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ABSTRACT

Given an unconditional generative model and a predictor for a target property (e.g.,
a classifier), the goal of training-free guidance is to generate samples with desirable
target properties without additional training. As a highly efficient technique for
steering generative models toward flexible outcomes, training-free guidance has
gained increasing attention in diffusion models. However, existing methods only
handle data in continuous spaces, while many scientific applications involve both
continuous and discrete data (referred to as multimodality). Another emerging trend
is the growing use of the simple and general flow matching framework in building
generative foundation models, where guided generation remains under-explored.
To address this, we introduce TFG-Flow, a novel training-free guidance method
for multimodal generative flow. TFG-Flow addresses the curse-of-dimensionality
while maintaining the property of unbiased sampling in guiding discrete variables.
We validate TFG-Flow on four molecular design tasks and show that TFG-Flow
has great potential in drug design by generating molecules with desired properties.

1 INTRODUCTION

Recent advancements in generative foundation models have demonstrated their increasing power
across a wide range of domains (Reid et al., 2024; Achiam et al., 2023; Abramson et al., 2024).
In particular, diffusion-based foundation models, such as Stable Diffusion (Esser et al., 2024) and
SORA (Brooks et al., 2024) have achieved significant success, catalyzing a new wave of applications
in areas such as art and science. As these models become more prevalent, a critical question arises:
how can we steer these foundation models to achieve specific properties during inference time?

One promising direction is using classifier-based guidance (Dhariwal & Nichol, 2021) or classifier-
free guidance (Ho & Salimans, 2022), which typically require training a specialized model for
each conditioning signal (e.g., a noise-conditional classifier or a text-conditional denoiser). This
resource-intensive and time-consuming process greatly limits their applicability. Recently, there has
been growing interest in training-free guidance for diffusion models, which enable users to guide
the generation process using an off-the-shelf differentiable target predicto without requiring any
additional model training (Ye et al., 2024). Here, a target predictor can be any classifier, loss function,
or energy function used to score the quality of the generated samples. Training-free guidance has the
potential to revolutionize generative AI with a flexible means of customizing generative outputs.

Despite significant advances in generative models, most existing training-free guidance techniques
are tailored to diffusion models that operate on continuous data, such as images. However, extending
generative models to jointly address both discrete and continuous data—referred to as multimodal
data (Campbell et al., 2024)—remains a critical challenge for broader applications in scientific
fields (Wang et al., 2023). One key reason this expansion is essential is that many real-world problems
involve multimodal data, such as molecular design, where both discrete elements (e.g., atom types)
and continuous attributes (e.g., 3D coordinates) must be modeled together. To address this, recent
generative foundation models have increasingly adopted the flow matching framework (Esser et al.,
2024), prized for its simplicity and general applicability to both data types. Multiflow, recently
introduced by Campbell et al. (2024) on protein co-design problem, presents a promising foundation
for tackling multimodal generation via Continuous Time Markov Chains (Anderson, 2012).

Unfortunately, guided generation within the flow matching framework remains relatively underex-
plored, due to the inherent differences between guiding continuous and discrete data. This paper
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Figure 1: (a) Multimodal guided flow. The backward flow (blue arrow) is constructed with linear interpolation
between observed data G1 and sampled noise G0; the forward flow (green arrows) is simulated by conditional
velocity vt(x

(i)
t |c)and conditional rate matrix Rt(a

(i)
t , a

(i)
t+∆t|c). (b) The illustration of TFG-Flow. TFG-Flow

guides the forward flow on each step Gt, which consists of a gradient-based guidance for continuous part Xt

and an importance sampling based guidance for discrete part at; (c) Some examples of guidance targets. (d)
Samples guided by TFG-Flow targeted at polarizability. The targeted value is at bottom of the samples.

investigates the problem of training-free guidance in multimodal flow matching, with a specific focus
on its application to inverse molecular design (Zunger, 2018). Inverse molecular design is a challeng-
ing task that involves generating molecules that meet specific target properties, such as a desired level
of polarizability. Our method, TFG-Flow, construct a guided flow that aligns with target predictor
while preserving the marginals of unguided flow, effectively enabling plug-and-play guidance (Theo-
rems 3.1 and 3.2). Unlike continuous variables, where gradient information is inherently informative,
discrete variables cannot be adjusted continuously. Naive guidance methods that estimate transition
probabilities between discrete states suffer from the curse of dimensionality, a long-lasting problem in
machine learning that is computationally intractable. To address this, TFG-Flow devises an unbiased
Monte-Carlo sampling approach that reduces the complexity from exponential to logarithmic for
discrete guidance (Theorem 3.4), while leveraging a partial derivative-based guidance mechanism for
continuous variables that preserves geometric invariance (Theorem 3.5).

We apply TFG-Flow to various inverse molecular design tasks. When targeted to quantum properties,
TFG-Flow is able to generate more accurate molecules than existing training-free guidance methods
for continuous diffusion (with an average relative improvement of +20.3% over the best baseline).
When targeted to specific molecular structures, TFG-Flow improves the similarity to target structures
of unconditional generation by more than 20%. When targeted at multiple properties, TFG-Flow
outperforms conditional multimodal flow significantly. We also apply TFG-Flow to pocket-based
drug design tasks, where TFG-Flow can guide the flow to generate molecules with more realistic 3D
structures and better binding energies towards the protein binding sites compared to the baselines.

Our main contributions are summarized as follows:

• We present TFG-Flow, a novel approach for guiding multimodal flow models toward target
properties in a training-free manner (via off-the-shelf time-independent property functions).

• TFG-Flow sets a solid theoretical foundation for multimodal guided flow, addresses the
curse of dimensionality, and maintains geometric invariance via theorems 3.1∼3.5.

• Experiments reveal that TFG-Flow is effective and efficient for designing 3D molecules
with desired properties, opening up new opportunities to explore the chemical space.
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2 PRELIMINARY

In this section, we provide readers with the essential knowledge required for 3D molecule generation
using a multimodal flow model.

2.1 SO(3) INVARIANT 3D MOLECULE MODELING AND GENERATION

3D molecular representations. Let A denote the set of all atom types plus a “mask” state [M]
which indicates an undetermined atom type and will be useful in our generative model. A molecule
with n atoms can be represented as G = (X,a) ∈ G, where G = R3×n×An, X denotes the atomic
coordinates, and a represents the atom types. We also use x(i) and a(i) to denote the coordinates and
type of the i-th atom, respectively.

Invariant probabilistic modeling for 3D molecules. Invariance is a crucial inductive bias in mod-
eling 3D geometry of molecules (Gilmer et al., 2017). Molecular systems exist in three-dimensional
Euclidean space, where the group associated with rotations is known as SO(3). In this work, we are
interested in the distribution p(X,a) whose marginal of X satisfies the following property:

SO(3)-invariance: p(X) = p(SX) for any S ∈ SO(3). (1)
Here, SO(3) denotes the set of all the rotation matrices in 3D space. Intuitively, the definition requires
the likelihood of a molecular structure to be invariant with respect to any transformation in SO(3).

Additionally, molecular representations need to be invariant to translations. To ensure this, we
always project the atomic coordinates to Γ = {X | x(1) + · · ·+ x(n) = 0} via mean subtraction:

ProjectΓ(X) := X − 1

n

n∑
i=1

x(i)1T
n, where 1n denotes the n-dimensional all-one row vector.

Equivariant graph neural networks. In this work, we follow existing research and employ equiv-
ariant neural networks to model the SO(3)-invariant distribution of molecule structures (Hoogeboom
et al., 2022; Xu et al., 2022). Specifically, we apply Equivariant Graph Neural Networks (EGNNs)
to process molecular representations (Satorras et al., 2021). EGNN takes molecular representations
G = (X,a) as its input and translate the atom type a(i) into d-dimensional embedding h(i) ∈ Rd

for each atom. In each layer, EGNN updates atomic coordinates and embeddings as follows:

m(i,j) ← Φm(h
(i),h(j), ∥x(i) − x(j)∥2;θm); (2)

h(i) ← Φh

h(i),

n∑
j=1

m(i,j);θh

 ; (3)

x(i) ← x(i) +

n∑
j=1

(
x(i) − x(j)

)
Φx(m

(i,j);θx), (4)

In the above, m(i,j) denotes intermediate message from atom i to j, and Φm,Φh,Φx are learnable
modules parameterized by θm,θh,θx, respectively. We will formally prove that this architecture,
along with the design of our algorithm, leads to SO(3)-invariant distributions.

2.2 MULTIMODAL FLOW MODEL

Multiflow is a multimodal flow model originally developed for protein co-design (Campbell et al.,
2024). In this work, we adapt it for small molecule design. Multiflow constructs a probability flow
pt(Gt) for t ∈ [0, 1], where p0(G0) = pnoise(G0) and p1(G1) = pdata(G1). During inference, one
first samples G0 ∼ p0 and then generates a sequence of Gt values by simulating the flow.

Conditional flow, velocity, and rate matrix. At the core of the sampling process is the multimodal
conditional flow1 pt|1(Gt|G1). By design, this flow can be factorized over both the number of atoms

1Conditional flow refers to the flow pt|1(G
(i)
t |G(i)

1 ) conditioned on the clean data G
(i)
1 . This contrasts

with the desired unconditional flow for sampling, i.e., pt(G
(i)
t ), which can be derived using Eq. (7) from the

conditional flow.

3
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and their modalities:

pt|1(Gt|G1) :=

n∏
i=1

pt|1(x
(i)
t |x

(i)
1 )pt|1(a

(i)
t |a

(i)
1 ). (5)

In the above, the flows pt|1(x
(i)
t |x

(i)
1 ) (continuous) and pt|1(a

(i)
t |a

(i)
1 ) (discrete) are defined such

that they transport the noise distribution to the data distribution following straight-line paths, which
is known as rectified flow (Liu et al., 2022): x

(i)
t |x

(i)
1 ∼ N (tx

(i)
1 , (1 − t)2I) and a

(i)
t |a

(i)
1 ∼

Cat(tδ{a(i)t , a
(i)
1 } + (1 − t)δ{[M], a(i)t }). Here, δ{b, b′} is the Kronecker delta, which is 1 when

b = b′ and 0 otherwise, and Cat denotes a Categorical distribution over A.

With the definition, we can build in closed form the conditional velocity vt|1(·|x
(i)
1 ) and conditional

rate matrix Rt|1(·, ·|a
(i)
1 ) which characterize the dynamics of the above conditional distributions:

vt|1(x
(i)
t |x

(i)
1 ) =

x
(i)
1 − x

(i)
t

1− t
; Rt|1(a

(i)
t , b|a(i)1 ) =

δ{b, a(i)1 }δ{a
(i)
t , [M]}

1− t
. (6)

Deriving the unconditional flow. The conditional velocity and rate matrix can then be used to
derive their unconditional counterparts by sampling from p1|t(G1|Gt), which the flow model learns
during training2:

vt(x
(i)
t ) = Ep1|t(G1|Gt)

[
vt|1(x

(i)
t |x

(i)
1 )
]
; Rt(a

(i)
t , b) = Ep1|t(G1|Gt)

[
Rt|1(a

(i)
t , b|a(i)1 )

]
. (7)

The unconditional continuous and discrete flows satisfy the Fokker-Planck and Kolmogorov Equations:
∂tpt = −∇ · (vtpt) and ∂tpt = ptRt.3 Therefore, during inference, starting from an initial sample
G0 ∼ p04, one can iteratively estimate the unconditional velocity and rate matrix at the current time
step t by sampling from the learned distribution p1|t(G1|Gt). The Fokker-Planck and Kolmogorov
Equations can then be simulated to generate Gt+∆t for the next time step, ultimately resulting in
G1 ∼ p1 which approximates the data distribution.

