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Abstract

Predictions and generations from large language models are increasingly being
explored as an aid in limited data regimes, such as in computational social science
and human subjects research. While prior technical work has mainly explored the
potential to use model-predicted labels for unlabeled data in a principled manner,
there is increasing interest in using large language models to generate entirely new
synthetic samples (e.g., synthetic simulations), such as in responses to surveys.
However, it remains unclear by what means practitioners can combine such data
with real data and yet produce statistically valid conclusions upon them. In this
paper, we introduce a new estimator based on generalized method of moments,
providing a hyperparameter-free solution with strong theoretical guarantees to
address this challenge. Intriguingly, we find that interactions between the moment
residuals of synthetic data and those of real data (i.e., when they are predictive of
each other) can greatly improve estimates of the target parameter. We validate the
finite-sample performance of our estimator across different tasks in computational
social science applications, demonstrating large empirical gains.

1 Introduction

Practitioners increasingly leverage large language models (LLMs) as cheap but noisy labelers for
automating tasks traditionally reliant on manual human annotations |Ziems et al.| [2024]. Beyond
annotation, recently, practitioners have started to explore the possibility of leveraging LLMs for more
diverse and open-ended forms of model-generated data, such as outputting entirely new synthetic
samples, e.g., simulating human responses to surveys or human participants in early pilot studies
[Argyle et al.}2023| |Brand et al.| 2023, Dominguez-Olmedo et al., 2024, |Anthis et al.,|2025, Hwang
et al.l [2025b]. Determining the extent to which researchers should integrate LLM simulations—
whether by simulating all samples, combining simulated and real samples, or relying entirely on
human participants—remains an open and task-dependent question. While such pipelines leveraging
fully synthetic simulations have yet to be fully realized, reliable mechanisms for aggregating these
data sources are indeed what will inform both the feasibility of such design choices and how such
pipelines should be implemented in practice.

A persistent challenge, however, is that naively aggregating synthetic samples with real data for
downstream inference often leads to greatly biased estimates, compromising the statistical validity of
downstream conclusions. Ideally, we would like to realize the benefits of incorporating information
from these additional data sources while retaining favorable statistical properties—consistency and
proper asymptotic coverage. We consider the setting where practitioners have access to a corpus of
unlabeled text and a small set of human-annotated samples with labeled covariates and outcomes.
Here, practitioners can leverage LLMs to (1) predict covariates and outcomes for the unlabeled text
samples; and (2) generate new text samples conditioned on available samples and label the covariates
and outcomes for them similarly to (1).

First of all, it is not immediately obvious how to even produce synthetic samples such that they can
be used in a principled manner. Naively drawing samples from a generative model and treating them
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as additional samples alongside real data makes it impossible to provide statistical guarantees for
the resulting estimate if the generative model does not perfectly match the real distribution, which
is expected in practice. We propose a specific sampling strategy in which each synthetic sample is
generated conditional on an individual real text in Section[3] What makes this formulation statistically
powerful is that it introduces a correlation structure between each real text and synthetic sample. We
will leverage this correlation structure, as it enables us to more effectively share information across
real and synthetic data.

In Section 4] we introduce a new estimation framework based on Generalized Method of Moments
(GMM). The GMM framework allows us to incorporate multiple sources of information by adding
moments. The optimal weighting in GMM produces a combination of these moments that minimizes
the variance of all estimators based on these moments [Chamberlain, [1987]. This optimal weighting
measures the cross-correlations between the synthetic and real data, producing a weighting matrix that
reduces the variance of the real data moments if there is information from the synthetic data moments.
Prospectively, it is not intuitive that the incorporation of additional moments based exclusively on
synthetic data (defined in terms of a separate parameter from the target parameter) should yield any
benefits (or even affect) the estimation of the target parameter of the real data. Intriguingly, we find
that the incorporation of synthetic data leads to better estimation and tighter confidence intervals
when the synthetic data moment residuals are predictive of the real data moment residuals. When
they are independent from each other, the variance reduces to the optimal variance based only on
the fully observed data. That is, in the worst case where synthetic data is completely uninformative,
including it does not hurt (at least asymptotically). Finally, in Section[5] we analyze the finite-sample
performance of our estimator using real-world datasets that encompass varying computational social
science tasks, demonstrating large empirical gains.

At a fundamental level, this work takes a step towards understanding how synthetic data from
foundation models can systematically be leveraged to support valid inference. As the usage and
future promise of foundation models continue to grow, so too will the complexity of pipelines that
incorporate their outputs. Our framework provides a foundation for easily extensible estimation
methods that can safely incorporate the growing variety and quality of synthetic data sources from
such models. More broadly, this GMM-based estimation framework for incorporating auxiliary
data may be of broader interest as an alternative to the predominant debiasing-based methods in the
surrogacy literature [[Angelopoulos et al.,[2023a], as it can more flexibly accommodate multiple proxy
covariates and proxy outcomes compared to existing approaches.

2 Related Work

Statistical Inference and Debiasing Methods. Our work is broadly related to performing statistical
inference with missing data, where past works have explored approaches to yielding valid and efficient
parameter estimates [Robins et al.l[1994]]. Other work has notably explored the usage of ML models
to estimate nuisance parameters [[Chernozhukov et al.l 2018|]. The most related line of research
are debiasing methods that focus on combining ground truth data with surrogate predictions (often
produced by a machine learning model) to perform statistical inference [Egami et al.| [2023| |Gligori¢
et al.,[2024]. These frameworks are often referred to as prediction-powered inference [[Angelopoulos
et al.,[2023alb] in the machine learning literature. Such methods have been well-studied in the context
of predicted outcomes and, more recently, predicted covariates [Ji et al., 2025[]. A key difference
between these works and our setting is that the primary focus of our work is how to incorporate fully
synthetic samples, which remains unaddressed by previous work. For clarity, we refer to samples as
fully synthetic when (1) the underlying text is synthetically generated and (2) both its covariates and
outcomes are model predictions.

LLMs for Data Annotation and Synthetic Simulation Tasks. Our work is motivated by the
increasingly growing use and future promise of LLMs for annotations and simulations [Ziems et al.,
2024, Hwang et al.| [2025a, |Anthis et al.,|2025]]. There has been growing interest in using LLMs in
fully synthetic simulation studies, with primary applications in exploratory research or early pilot
studies. For instance, recent work has studied simulating social interactions and behaviors [Chen
et al.| [Park et al.|[2023]]. Other works have explored LLMs for simulating survey responses [Dillion
et al., |2023| Rothschild et al., 2024, [Dominguez-Olmedo et al.,2024], analyzing how well simulations
approximate human responses while cautioning about drawbacks such as limited diversity and lack
of context-awareness. In summary, this line of work shows the potential of incorporating synthetic



data powered through strong generative models in such downstream pipelines but also exhibits clear
failure modes and imperfect conclusions from such studies. While most of these works focus on
qualitative takeaways and early signals for future experiments, we focus on a forward-looking setting
of making statistically valid inference given such synthetic samples.

