also released.

2 Related Work

Most frequently used subword tokenizers are
trained with a statistical heuristic, such as greed-
ily shortening the training corpus (Sennrich et al.,
2016) or minimizing negative log likelihood of the
training data in a unigram model (Kudo, 2018).
The properties of the resulting tokenizer depend
not only on the algorithm itself but also, to a large
extent, on data preprocessing and the languages in
the training data mix.

Intrinsic evaluation of tokenizers includes
information-theoretical properties, such as com-
pression ratio or Renyi efficiency (Zouhar et al.,
2023). In multilingual setups, the evaluation can in-
clude vocabulary allocation for different languages
(Limisiewicz et al., 2023) or literal and semantic
token overlap between languages (Himmerl et al.,
2025).

Morphological qualities of word segmentation
are usually evaluated either via morpheme preci-
sion and recall in more linguistic contexts (Bat-
suren et al., 2022a) or via morpheme boundary

1https://anonymous.4open.science/r/
morph-tok-eval-C27B/

precision and recall in the context of subword seg-
mentation (Uzan et al., 2024; Libovicky and Helcl,
2024).

IBM Models for word alignment in statistical
machine translation were previously shown to be
able to discover the relationship between mor-
phemes and morpho-syntactic features (Stephen
et al.,, 2024) and can be used for unsupervised
extraction of morphological categories for mor-
phemes. These results indicate that the alignment
probabilities might be a good indicator of the mor-
phological quality of subword segmentation.

3 The Alignment Score

Our metric uses IBM Model 1 (Brown et al., 1993)
to establish probabilistic alignments between sub-
word tokens and morphological features. It oper-
ates as an expectation-maximization algorithm that
learns translation probabilities between source and
target elements by iteratively maximizing the like-
lihood of observing the target given the source,
without requiring any initial alignment. In our
context, it discovers the probability distribution
P(f | s) between subword s tokens and morpho-
logical features f by treating each subword-feature
pair as a potential alignment, then converging to-
ward alignments that best explain the observed co-
occurrences in the data.

The morphological plausibility score for tok-
enizer T’

1 1
W Z Sul Z aggser, P(fs) (1)
wew 7%

SESw

where W is our corpus, F,, are features for word
w, Sy, are subwords of w, agg is a function that
aggregates the probability scores for a single sub-
word. We implement different aggregation func-
tions: maximum, minimum, sum of the probabili-
ties, sum of their logarithms, and mean.

To eliminate noisy alignments, we only consider
probabilities P(f | s) over a certain threshold,
which is a hyperparameter of our method.

4 Experiments

We validate the proposed metric by measuring the
Spearman correlation of the proposed metric and
the established way of measuring morphological
plausibility via morpheme boundary precision, re-
call, and F; score.
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Type Ag- Boundary Precision Boundary Recall
re-
gate cs de en fi hr hy kn nl sk ¢ de en fi hr hy kn nl sk
Sum .06 -28 -67 -14 -13 32 -65 -24 30| 94 84 67 78 .74 73 91 B0 .71
Log 27 72 79 -15 -35 -08 -78 81 .16 -.67 -84 -78 -69 -29 49 99 -95 .86
Joint Mean .05 -35 -.70 -.17 -13 32 -65 -24 -32 94 87 71 .82 74 73 91 .80 .70
Min .04 -36 -70 -15 -.13 32 -65 -24 -32 |94 88 71 95 .74 .73 91 180 .70
Max .05 -35 -70 -13 -.13 32 -65 -24 -33 |94 8 71 79 74 .73 91 180 .70
Sum -03 -31 -70 -15 .02 .15/-67 -17 -35 [ 98 87 .71 .82 .60 =81 95 .72 .71
Log 21 60 79 .09 -55 -29 -71 .15 44 |-96 -88 -78 -84 -27 -.64 91 -60 -84
Split Mean -04 -34 -72 -.11 -16 .12 -67 -16 -34 | 98 .88 .72 91 181 183 96 .72 .72
Min -05 -36 -72 -02 -00 -.05 -63 -14 -33 | 98 89 .72 94 82 88 .90 .70 .73
Max -04 -35 -71 -10 -.19 .14 -66 -16 -34 | 98 88 .71 .80 .76 82 97 .71 72

Table 2: The Spearman correlation of our metric scores using different aggregates over full and split tags across
languages. The threshold of the alignment probabilities obtained through IBM Model 1 is 0.01.
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Figure 2: The Spearman correlation of our metric scores with boundary recall, precision, and F; score for Finnish.

Plots for other languages are in the Appendix.

4.1 Linguistic Resources

We use segmentation resources from Universal Seg-
mentations (Zabokrtsk)’/ et al., 2022), a data re-
source that houses harmonized datasets for morpho-
logical segmentation. The data resources used are
Armenian-MorphyNet (hy), Finnish-MorphyNet
(fi), Kannada-KCIS (kn), English-CELEX (en),
German-CELEX (de), Dutch-CELEX (nl), Czech-
DeriNet (cs), and Serbo-Croatian-MorphyNet (hr).
Additionally, we use the Slovak (sk) dataset by
Olostiak et al. (2015).

We use UniMorph (Batsuren et al., 2022b) for
extracting the morpho-syntactic feature tags for the
word forms.