3 METHODOLOGY

Problem setup. Our objective is to develop an effective, training-free method to guide an uncondi-
tional multimodal flow model to generate samples with desired properties. Formally, let c denote
our target property, and assume we have a time-independent target predictor fc(G1) = p(c|G1) that
quantifies how well a given molecule G1 satisfies the target property c. We also have access to a
model g(Gt), which represents p1|t(G1|Gt) of a flow model {pt(Gt)}t∈[0,1], i.e., it takes Gt as
input and returns the sample/likelihood of G1, as defined in Sec. 2.

In this section, we present our construction of a multimodal guided flow {pt(Gt|c)}t∈[0,1] that
satisfies p1(G1|c) = pdata(G1|c). Then we derive an algorithm which simulates the constructed flow
using the target predictor fc(G1), the flow model g(Gt), and a suitable velocity and rate matrix.

3.1 CONSTRUCTING THE GUIDED FLOW

Recall that the critical factor in the inference with flow models is to derive the velocity and rate matrix
in the Fokker-Planck and Kolmogorov Equations so that we can simulate the sample over time. For
guided generation, we need to address the following two challenges:

• Can we construct the guided flow pt(Gt|c)t∈[0,1] and derive the corresponding guided
velocity and rate matrix in the Fokker-Planck and Kolmogorov Equations of it?

• Can we efficiently estimate the guided velocity and rate matrix and simulate the Fokker-
Planck and Kolmogorov Equations?

2Following Campbell et al. (2024), in our experiment, the flow model takes Gt as the input and produce a
sample X1|t for the continuous part as well as a distribution p(a1|Gt) for the discrete part.

3In the Kolmogorov Equation, the discrete flow should be seen as a row vector pt = (pt(a))a∈A.
4In practice, we sample x(i)

0 ∼ N (0, I3) and a
(i)
0 = [M] independently for each i. As discussed in Sec. 2.1,

we additionally project X0 to the simplex Γ.
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Constructing appropriate guided flows. While infinitely many flows pt(Gt|c)t∈[0,1] satisfy
p1(G1|c) = pdata(G1|c), we seek to specify a joint distribution of ({Gt}t∈[0,1], c) which can be
simulated via minimal adaptation of the original flow when incorporating the guidance fc(G1). An
ideal guided flow should maintain three key characteristics: (1) preserve the overall structure and
dynamics of the original flow model by maintaining the flow marginals {Gt}t∈[0,1]; (2) align with the
conditional distribution fc(G1) = p(c|G1); and (3) ensure independence between {Gt}t∈[0,1) and
the condition c when the clean data G1 is observed. These desiderata allows us to minimally modify
the original flow while effectively steering the generation process towards the desired molecular
properties. We formulate these intuitive criteria mathematically and prove the existence of a guided
flow satisfying these conditions in the following theorem:

Theorem 3.1 (Existence of the guided flow (informal)). Let G be the space of molecular rep-
resentations and C be a finite set which includes all the values of our target property. Given a
G-valued process {Gt}t∈[0,1] modeled by flow {pGt (Gt)}t∈[0,1] and a function fc(G1) which defines
a valid distribution over C for any G1 ∈ G, there exists a joint distribution p of random variables
({Gt}t∈[0,1], c) that satisfies the following:

• Preservation of flow marginals: For any t ∈ [0, 1], pt(Gt) = pGt (Gt).

• Alignment with target predictor: For any c ∈ C and G1 ∈ G, p(c|G1) = fc(G1).

• Conditional independence of trajectory and target: For any t ∈ [0, 1), Gt and c are
conditionally independent given G1, i.e., pt|1(Gt|G1, c) = pt|1(Gt|G1).

The formal version of Theorem 3.1 based on measure theory, along with its proof, can be found in
App. B.1. We note that the conditional independence of trajectory and target is particularly appealing
because it ensures that the central tool in flow model – the conditional flow – remains unchanged
under guidance. Specifically, the conditional independence of trajectory and target ensures that for a
Multiflow model (defined in Sec. 2.2) under guidance, the guided conditional flow pt|1(Gt|G1, c)
still satisfies the factorization property as defined in Eq. (5):

pt|1(Gt|G1, c) :=

n∏
i=1

pt|1(x
(i)
t |x

(i)
1 )pt|1(a

(i)
t |a

(i)
1 ). (8)

Furthermore, in the guided flow, the flow marginals are preserved, hence the conditional velocity and
rate matrix for the continuous and discrete conditional flows are the same as those defined in Eq. (6).

Finding the guided velocity and rate matrix. Parallel to Sec. 2.2, it now suffices to derive the
unconditional guided velocity and rate matrix for the continuous and discrete flows based on the
conditional counterpart. We present our result in the following theorem:

Theorem 3.2 (Guided velocity and rate matrix (informal)). Consider a continuous flow pt(xt)
with conditional velocity vt|1(xt|x1) and a discrete flow model pt(at) with conditional rate matrix
Rt|1(at, b|a1). Then the guided flows pt(xt|c) and pt(at|c), defined via the construction in Theo-
rem 3.1, can be generated by vt(xt|c) andRt(at, j|c) via Fokker-Planck Equation ∂tpt = −∇·(vtpt)
and Kolmogorov Equation ∂tpt = ptRt, where

Guided velocity: vt(xt|c) = Ep1|t(x1|xt,c)

[
vt|1(xt|x1)

]
, (9)

Guided rate matrix: Rt(at, b|c) = Ep1|t(a1|at,c)

[
Rt|1(at, b|a1)

]
. (10)

The formal statement and proof are in App. B.2. The conditional velocity vt|1 and conditional rate
matrix Rt|1 for Multiflow are defined in Eq. (6). Thus to simulate the guided flow pt(Gt|c), it suffices
to sample from p1|t(·|Gt, c) so that we can estimate the velocity and rate matrix. In the subsequent
subsections, we present our sampling methods for the discrete and continuous parts of the flow.

3.2 DISCRETE GUIDANCE: ADDRESSING CURSE OF DIMENSIONALITY

Recall that the learned Multiflow model can output p1|t(a1|Gt) for a1 ∈ An. Furthermore, one can
show via Theorem 3.1 that p1|t(a1|Gt, c) ∝ p1|t(a1|Gt)fc(G1) where fc(·) is the target predictor.
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Thus, Rt(a
(i)
t , j|c) can be exactly calculated based on Eq. (10). However, we note that this is

computationally intractable because of the curse of dimensionality: The complexity of exactly
calculating the expectation is O(|A|n), growing exponentially with the number of atoms n.

Therefore, it is natural to resort to Monte-Carlo approaches to estimate Rt(a
(i)
t , b|c). One straight-

forward idea is to consider importance sampling. We show in Proposition B.4 that the guided rate
matrix defined in Theorem 3.2 satisfies

Rt(a
(i)
t , b|c) = Ep1|t(G1|Gt)

[
p(c|G1)

p(c|Gt)
Rt|1(a

(i)
t , b|a(i)1 )

]
. (11)

However, this approach requires access to p(c|Gt), i.e., a time-dependent target predictor. This
requires additional classifier training and prohibit the use of off-the-shelf predictors. Thus, importance
sampling is not directly applicable and we build our method based on the following observation:
Proposition 3.3. For t ∈ [0, 1), the guided rate matrix defined in Theorem 3.2 satisfies

Rt(a
(i)
t , b|c) =

Ep1|t(G1|Gt)

[
fc(G1)Rt|1(a

(i)
t , b|a(i)1 )

]
Ep1|t(G1|Gt) [fc(G1)]

. (12)

Proposition 3.3 indicates that we can generate K samples from p1|t(G1|Gt) and obtain a good
estimation of the guided rate matrix based on the known conditional rate matrix Rt|1(a

(i)
t , b|a(i)1 )

and target predictor fc(G1). We conduct theoretical analysis on the approximation error of this
method in Theorem 3.4. We show thatK = O (log(n|A|)) samples suffice to accurately approximate
Rt(a

(i)
t , b|c) for any i ∈ {1, · · · , n} and b ∈ A with high probability. This is in sharp contrast to

the O(|A|n) complexity of exact expectation calculation, avoiding the curse-of-dimensionality issue.
Furthermore, our method does not require access to unknown quantities such as p(c|Gt) in Eq. (11).
We show in the experiments that this approach can effectively simulate the discrete component of the
multimodal guided flow.

Theorem 3.4. Let G1|t,1, · · · ,G1|t,K ∼ i.i.d. p1|t(·|Gt). Define the estimation of Rt(a
(i)
t , b|c) as

R̂t(a
(i)
t , b|c) =

K∑
k=1

fc(G1|t,k)Rt|1(a
(i)
t , b | a(i)1|t,k)

/ K∑
k=1

fc(G1|t,k). (13)

Assume fc = inf
G∈G

fc(G) > 0. Given any ε ∈ (0, fc/2), δ ∈ (0, 1), if K = Θ
(

1
ε2 log

n|A|
δ

)
, then

P

(
sup

i∈{1,··· ,n}, b∈A

∣∣∣R̂t(a
(i)
t , b|c)−Rt(a

(i)
t , b|c)

∣∣∣ < ε

)
≥ 1− δ (14)

3.3 CONTINUOUS GUIDANCE: BUILDING EQUIVARIANT GUIDED ODE

For the continuous component, recall that the learned Multiflow model can output a sample X1|t ∼
p1|t(·|Gt) given Gt = (Xt,at) as the input, while we need X1|t ∼ p1|t(·|Gt, c) to estimate the
velocity for the guided flow as demonstrated by Theorem 3.2. To bridge the gap, our method aims to
generate Ĝt = (X̂t,at) such that p1|t(· | Ĝt) ≈ p1|t(· | Gt, c), so that we can generate X1|t from
the given flow model and estimate the velocity.

Intuitively, X̂t needs to contain more information on the target c to impose the guidance on X1|t.
With slight abuse of notations, we denote by q(Xt) the distribution of Xt. Mathematically, we expect
to sample X̂t from q̂(Xt) ∝ q(Xt)f(E[X1|Xt,at],a1|t)

αt , where αt > 0 is a hyper-parameter
controlling the strength of guidance and a1|t is generated in Sec. 3.2. One can show via Fokker-Planck
Equation that this procedure can be done by simulating the following (discretized) ODE:

Xt ←Xt + ρt∇Xt log f(E[X1|Xt,at]). (15)

In practice, we do not have access to E[X1|Xt,at]. Again, we use the given flow model to sample
from p1|t(·|Gt) as an approximation. We run the update for Niter steps to obtain Ĝt = (X̂t,at) and

6
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generate X1|t ∼ p1|t(·|Ĝt) using the flow model. Then we can estimate the guided velocity based
on Theorem 3.2 and simulate the Fokker-Planck Equation of the guided flow.