3 Preliminaries

Notation and Setup. We consider a parameter estimation task where the goal is to estimate a
target parameter §* € R?. Let (T, X,Y) ~ D denote a random triple drawn from an unknown
data-generating distribution D over text inputs 7' € T, covariates about the text (e.g., structured
metadata) X € X C R4, and labels Y € ). For example, T' can be texts from online requests,
where X are linguistic markers of hedging (i.e., notions of uncertainty) and Y is perceived politeness.
Due to labeling budget constraints, we assume we only observe a small fraction of human-annotated
data (i.e., ground-truth covariates and labels about the text). Specifically, we have access to labeled
dataset Dlabeled = {(T;, X;,Y;)}_, that is sampled i.i.d. from D and an unlabeled corpus of text
Duntaveled = {(T}) "*fl’lﬂ sampled ii.d. from Dr (i.e., the marginal distribution over T'), where
m > n. To supplement this limited supervision, we leverage machine learning models in the
following two ways.

Proxy Covariates and Labels. We use a machine learning model f to produce predictions
{fx(T}), fv(T';)} for the available set of input texts T" € T Here, fx and fy denote the same ma-
chine learning model, using separate prompts for the target outcome (either a covariate X or outcome
Y) (see Appendlx@for details). This yields the following Dproxy = {(T5, fx (T3), fv (T3)} 71—y U

{(Ty, fx (1), fv (Ty) ?i;’;l For simplicity, we will refer to these as proxy samples and denote

them as (7T, X, Y). We will refer to the distribution over proxy samples as D. This is the main setting
generally considered in the surrogacy literature (restricted to predicted outcomes).

Synthetic Covariates and Labels. We propose a new data augmentation process which generates
new samples using the same machine learning model f (employing it as a generative model, instead
of a classifier). Specifically, our method conditions the generation process on each individual
text T} as an example and asks the model to generate a new synthetic sample given that context.

Formally, for each ¢, we sample a new text Ti, conditioned on (T}, X;) if the sample is labeled
and (T3, X ;) if the sample is unlabeled (since X is not available, by definition). More concretely,
T ~ P(- | T;, X;) if labeled and T}, ~ (- | Tj, X;) if unlabeled. See Appendixfor prompts used
for synthetic data generation. Based on the generated sample, which we denote as 7T}, we then extract
its corresponding covariates and outcomes using [ similarly as in proxy samples. More concretely,
X ~ P(- | Tk) and Y, ~ P(- | Tk) This results in Dsymhem = {(Tk, X5, Yk)}ZJFI” We refer to the
distribution over synthetic samples (7', X,Y) as D.

This specific sampling process has two motivations. First, from a machine learning perspective it can
be seen as a form of in-context prompting, where the model is given an example from the dataset
in order to align it more closely with the task. Iteratively prompting with different samples 7; is
also likely to produce more diverse samples than asking for many samples with the same prompt.
Second, from a statistical perspective, it introduces a correlation structure between each real text T;
and synthetic sample 7;.

Finally, we introduce some notation that combines all of these data sources into draws from a single
joint distribution. Specifically, we introduce a new random variable s € {0, 1} which is an indicator
for whether T is labeled (1) or unlabeled (0). Then, we view the complete generative process as
draws (T, s,s- X,s-Y, X L Yi. XM yM ) for M different kinds of auxiliary data. So far, we have
discussed two kinds, proxy and synthetic, that we employ empirically (M = 2), but our methods
are fully extensible to additional kinds of auxiliary data. For example, we could include samples
from multiple different generative models. The real (X,Y") are observed only for labeled points with
s = 1 while the auxiliary data is available for all samples. The joint distribution over this full tuple is
induced by the composition of the generative processes for the components described above.



4 Combining Synthetic Information via Generalized Method of Moments

To estimate the target parameter 8*, we adopt a generalized method of moments (GMM) approach
[Hansen, [1982] that combines information from the different types of data in the following manner.

4.1 Moment Conditions

Our framework is applicable whenever the target parameter can be identified by a set of moment
conditions, functions whose expectation should be zero at the true value of the parameter. Moment-
based estimation is a broad and flexible framework that includes almost all commonly used statistical
frameworks (e.g., maximum likelihood, generalized linear models, instrumental variables, etc). We
begin by defining the moment conditions that identify 6* under the distribution of interest (i.e.,
the real-data distribution D). In the following section, we introduce how this can be adapted to
incorporate surrogate data (i.e., proxy and synthetic data).

Formally, we consider the problem of estimating a parameter § € R?. The true value 0* is identified
as the solution to a set of p > d moment conditions

Ep® (@) =0, ¢=1.p

where the 1)(*) are continuously differentiable functions R? — R. For example, in a maximum
likelihood model, we would have one v for the derivative of the log-likelihood with respect to
each parameter, and the moment conditions enforce that 6* satisfies the first-order conditions for
maximizing the likelihood. Let () = [/(V)(8)...4)®P)(#)] T denote a column vector stacking the p
moments.

4.2 Constructing Our GMM Estimator

To leverage the auxiliary data (i.e., proxy data and synthetic data) in making our GMM estimator
more efficient, we can construct a set of auxiliary moments for each additional source of data. We
estimate an additional set of auxiliary parameters 71, ..., ny; € RP, one parameter vector for each
set of new auxiliary data. In the specific instantiation of the model that we use here, we always
have M = 2 (proxy and synthetic data), but in principle our method is extensible to many sources
of auxiliary data, for example synthetic samples generated from several different models. Roughly,
each new parameter vector 7); can be understood as the parameter that we would estimate using
each auxiliary data source, and our augmented model will automatically determine how to use these
auxiliary estimates to inform the estimate of the parameter of interest 6.

For each new parameter vector 7;, we introduce a corresponding set of new moments to estimate
this parameter and allow its estimate to inform the estimate of 6. Specifically, we introduce for each
7; two new blocks of moments that are copies of the original moments for 6. Intuitively, one block
of moments will be evaluated only on the real (labeled) data, while the other will be taken on the
pooled set of labeled data and auxiliary dataset ¢. The pooled-data moment will allow us to improve
the estimation of 7); using the larger sample. The version evaluated only on the real data will allow
GMM to evaluate how well the moments for the auxiliary parameter correlate with those of the
true parameter on the same data, and share information across them if the auxiliary moments are
informative (as we would expect if the generated data is high quality).

Formally, let S; € R? stack p copies of the indicator variable s; for whether a data point ¢ is labeled.
In block matrix notation, the combined model takes the form of the augmented moments
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We will then jointly estimate (6, 7) as the solution to the moment condition E[g;(6,n)] = 0. For
clarity, we refer to our estimator that uses real and proxy data (M = 1) as GMM-Proxy and our
estimator that uses real, proxy, and synthetic data (M = 2) as GMM-Synth throughout the paper.
We remark that since the parameter of interest  appears only in its original set of moments, which
are evaluated only on the labeled data, this new moment condition still identifies the target parameter
0*. However, as we discuss below, when we apply standard methods for efficiently estimating the
augmented GMM, the new moment conditions will be leveraged to reduce the variance of the estimate
without compromising consistency or asymptotic normality.

Before turning to estimation, we provide a concrete example of our moment construction for the case
of generalized linear models (GLMs) in two-dimensions.