We test two approaches to feature representa-
tion: “Joint” tags containing complete morphologi-
cal information, and “Split” tags where composite
features are separated into atomic units (e.g., ‘V’
for verb and ‘SG’ for singular are considered sepa-
rate units). Even though considering the morpho-
syntactic features jointly makes more sense lin-
guistically, treating them independently provides

a richer training signal for estimating probabilities
with the IBM model.

The data for training the tokenizers and the met-
ric was created by mapping the word forms along
with their morphological segmentation with Uni-
Morph feature tags.

4.2 Subword Tokenizers

We evaluate several standard subword tokenizers:
Byte-Pair-Encoding (Sennrich et al., 2016), Word-
Piece (Schuster and Nakajima, 2012), and the Uni-
gram model (Kudo, 2018). We train the tokenizers
using 1M sentences from the CC100 corpus (Wen-
zek et al., 2020) for the respective languages with
vocabulary sizes of 2k, 4k, 8k, 16k, 24k, 32k, 40k,
48k, 56k, 64k, 72k, and 80k. Additionally, we
add character segmentation and gold morphologi-
cal segmentation to the correlation study.

We segment the UniMorph vocabulary using the
tokenizers and run the IBM model for 10 epochs,
which is enough for convergence. We evaluate the
metric with 11 thresholds between 0.01 and 0.5.



4.3 Results

We measure the correlation between the pro-
posed morphological plausibility metric and tradi-
tional boundary-based metrics across 9 languages
with different morphological structures. Table 2
presents the Spearman correlation coefficients be-
tween our alignment-based scores and boundary
precision/recall measures.

Correlation with Boundary Metrics. Our
alignment-based metric correlates strongly with tra-
ditional boundary recall measures across the evalu-
ated languages. Most languages show high positive
correlations (> 0.70) when using Sum, Mean, Min,
and Max aggregation functions (See Appendix A).
Czech (cs) exhibits particularly strong correlations,
reaching 0.94-0.98 for boundary recall. Correla-
tions with boundary precision vary more, with sev-
eral negative correlations observed, suggesting our
metric aligns more closely with the recall aspect of
morphological segmentation, rather than precision,
which measures over-segmentation.

Impact of Feature Representation. Split repre-
sentation generally produces stronger correlations
with boundary recall, particularly for morphologi-
cally complex languages like Finnish (fi) and Ar-
menian (hy). For Finnish (compare Table 2 and Fig-
ure 2), the correlation increases from 0.79 (Joint-
Mean) to 0.91 (Split-Mean).

Aggregation Function Analysis. Sum, Mean,
Min, and Max aggregation functions show similar
performance patterns, with strong positive corre-
lations with boundary recall. The Log aggrega-
tion function often yields inverse correlations (e.g.,
—0.96 for Czech, —0.88 for German). The Mean
aggregation function performs consistently across
languages, with an average correlation of 0.86 with
boundary recall when using split features.

Cross-lingual Observations. Performance
varies across language families. The three
Germanic languages (German, English, and Dutch)
exhibit consistent correlation patterns, while
Finnish and Kannada show some of the strongest
correlations with the Min aggregation function
(0.94 and 0.90 respectively). Czech and Slovak
correlate well with boundary recall but show more
variable relationships with precision.

5 Discussion

The metric’s inherent tendency to penalize over-
segmentation can be seen through the weak corre-
lation with the boundary precision scores. How-
ever, we observe consistent patterns of correlations
across languages, which provides a strong signal
for the metric’s cross-lingual viability. The metric
is also able to capture the distinct morphology of
languages well. Split representations have higher
correlations with boundary recall (especially Mean
and Max functions) for Armenian, Czech, Finnish,
Kannada, Serbo-Croatian, and Slovak, illustrating
that the metric is sensitive towards agglutination
and allomorphy. This is additionally supported by
almost identical results for Joint and Split represen-
tations for English and German, where we find a
weaker fusional morphology.

6 Conclusion

In this paper, we propose a new metric to as-
sess the morphological plausibility of subword
segmentation, addressing limitations of traditional
evaluation metrics. We use datasets where the
morpho-syntactic features of the word forms are
also mapped, along with their morpheme segmenta-
tion. The morpho-syntactic features are taken from
UniMorph, and the gold morpheme segmentation is
accessed from Universal Segmentations. We train
our tokenizers with varying vocabulary sizes using
Byte-Pair-Encoding, WordPiece, and the Unigram
model. The resulting subword tokens per word
form are, respectively, aligned with the morpho-
syntactic features using the IBM Model 1. The
resulting alignment probabilities are aggregated in
multiple ways to obtain a statistically robust array
of results. These results are correlated with the
traditional boundary precision, recall, and F} score
obtained by comparing the tokenizer outputs with
the gold morpheme segmentation data in hand.

Our proposed metric correlates strongly with
boundary recall across languages with varied mor-
phological systems, making it a capable contender
for testing morphological plausibility.

Limitations

The current stream of experiments is correlated
with the existing gold segmentation data, which
could potentially carry some inherent flaws. We
do not run any checks whatsoever to quantify the
accuracy of the gold segmentation data.
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A Appendix: Detailed Results

Figure 3 shows the correlation of the alignment
score with boundary recall for different thresholds
for all 9 languages, Figure 4 shows the correla-
tion with boundary recall, and Figure 5 shows the
correlation with F; score.
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Figure 3: The correlation of the alignment-based score with boundary recall for all languages.
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Figure 4: The correlation of the alignment-based score with boundary precision for all languages.
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Figure 5: The correlation of the alignment-based score with F; score for all languages.
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