Additionally, we note that the continuous variables in our application represents coordinates in the 3D
space. Translations and rotations in the 3D space should not change the likelihood of the variable. To
ensure this property, we adopt two techniques: (a) As discussed in Sec. 2.1, we ensure that coordinates
after translations are mapped to the same molecular representations by projecting the coordinates to
the simplex Γ = {X | x(1) + · · ·+ x(n) = 0}. When generating X̂t via Eq. (15) in our continuous
guidance algorithm, we implement the following update:

Xt ← ProjectΓ (Xt + ρt∇Xt
log f(E[X1|Xt,at])) . (16)

(b) For rotation transformations, the flow {pt(Xt,at|c)} needs to be SO(3)-invariant w.r.t. Xt,
as defined in Sec. 2.1. We use Equivariant Graph Neural Networks (EGNN) as the backbone
for the model gθ so that any SO(3) transformation on Xt will lead to the same transformation
on X1|t ∼ p1|t(·|Gt), i.e., the model ensures equivariant sampling (Satorras et al., 2021). We
mathematically show that our techniques guarantees SO(3)-invariance of the simulated flow:
Theorem 3.5 (SO(3)-invariance (proof in App. B.1)). Assume the target predictor fc(G) is SO(3)-
invariant, the model gθ(G) is SO(3)-equivariant, and the distribution of X0 is SO(3)-invariant,
then for any t ∈ [0, 1], pt(Xt|c) in the simulated multimodal guided flow is SO(3)-invariant.

3.4 TFG-FLOW: PUTTING THEM ALL TOGETHER

We combine the techniques of guiding the discrete component from Sec. 3.2 and the continuous
component from Sec. 3.3 into our proposed TFG-Flow, which is illustrated in Figure 1(b) and
presented as pseudo code in Algorithm 1. Specifically, TFG-Flow guides the molecules Gt at each
time step. For the discrete component at, it samples K Monte Carlo samples to estimate the guided
rate matrix R(a(i)t , a

(i)
t+∆t|c) using Eq. (13). For the continuous component xt, it simulates the ODE

in the simplex Γ for Niter iterations with Eq. (15) and obtain the guided velocity vt(x
(i)
t |c).

From an implementation standpoint, we also introduce a temperature coefficient τ to adjust the
strength of discrete guidance by controlling the uncertainty of the target predictor fc(G) =
softmax(f(G;ψ)/τ), where f(·;ψ) is typically an EGNN parametrized by ψ trained to classify or
regress the property c of a molecule G. In the experiments, we set K = 512 and Niter = 4 to balance
computational efficiency, and tune ρ, τ via grid search (see App. D for details).5

4 EXPERIMENTS

In this paper, we explore the application of TFG-Flow across four types of guidance targets: single
quantum property, combined quantum properties, structural similarity, and target-aware drug design
quality. Quantum properties are examined using QM9 dataset (Ramakrishnan et al., 2014), while
structural similarity is assessed on both QM9 and the larger GEOM-Drug dataset (Axelrod &
Gomez-Bombarelli, 2022). The target-aware drug design quality is tested using CrossDocked2020
dataset (Francoeur et al., 2020). The baseline implementation and datasets details are in App. D. As
our paper focuses on developing training-free guidance methods for generative models, we postpone
the discussion on other molecule optimization methods (e.g., search-based methods) in App. C.3.

4.1 QUANTUM PROPERTY GUIDANCE

Dataset and models. We follow the inverse molecular design literature (Bao et al., 2022; Hooge-
boom et al., 2022) to establish this benchmark. The QM9 dataset is split into training, validation, and
test sets, comprising 100K, 18K, and 13K samples, respectively. The training set is further divided
into two non-overlapping halves. To prevent reward hacking, we use the first half to train a property
prediction network for guidance and an unconditional flow model, while the second half is used to
train another property prediction network that serves as the ground truth oracle, providing labels
for MAE computation. All three networks share the same architecture as defined by EDM, with an
EGNN as the backbone. In inference, we use 100 Euler sampling steps for the flow model.

5For simplicity, we did not schedule ρ and τ (e.g., by increasing or decreasing them over time).
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Table 1: How generated molecules align with the target quantum property on QM9 dataset. The results for Upper
bound, #Atoms, Lower bound, Cond-EDM, EEGSDE are copied from Bao et al. (2022), and the results for
training-free methods for diffusion are copied from Ye et al. (2024). The results of Cond-Flow and TFG-Flow
are averaged over 3 seeds, with detailed results reported in App. E. Among all training-free methods, the best
MAE for the same target is in bold, while the second best MAE is underlined.

Baseline category Method Training-free? Cv µ α ∆ε εHOMO εLUMO

Reference
Upper bound

\
6.87 1.61 8.98 1464 645 1457

#Atoms 1.97 1.05 3.86 886 426 813
Lower bound 0.040 0.043 0.09 65 39 36

Continuous
Diffusion

Cond-EDM ✗ 1.065 1.123 2.78 671 371 601
EEGSDE ✗ 0.941 0.777 2.50 487 302 447

DPS ✓ 5.26 63.2 51169 1380 744 NA
LGD ✓ 3.77 1.51 7.15 1190 664 1200

FreeDoM ✓ 2.84 1.35 5.92 1170 623 1160
MPGD ✓ 2.86 1.51 4.26 1070 554 1060
UGD ✓ 3.02 1.56 5.45 1150 582 1270
TFG ✓ 2.77 1.33 3.90 893 568 984

Multimodal Flow Cond-Flow ✗ 1.52 0.962 3.10 805 435 693
TFG-Flow ✓ 1.48 0.880 3.52 917 364 998

Table 2: How generated molecules align with the target quantum property. Our training-free guidance TFG-Flow
significantly outperforms the conditional flow (Cond-Flow) which requires condition-labelled data for training.

Method MAE1↓ MAE2↓ Method MAE1↓ MAE2↓ Method MAE1↓ MAE2↓

Cv ( cal
molK), µ (D) ∆ε (meV), µ (D) α (Bohr3), µ (D)

Cond-Flow 4.96±0.07 1.57±0.01 Cond-Flow 53.5±0.71 1.57±0.00 Cond-Flow 9.33±0.01 1.54±0.01

TFG-Flow 2.36±0.01 1.13±0.04 TFG-Flow 46.4±0.016 0.853±0.05 TFG-Flow 4.62±0.01 1.24±0.05

Guidance target. We study guided generation of molecules on 6 quantum mechanics properties,
including polarizability α (Bohr3), dipole moment µ (D), heat capacity Cv ( cal

molK), highest orbital
energy ϵHOMO (meV), lowest orbital energy ϵLUMO (meV) and their gap ∆ϵ (meV). Denote the
property prediction network as E , then our guidance target is given by an energy function f(G) :=
exp(−∥E(G)− c∥22), where c is the target property value. For combined properties, we combine the
energy functions linearly with equal weights following Bao et al. (2022) and Ye et al. (2024).

Evaluation metrics. We use the Mean Absolute Error (MAE) to measure guidance performance.
We generate 4,096 molecules for each property to perform the evaluation following Ye et al. (2024).
For completeness, we also report more metrics such as validity, novelty and stability in App. D.2.

Baselines. As the training-free guidance for multimodal flow is not studied before, the most direct
baselines are training-free guidance methods in continuous diffusion. We compare TFG-Flow with
DPS (Chung & Ye, 2022), LGD (Song et al., 2023), FreeDoM (Yu et al., 2023), MPGD (He et al.,
2024), UGD (Bansal et al., 2023), and TFG (Ye et al., 2024) which treat both atom types and
coordinates as continuous variables and perform guidance using gradient information. We also
compare TFG-Flow with training-based baselines, such as the conditional diffusion model (Cond-
EDM (Hoogeboom et al., 2022)) and conditional multimodal flow (Cond-Flow), and EEGSDE (Bao
et al., 2022), which applies both training-based guidance and conditional training. We also provide
referential baselines following Hoogeboom et al. (2022) (see App. D.3 for details).

Results analysis. The experimental results for single and multiple quantum properties are shown
in Tables 1 and 2, respectively. First of all, our TFG-Flow exhibits the best guidance performance
among all training-free guidance methods, with an average relative improvement of +20.3% over the
best training-free guidance method TFG in continuous diffusion. Also, we note that TFG-Flow is
comparable with Cond-Flow on single property guidance and outperforms Cond-Flow significantly
on multiple property guidance, while Cond-Flow requires conditional training. These results justify
that the discrete guidance is more effective for the discrete variables in nature. It is also noteworthy
that all the training-free guidance methods underperform EEGSDE by a large margin, suggesting a
large room for improvement in training-free guidance.
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Table 3: How generated molecules align with the
target structure. The Tanimoto similarity results
are averaged over 3 random seeds.

Dataset Baseline Similarity↑

QM9
Upper bound 0.164±0.004

TFG-Flow 0.290±0.007

Rel. improvement +76.83%

GEOM-Drug
Upper bound 0.170±0.001

TFG-Flow 0.208±0.002

Rel. improvement +22.35%

Table 4: Evaluation of generated molecules for 100 pro-
tein pockets of CrossDocked2020 test set. The results of
AR, Pocket2Mol, TargetDiff are from Guan et al. (2023).

Vina score↓ QED↑ SA↑
Test set −6.87±2.30 0.48±0.20 0.73±0.14

AR −6.20±1.25 0.50±0.11 0.67±0.09

Pocket2Mol −7.23±2.04 0.57±0.09 0.75±0.07

TargetDiff −7.32±2.08 0.48±0.15 0.61±0.11

Multiflow −7.01±1.81 0.45±0.21 0.61±0.10

TFG-Flow −7.65±1.89 0.47±0.19 0.64±0.10

4.2 STRUCTURE GUIDANCE

Guidance target. Following Gebauer et al. (2022), we represent the structural information of a
molecule using its molecular fingerprint. This fingerprint, denoted as c = (c1, . . . , cL), consists
of a sequence of bits that indicate the presence or absence of specific substructures within the
molecule. Each substructure corresponds to a particular position l in the bit vector, with the bit cl
set to 1 if the substructure is present in the molecule and 0 if it is absent. To guide the generation
of molecules with a desired structure (encoded by the fingerprint c), we define the guidance target
as f(G) := exp(−∥E(G) − c∥2). Here, E refers to a multi-label classifier trained using binary
cross-entropy loss to predict the molecular fingerprint, as detailed in App. D.2.

Evaluation metrics. We use Tanimoto coefficient (Bajusz et al., 2015) TC(c1, c2) =
|c1∩c2|
|c1∪c2| to

measure the similarity between the fingerprint c1 of generated molecule and the target fingerprint c2.

Results analysis. The results are shown in Table 3. TFG-Flow improves the similarity of uncondi-
tional generative model by 76.83% and 22.35% on QM9 and GEOM-Drug, respectively. But we still
note that the Tanimoto similarity of 0.290 and 0.208 are not satisfactory for structure guidance. We
will make efforts to improve training-free guidance for better performance on this task in the future.

4.3 POCKET-TARGETED DRUG DESIGN

We also introduce a novel benchmark for training-free guidance. In practical drug design, the goal
is typically to create drugs that can bind to a specific protein target (see related work discussion
in App. C), making the inclusion of pocket targets a more realistic setting for guided generation. To
enhance the effectiveness of drug design, we aim for the generated molecules to exhibit strong drug-
like properties, demonstrate high binding affinity to the target pocket, and be easily synthesizable.
We integrate these criteria into our TFG-Flow to guide the drug design.

Datasets and Models. We utilize CrossDocked2020 training set to train both the unconditional flow
model and the drug quality prediction network. Unlike QM9 and GEOM-Drug, the input graph G to
the flow model includes not only the coordinates and atom types of molecules but also the protein
pocket, which remains fixed during message passing in the EGNN. Also, there is no need to train
an oracle target predictor, as the relevant metrics can be derived from publicly available chemistry
software. Further details regarding the network and dataset are provided in App. D.