4.3 Example 1. Generalized Linear Models
Recall that the standard GLM formulation optimizes the objective function,

69(37’ y) = _yxTe + f(xTe)a

where f is a function that is convex and smooth. We remark that this recovers the setting of logistic
regression when f(z) = log(1 + exp(z)). Let us assume a two-dimensional setting for illustration.
This translates to the population moment conditions of
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We have similar moments for proxy and synthetic data, where we use parameters 1 = (1(1), 77(2)),
which are also two-dimensional. Within our GMM framework, we construct the following set of
moment conditions across the observed, proxy, and synthetic data.
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4.4 GMM Estimation

Given our augmented moment conditions g, we estimate the parameters (6, 7) by minimizing the
GMM objective:

Or,ir = in_ Qr(6,m), 2
roir =arg  min, | Qr(0,1) @

where
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Two-step GMM estimator. We adopt the two-step GMM procedure as described in|Newey and

McFadden| [[1994]]. First, we compute the one-step estimator 9(05), ﬁ;? ) using an identity weight

matrix WT = I. Then, we estimate the optimal weight matrix as:

G (0, 1) = zg @, ) <é;s>s>,ﬁ$s>f], @
and set .
Wy = Q05,75 )

This optimal weighting has the interpretation as the inverse empirical covariance of the moment
conditions on the one-step estimate. We then compute the ﬁnal two-step estimator by minimizing

QT( ) with this updated weighting matrix. This choice of WT yields an asymptotically efficient
estimator under standard GMM regularity conditions. Following (Chamberlain|[1987], this choice of
weighting minimizes the semiparametric efficiency bound with respect to the semi-parametric model
defined by these moments (see Appendix |B|for more details).

The adoption of two-step GMM is a critical component of our proposed estimation framework.
Indeed, in the first-step estimates, the synthetic and proxy data will have no impact on the estimate
of 6 because they never appear in the moment conditions concerning 6. In the second stage though,

the weight matrix W accounts for the covariance between moment conditions, where off-diagonal
terms in the matrix allow moments for the auxiliary data sources to influence the estimation of 6.

4.5 Consistency and Asymptotic Inference

We now present results on the consistency and asymptotic behavior of our GMM estimators.

Proposition 1. Our estimate Or (as defined in Equation is consistent and asymptotically normal.
It converges in distribution as

VI((O, i) = (0'0f)') S N(O,V)
where the covariance V' is given by

v = (GO.0)TWGOm) GO0 WEWGO,n) (¢, Wa0.n)

and where G(0, 1) is the Jacobian of the population moments at the ground truth parameter values
0,n and F is the asymptotic variance of the sample moments.

For optimal weight matrix in Equation |5} this simplifies to V = (G(,1)T F~1G(6,71))~!. These
are standard results on GMM estimators, which follow by straightforwardly applying the results in
Hansen| [1982]]. We remark that these asymptotic results require a set of conditions on the sample
moments, which are slightly nuanced in this setting with multiple sources of information. We discuss
these conditions and prove that they are satisfied in Appendix [A]for the setting of proxy and synthetic
samples. Given this asymptotic behavior, we can derive valid confidence intervals for our parameter
estimates.

4.6 Why does synthetic data improve performance?

To understand where the benefits arise from incorporating the proxy and synthetic data into our GMM
estimator, we analyze the interaction between our moment conditions. Note that the functions
are often referred to as “residuals" in the GMM literature; since 1(6) should be zero in-expectation,
deviations from zero are interpretable as a kind of residual. The key intuition is that synthetic data
will improve performance when the synthetic-data residuals are predictive of the real-data residuals.

First, we note that if the synthetic data were perfectly simulated, X and Y would be perfectly
recovered from the unlabeled text 7". With ground truth X, Y’, we can perfectly recover the residual
terms. In settlngs where we have good but imperfect simulations, XY and XY are highly correlated
with the errors in the true data, and we can approximately estimate the real data residuals with the
synthetic data. Within our GMM-based approach, this is all handled implicitly in our two-step



estimation procedure. During the first estimation step, each set of parameters (e.g., defined on the
observed, proxy, and synthetic data) is independently identified since the initial weighting is an
identity matrix. The key insight is that, during the second estimation step, the weighting matrix W,
which is the inverse of the moment covariance matrix, captures the interactions between the observed
residual terms and the residuals from the synthetic data in our GMM objective. This is captured in
the off-diagonal terms of the moment covariance matrix. Partitioning the moments into observed data
residuals m;(#) and synthetic data residuals h;(n), we derive an explicit formula for the asymptotic

variance of v/T (éT —0)in Theorem with the full proof in Appendix @
Theorem 1. The asymptotic variance of /T (61 — 0) is given by

dE[m(0)] , dE[m(0)]  dE[m(0)] , dE[h(n)]| dE[h(n)] , dE[(n)],-1 dE[L(n)] T dE[m(F)]
(dQ’AdQ_(dG’Bdn)(dn’an)(dn’BdQ

with A, B, D, m(8), h(n) defined in Appendix D}

)

We find two important conclusions. First, when these residuals are independent of the observed
data, the formula reduces to the optimal variance based only on the fully observed data. That is, in
the worst case where synthetic data is completely uninformative, including it does not hurt (at least
asymptotically). Second, when the real and synthetic residuals are correlated (as we would hope), we
derive a lower bound on the variance which is proportional to the residual variance in a regression of
the observed data residuals on the span of the synthetic data residuals. This bound is minimized by
choosing moments that span the conditional expectation of the observed data residuals given T3, a

sufficient condition for which is that the conditional distribution of X, Y or X,Y given T equals the
conditional distribution of X, Y.

5 Experimental Results

5.1 Baselines

Existing methods in the literature are well-studied in the context of predicted outcomes and more
recently, predicted covariates. However, it remains unclear how to aggregate information from fully
synthetic data. We consider how to adapt existing debiasing methods; PPI++ [Angelopoulos et al.}
2023b]] and recent variants [Ji et al., 2025]].

RePPI The most general approach is perhaps given by RePPI [Ji et al., 2025], which predicts the
optimal loss through fitting an arbitrary model that maps the proxy and synthetic loss to the real
loss. This results in the objective defined in Proposition |2} The resulting estimate retains asymptotic
normality conditions (see Appendix [E.2.T|for the proof and algorithm details).

PPI++Proxy, PPI++Synth To adapt PPI++ [Angelopoulos et al.|[2023b] to this setting, we take an
instantiation of RePPI, where the model is a convex combination to limit the number of parameters.
This results in the following objective defined in Proposition |3} We refer to the estimator with oo = 1
as PPI++Proxy, as the synthetic terms vanish, yielding an estimator that combines real and proxy
data. We refer to the estimator with tunable « € [0, 1] as PPI++Synth, which combines real, proxy,
and synthetic data. Note that the addition of this hyperparameter o adds increased complexity, and
techniques such as cross-fitting must be used to select it in a statistically valid fashion. The resulting
estimate retains asymptotic normality conditions (see Appendix [E.2.2]for the proof and algorithm
details).

PPI++Synth (Oracle) As an upper bound, we conduct a grid search over different possible «
values without cross-fitting. Note, this is not a valid solution in the setup, as it requires peeking in
hyperparameter selection, but it provides an oracle version of the baseline for reference.