Guidance target. We use Vina score, QED score, and SA score as the proxy of binding affinity
between the molecules and the protein, the drug-likeness of a molecule, and the synthetic accessibility
of a molecule, respectively. We combine the three scores as a holistic evaluation of the drug quality
via linear combination: c = −0.1× Vina score + QED + SA, and train a quality prediction network
E(G) to approximate the value. The guidance target is given as f(G) := E(G).

Evaluation metrics. We compute Vina Score by QVina (Alhossary et al., 2015), SA and QED by
RDKit. The metrics are averaged over 100 molecules per pocket in CrossDocked test set.

Baselines. We compare TFG-Flow with different state-of-the-art target-aware generative models
AR (Luo et al., 2021), Pocket2Mol (Peng et al., 2022), and TargetDiff (Guan et al., 2023). We
implement Multiflow for target-aware molecular generation and apply TFG-Flow on it.

9
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Figure 2: Effect of varying hyperparameters (Niter, τ, ρ,K). The line plot indicates the validity (left y-axis,
higher values are better), while the bar plot shows the MAE (right y-axis, lower values are better).

Results Analysis. As binding affinity is the most important metric in target-aware drug design, we
prioritize Vina score in the design of our quality score. The results show that TFG-Flow improves
the drug quality over unguided Multiflow and achieves the best Vina score among all the drug design
methods. We also note that the autoregressive methods (AR, Pocket2Mol) generally possess better
QED and SA results than diffusion-based methods (TargetDiff, Multiflow, TFG-Flow), but with
weaker binding affinity. Therefore, TFG-Flow is quite effective for target-aware drug design.

4.4 ABLATION STUDY

To understand how different hyper-parameters (Niter, τ, ρ,K) affect the performance of TFG-Flow,
we conduct ablation study on quantum property guidance for polarizability α. On this task, the
searched (ρ, τ) is (0.02, 10) and recall that we setK = 512 andNiter = 4 constantly. In our ablation,
we fixed all the other hyper-parameters and change one of them to a grid of values except for the
study of Niter, and plot the validity (the ratio of valid molecules) and guidance accuracy (MAE)
in Figure 2. For Niter, we present the results with the best (ρ, τ) for the corresponding Niter.

The study on Niter shows Niter = 4 already achieves good performance while maintaining compu-
tational efficiency, as Niter = 8 don’t bring significant improvement. For other experiments, we
could see a positive correlation between validity and MAE as a trade-off between the quality of
unconditional generation and the desired property alignment. Importantly, We note that the number of
samples K ≈ 16 is sufficient in our discrete guidance (Eq. (13)), which demonstrates the efficiency
of our estimation technique with fast convergence rate. We can also learn that too strong guidance
strength ρ and τ may not improve the guidance (MAE) but will severely deteriorate the validity.

5 DISCUSSIONS AND LIMITATIONS

The related work is reviewed in App. C. Our TFG-Flow complements the trend of generative modeling
through the straightforward and versatile flow matching framework (Esser et al., 2024). It also unlocks
the guidance for multimodal flow (Campbell et al., 2024) and has been applied effectively to both
target-agnostic and target-specific molecular design tasks. We notice that a concurrent research (Sun
et al., 2024) explores training-free guidance on continuous flow in image generation, however, we
have identified several theoretical concerns with this approach as detailed in App. C.2. Overall, our
TFG-Flow proves to be both novel and effective, with solid theoretical foundations.

Though TFG-Flow boosts the state-of-the-art training-free guidance, a performance gap persists
between training-based and training-free methods (Table 1). But as training-free guidance allows
for flexible target predictor, we replace the guidance network as a pre-trained foundation model
UniMol (Zhou et al., 2023) for Table 1 in App. D.6, where the performance gap with EEGSDE is
further narrowed. We also notice that some literature indicates that training-free guidance tends to
perform well in powerful foundation models, such as Stable Diffusion (Ye et al., 2024; Bansal et al.,
2023; Yu et al., 2023). This suggests that more capable models which learn from diverse data could
possibly offer better steerability. On top of that, the future trajectory for AI-Driven Drug Design
might involve developing large generative foundation models and applying training-free guidance
seamlessly to achieve desired properties. Beyond molecular design, our insights on multimodal
guided flow are broadly applicable to other fields such as material, protein, or antibody. Given that
multimodality encompasses both discrete and continuous data types, TFG-Flow provides a general
framework that could handle all kinds of guidance problem. We hope that TFG-Flow will inspire
further innovation within both the generative modeling and molecular design communities.
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A PSEUDO CODE FOR TFG-FLOW

Algorithm 1 Training-free Guidance for Multimodal Flow Inference
Input: Unconditional rectified flow model gθ, target predictor fc, guidance strength ρ, temperature
τ , number of steps Niter; temporal step size ∆t.

1: # Initialization
2: Sample x

(1)
0 , · · · ,x(n)

0 ∼ i.i.d. N (0, I3), X0 ←
[
x
(1)
0 , · · · ,x(n)

0

]
3: X0 ← ProjectΓ(X0); a0 ← [[M], · · · , [M]]⊤; t← 0
4: while t < 1 do ▷ Simulate Fokker-Planck and Kolmogorov Equations
5: X1|t, p(a1|t)← gθ(Xt,at)
6:
7: # Discrete guidance
8: Sample a1|t,1, · · · ,a1|t,K ∼ i.i.d. p(a1|t)
9: for i = 1, · · · , n do

10: R̂(a
(i)
t , b)←

K∑
k=1

f(X1|t,a1|t,k)Rt|1(a
(i)
t , b | a(i)1|t,k)

/ K∑
k=1

f(X1|t,a1|t,k)

11: Sample a(i)t+∆t ∼ Cat(δ(a
(i)
t+∆t, a

(i)
t ) + R̂(a

(i)
t , a

(i)
t+∆t)∆t)

12: end for
13:
14: # Continuous guidance
15: Sample a1|t ∼ Cat(fc(X1|t,a1|t,k)) ▷ Sample a1|t from {a1|t,k}Kk=1 based on fc
16: for j = 1, · · · , Niter do
17: Xt ← ProjectΓ

(
Xt + ρt∇Xt

log f(gθ(Xt,at)X ,a1|t)
)

18: end for
19: X1|t ← gθ(Xt,at)X
20: for i = 1, · · · , n do
21: v̂(x

(i)
t )← vt|1(x

(i)
t |x

(i)
1 )

22: x
(i)
t+∆t ← x

(i)
t + v̂(x

(i)
t )∆t

23: end for
24: Xt+∆t ← ProjectΓ(Xt+∆t)
25:
26: t = t+∆t
27: end while
28: Output: X1,a1

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B OMITTED MATHEMATICAL DERIVATIONS

In this section, we present the omitted derivation proofs for our theoretical results. Note that we
always we (re)state the theorem for ease of reading, even if it has appeared in the main paper.

B.1 FORMAL STATEMENT AND PROOF OF THEOREM 3.1

Theorem B.1 (Existence of the guided flow (formal version of Theorem 3.1)). Let G be the space of
molecular representations and C be a finite set which includes all the values of our target property.
Given a G-valued process {Gt}t∈[0,1] in a probability space (ΩG,FG,PG), and a function fc(G1)
which defines a valid distribution over C for any G1 ∈ G, there exists a joint probability measure P
on the product space (Ω,F) = (ΩG × C,FG ⊗ 2C) and random variables ({Gt}t∈[0,1], c) on it that
satisfies the following:

• Preservation of flow marginals: For any 0 ≤ t1 < · · · < tm < 1,

P(Gt1 , · · · ,Gtm) = PG(Gt1 , · · · ,Gtm).

• Alignment with target predictor: For any c ∈ C and G1 ∈ G, P(c|G1) = fc(G1).

• Conditional independence of trajectory and target: For any 0 ≤ t1 < · · · < tm < 1,
(Gt1 , · · · ,Gtm) and c are independent conditioning on G1.

Proof. First, we construct random variables ({Gt}t∈[0,1], c) on the product space (Ω,F). For
(ωG, c) ∈ Ω, define Gt(ωG, c) = Gt(ωG) (t ∈ [0, 1]); c(ωG, c) = c. Note that we overload the
notations {Gt}t∈[0,1] and c and redefine them as random variables in the new product space for
simplicity.

Second, we construction of the joint probability measure P on the product space (Ω,F).

For each G′
1 ∈ G, define a probability measure PG′

1

G on ΩG by

PG′
1

G (EG) = PG (EG | G1 = G′
1) for any EG ∈ FG. (17)

Again, for each G′
1 ∈ G, define a probability measure PG′

1

C on C by PG′
1

C (c′) = fc′(G
′
1). By definition

of fc, PG1

C is a valid distribution.

Then, we can define PG′
1 on Ω as

PG′
1(EG × EC) = PG′

1

G (EG)P
G′

1

C (EC) for any EG ∈ FG; EC ∈ 2C . (18)

We obtain the joint probability measure P on the product space (Ω,F) by integrating over G′
1 ∈ G:

P(E) =

∫
G′

1∈G
PG′

1(E)PG,1(dG
′
1) for any E ∈ F , (19)

where PG,1(·) is the marginal distribution (law) of G1 in (ΩG,FG,PG).

Now we are ready to verify that the above joint probability measure P satisfies the desired properties.

Preservation of flow marginals. For any EG ∈ FG,

P(EG × C) =
∫
G
PG′

1(EG × C)PG,1(dG
′
1) =

∫
G
PG′

1

G (EG)PG,1(dG
′
1) = PG(EG). (20)

Thus, the marginal distribution of {Gt}t∈[0,1] under P is PG.

Specifically, for any 0 ≤ t1 < · · · < tm < 1,

P(Gt1 , · · · ,Gtm) = PG(Gt1 , · · · ,Gtm).
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Alignment with Target Predictor. Note that in our definition, PG′
1(·) = P(· | G1 = G′

1).
Therefore, for any G′

1 ∈ G and c′ ∈ C, we have

P(c = c′ | G1 = G′
1) = PG′

1(ΩG × {c′}) = PG′
1

G (ΩG)P
G′

1

C ({c′}) = PG′
1

C ({c′}) = fc(G
′
1). (21)

This establishes the specified alignment with the target predictor.

Conditional independence of trajectory and target. Let 0 ≤ t1 < t2 < · · · < tm < 1, and let
φG : Gm → R and φC : C → R be any bounded measurable functions. We need to show that

EP [φG(Gt1 , · · · ,Gtm)φC(c) | G1] = EP [φG(Gt1 , · · · ,Gtm) | G1]EP [φC(c) | G1] .

Note that under PG, given G1, the random variables (Gt1 , · · · ,Gtm) depend only on ωG, and c
depends on ωG only through G1. Therefore,

EP [φG(Gt1 , · · · ,Gtm)φC(c) | G1] (22)

=

∫
ΩG×C

φG (Gt1(ω
′
G, c

′), · · · ,Gtm(ω′
G, c

′))φC (ω′
G, c

′)PG1 (dω′
Gdc

′) (23)

=

∫
ΩG×C

φG (Gt1(ω
′
G, c

′), · · · ,Gtm(ω′
G, c

′))φC (ω′
G, c

′)PG1

G (dω′
G)P

G1

C (dc′) (24)

=

(∫
ΩG

φG(Gt1(ω
′
G), · · · ,Gtm(ωG′))PG1

G (dω′
G)

)
·
(∫

C
φC(c

′)PG1

C (dc′)

)
(25)

=EPG1
G

[φG(Gt1 , · · · ,Gtm)] · EPG1
C

[φC(c)] (26)

=EP [φG(Gt1 , · · · ,Gtm) | G1] · EP [φC(c) | G1] , (27)

indicating that (Gt1 , · · · ,Gtm) and c are independent conditioning on G1.