5.2 Experimental Setup

Datasets. We validate the finite-sample performance of our estimator for logistic regression and
ordinary least squares (OLS) regression on the following 4 computational social science tasks: First,
we use online requests posted on Stack Exchange and Wikipedia [Danescu-Niculescu-Mizil et al.}
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Figure 1: Main Results (Logistic regression). We observe large reductions in MSE, especially in very
low-label regimes. Each row corresponds to a task (i.e., 1pp, Hedging, Stance, Congressional Bills
Data (from top to bottom)); each column corresponds to a metric (i.e., MSE, coverage, confidence
interval width (from left to right)). Note that we report the PPI++Synth oracle number for PPI++Synth
(see Figure[8]in Appendix [F for PPI++Synth with cross-fitting results). When the best performing
PPI++Synth is equivalent to PPI++Proxy (i.e., « = 1), we report the second-best performing
PPI++Synth method. See Figure[6|in Appendix [F|for full grid-search results over different « values.
Results are averaged over 200 trials.

[2013b] to estimate how the presence of hedging markers (i.e., expressions of uncertainty) affect
perceived politeness. Second, we use the same dataset to estimate how the usage of first-person
plural pronouns affect perceived politeness. Third, we use a corpus of climate-related news headlines
[Hmielowski et al.,[2014] to estimate the effect of affirming linguistic devices on media stance toward
global warming (i.e., whether the news headline supports or rejects climate change). Lastly, we
use congressional bills texts [Adler and Wilkerson, 2011] to estimate the effect of a legislator’s
DW-Nominate measure [[Lewis et al., 2024] of ideology on the type of bill (whether the bill pertains
to macroeconomy). In all tasks, the target parameter is the regression coefficient corresponding to the
explanatory variable of interest.
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Figure 2: Main Results (OLS). We again observe large reductions in MSE, especially in very
low-label regimes. Each row corresponds to a task (i.e., 1pp, Hedging, Stance, Congressional Bills
Data (from top to bottom)); each column corresponds to a metric (i.e., MSE, coverage, confidence
interval width (from left to right)). Note that we report the PPI++Synth oracle number for PPI++Synth
(see Figure[9)in Appendix [ for PPI++Synth with cross-fitting results). When the best performing
PPI++Synth is equivalent to PPI++Proxy (i.e., « = 1), we report the second-best performing
PPI++Synth method. See Figure [7]in Appendix [Ffor full grid-search results over different cv values.
Results are averaged over 200 trials.

Models and Metrics. We use GPT-40 [Hurst et al., [2024]] without any task-specific fine-tuning
to generate both proxy and synthetic data. We also include additional results, using open-source,
worse quality models (i.e., Llama-3-8b and Qwen-3-8b) in Appendix [F (Figures [T0} [13).
We evaluate our method’s performance against the adapted baselines discussed in Section|5.1|using
four key metrics: empirical mean-squared error (MSE), coverage, confidence interval width, and
effective sample size. The effective sample size represents the number of human-labeled samples that
a classical estimator would require to achieve the same MSE as our method’s estimate. In other words,
this metric quantifies how many human annotations the method effectively saves while maintaining
equivalent mean squared error.




5.3 Results

The results for our method’s performance are shown in Figures[I]and [2] We will highlight some
key observations. First, we observe that GMM-Synth achieves the lowest MSE, outperforming all
baselines on 8 out of 8 downstream tasks. Notably, performance gains (of more than 50% reductions
in MSE) are most pronounced when the fraction of labeled data is small, precisely the setting where
the need for synthetic data is best motivated. Crucially, this does not come at a loss of validity
of the parameter estimates; GMM-Synth retains valid coverage and results in tighter confidence
intervals in 7 out of 8 downstream tasks. In Figures [ and [5] (in Appendix [F)), we further observe
that our method substantially improves effective sample size in data-limited settings. In other words,
our method effectively saves large amounts of human annotations (up to more than 50%) while
maintaining equivalent mean squared error. Second, GMM-Synth consistently exhibits gains over
GMM-Proxy across all considered tasks. This demonstrates that synthetic data provides additional
benefits beyond those of proxy-labeled data, and that our method effectively integrates these multiple
sources, retaining their respective benefits. In other words, it shows how much additional benefit
there is for the practitioner to not only use the model to label unlabeled samples but also use
it to generate entirely new unlabeled samples to aid in statistical inference. Third, interestingly,
unlike the additional gains demonstrated in GMM-Synth compared to GMM-Proxy, we observe that
incorporating synthetic data via PPI++Synth (compared to PPI++Proxy) lead to benefits that are
much less pronounced in 3 tasks, and, in fact, result in no gains in MSE in the remaining 5 tasks. This
empirically demonstrates that our method is able to incorporate synthetic data much more effectively
when compared to adaptations of existing debiasing methods in the literature. Importantly, we note
that across all settings, using the proxy data and synthetic data alone yields greatly biased estimates
(see Figure[3]in Appendix [F). Further, we note that the same conclusions hold with even worse quality
synthetic data generations from weaker language models; see Appendix [F| for results on open-source
models such as LLaMA [Grattafiori et al.,[2024] or Qwen [[Yang et al., 2025]].

6 Discussion

How synthetic data pipelines should be designed and implemented in practice hinges on reliable
mechanisms for integrating information from them. In this work, we introduce a principled framework
for reliably incorporating fully synthetic samples into downstream statistical analyses. We provide
practical guidance for constructing synthetic samples from text-based foundation models in ways
that support valid inference, and propose a new estimator based on generalized method of moments
(GMM) estimation, where the key intuition is that synthetic data will improve performance when the
synthetic-data residuals are predictive of the real-data residuals. Across the studied inferential tasks,
we indeed observe a large degree of improvement in estimation, especially in very low-label regimes.
More broadly, this work takes a first step toward understanding how imperfect synthetic data from
foundation models can systematically be leveraged to support valid inference and to make reliable
downstream conclusions. With the increased adoption and growing capabilities of foundation models,
pipelines that incorporate their outputs will only become more complex. Our method provides an
easily extensible estimation framework that can safely integrate the increasing variety and quality of
synthetic data sources.

Limitations and future directions. A potential limitation of our framework is its reliance on the
quality of the generative model (e.g., an LLM), as expected. As with other debiasing approaches,
very poor-quality synthetic data would yield little-to-no benefits in statistical efficiency. Moreover,
our theoretical guarantees, like those of debiasing methods, hold asymptotically and thus may fail to
hold in extremely low-data regimes, potentially leading to undercoverage of the target parameter.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are supported by theoretical and/or empirical results.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a discussion on the limitations of our work in a separate Limitations
paragraph.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide and discuss all assumptions in our theoretical results, and provide
proofs in the Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details required for replicating our experiments are provided in the Experi-
mental Results section and in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, code and sufficient instructions to reproduce results are provided in the
Supplementary Material. All data used is publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all details on the experimental setting are provided in the code in the
Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, results are properly evaluated for statistical significance. We report
runs averaged over 200 different random seeds and measure the statistical validity of our
estimates.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are detailed in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader societal impact of our work in both the Introduction
and the Discussion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper proposes no such risk — no data or models are released.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Licenses are properly referenced in the Appendix.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Well-documented code is provided in the Supplementary Material.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The usage of LLMs (in generating synthetic data) are clearly described and
outlined in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Conditions for Consistency and Asymptotic Normality

We provide a discussion about the necessary conditions for a GMM estimator to be consistent and
asymptotically normal, showing that these conditions are indeed met for our augmented GMM.

As mentioned in the construction of our estimator, we define one moment condition for each parameter
on the observed data D. We also define two moments for each parameter on the proxy and synthetic
data. This leads to an overidentified system, with more moments than parameters, ensuring that the
target parameter is identifiable.