To sum up, we have constructed a probability measure P on (Ω,F) and verify that P satisfies the
desired properties, which concludes the proof.

Remark. It’s easy to see that our proof also applies when C = R. In this case, the joint probability
measure P needs to be defined on (Ω,F) = (ΩG × R,FG ⊗ B(R)), where B(R) denotes the Borel
σ-algebra of R. This lays the foundation of our method in the setting where fc is a regression model.
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B.2 FORMAL STATEMENT AND PROOF OF THEOREM 3.2

We present the formal version of Theorem 3.2 as two separate theorems: Theorem B.2 for the
continuous flow and Theorem B.3 for the discrete flow.
Theorem B.2 (Guided velocity). Let {pt(xt)}t∈[0,1] be a continuous flow on R3. Let vt|1(xt|x1)
be the conditional velocity that generates pt|1(xt|x1) via Fokker-Planck Equation, i.e., ∂tpt|1 =
−∇ · (vt|1pt|1). Then the guided flow {pt(xt|c)}t∈[0,1] defined via the construction of Theorem 3.1
can be generated by the following guided velocity via Fokker-Planck Equation:

vt(xt|c) = Ep1|t(x1|xt,c)

[
vt|1(xt|x1)

]
. (28)

Proof. We begin with the Fokker-Planck Equation of pt|1(xt|x1):

∂tpt|1(xt|x1) = −∇ ·
(
vt|1(xt|x1)pt|1(xt|x1)

)
. (29)

Taking expectation with respect to pdata(x1|c) over both sides yields

Epdata(x1|c)
[
∂tpt|1(xt|x1)

]
= −Epdata(x1|c)

[
∇ ·
(
vt|1(xt|x1)pt|1(xt|x1)

)]
. (30)

The left-hand size of Eq. (30) can be simplified as

Epdata(x1|c)
[
∂tpt|1(xt|x1)

]
=

∫
R3

pdata(x1|c)∂tpt|1(xt|x1)dx1 (31)

=∂t

(∫
R3

pdata(x1|c)pt|1(xt|x1)dx1

)
(32)

=∂t

(∫
R3

pdata(x1|c)pt|1(xt|x1, c)dx1

)
(33)

=∂tpt(xt|c) (34)

Note that in Eq. (33), we use the conditional independence property of trajectory and target and get
pdata(x1|c)pt|1(xt|x1) = pt(xt,x1|c).
For the right-hand size of Eq. (30), we have

− Epdata(x1|c)
[
∇ ·
(
vt|1(xt|x1)pt|1(xt|x1)

)]
(35)

=−
∫
R3

∇ ·
(
vt|1(xt|x1)pt|1(xt|x1)pdata(x1|c)dx1

)
(36)

=−∇ ·
(∫

R3

vt|1(xt|x1)pt|1(xt|x1)pdata(x1|c)dx1

)
(37)

=−∇ ·
(∫

R3

vt|1(xt|x1)pt(xt,x1|c)dx1

)
(38)

=−∇ ·
(
pt(xt|c)

∫
R3

vt|1(xt|x1)pt(x1|xt, c)dx1

)
(39)

=−∇ · (vt(xt|c)pt(xt|c)) (40)

Putting the above together leads to ∂tpt(xt|c) = −∇ · (vt(xt|c)pt(xt|c)).

Theorem B.3 (Guided rate matrix). Let {pt(at)}t∈[0,1] be a discrete flow on A. Let Rt|1(at, b|a1)
be the conditional velocity that generates pt|1 = (pt|1(a|a1))a∈A via Kolmogorov Equation, i.e.,
∂tpt|1 = pt|1Rt|1. Then the guided flow {pt(at|c)}t∈[0,1] defined via the construction of Theorem 3.1
can be generated by the following guided rate matrix via Kolmogorov Equation:

Rt(at, b|c) = Ep1|t(a1|at,c)

[
Rt|1(at, b|a1)

]
. (41)

Proof. The proof idea is exactly the same as that of Theorem B.2, i.e., taking expectation with
respect to pdata(a1|c) over both sides of Kolmogorov Equation and simplifying them. Again,
pdata(a1|c)pt|1(at|a1) = pt(at, a1|c) will be useful in the simplification.
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B.3 IMPORTANCE SAMPLING FAILS FOR SAMPLING THE DISCRETE GUIDED FLOW

Proposition B.4 (Naive importance sampling for the discrete guided flow). For t ∈ [0, 1), the guided
rate matrix defined in Theorem 3.2 satisfies

Rt(a
(i)
t , j|c) = Ep1|t(G1|Gt)

[
pc(c|G1)

p(c|Gt)
Rt|1(a

(i)
t , j|a(i)1 )

]
(42)

Proof. By definition of the guided rate matrix and importance sampling, we have

Rt(a
(i)
t , j|c) = Ep1|t(G1|Gt)

[
p1|t(G1|Gt, c)

p1|t(G1|Gt)
Rt|1(a

(i)
t , j|a(i)1 )

]
. (43)

Note that for any t ∈ [0, 1), Gt and c are conditionally independent given G1. Therefore,

p1|t(G1|Gt, c) =
p(G1, c|Gt)

p(c|Gt)
=
p1|t(G1|Gt)p(c|G1,Gt)

p(c|Gt)
=
p1|t(G1|Gt)p(c|G1)

p(c|Gt)
(44)

⇒
p1|t(G1|Gt, c)

p1|t(G1|Gt)
=
p(c|G1)

p(c|Gt)
, (45)

which concludes the proof.

Proposition B.5 (Restatement of Proposition 3.3). For t ∈ [0, 1), the guided rate matrix defined in
Theorem 3.2 satisfies

Rt(a
(i)
t , j|c) =

Ep1|t(G1|Gt)

[
fc(G1)Rt|1(a

(i)
t , j|a(i)1 )

]
Ep1|t(G1|Gt) [fc(G1)]

. (46)

Proof. Proposition B.4 indicates that

Rt(a
(i)
t , j|c) =

Ep1|t(G1|Gt)

[
fc(G1)Rt|1(a

(i)
t , j|a(i)1 )

]
p(c|Gt)

(47)

By Conditional independence of trajectory and target in the guided flow, we have

p(c|Gt) =

∫
G
p(c|G1,Gt)p1|t(G1|Gt)dG1 (48)

=

∫
G
p(c|G1)p1|t(G1|Gt)dG1 (49)

=Ep1|t(G1|Gt) [fc(G1)] (50)

Combining Eq. (47) and Eq. (50) leads to the conclusion.
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B.4 PROOF OF THEOREM 3.4

Theorem B.6 (Restatement of Theorem 3.4). Let G1|t,1, · · · ,G1|t,K ∼ i.i.d. p1|t(·|Gt). Define the

estimation of Rt(a
(i)
t , b|c) as

R̂t(a
(i)
t , b|c) =

K∑
k=1

fc(G1|t,k)Rt|1(a
(i)
t , b | a(i)1|t,k)

/ K∑
k=1

fc(G1|t,k). (51)

Assume fc = inf
G∈G

fc(G) > 0. Given any ε ∈ (0, fc/2), δ ∈ (0, 1), if K = Θ
(

1
ε2 log

n|A|
δ

)
, then

P

(
sup

i∈{1,··· ,n}, b∈A

∣∣∣R̂t(a
(i)
t , b|c)−Rt(a

(i)
t , b|c)

∣∣∣ < ε

)
≥ 1− δ (52)

Proof. Consider some fixed i ∈ {1, · · · , n}, b ∈ A. To simplify our exposition, denote

Ni,b =Ep1|t(G1|Gt)

[
fc(G1)Rt|1(a

(i)
t , j|a(i)1 )

]
(53)

Di,b =Ep1|t(G1|Gt) [fc(G1)] (54)

N̂i,b =
1

K

K∑
k=1

fc(G1|t,k)Rt|1(a
(i)
t , b | a(i)1|t,k) (55)

D̂i,b =
1

K

K∑
k=1

fc(G1|t,k) (56)

We note that for any k ∈ {1, · · · ,K},

0 < fc(G1|t,k)Rt|1(a
(i)
t , b | a(i)1|t,k) <

1

1− t
. (57)

Therefore, by Hoeffding’s inequality, we have

P

(∣∣∣Ni,b − N̂i,b

∣∣∣ > ε(1− t)fc2

4

)
≤ 2 exp

(
−
Kε2(1− t)4fc4

8

)
. (58)

Similarly, for
∣∣∣Di,b − D̂i,b

∣∣∣, we have

P

(∣∣∣Di,b − D̂i,b

∣∣∣ > ε(1− t)fc2

4

)
≤ 2 exp

(
−
Kε2(1− t)4fc4

8

)
. (59)

Suppose
∣∣∣Ni,b − N̂i,b

∣∣∣ ≤ ε(1− t)fc2

4
and

∣∣∣Di,b − D̂i,b

∣∣∣ ≤ ε(1− t)fc2

4
, then we have

∣∣∣∣∣Ni,b

Di,b
− N̂i,b

D̂i,b

∣∣∣∣∣ =
∣∣∣Ni,bD̂i,b − N̂i,bDi,b

∣∣∣
Di,bD̂i,b

(60)

≤
Di,b

∣∣∣Ni,b − N̂i,b

∣∣∣+Ni,b

∣∣∣D̂i,b −Di,b

∣∣∣
Di,bD̂i,b

(61)

≤Di,b +Ni,b

Di,bD̂i,b

·
ε(1− t)fc2

4
(62)

≤
εfc

2

2Di,bD̂i,b

(
Note that 0 ≤ Di,b, Ni,b ≤

1

1− t

)
(63)
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Recall the definition of fc and the fact that ε ∈
(
0, fc/2

)
, we have Di,b ≥ fc and Di,b > fc/2.

Plugging these two lower bounds into Eq. (63) yields

∣∣∣∣∣Ni,b

Di,b
− N̂i,b

D̂i,b

∣∣∣∣∣ < ε.

Thus

∣∣∣∣∣Ni,b

Di,b
− N̂i,b

D̂i,b

∣∣∣∣∣ ≥ ε must imply
∣∣∣Ni,b − N̂i,b

∣∣∣ > ε(1− t)fc2

4
or
∣∣∣Di,b − D̂i,b

∣∣∣ > ε(1− t)fc2

4
.

P
(∣∣∣R̂t(a

(i)
t , b|c)−Rt(a

(i)
t , b|c)

∣∣∣ ≥ ε) (64)

=P

(∣∣∣∣∣Ni,b

Di,b
− N̂i,b

D̂i,b

∣∣∣∣∣ ≥ ε
)

(65)

≤P

(∣∣∣Ni,b − N̂i,b

∣∣∣ > ε(1− t)fc2

4

)
+ P

(∣∣∣Di,b − D̂i,b

∣∣∣ > ε(1− t)fc2

4

)
(66)

≤4 exp

(
−
Kε2(1− t)4fc4

8

)
. (67)

Applying union bound on i ∈ {1, · · · , n}, b ∈ A yields

P

(
sup

i∈{1,··· ,n}, b∈A

∣∣∣R̂t(a
(i)
t , b|c)−Rt(a

(i)
t , b|c)

∣∣∣ ≥ ε) ≤ 4n|A| exp

(
−
Kε2(1− t)4fc4

8

)
.

Set

K =
8

ε2(1− t)4fc4
log

4n|A|
δ

. (68)

Then we have

P

(
sup

i∈{1,··· ,n}, b∈A

∣∣∣R̂t(a
(i)
t , b|c)−Rt(a

(i)
t , b|c)

∣∣∣ ≥ ε) ≤ δ, (69)

which concludes the proof.
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B.5 FORMAL STATEMENT AND PROOF OF THEOREM 3.5

Before stating and proving the formal version of Theorem 3.5, we present additional definitions and
technical lemmas:
Definition 1 (SO(3)-invariance). We say a mapping h : R3×n → R is SO(3)-invariant if

h(SX) = h(X) for any X ∈ R3×n and S ∈ SO(3). (70)

Definition 2 (SO(3)-equivariance). We say a mapping h : R3×n → R3×n is SO(3)-equivariant if

h(SX) = Sh(X) for any X ∈ R3×n and S ∈ SO(3). (71)

Lemma B.7 (Gradient of invariant mappings). Let h : R3×n → R be an SO(3)-invariant mapping.
Then the gradient∇h is an SO(3)-equivariant mapping.

Proof. By chain rule and SO(3)-invariance, we have∇h(SX) = S∇h(X) for any S ∈ SO(3).

Lemma B.8 (Composition and sum of equivariant mappings). Let h1 and h2 be SO(3)-equivariant
mappings. Then their composition h2 ◦ h1 and their sum h1 + h2 is also SO(3)-equivariant.

Proof. The lemma follows immediately from the definition of SO(3)-equivariant mappings.

Lemma B.9 (Push-forward of equivariant mappings). Let h be an SO(3)-equivariant mapping and
p be an SO(3)-invariant distribution. Then h#p is also an SO(3)-invariant distribution, where #
denotes the push-forward operator.

Proof. The lemma follows immediately from the definition of SO(3)-equivariant mappings and
SO(3)-invariant distributions.

Theorem B.10 (SO(3)-invariance (formal version of Theorem 3.5)). Consider Algorithm 1. Assume
the target predictor fc(G) is SO(3)-invariant, the flow model gθ(G) is SO(3)-equivariant, and the
distribution of G0 is SO(3)-invariant w.r.t. the atomic coordinates X . Let W = 1/∆t. Then for any
w ∈ {0, · · · ,W}, the distribution of Xw∆t is SO(3)-invariant.

Proof. We prove by induction on w.

If w = 0, then the distribution of Xw∆t is SO(3)-invariant according to the assumption.

Assume that the distribution of X(w−1)∆t is SO(3)-invariant for some w ∈ {1, · · · ,W}. We show
that the distribution of Xw∆t is SO(3)-invariant.

We note that in Algorithm 1, Xw∆t is generated from X(w−1)∆t via a series of mappings: Xw∆t =
hL ◦ · · · ◦ h1(X(w−1)∆t), where each hi is one of the following:

• Projection: X 7→ ProjectΓ(X).

• Guidance based on the target predictor: X 7→X + ρt∇X log fc(gθ(X,at)X ,a1|t).

• Euler step:
[
x(i)

]n
i=1
7→
[
x(i) + vt|1(x

(i)|x(i)
1 )∆t

]
.

We show that all these mappings are SO(3)-equivariant.

Projection. By definition of ProjectΓ (in Sec. 2.1), for any S ∈ SO(3),

ProjectΓ(SX) = SX − 1

n

n∑
i=1

Sx(i)1T
n = S

(
X − 1

n

n∑
i=1

x(i)1T
n

)
= SProjectΓ(X). (72)

Guidance based on the target predictor. According to the assumption, X 7→ log fc(X,a1|t)
is SO(3)-invariant. Thus, by lemma B.7, its gradient is SO(3)-equivariant. Also note that X 7→
gθ(X,at)X is SO(3)-invariant. Thus, by lemma B.8, X 7→ X + ρt∇X log fc(gθ(X,at)X ,a1|t)
is SO(3)-equivariant.
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Euler step. By definition of vt|1(x
(i)|x(i)

1 ) (in Eq. (9)), we can easily check the SO(3)-equivariance

of
[
x(i)

]n
i=1
7→
[
x(i) + vt|1(x

(i)|x(i)
1 )∆t

]
.

To sum up, h1, · · · , hL are all SO(3)-equivariant. By lemma B.8, hL ◦ · · · ◦ h1 is SO(3)-equivariant.

Recall that the distribution of X(w−1)∆t is SO(3)-invariant. Therefore, by lemma B.9, the distribution
of Xw∆t is also SO(3)-invariant. We conclude the proof by induction.
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C DISCUSSION OF RELATED WORK

C.1 GENERAL DISCUSSION

Diffusion and Flow Matching Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Song et al., 2020; 2021; Dhariwal & Nichol, 2021; Song & Ermon, 2020; Karras et al., 2022;
Hoogeboom et al., 2023; Han et al., 2022b; Qin et al., 2023b) have demonstrated exceptional perfor-
mance across a range of generative modeling tasks, including image and video generation (Saharia
et al., 2022; Ho et al., 2022; Zhang et al., 2024), audio generation (Kong et al., 2020), and 3D geom-
etry generation (Luo & Hu, 2021a;b; Xu et al., 2022; Luo et al., 2022), among others. In contrast,
flow-based generative methods (Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Lipman et al.,
2022) present a more streamlined alternative to diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020; Song et al., 2020), bypassing the need for forward and backward
diffusion processes. Instead, they focus on noise-data interpolants (Albergo et al., 2023), simplifying
the generative modeling process and potentially leading to more optimal probability paths with
fewer sampling steps (Liu et al., 2022). Flow matching, which employs ODE-based continuous
normalizing flows (Chen et al., 2018), further refines this approach. Conditional flow matching
(CFM) (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022) learns the ODE that
maps the probability path from the prior distribution to the target by regressing the push-forward
vector field conditioned on individual data points. Riemannian flow matching (Chen & Lipman, 2023)
extends CFM to operate on general manifolds, reducing the need for costly simulations (Ben-Hamu
et al., 2022; De Bortoli et al., 2022; Huang et al., 2022). Recent advancements in the rectified flow
framework (Liu et al., 2022), which focuses on learning linear interpolations between distributions,
have demonstrated notable improvements in both efficiency (Liu et al., 2023) and quality (Esser et al.,
2024; Yan et al., 2024), particularly in text-to-image generation. Our work aligns with these trends
by exploring how to guide generation within this simple and general framework in a training-free
manner (Ye et al., 2024).

Multimodal generative models. Diffusion models have demonstrated great success in modeling
continuous data; however, many real-world applications involve multimodal data, such as tabular
data (Kotelnikov et al., 2023), graph data (Qin et al., 2023a), and scientific data (Peng et al., 2023).
A key challenge in this domain is generating discrete data within the diffusion framework. Unlike
large language models (LLMs) (Achiam et al., 2023; Lin et al., 2024; Team et al., 2023; Ke et al.,
2023), which excel at modeling discrete text, diffusion models have struggled in this area. Li et al.
(2022) introduced continuous language diffusion models, which embed tokens in a latent space and
use nearest-neighbor dequantization for generation. Subsequent research has enhanced performance
through alternative loss functions (Han et al., 2022a; Mahabadi et al., 2023) and by incorporating
conditional information, such as infilling masks (Gong et al., 2022; Dieleman et al., 2022). Gulrajani
& Hashimoto (2024) further improved language diffusion models by making various refinements
to the training process, allowing their performance to approach that of autoregressive LMs. While
continuous approaches to discrete data modeling have seen advancements (Richemond et al., 2022;
Han et al., 2022a; Chen et al., 2022; Strudel et al., 2022; Floto et al., 2023), discrete diffusion methods
like D3PM (Austin et al., 2021) and subsequent works (Zheng et al., 2023; Chen et al., 2023; Ye et al.,
2023) have demonstrated greater efficiency. Recent innovations, such as SEDD (Lou et al., 2023),
extend score matching to discrete spaces, improving language modeling to a level competitive with
autoregressive models. Additionally, DFM (Campbell et al., 2024) applies continuous-time Markov
chains to enable discrete flow matching, contributing to the Multiflow framework by integrating
continuous flow matching. Overall, multimodal generation is still an important open problem, and
our work lays a theoretical foundation for multimodal guided flow, which will be beneficial for the
study of multimodal generation.

Generative Model for Molecular Generation. Generative models have been applied to design
drugs such as small molecules (Ramakrishnan et al., 2014; Axelrod & Gomez-Bombarelli, 2022;
Francoeur et al., 2020; Irwin et al., 2020), proteins (Berman et al., 2000; Kryshtafovych et al., 2021;
Haas et al., 2018), peptide (Wang et al., 2024), and antibodies (Jin et al., 2021). Our work focuses
on designing small molecules, while the method can also be easily adapted to proteins, peptide and
antibodies which requires multimodal generation. Molecular design can be categorized into target-
agnostic design (Huang et al., 2023; Xu et al., 2022; 2023; Morehead & Cheng, 2024), where the goal
is to generate valid sets of molecules without consideration for any biological target, and target-aware
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design (Li et al., 2023; Masuda et al., 2020; Guan et al., 2023; Peng et al., 2022; Schneuing et al.,
2022). Our work considers both types of molecule design tasks.

Guidance for Diffusion and Flow Models. Since the introduction of classifier guidance by
Dhariwal & Nichol (2021), which employs a specialized time-dependent classifier for diffusion
models, significant progress has been made in applying guidance to these models. Early research
focused on straightforward objectives for linear inverse problems such as image super-resolution,
deblurring, and inpainting(Chung & Ye, 2022; Wang et al., 2022; Zhu et al., 2023). These approaches
were later extended by leveraging more flexible time-independent classifiers, achieved through
approximations of the time-dependent score using methods like Tweedie’s formula (Yu et al., 2022)
and Monte Carlo sampling (Song et al., 2023). Recent methods, such as FreeDoM (Yu et al.,
2023), UGD (Bansal et al., 2023), and TFG (Ye et al., 2024), incorporate various techniques to
enhance the performance of training-free classifier guidance, leading to more advanced forms of
guidance. However, some of these techniques lack clear theoretical support. A more recent work
by Shen et al. (2024) aims to improve the performance of training-free guidance by drawing on
ideas from adversarial robustness. Our work provides a rigorous theoretical framework for the
design choices in training-free guidance, which we believe will serve as a strong foundation for
future empirical research. In addition to classifier guidance, there are related works focusing on
guiding the generation of specific diffusion models. For instance, DOODL (Wallace et al., 2023),
DNO (Karunratanakul et al., 2024), and D-Flow (Ben-Hamu et al., 2024) utilize invertible models
or flow models to backpropagate gradients to the latent noise. These methods emphasize noise
optimization and often involve a training process tailored to a specific target, potentially making them
slower than training-free classifier guidance. Additionally, RectifID (Sun et al., 2024) is a concurrent
work exploring training-free guidance on rectified flow for personalized image generation. However,
we have identified several theoretical issues in this work, which will be discussed in the following
paragraph. This method addresses the training-free guidance via a fixed-point formulation, which is
quite different from us and can only apply to continuous data.