Next, we establish a few conditions for valid asymptotic properties of our GMM estimator, specifically
about the convergence and distributions of the stacked vector of the sample moments g;(6*, n*) at
its optimum, which we will refer to as g; for brevity. First, we require that this vector of moments
converges to its expectation, or that

1N
Nzgt — Elg],

t=1

where N = n + m is our total amount of data. Next, all moments must jointly respect the central
limit theorem, or that

N
1 d
N | — — 0,F),
(53 S0
where F' is some finite covariance matrix of all the moments g;.

Under these standard regularity conditions on the moment vector g; [Newey and McFaddenl [1994],
these conditions are immediately satisfied for the moments defined on observed data, as each
observation of the moments is independent. The same holds for the moments defined on proxy
data, since X,Y are functions of independent inputs 7', and are therefore also independent across
observations. The case of synthetic data is slightly more nuanced, but we show that the required
conditions still hold, through the following lemma.

Lemma 1. Let {¢; 3’-\;1 represent observations of the subset of moments corresponding to parameters
of the synthetic data, and assume E||¢;||*> < oo. Then, they are i.i.d., and consequently

d

1 & 1 <
NZ@- — E[¢;] and VN ~ Do | 5 NO,2(6)),
Jj=1 j=1
where ¥(¢;) is the covariance matrix of ¢;.

Proof. We begin by noting that texts {7 } 9’21 are drawn i.i.d. from the marginal distribution Dr.

For each T}, a synthetic text Tj is produced by a generative model (i.e., by an LLM), which uses
independent randomness for each call. The model is conditioned only on an individual sample

(T;, X;) if j is labeled or (T3, X ;) otherwise. Since the generative process for each T is independent
and the mapping T; — (X;,Y;) is applied identically to each sample, the resulting pairs (X, Y;) are
also i.i.d. As these pairs are drawn i.i.d., then the conditions are met via the central limit theorem. [

This result shows that the required conditions on the sample moments hold in our setting of proxy
and synthetic samples; under the regularity conditions of Newey and McFadden|[1994] Theorem 3.2,
one immediately obtains Proposition [[|on the asymptotic behavior of our GMM estimator.

B Asymptotic Efficiency

From |Chamberlain|[[1987]], we know that the lower bound on asymptotic variance among all regular
estimators based on the moment restrictions is precisely the asymptotic variance that can be achieved
in the general case by using the GMM estimator. Specifically, it achieves the semiparametric efficiency
bound-the smallest possible asymptotic variance attainable by any regular estimator using these
moment conditions. This corresponds to the local asymptotic minimax risk over all statistical models
such that these moment equalities hold, in the sense that for any v € R?
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lim  inf sup  Es[TVN@ - 0)?] > v (GO, n) T FLG0*, 7))y
N—oog measurable(9 D)eT(0*,D)

where I'(0*, D) is any local neighborhood of true parameter 8* and data-generating distribution D
satisfying the moment conditions and regularity conditions C'y in/Chamberlain| [1987] for parameter

Proof. Follows directly from|Chamberlain| [[1987]] Theorem 2. O

In words, this indicates that no estimator can achieve lower asymptotic variance than GMM uniformly
over all local distributions satisfying the same moment conditions.

C Moment Conditions

We provide a concrete example of our moment construction for the case of generalized linear models
(GLMSs) in two-dimensions.

C.1 Example 1. Generalized Linear Models

Recall that the standard GLM formulation optimizes the objective function,

lo(z,y) = —yx" 0 + f(z79),

where f is a function that is convex and smooth. We remark that this recovers the setting of logistic
regression when f(z) = log(1 + exp(z)). Let us assume a two-dimensional setting for illustration.
This translates to the population moment conditions of

Af(XTo%)
90,

of(XTor)

E|X,Y —
! 00,

]o, IE{XQY =0

We have similar moments for proxy and synthetic data, where we use parameters 1 = (1(1), n(Q)),
which are also two-dimensional. Within our GMM framework, we construct the following set of
moment conditions across the observed, proxy, and synthetic data.

| XiaY: — %{959) _
5 XY, — aﬁtgg :
¢ Xia¥i - Bf(;i;z;;m)
gt(evn) = St © Xt,fot - %i?m)
1 D A (ﬁfﬁ(l))
1 Ka¥i— 6f(§7£g(1))
| Kol - )

D Partitioned GMM Asymptotic Variance

We now derive the asymptotic variance of our GMM estimator for specifically the target parameter
Or.
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Theorem 1. The asymptotic variance of /T (01 — 0) is given by

dE[m(0)] , dE[m(0)]  dE[m(0)] , dE[h(n)], dE[R(n)] , dE[h(n)]
o A T B dn ) dn’ p dn

with A, B, D, m(0), h(n) defined in Appendix|D|

dE[h(n)] v dE[m(0)]

gy 2

Proof. With the optimal choice of weight matrix for the full GMM estimation problem, the asymptotic

variance of the vector (0, 7)) converges to (GT F~1G)~!. To obtain the variance for § specifically,
partition the moments into g:(6,n) = (m:(0)’, he(n)’)’, where m;(0) = Sy © ¥(6), and

5] [ o)
: (M)
; () |

Given this partitioning, we can express

dE[m(0)] 0
G(0,n) = %9 dE[h(n)]
dn

Fe { E[my(0)m:(0)'] E[m(0)ht(n)'] ]
E[he(m)me(0)]  E[he(n)he(n)']

By the partitioned inverse formula, we can express F'~! as

A B
BT D
where the upper left block A is

(B[ (0)m(0)'] — Elme(0)he () TE[Re (1) he ()]~ El e (n)me (0)'])

This term can be interpreted as the inverse of the asymptotic residual variance of a regression of
my(6) on the span of the vector h;(n).

The lower right block D is, symmetrically, the inverse of the asymptotic residual variance of a
regression of h:(n) on the span of the vector m;(6):

(E[he(n)he(n)'] = Elhe(n)ma(0) E[mq (0)m,(0)] Elme(0)he(n)'])

Finally, the off-diagonal term multiplies A by the coefficient in a regression of m on h:
B = —AE[my()hs(n) |E[he(n)he (1))~
For the full variance,

dIE[m,(G)]Ad]E[m(B)] dE[m(0)] Bd]E[h(n)]

T -1 _ do do do’
G FG= ] T Elm ) (o) DdEhYm
,'7/

Applying the partitioned inverse formula again, the upper left block of (G'T F~'G)~!, which gives
exactly the asymptotic variance of v/T (61 — 0), is equal to
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dE[m(0)] , dE[m(0)]  dE[m(0)] , dE[h(n)], dE[k(n)] - dE[h(n)]\ -1 dE[R(n)] T dE[M(0)], 1
(de/ T —( a0 dn )(dn’D dn)(dn’ BT do )

This can be interpreted similarly as the inverse of the asymptotic variance of the residual prediction

error from a regression of A~1/2 d'n;ié@ onto the span of a weighted linear combination of terms in

dh
d(nn) ) O

This formula can be used to derive several properties of the procedure.

Corollary 1. When the moments corresponding to real and simulated observations are uncorrelated,

Cov(my(), he(n)) = 0, the asymptotic variance of /T (A1 — 0) equals the asymptotic variance of
the GMM estimator only using the moments m, corresponding to real data.

Proof. When E[m(0)hi(n)'] =0, A = (E[m¢(8)m(0)’])~! and B = 0, and so the upper left block

of (GTF~1G)~1 equals (%(E[mt(ﬂ)mt(ﬂ)'])“%)’l, which is the optimal variance

corresponding to only using moments 1 by the claim of Appendix [B] O

Corollary 2. The asymptotic variance of \/T (éT — 0) is lower bounded in the positive semi-definite

order by ( dE[;Z,(e)] Aid]E[g;(g)] )™

L which is minimized when A is maximized.

Proof. Let M, N be positive semi-definite matrices such that M — N > 0. Then

(M — Nt = M~'  Apply this fact to M = dE[{;Z,(GHAdE[ZZ(O)] and N =
dE[m (9)] p dEn)] (dE[h(n)] ry dE[A)])—1 dE[Rm)] BT dEIME)] \phich are both positive semi-definite
6’ dn dn’ dn dn’ do

because they are symmetric quadratic forms.

For any p.s.d. Ay, Ay, if Ay = A,, (dE[;’eL,(e)] Ay d]E[Z;(e)] )< (d]E[('w,(Q)] As dE[Z;(e)] )~! by reverse
monotonicity of the inverse in p.s.d. order, so larger A corresponds to smaller lower bound on the
variance. O

Among choices of moment functions % (7) that depend solely on 7}, A is maximized in the positive
semi-definite order when the span of h;(n) contains E[m(6)|T;]. A sufficient but not necessary
condition for this is that for some 5 € 1... M, the conditional moments of the simulation are
identical to those of the real data:

E[y(n;)|Ti] = Elp(0)|T;]

This calibration condition is satisfied when the conditional distribution of the simulated data given
T equals that of the real data, which is a natural simulation target, though not required for valid
inference.

E Experimental Details

E.1 Resources and Licensing Details

Compute Details Each experiment is run on a A6000 GPU. We evaluate and average performance
over 200 random seeds for all experiments.

Asset Licenses The assets used in our work are subject to the following licenses: Stack Exchange
and Wikipedia Data [Danescu-Niculescu-Mizil et al., 2013al]: CC BY-NC-SA 3.0; Climate news
headlines data [Luo et al.;2020]]: CC BY-NC-SA 3.0; Congressional bills data [[Adler and Wilkerson)
2011[]: MIT license; PPI++ Codebase [Angelopoulos et al.l 2023b]: MIT license.
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E.2 Baseline Details

E.2.1 RePPI Implementation

In adapting RePPI [Ji et al.| |2025] to our setting, we can model the imputed loss function in PPI with
a ML-based approach. While in their paper, they choose a particular form of

~ 1 ~
XV)= —0Ts"(X,YV
ga( ) ) 1+r S( ’ )a

where s* is the conditional score function. In our setting, we do not have access to X on unlabeled
instances, meaning that our model of the conditional score must take in inputs of s* (X , )A/, X , }7). In
the case for GLMs and if we have access to unlabeled instances X, we know that the score is given by
Vie(X,Y) = X(f(XT0) — E[Y|X,Y]), where f is as defined in Section In that setting, we
would only need to model E[Y| X, f’] However, in our setting where we only have access to proxy

and synthetic data, we need to directly model V¢4 (X,Y) or try to learn E[V/y(X,Y)|X,Y, X, V],
as we do not observe X to use in our predictions on unlabeled data.

We note that in our experiments, the sample splitting approach proposed in RePPI performs poorly
due to cross-fitting; each split has a size of % of the number of labeled data to estimate (i) the ground
truth parameter on one fold, (ii) learn the ML model on the second fold, and (iii) have an accurate
target parameter estimate on the final fold. As such, to learn the ML model for the imputed loss in
RePPI, we choose to adopt a linear regression model (defined over a small number of covariates),
which satisfies the required Donsker conditions to enable us to avoid any requirements on sample
splitting as in standard DML approaches [Van Der Vaart and Wellner), (Chernozhukov et al.|[2018].

Therefore, our implementation of RePPI is as follows: we (1) fit 0 by optlmlzlng the human-only

loss, (2) we optimize an linear regression model that learns to map h : (X, Y, X Y) — VI (X,Y),
and (3) we perform power tuning and produce our parameter estimate by minimizing the imputed

loss that incorporates 6 and h, all on the full available data. We use the same linear regression in
estimating the imputed loss; the exception to this is on the Congressional Bills dataset, where we use
XGBoost as linear regression performs very poorly in estimating the score function.

Proposition 2. The RePPI objective with multiple predicted covariates and outcomes is given by

N
X 1 S v
LRPPI(g § :59 X.,Y;) — ( E g0(Xi, Y)ffN E ge(Xi,Yi,Xi,Yi)>. (6)

where

S (Xza}/}?7Xlaﬁ)7 5*(X77Y;7X77Y/:L) = ]E[vee*(Xa Y)‘X’Lv}/laX’Lvi/l]v

ge(Xz',Yqu‘,ﬁ:) =

and 0* is the target parameter estimate. The resulting estimate retains asymptotic normality condi-
tions.

E.2.2 PPI++Proxy and PPI++Synth Implementation

We now present a discussion on our adapted debiasing-based approach from Proposition [3]

Proposition 3. The adapted PPI++ objective with multiple predicted covariates and outcomes is
given by

N

LPP() = ! Z (1 —a) €o(Xi,Y3) +a - e(Xi,Y3)] (7)
’L:1

+% (o(X3,Y3) — [(1 — a) - Lg(Xi, Y5) + o - £g( X, V7)) (8)
=1

where the estimate retains asymptotic normality conditions (see Appendix[E.2.2)for the proof and
algorithm details).
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Algorithm 1 Cross-Fitting for PPI**Synth

Require:
1: Labeled data D = {(T;, X;,Y;) } 74,
2: Proxy data D = {(1}, X;,Y;)}1 2"

Jj=1
3: Synthetic data D = {(T, X, Y;)};5",
4: K folds A
Ensure: Debiased estimate Ocp
5: Split D into folds {Z,...,Zx}
6:
7: fork=1,..., K do
8: define train-fold Z,ain = U, 2k T,

9: 67" + argming LpE(6;0) > (1) initial fit on train-fold
1(1) A~k arg min,¢o,1) L;{i (él_k; a) > (2) select mixture weight « on train-fold)
g ok «+ arg ming LIE,P (0; o?’k) > (3) final fit on held-out fold with chosen «)
}g end for

K
R 1 o
16: return Ocp = Ve ké_l 0

Asymptotic Normality First, it is relatively straightforward to show that this is an unbiased estimate
of the true objective.

E[L"P(0)] = (1 - a) - E[ty(X,Y)] + a - E[lp(X, V)]
+ E[to(X,Y)] —E[(1 - ) - £o(X,Y)] — - E[ts(X,Y)])]
= E[lp(X,Y)].

Note that this holds for any choice of the hyperparameter «.

n

Under the same assumptions as in the PPI++ paper [Angelopoulos et al.l 2023Db] (e.g., that = — ¢
for some constant ¢ and, in the case of generalized linear models, the Hessian is non-singular, we
perform their same approach to power tuning), we recover the asymptotic normality guarantees of the
parameter estimate (as in Corollary 1 from |Angelopoulos et al.|[2023b]]).