C.2 THEORETICAL ISSUES WITH RECTIFID.

Similar to many training-free guidance methods, RectifID aims to bypass the noise-aware classifier,
which is typically trained according to the noise schedule of flow or diffusion models (as discussed in
Equation 7 of their paper). They approach this by employing a fixed-point formulation:

z1 = z0 + v(z1, 1) + s · ∇z1
log p(c|z1), (73)

which corresponds to Equation 8 in their paper. This equation is derived under the assumption that
the rectified flow follows a linear ODE path zt = z0 + v(zt, t)t. Since the velocity v(zt, t) is
parameterized by a flow network and log p(c|z1) can be estimated using a time-independent classifier,
this formulation implies that z1 can be obtained by solving a fixed-point problem. However, we
think that when solving this fixed-point problem, the estimate of log p(c|z1) from a time-independent
classifier may be unreliable because some values of z1 could be out-of-distribution for the classifier.
Additionally, we observe a flaw in Eq. (9) of their paper, where the second equality incorrectly
assumes t∇zt

v(zt, t) = ∇zt
(v(zt, t)t). Moreover, Proposition 1 fails to prove that convergence for

Eq. (8) is guaranteed, as the proof only demonstrates that the conditions for Banach’s fixed-point
theorem are not satisfied.

C.3 DISCUSSION ON OTHER MOLECULAR OPTIMIZATION METHODS

Molecular optimization is a long-standing challenge in computational chemistry and drug discovery,
attracting significant attention from both the machine learning and chemistry communities. Numerous
methods have been proposed to generate molecules with desired properties, often employing tech-
niques ranging from search-based algorithms to deep generative models. In this section, we discuss
how our work relates to existing molecular design methods and clarify the distinctions between our
approach and others highlighted in recent literature.

Relation to Existing Molecular Optimization Methods Recent comprehensive reviews, such as
(Du et al., 2024), provide an extensive overview of machine learning-aided generative molecular

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

design techniques. These methods often focus on optimizing molecular properties using various
strategies, including evolutionary algorithms, reinforcement learning, and gradient-based optimization
within generative models. While these methods have shown success in specific applications, many are
tailored explicitly for molecular data and may not generalize readily to other domains. For instance,
search-based algorithms like genetic algorithms (Schneuing et al., 2022) are powerful for molecular
optimization but are inherently specialized and may face challenges when adapting to different data
modalities such as images or text. In contrast, our proposed method, TFG-Flow, is a training-free
guidance approach for multimodal flow models. Our primary contribution lies in extending training-
free guidance to handle multimodal data, with molecules serving as an application to demonstrate
empirical improvements. This focus does not limit our method to molecular data; TFG-Flow can
also be applied to other types of data, benefiting from the flexibility and generality of flow models.
Moreover, many existing molecular optimization methods rely on gradient guidance but are either
confined to non-structure-based molecular generation (e.g., relying solely on 2D molecular graphs)
or require extensive retraining of models for each new target property. Our training-free guidance
method operates without the need for retraining the generative model or training time-dependent
classifiers, enabling the use of any differentiable target function, including pre-trained models or
computational chemistry software.

Comparison with Optimization-Based Methods To address concerns regarding the lack of com-
parison with optimization-based molecular design methods, we incorporated experiments comparing
TFG-Flow with established optimization algorithms such as AutoGrow4 (Spiegel & Durrant, 2020),
which employs genetic algorithms for de novo drug design and lead optimization. We adjusted the
guidance target of TFG-Flow to focus solely on minimizing the Vina Score, a common metric for
evaluating binding affinity in molecular docking studies. This alignment ensures a fair comparison,
as both methods aim to optimize the same objective. Table 5 presents the updated results. From the

Table 5: Comparison of TFG-Flow with optimization-based molecular design methods. Lower Vina Scores
indicate better predicted binding affinity. Higher QED and SA scores indicate better drug-likeness and synthetic
accessibility, respectively. Time denotes the total computational time required for each method.

Method Vina Score ↓ QED ↑ SA ↑ Time (s) ↓
RGA (Fu et al., 2022) -6.93 0.46 0.80 11,576
3D-MCTS (Du et al., 2023) -7.55 0.65 0.78 4,150
AutoGrow4 (Spiegel & Durrant, 2020) -8.33 0.36 0.67 10,800
TFG-Flow (Ours) -8.14 0.40 0.62 3
TFG-Flow (Generate-then-Filter) -8.57 0.41 0.61 130

results, we observe that while AutoGrow4 achieves a slightly better Vina Score than the basic TFG-
Flow, our method is approximately 3,600 times faster in terms of computational time. Furthermore,
by adopting a generate-then-filter strategy—where TFG-Flow generates a set of candidate molecules
and selects the one with the lowest Vina Score computed using QVina2 (Alhossary et al., 2015)—we
improve the Vina Score to -8.57, surpassing AutoGrow4 while still being significantly faster.

This comparison highlights the effectiveness and efficiency of TFG-Flow in optimization-based drug
design tasks. The generate-then-filter approach leverages the speed of TFG-Flow to produce multiple
candidates rapidly, enhancing the chances of finding molecules with better binding affinity without
incurring substantial computational costs.

Clarifying the Scope of Our Work Our primary objective is to develop a training-free guidance
method for multimodal flow models, contributing to the broader field of generative modeling. While
molecular optimization serves as an important application area, our method is not limited to molecules
and can be applied to other data types, including images and text.

The key advantages of our training-free guidance approach include:

• Flexibility: TFG-Flow does not require retraining the generative model or training additional
time-dependent classifiers. It can utilize any differentiable target function for guidance,
including pre-trained models or computational chemistry software.

• Generalization: The method is applicable across different data modalities, making it a
versatile tool in the generative modeling toolkit.
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• Efficiency: As demonstrated in our comparisons, TFG-Flow offers significant speed advan-
tages over traditional optimization-based methods, enabling rapid generation of candidate
molecules.

By focusing on these aspects, we aim to bridge the gap between training-based and training-free
guidance methods, providing a practical and efficient alternative for conditional generation tasks
across various domains.

In summary, while there are numerous existing methods for molecular optimization, our work
distinguishes itself by offering a training-free guidance approach that is both flexible and efficient.
We acknowledge the value of optimization-based methods and have incorporated comparisons to
demonstrate the strengths of our approach. Our contributions lie not only in advancing molecular
design techniques but also in enhancing the capabilities of training-free guidance for multimodal
generative models.
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D EXPERIMENTAL DETAILS

D.1 TARGET-AGNOSTIC DESIGN SETTING

We conduct experiments in this setting following EDM (Hoogeboom et al., 2022), where the genera-
tive process is by first sampling c, n ∼ p(c, n), where c is the target property and n is the number of
atoms, and then samples the molecule G given these two information. We compute c, n ∼ p(c, n) on
the training partition as a parameterized two dimensional categorical distribution where we discretize
the continuous variable c into small uniformly distributed intervals.

For structure similarity, we use all the structures in the unseen half of training set for generative
model and guidance predictor. The Tanimoto coefficient results are averaged over all the structures.

D.2 IMPLEMENTATION OF TFG-FLOW

Network configurations. To train Multiflow on target-agnostic small molecular generation, we
follow EDM (Hoogeboom et al., 2022) to use an EGNN with 9 layers, 256 features per hidden
layer and SiLU activation functions. We use the Adam optimizer with learning rate 10−4 and batch
size 256. Only atom types (discrete) and coordinates (continuous) have been modelled, which is
different from unconditional EDM that includes atom charges. All models have been trained for 1200
epochs (for QM9) and 20 epochs (for GEOM-Drug and CrossDocked) while doing early stopping by
evaluating the validation loss. For target-aware molecular design, we follow TargetDiff (Guan et al.,
2023) to use EGNN with kNN graph, where k = 32 and reduces the batch size to 16 and the hidden
layer dimension to 128. For target predictors, we train a 6-layer discriminative EGNN by adding
linear head on the average pooling of output node feature. In our implementation, we only model
heavy atoms.

Hyperparameter searching. As noted by TFG (Ye et al., 2024), hyperparameter searching is the
key problem for training-free guidance. TFG designs complicated hyperparameter space where three
hyperparameters (which consist of a scalar and a scheduling strategy) and two iteration parameters
should be determined. Our TFG-Flow only has the four hyperparameters Niter, ρ, τ,K to be tuned,
and we show that a logarithmic scale of K is sufficient, and Niter can be set according to the
computational resources. So we fix Niter = 4 and K = 512 in our experiments, while grid search the
ρ and τ for different applications. The search space is defined by first find the appropriate magnitude,
as different applications have varied order of value magnitude. After determining the appropriate
magnitude, we double ρ and τ for 4 times to construct the search space. For example, the appropriate
search space for polarizability is (ρ, τ) is {0.01, 0.02, 0.04, 0.08}× {10, 20, 40, 80}. We then search
the space via small scale generation (the number of 512 following Ye et al. (2024)). The search target
is to minimize the guidance performance (e.g., MAE in quantum property guidance), while keeping a
validity over 75%.

D.3 BASELINES

We introduce the baselines used in this paper here. For baselines in target-agnostic molecular design,

• Upper bound: This baseline is from EDM (Hoogeboom et al., 2022), which removes any
relation between molecule and property by shuffling the property labels in the unseen half
of QM9 training set for oracle target predictor, and evaluate MAE on it. If a baseline outper-
forms upper bound, then it should be able to incorporate conditional property information in
to the generated molecules.

• #Atoms: “#Atoms” predicts the molecular properties by only using the number of atoms
in the molecule. If a baseline outperforms “#Atoms”, it should be able to incorporate
conditional property information into the generated molecular structure beyond the number
of atoms.

• Lower bound: The MAE of directly predicting property using the oracle target predictor.

• Cond-EDM: The conditional EDM is implemented by simply inputting a property c to the
neural network of EDM (Hoogeboom et al., 2022), without changing the diffusion loss.
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• EEGSDE: EEGSDE (Bao et al., 2022) trains a time-dependent classifier to guide the
conditional EDM. This is the best method for guided generation in quantum guidance task.

• DPS: DPS (Chung & Ye, 2022) estimate the time-dependent gradient ∇xt
log p(xt, t)

with ∇xt log p(x0|t) using Tweedie’s formula (here x0 means the clean data in diffusion
formulation, which is different from flow where x1 is the clean data).

• LGD: LGD (Song et al., 2023) replaces the point estimation x0|t with Gaussian ker-
nel N (x0|t, σ

2I). LGD uses Monte-Carlo sampling to estimate the expectation of
∇xt

log p(x0|t).
• FreeDoM: FreeDoM (Yu et al., 2023) generalizes DPS by introducing a “time-travel strategy”

that iteratively denoises xt−1 from xt and adds noise to xt−1 to regenerate xt back and
forth.

• MPGD: MPGD (He et al., 2024) computes the gradient ∇x0|t log f(x0|t) instead of
∇xt log f(x0|t) to avoid back-propagation through the diffusion model.

• UGD: UGD (Bansal et al., 2023) is similar to FreeDoM, which additionally solves a
backward optimization problem and guides x0|t and xt simultaneously.

• TFG: TFG (Ye et al., 2024) unifies all the techniques in training-free guidance, and turn the
problem into hyperparameter searching.

• Cond-Flow: Conditional flow is implemented by inputting the target value of property c to
Multiflow. The modification is the same as Cond-EDM with respect to EDM.