Hyperparameter Selection via Cross-fitting The added complexity from these modified debiasing-
based approaches arises from the hyperparameter c. We now discuss an approach for selecting « by
performing cross-fitting. As previously mentioned, we can treat « as a simple version of RePPI [Ji
et al.| 2025]] where we fit a convex combination of proxy and synthetic losses.

Namely, we partition our available data into two splits. We select o on one fold by minimizing:

: LPP 9
e i, L0

where 6 is defined as the solution to the naive minimzation of E[¢y(X,Y")] on the same split. This
essentially captures picking the « that best combines the proxy and synthetic losses to best mimic the
behavior of the standard loss function. We then take this optimal « and use it to produce a parameter
estimate on the held-out fold. We aggregate these estimates as is standard in cross-fitting approaches.
This process is outlined in Algorithm T}

E.3 Prompt Texts
We present the full text prompts that were used to generate proxy covariates and labels (for the proxy

data) and synthetic data. Note that the prompts used to extract covariates and labels from the synthetic
text are identical to those used for the proxy data.
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Proxy Data Generation Prompts

Politeness (First Plural Pronouns) - Covariates:

Does the following text contain first person plural pronouns (e.g., we, us, our, ourselves)?
Output either yes or no.

Text- nnn

{content}

Answer:

Politeness (First Plural Pronouns) - Labels:

Is the following text polite? Output either A or B. Output a letter only.
A) Polite

B) Impolite

Text: nnn

{content}

Answer:

Politeness (Hedging) - Covariates:

Does the following text contain hedging devices—expressions that indicate uncertainty,
caution, or a lack of full commitment to a claim (e.g., may, might, could, would, possibly,
probably, perhaps, apparently, suggest, indicate, seem, appear, it is likely that, it seems that)?
Respond with yes or no only.

Text: nnn

{content}

Answer:

Politeness (Hedging) - Labels:

Is the following text polite? Output either A or B. Output a letter only.
A) Polite

B) Impolite

Text: nnn

{content}

Answer:

Stance Dataset - Covariates:

Does the following text contain any affirmative device words? Output either yes or no.
Text: nnn

{content}

Answer:

Stance Dataset - Labels:

A statement can agree, be neutral, or disagree with the statement: “Climate change/global
warming is a serious concern”. Classify the following statement into one of the three
categories. Output either A, B, or C. Output a letter only.

A) Agree

B) Neutral

C) Disagree

Statement: """

{content}

Answer:
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Proxy Data Generation Prompts (continued)

Congressional Bills Dataset - Covariates:

You are a political scientist familiar with the U.S. Congress and the DW-NOMINATE scoring
system, which places legislators and legislation on a left-right ideological spectrum ranging
approximately from -1 (most liberal) to +1 (most conservative). Below is the text of a
proposed bill. Based on the policy content, language, and framing of the bill, estimate the
DW-NOMINATE score that best represents its ideological position. Output a single nonzero
float between -1 and +1 representing the estimated DW-NOMINATE score of the bill.

Bill nnn

{content}

Answer:

Congressional Bills Dataset - Labels:

Does the following text relate to the economy? Output either true or false.
Text. nnn

{content}

Label:

Synthetic Data Generation Prompts

Politeness (First Plural Pronouns)

Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text is
labeled as either polite or impolite, and either contains or does not contain first-person plural
pronouns. Below is an example that {x}:

Example: """

{example}

Now, generate a new example of a request that also {x}.

Politeness (Hedging)

Consider texts taken from user requests on Stack Exchange or Wikipedia. Each text can
be labeled as either polite or impolite, and as either containing a hedging device or not
containing one. Hedging devices are expressions that indicate uncertainty, caution, or a lack
of full commitment to a claim (e.g., may, might, could, would, possibly, probably, perhaps,
apparently, suggest, indicate, etc.). Below is an example that {x}:

Example: """

{example}

Now, generate a new example of a request that also {x}.

Stance

Consider news headlines that take a stance — agree, disagree, or neutral — on the statement:
“Climate change/global warming is a serious concern."

Each headline also either contains or does not contain an affirmative device.

Below is an example of a headline.

Example: """

{example}

nnn

Affirmative device: {x}

Now, generate a new news headline about global warming that also {x}.
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Synthetic Data Generation Prompts (continued)

Congressional Bills Data

You are a political language model trained to generate realistic examples of U.S. congressional
bills. Each bill is labeled as either “related to the economy" or “not related to the economy",
and is associated with a DW-NOMINATE score representing ideological position (ranging
from —1 liberal to +1 conservative).

Example:

Bill Text: """

{example}

DW-NOMINATE Score: {dw_nominate_score}
Now, generate a new example of a bill that also has a DW-NOMINATE score of

{dw_nominate_score}. Output only the new bill text: """

F Additional Results

We present additional experimental results consisting of:

* Prediction accuracy of GPT-40, Llama-3-8b, Qwen-3-8b (Think) for the covariates and
outcomes of interest (Table

Performance of a naive estimator that only uses synthetic data (Figure [3)

* Effective sample size results (Figures 4] and [5))

Grid search results for PPI++Synth (Oracle) across different o values (Figures [§] andm)
Cross-fitting results for PPI++Synth (Figures 8] and 0)

Llama-3-8b results for logistic regression (Figure[I0) and OLS (Figure [TT))

* Qwen-3-8b results for logistic regression (Figure[I2)) and OLS (Figure T3]

* Results with zero-shot prompting for synthetic data generation (Figure[T4)

* Results with using random noise for synthetic data (Figure[I5)

Table 1: Accuracy of LLMs for prediction tasks. This represents the quality of the proxy covariates

and proxy labels (X Y). Note, for the Congressional Bills dataset, we report MSE for the X
Prediction task since DW-NOMINATE scores are continuous values.

Hedging 1pp Stance Congressional Bills
Model X Pred. YPred. XPred. YPred. XPred YPred XPred Y Pred.
GPT-40 0.764 0.785 0.994 0.785 0.864 0.743 0.184 0.827
Llama-3-8b 0.485 0.335 0.878 0.501 0.619 0.637 0.688 0.564

Qwen-3-8b (Think)  0.723 0.325 0.961 0.325 0.904 0.684 0.253 0.757
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Figure 3: Performance of a naive estimator for logistic regression (top) and OLS (bottom) using
synthetic data only (Politeness (Hedging), Stance, Congressional Bills (from left to right)). We clearly
observe that naively using only synthetic data for the estimation task leads to largely biased estimates,
as expected.

900 —e— GMM-Proxy (ours) 300 —e— GMM-Proxy (ours)
g —e— GMM-Synth (ours) g ~e— GMM-Synth (ours)
N H -Onl = H -onl
{ 800 = ooy i 250 = fuman o
- 700 ~e— PPI++Synth (a=0.8) ot ~o— PPI++Synth (a=0.8)
I _e——— RePPI € 200 —e— RePPI
g 600 .__a///'// po g /
Yoo /_//////‘ v 150 /
) =
9 i g ,

300 [ 50

0.06 0.07 0.08 0.09 0.10 0.01 0.02 0.03 0.04 0.05
Fraction of Labeled Data Fraction of Labeled Data

300 —e— GMM-Proxy (ours) —e— GMM-Proxy (ours)
e —e— GMM-Synth (ours) g 250 —e— GMM-Synth (ours)
= —e&— Human-Only = ~&— Human-Only
ﬁ 250 ~e— PPI++Proxy 2 —e— PPl++Proxy
- ~e— PPI++Synth (a=0.8) 5200 ~e— PPI++Synth (a=0.8)
IS —e— RePPI g —o— RePPI
© ~ - [ ol
wn 200 / V ﬁ/- 2 150
[J]
> / / r— 2
£ - 10|
g 150 / > ]
e / o
[im} W gg

100 : :

0.05 0.06 0.07 0.08 0.09 0.10 0.006 0.008 0.010 0.012 0.014
Fraction of Labeled Data Fraction of Labeled Data

Figure 4: Effective sample size for logistic regression (Politeness (1pp), Politeness (Hedging), Stance,
Congressional Bills (from left to right)). We observe large gains in effective sample size, up to
more than 50%. This represents how many human annotations the method effectively saves while
maintaining the same performance (in terms of mean squared error).
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Figure 5: Effective sample size for OLS (Politeness (1pp), Politeness (Hedging), Stance, Congres-
sional Bills (from left to right)). The RePPI method is omitted from the 1pp plot because its effective
sample size drops too low.
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Figure 6: Grid search results for logistic regression (Politeness (1pp), Politeness (Hedging), Stance,
Congressional Bills (from left to right)). This plot shows the grid search over different possible a
values without cross-fitting. Note, this is not a valid solution in our setup, as it requires peeking
in hyperparameter selection, but it provides an oracle version of the baseline, which we term as
PPI++Synth (Oracle). The « value that leads to the smallest MSE is the one reported in Figure[T]in
the main text.
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in the main text.
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Figure 8: PPI++Synth results for logistic regression. This is the valid implementation with cross-
fitting to select hyperparameters in a statistically valid fashion. We observe that it is upper-bounded
by its oracle variant (PPI++Synth « = 0.8), as expected. In the main text (Fig. , we report the
oracle variant results to account for potential gains from improved cross-fitting techniques.

32



—e— Human-Only PR — i — 0.60
0.014 —e— PPI++Proxy 0.55
w —e— PPI++Synth 0.8 c
g 0.012 —e— PPI++Synth (@ =0.8) o -‘§ 0.50
- 20.6 = " ‘\\\
©0.010 <=5\ o < 0.45 N
= \'\\ \ S 04 s
£ 0.008 T N o 040 Tl
W N £ ~~—.
N 02 035 e N ~-
0.006 ——
NS 0.0 0.30 ——
0.05 0.06 0.07 0.08 0.09 0.10 0.05 0.06 0.07 0.08 0.09 0.10 0.05 0.06 0.07 0.08 0.09 0.10
Fraction of Labeled Data Fraction of Labeled Data Fraction of Labeled Data
\ [—— Hu‘man-OnI)‘/ 1.0 o m_ 0.8
0.020 —e— PPI++Proxy
w —e— PPI++Synth 0.8 0.7
o —e— PPI++Synth (a=0.8) o % 06
0.015 =
g \ gos = N
2 [7) © 0.5
= >
3 0.4 < \
2'0.010 \ 8 5. \‘ \\\
2 0. ~e=
. \ 02 - \\ T
0.005 s 03 ——s
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
Fraction of Labeled Data Fraction of Labeled Data Fraction of Labeled Data
—e— Human-Only 1.0 i ——u
0.14 R = = 4 1.6
\ —e— PPI++Proxy \
w 0.12 \ ——— Ppl++5ynt: ), 0.8 < 1.4 \
(2] —e— PPI++Synth (a =0.8
=010 \ 206 212 \
Soos o] T1o0
S 006 | N\ 304 £ IA
2006 o [EPREN
2 0.
oo o2 B &\
0.6 -
0.02 .
: —— 0.0 0.4 ‘ ‘ !
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
Fraction of Labeled Data Fraction of Labeled Data Fraction of Labeled Data
0.035 —e— Human-Only 1.0 __E}_ N
—e— PPI++Proxy 25
W 0030 —e— PPI++Synth 0.8 - ~
)] —e— PPI++Synth (a=0.2) =
= 0.025 g 220 N -
= gos = ~ ——
£ 0.020 Y S s T1s e —
> o 0.
= — 8
So0.015 AN 10
§§.. 0.2
0.010 >~ =1 ——
—, 0.0 0.5 -

0.006 0.008 0.010 0.012 0.014
Fraction of Labeled Data

0.006 0.008 0.010 0.012 0.014
Fraction of Labeled Data

0.006 0.008 0.010 0.012 0.014
Fraction of Labeled Data

Figure 9: PPI++Synth results for OLS. Similarly as above, we observe that it is upper-bounded by its
oracle variant (PPI++Synth o = 0.8 and PPI++Synth oo = 0.2 for CBP), as expected.
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Figure 10: Llama-3-8b results for logistic regression. Each row corresponds to a task (i.e., 1pp,
Hedging, Stance, Congressional Bills Data (from top to bottom)); each column corresponds to a

metric (i.e., MSE, coverage, confidence interval width (from left to right)). Results are averaged over
200 trials.
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Figure 11: Llama-3-8b results for OLS. Each row corresponds to a task (i.e., 1pp, Hedging, Stance,
Congressional Bills Data (from top to bottom)); each column corresponds to a metric (i.e., MSE,
coverage, confidence interval width (from left to right)). Results are averaged over 200 trials.
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Figure 12: Qwen-3-8b results for logistic regression. Each row corresponds to a task (i.e., 1pp,
Hedging, Stance, Congressional Bills Data (from top to bottom)); each column corresponds to a

metric (i.e., MSE, coverage, confidence interval width (from left to right)). Results are averaged over
200 trials.
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Figure 13: Qwen-3-8b results for OLS. Each row corresponds to a task (i.e., 1pp, Hedging, Stance,
Congressional Bills Data (from top to bottom)); each column corresponds to a metric (i.e., MSE,
coverage, confidence interval width (from left to right)). Results are averaged over 200 trials.
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Figure 14: Zero-shot prompting results. As an ablation, we use zero-shot prompts containing the task
description (instead of giving an in-context real sample) for synthetic text generation (i.e., generating
T). In all tasks, we observe that our method is at least as good as Human-Only in terms of MSE and
interval width. We see that the benefits to using synthetic data is much less pronounced than when
using the specific sampling strategy we propose, as expected. Each row corresponds to a logistic
regression task (i.e., 1pp, Hedging, Stance, Congressional Bills Data (from top to bottom)); each
column corresponds to a metric (i.e., MSE, coverage, confidence interval width (from left to right)).
Results are averaged over 200 trials.
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Figure 15: Random noise for labels results. As another ablation, we replace the proxy and synthetic
labels (Y and Y, respectively) with random noise. Importantly, we observe that our method still
performs at least as good as just having used the real data (Human-only) on all tasks. Each row
corresponds to a logistic regression task (i.e., 1pp, Hedging, Stance, Congressional Bills Data (from
top to bottom)); each column corresponds to a metric (i.e., MSE, coverage, confidence interval width
(from left to right)). Results are averaged over 200 trials.
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Figure 16: RePPI results for 1pp task for logistic regression (top) and OLS (bottom). We report the
RePPI method results for the 1pp task separately here, due to some very large values. In the main text
(Figures EI, EI), we exclude the RePPI numbers from the plots for better visibility.
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