For baselines in target-aware molecular design,

• AR: AR (Luo et al., 2021) is based on GNN and generates atoms into a protein pocket in an
autoregressive manner.

• Pocket2Mol: Pocket2Mol (Peng et al., 2022) generates atoms sequentially but in a more
fine-grained manner by predicting and sampling atoms from frontiers.

• TargetDiff: TargetDiff (Guan et al., 2023) generates the molecules via diffusion, which is
similar to EDM that incorporates pocket information as inputs.

• Multiflow: We follow TargetDiff to adapt target-agnostic Multiflow to target-aware Mul-
tiflow. The simplex Γ projection becomes to substracting the center of gravity w.r.t. the
protein pocket.

D.4 DATASET PREPROCESSING

We introduce the dataset information for our expeimernts.

QM9. The QM9 dataset is a widely-used resource for benchmarking models in the field of molecular
generation, particularly for 3D structures. This dataset comprises about 134,000 molecules, each
containing up to 9 heavy atoms (not counting hydrogen atoms), derived from a subset of the GDB-17
database which itself is a database of 166 billion synthetic molecules. Each molecule in the QM9
dataset is characterized by its chemical properties and 3D coordinates of atoms. In the specific usage
of QM9 as mentioned, the dataset was divided into training, validation, and test sets with sizes of
100,000, 18,000, and 13,000 molecules, respectively, following the setup used by the EDM. We use
the QM9 dataset from Huggingface Hub6.

GEOM-Drug. The GEOM-Drug dataset is tailored for applications in drug discovery, providing a
more complex and realistic set of molecules for the development and benchmarking of molecular
generation models. This dataset was specifically chosen to train and evaluate models that are intended
to simulate and understand real-world scenarios in drug design. GEOM-Drug differs from simpler
datasets like QM9 by focusing on molecules that are more representative of actual drug compounds.
These molecules often contain major elements found in drugs, such as carbon (C), nitrogen (N),
oxygen (O), fluorine (F), phosphorus (P), sulfur (S), and chlorine (Cl). We follow MolDiff (Peng
et al., 2023) to exclude hydrogen atoms and minor element types such as boron (B), bromine (Br),

6https://huggingface.co/datasets/yairschiff/qm9
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iodine (I), silicon (Si), and bismuth (Bi). We use the opensourced version of GEOM-Drug processed
by MolDiff codebase7, which filters the molecules through several criterion. The selection criteria
were as follows:

• molecules must be compatible with the RDKit package;
• structures should be intact;
• molecules should contain between 8 and 60 heavy atoms;
• only elements such as H, C, N, O, F, P, S, and Cl were allowed;
• permissible chemical bonds included single, double, triple, and aromatic bonds.

Following these criteria, hydrogen atoms were excluded, and the molecules were divided into training,
validation, and testing datasets containing 231,523, 28,941, and 28,940 molecules, respectively.

CrossDocked2020. The Crossdocked dataset initially comprises 22.5 million poses of small
molecules docked to proteins, featuring 2,922 unique protein pockets and 13,839 unique small
molecules. We utilized non-redundant subsets that were filtered and processed from the TargetDiff
codebase8. These subsets include 100,000 protein-molecule pairs for training and 100 pairs for
testing.

D.5 EVALUATION METRICS

We introduce the evaluation metrics used in this paper.

• MAE (Mean Absolute Error): A measure of the average magnitude of the absolute errors
between the predicted values and the actual values, without considering their direction. It’s
calculated as the average of the absolute differences between the predictions and the actual
outcomes, providing a straightforward metric for regression model accuracy.

• Tanimoto coefficient: A metric used to compare the similarity and diversity of sample
sets. It is defined as the ratio of the intersection of two sets to their union, often used in the
context of comparing chemical fingerprints in computational chemistry.

• Vina score: A scoring function specifically designed for predicting the docking of molecules,
particularly useful in drug discovery. It estimates the binding affinity between two molecules,
such as a drug and a receptor, helping in the identification of potential therapeutics.

• SA score (Synthetic Accessibility score): A heuristic measure to estimate the ease of
synthesis of a given molecular structure. Lower scores indicate molecules that are easier to
synthesize, useful in the design of new compounds in medicinal chemistry.

• QED (Quantitative Estimate of Drug-likeness): A metric that quantifies the drug-likeness
of a molecular structure based on its physicochemical properties and structural features,
aiming to identify compounds that have desirable attributes of a potential drug.

We also test other metrics related to generation quality following EDM (Hoogeboom et al., 2022) and
MolDiff (Peng et al., 2023) in App. E:

• Validity: Measures the percentage of generated molecules that are chemically valid (can be
parsed by RDKit).

• Atom stability: Assesses whether the atoms have the right valency.
• Molecular stability: Assesses whether all the atoms are stable in the molecule.
• Uniqueness: Quantifies the uniqueness of generated molecules.
• Novelty: Measures how novel the generated molecules are when compared to the training

set.
• Connectivity: Checks if all atoms are connected in the molecule. We use the lookup table

from EDM to infer the chemical bonds.

7https://github.com/pengxingang/MolDiff
8https://github.com/guanjq/targetdiff

34

https://github.com/pengxingang/MolDiff
https://github.com/guanjq/targetdiff


1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

D.6 LEVERAGING PRE-TRAINED FOUNDATION MODELS AS TARGET PREDICTOR

In our main experiments, the target predictors were trained specifically for guidance purposes to
ensure a direct and fair comparison with existing baselines such as TFG (Ye et al., 2024). However, a
significant advantage of training-free guidance methods like TFG-Flow is their ability to leverage
pre-trained foundation models as target predictors without additional training. This capability not
only enhances performance but also reduces computational resources and time.

To demonstrate this advantage, we conducted additional experiments using UniMol (Zhou et al.,
2023), an open-source universal 3D molecular foundation model applicable to various downstream
tasks. UniMol is a powerful pre-trained model that can predict a wide range of molecular properties.
We used the fine-tuned UniMol model to predict molecular properties, serving as our guidance
network in the experiments corresponding to Table 6.

Table 6: Conditional generation results on the QM9 dataset using pre-trained UniMol as the target predictor.
Lower values are better for all metrics.

Method Cv ↓ µ ↓ α ↓ ∆ϵ ↓ ϵHOMO ↓ ϵLUMO ↓
Cond-Flow 1.52 0.962 3.10 805 435 693
TFG-Flow (Vanilla predictor) 1.48 0.880 3.52 917 364 998
TFG-Flow (UniMol) 1.12 0.802 2.89 585 312 587
EEGSDE 0.941 0.777 2.50 487 302 447

As shown in Table 6, incorporating a strong pre-trained target predictor like UniMol significantly
enhances the performance of TFG-Flow across all evaluated molecular properties. Specifically, the
Mean Absolute Error (MAE) decreases notably when using UniMol compared to the vanilla predictor
trained specifically for guidance. The performance gap between our training-free TFG-Flow (with
UniMol) and the training-based EEGSDE, which requires training both a conditional generative
model and a time-dependent predictor, has notably decreased.

These findings highlight several key advantages:

• Improved Performance. The integration of a strong pre-trained model like UniMol boosts
the performance of TFG-Flow, achieving results closer to or competitive with training-based
methods.

• Flexibility. Training-free guidance methods can seamlessly incorporate any off-the-shelf
pre-trained models, including those not originally designed for the guidance task. This
flexibility is particularly beneficial when high-quality pre-trained models are available.

• Reduced Computational Effort. By leveraging pre-trained models, we eliminate the need
to train additional target predictors or time-dependent classifiers, saving both time and
computational resources.

Our experiments demonstrate that TFG-Flow benefits significantly from incorporating pre-trained
foundation models as target predictors. This capability enhances performance, narrows the gap with
training-based methods, and underscores the practical advantages of training-free guidance.

D.7 HARDWARE AND SOFTWARE SPECIFICATIONS

We run most of the experiments on clusters using NVIDIA A800s with 128 CPU cores and 1T RAM.
We implemented our experiments using PyTorch, RDKit, and the HuggingFace library. Our operating
system is based on Ubuntu 20.04 LTS.
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E DETAILED EXPERIMENTAL RESULTS

E.1 CONDITIONAL FLOW

Table 7: The full results for conditional flow (Cond-flow) on QM9 quantum property guidance. The results are
averaged over 3 random seeds, where standard deviations are reported in Table 8.

Validity↑ Uniqueness↑ Novelty↑ Mol. stability↑ Atom stability↑ Connectivity↑ MAE↓
α 78.03% 98.78% 87.75% 89.54% 98.49% 69.55% 3.10
µ 83.60% 97.81% 86.71% 92.87% 99.12% 74.40% 0.96
Cv 64.96% 98.78% 85.48% 81.20% 96.89% 57.91% 1.52
∆ε 75.95% 97.42% 87.26% 88.41% 98.52% 64.86% 804.03

εHOMO 87.93% 95.90% 89.14% 94.51% 99.32% 73.72% 436.02
εLUMO 80.76% 98.46% 90.57% 91.58% 99.00% 67.42% 692.78

Table 8: The standard deviations for conditional flow (Cond-flow) on QM9 quantum property guidance.

Validity Uniqueness Novelty Mol. stability Atom stability Connectivity MAE
α 0.5921 0.2458 0.4712 0.4000 0.0551 0.6409 0.0231
µ 0.7703 0.1607 0.4443 0.6853 0.0808 0.4022 0.0034
Cv 0.6730 0.2427 0.5601 1.0701 0.2290 0.5462 0.0467
∆ε 0.4349 0.2875 0.3831 0.2139 0.0404 0.6322 12.74

εHOMO 0.1553 0.4576 0.7246 0.2464 0.0252 0.6218 9.054
εLUMO 0.4306 0.1234 0.5103 0.3798 0.0351 0.2207 9.139
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E.2 TFG-FLOW

Table 9: The full results for TFG-Flow on QM9 quantum property guidance. The results are averaged over 3
random seeds, where standard deviations are reported in Table 10.

Validity↑ Uniqueness↑ Novelty↑ Mol. stability↑ Atom stability↑ Connectivity↑ MAE↓
α 76.31% 99.43% 93.44% 89.89% 98.75% 66.40% 3.52
µ 75.34% 99.01% 89.89% 86.85% 98.33% 63.64% 0.88
Cv 75.56% 98.99% 90.89% 87.78% 98.43% 68.55% 1.48
∆ε 75.95% 97.42% 87.26% 88.41% 98.52% 64.86% 914

εHOMO 87.93% 95.90% 89.14% 94.51% 99.32% 73.72% 364
εLUMO 80.76% 98.46% 90.57% 91.58% 99.00% 67.42% 998

Table 10: The standard deviations for TFG-Flow on QM9 quantum property guidance.

Validity Uniqueness Novelty Mol. stability Atom stability Connectivity MAE
α 0.8051 0.1015 0.4419 0.7518 0.0900 1.0564 0.0523
µ 0.0693 0.1361 0.4844 0.3800 0.0751 0.3166 0.0164
Cv 0.6660 0.2127 0.5501 1.0601 0.2390 0.3462 0.0455
∆ε 0.6673 0.1058 0.2498 0.4743 0.3528 0.3407 20.7743

εHOMO 0.4603 0.1501 0.2425 0.1997 0.0416 0.2761 7.4903
εLUMO 0.1000 0.1501 0.1102 0.2589 0.0173 0.2454 14.9410
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